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Hypoellipticity for infinitely degenerate
elliptic and parabolic operators II,

operators of higher order

By

Toshihiko HOSHIRO

§ 1 . Introduction and results

The present article is a continuation of the previous work [3] concerning the
hypoellipticity of second order operators. Here we are mainly concerned with
hypoellipticity of differential operators of the form

(1.1) L = Dlm - {- f ( t )D ! ' g ( t ) . IYy m .

Throughout this paper, we assume that f ( t )  and g ( t )  are functions of class C -

satisying the following condition:

(Al) i) f(0 ) = g(0 ) = 0 , f ( t )> 0  and g(t)>0 for t *O.
ii) Both of f ( t )  and g (t )  are monotone increasing for 0 < t< a , and mono-

tone decreasing f o r —8 <t <O.

Then, the same argument as in the proof of theorem 1 of [3] will give the follow-
ing (we omit its proof):

Theorem 1. Let L  be a differential operator of the form (1.1) with f ( t )  and g (t)
satisfying (A .1 ) . Assume moreover:

(A .2 )  there exists a constant a with 0< a < 1  such that
2 m  

g (a t)It lo g f ( t ) l e> 0 f o r  O <t<8

Then L  is not hypoelliptic.

This result gives a necessary condition of hypoellipticity for operator L .  Our
main purpose of the present paper is to prove that a certain condition (see (A.4) be-
low) almost complimentary to (A.2) is also sufficient for hypoellipticity of L, under
the assumption (see (A.3) below) concerning magnitudes of derivatives of f ( t )  and
g(t).
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Theorem 2 .  L et L  be a differential operator of the form (1.1) with f ( t)  and g(t)
satisfying (A .1 ). Assume moreover the followings:

(A.3) Functions a(t)={ f (t)} 112 ° and 13(t)=-{g(t)} 112 m satisfy

(

± -
1

)
i

 a ( t )dt
5 C a( t) i-T i and (cl)ib(t) 5C b(t) l ' i

        

for — 8 <t<13, 15 j 5m , with some positive constants a (0<a <1/m) and C.

Ilim 2m  g(t)I t log f ( t ) i  = 0
t.+0
lim 2m V f (t) I t log g (t) I  = 0 .

Then L  is hypoelliptic.

Remark 1 . 1 .  Of course, the assumption (A.3) is equivalent to

(A.3)' ( _d )-if ( t )
dt

Cf(t ) i - c r 'i  ,

I d  V
d t

g(t) ,

     

j=1, • • • , m with another positive constant C ' and a' =a 1(2m).

Remark 1 .2 .  If g ( t ) =O ( t )  at t= 0 , then the assumption (A.3) implies a >
2 m /o . So in the case where both of f (t) and g(t) vanish finitely at t =0, the assump-
tion (A.3) is very restirictive. But the hypoellipticity of L  in that case is by now
well known, so we are interested in the case where one of (or both of) f (t) or g(t)
vanishes infinitely at t = 0. Moreover, if f ( t ) 5  Const g (t) for — 8 < t < 8, the
assumption for g(t)  (or b(t)) in (A.3) can be removed. This will be seen at the
end of §2.

To understand our results, let us pay attention to the following examples.

Example 1 .  We put f (t)=ex p  ( -1 /  t I/) with some positive constant r, and
g (t)=t 4  with some positive integer k .  Then f ( t)  satisfies the assumption (A.3) for
any a> 0, and f ( t )5  g ( t)  in  a neighborhood of t =0. Hence, Theorem 1  and 2
show that the operator

L  = DIm±exp (-1/ I ti .")D!'n-kekV.,,m

is hypoelliptic if and only if r <k m + 1.

Example 2 .  Let r, and 12 b e  positive numbers. Theorem 2 shows that the
poerator

L  = DPn±exp (-1/ t ri)M m +ex p ( -1/ I t 172)D;'"

is hypoelliptic.

Remark 1 .3 .  Let f 1(t) (j=1, •••, n) be functions of class C -  satisfying the
conditions (A.1), (A.3) and

(A.4)
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lim 2 "'Vf.(t) I t log f k (t) I =0 fo r  j, k

Then our arguments in the proof of Theorem 2 can also be applied to show that
the operator

L  DP" +  Ê f . (t )D 2 'nx ij=1

is hypoelliptic in  Rn+ 1 .

Remark 1 .4 .  Theorem 2 has a generalization to the operators of the form

L n H-D(f(t, x, y)DT)+DT(g(t, x, y)D7) ,

where f(t, x, y )  and g(t, x, y )  are functions of class C -  satisfying the following
condition: There exist a pair of functions f(t), g (t) satisfying the conditions (A.1),
(A.3), (A.4), and a positive constant C such that

C - 1 ,f(t) f(t, x, .3, ) - c f ( t )
C - 1 g(t)._g(t, x, y)<_Cg(t)

and

ii < i k . , . 11XD1,,f(t, x, y)1 .Cf(t)

i < i k „ , IIXDg(t, x, y)I _ Cg(t) .

For detail, c.f. theorem 3 of [3].

By a slight modification, our arguments can also be applied to the operators
of parabolic type:

Theorem 3 .  Let P be a differential operator of the form

(1.2) P "±f(t)D !' + ig(t)D , ,

where f ( t )  and g (t ) are functions of class C -  satisfying the conditions (A.1) and
(A .3 ) . Assume moreover that

(A.5)
1im g(t)t2m iog f (t )  I 0t+0
11111 2 'n  f t log g(t)1 0 .
t+0

Then P is hypoelliptic.

Example 3. Let r  be a positive constant, and let k  be a positive integer.
Then, the operator

P  D  Int±exp (-1/ I t

is hypoelliptic if and only if r <2k+2m . The proof of necessity is due to the same
argument as in proof of Theorem 1 (c.f. section 2 of [3]). Also recall Remark 1.2
for the proof of the sufficiency.
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Our plan of the present paper, which is quite analogous to that of [3], is as
follows: In §2, we explain some basic facts necessary for the proof of Theorem 2.
The presence of Lemma 1 there is the most significant difference from the previous
article [3]. In §3, we complete the proof o f Theorem 2. Finally, §4 will be
devoted to the proof of Theorem 3.

The author would like to express his sincere graditude to Professors S. Mizo-
hata, W. Matsumoto and N. Shimakura for their continuous guidance and helpful
encouragements.

§ 2 . A priori estimates

We start this section by explaining our plan of the proof of Theorem 2. At the
beginning, let us introduce the ordinary differential opeartor with real parameters
C—(e, as follows:

(2.1) Lr = ( - 1)m

 d
d

t:+f (t)Œ 2 m+g(t)712 ° .

The proof of Theorem 2 is devided into the following two propositions.

Proposition 1. Suppose that f (t)  and g(t) satisfy the assumptions of  Theorem 2.
Then, we have the following inequality:

(2 .2 )  Given any e> 0, there exists a positive number n, such that

./'(t)(log <0)2 0 I v ( t ) i ' d t +  g(t)(log <e))2 m I v(t) I 2 dt

S e  L o , (t)•v(t)dt ,

f o r all v eC en(-6 , d) and for all c E R 2 satisfy ing e 2 +722 n .  (Here we denote
<e>=(1 + e . 12 )112).

Remark 2.1. In the right hand side of (2.2) ,notice that

L o(t)•v (t)dt

=  I v( m) 12 d t+ f  e2m v 12 dt-F ge'n v 1 2 dt .

Proposition 2 .  I f  Lr enjoyes (2.2), then L  is hypoelliptic.

The proof of Proposition 2 will be given in the next section, using microlocal
energy method. We shall devote the remaining part of this section to the proof of
Proposition 1. The technique of its proof here is quite analogous to the one in
ViSik-GruSin's paper [10].

At first, let us prove the following lemma, which will be necessary in the proof
of Proposition 1.
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Lemma 1. If  f ( t ) = a ( t ) 2 m  satisfies the conditions (A.1) and (A.3), then it holds
the following inequality:

For any r satisfying 0<r <(1—atn)1(1±a), there exists a positive constant Cy

such that

(2.3) l(a(t)ie in kDr - k v(t)1 2 dt
1._ . le nz -1

Cy { t n V(t)1 2d t + f ( t ) e 2 m  v (t)I 2 dt}

for all v Cgs(-6, 8) and for all e eR .

Proof of Lemma 1. Choose r' so that

(2.4) r/(1 —a rn) <r' <(1- - a)' .

I. First we prove (2.3) for v ( t )  supported in ft 8); a(t)le 1/21.
Let us make a change of vairable as

h(e, t)dt dy, ,
with

h( e, t) =-  a(t)lei .
Furthermore we put

w(y) = len -
(112) v(t).

Then

(2.5) f  D ry  +f(t)e 2m I v 11- dt

= { 1 1 3'Itn v12 ±1hin vI 2}dt

= -(1(hD y )m (h- m±(112 4)1 2 -1- I wl 2h)-11- 1 dy

D;" w 12 + I w 121 dy+ remainder,

where "remainder" is of the form

Re E  coefficient x D'yn- kw I 2 +
l ‘ k 5 r n

+2D7w. E coefficient x .14 '4  d y
1 5 k r t t

We can prove recursively that "coefficient" is the sum of terms of the form

Const.

E.1 • P;

satisfying
= k .
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(Here we denote hu) =(—
d

d i
 Yh.)

Now we can see that I hm•li - l - 1 1 is small in the support of w(y) (or v ( t ) )  if
is sufficiently large, because the assumption (A.3) implies

h( i ) •h - j - 1 1  =  a u ) I I e I
Const. (a- '  •  le I - - 1

)i

const. { I e I - 1 + . ) / ( 1 4 - `9 1l  •
It is clear that

Di; w 12 dY C o n st. {  D'yn +  w  12} d y

So from (2.5) and the above observation, it follows that

E  I  0 - 1 Dok(hm - (0 )y) I 2 hdt
Ogk

I D i; i )12 dy
Ogk

Const. { I DrvI 2+  I lr v1 2} dt .

Moreover, using the above argument again, we can see

(2.6) E hm- kM v  2dt

Const. I v 12 + v 121 dt ,

which is a stronger inequality compared with (2.3). (Notice that

171 /2 (h - 1 D,Ahm - 0 /2 ) v) = E  coefficient x hm - i DfV
1<k

and that "coefficient" is small in the suppost of v(t) if ICI is large.)
II. For v ( t )  supported in  ft ( - 6 ,  (5); a(t)le 17' , it is very easy to see

that

(2.7) I (a(t) I e I nkDr - k v I 2 dt

I e I - 2 (?' x Const. I  Dr - k v I2 dt

Const. I CI - 2 ( 1 - 7 ) k I D v 12 d1,

which is a stronger inequality compared with (2.3).
III. Let us prove (2.3) fo r general v Con( - 6, a). Choose a  function

e CT(R) so that OW —1 for I t  I 51 /2  and 0 0 = 0  for I t I 2. Furthermore let
us put
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z 1(t) =  0(a(t)Ie , x 2(t) = 1 —x(t)

and

v1(t) =  %1v , v2(t) = X2 v .

Then, (2.6) and (2.7) will yield

(a(t)lel))kD7 - , v(t) I 2 c/t

2 6  kale 1 1)k gn - kvir dt 1(a IC 1")k /Y7 - k vil 2 dt}

Const. {1 e I- 2 (7 / - 7 )4 I Dr Vi I 2dt+ ICI - 2 ( 1 ' (1  D rv2  1 2 +  I hmv, I 2)dt}

Const. (1Div 1 2 + 1 hm v 12)dt +remainder .

(To see the last estimate, notice that r'>r.)
Observe now that "remainder" is estimated by

Const. IC I - 2 ('' - 1 ) k 1[D7', xlv 12dt

and that the coefficient of D r ' (k  =1, •••,m ) in  [Dr, x 1] is  a  sum of terms of
the form

const. ok ')(a  IC 11) II {a{' I C I ''} P1

with

E j • p i  = k  an d  k ' = E p i .

Furthermore, observe that the assumption (A.3) yields, in the support of '(a IC 1"/),

{au )  e Const. H e I P

Const. H  le I " ' . .11 .1

Const. i f •

So we can see that "remainder" is estimated by

Const. I CI - 2 DT v 12dt .

Since we have chosen r and r' so that (r' — r) — amr'>0, we can now see that the
inequality (2.3) holds for all v C 'on(-5, 6).

Now, we come to the proof of Proposition 1.

Proof of Proposition 1. We are going to prove the inequality:
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(2.8) g(t )(log <e>)2ifilv(t)12 dt 5 6  L o , (t)•v(t)dt ,

vvECô m ( - 6 , 6 ) , Cl;l sufficiently large,

in the region Al = {(e, 77); (771 2 1e II. In A „ it is clear the that

f(t )(log <0) 2 m1v(t)12 dt f (t)en I v(t)1 2dt ,

i f  ICI is sufficiently la rg e . So we can see that (2.3) holds in  A „ once (2.8) is
established. The proof of (2.2) in A2 = {(e, 77); le! _217/1} is parallel, interchang-
ing the roles of (f (t), e) and (g(t), 77).

I. First we shall prove (2.8) for v (t ) supported in  -(t e  ( - 6 ,  a); a(t) IerYP
1/2}, where r is the same number as in Lemma 1. It will be easily seen that, if

le I is sufficiently large,

(2.9) g(t )(log <e>)2 'n1v(t)12dt

Œ 17 1 2 1v(t)rdt

5. (a(t)I e 1) 2 m I v(t)I 2 dt

e Lo , (t)•v(t)dt

II. To prove (2.8) for v(t) supported in {t (—a, (3); a(t)le1 2 - 21, we must
do the following consideration.

Let z=z(e) denote a positive number such that a(z)Ierv 2 =2 and write v(t) as

v(t )  =  —  z   — s )
m - 1

 •  v ( m ) (s )ds .
r (m -1 )!

Then it holds

(2.10) g(t)I v(t)1 2 clt

(z—t) 2m- 1

g(t) dt 1) , ( ''') (s)1 2ds
o(2 m -1 ) (m — l) ! 2

g ( z ) • z

2m(2m —1) (
2

: —1) !2 I V( m ) (S) I .

On the other hand, the assumption (A.4) together with the fact that z(0—>0 as
IC 1 -*co yield, if 1 e 1 is sufficiently large,

(2.11) (log <e>)lng(z)z 2 'n

(log <e>2 '")e(log f(z )) - 2 'n

«log <e>rn(log 22 m1e - n r i r 2m

Const. e .
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Therefore, combining (2.10) and (2.11), we obtain (2.8) for v(t) with support suffici-
0

ently near to t= 0 . (The integral S  g(t)Iv(t)1 2(11 can be estimated in the same

way, where z' --z'(e) denotes a negative number such that a(z')Ie 1 7 1 2 =2.)
III. Now, we shall prove (2.8) for general v(t) e CM— S, (3). Choose a func-

tion sbeC;° so that 0(0=1 for I t1 / 2  and OW =0 for I t 2. Put

i l ( t ) 0(a(t)le 1 7 12 ) , i 2 ( t ) 1- 2 (t )
and

v1 = 1v1 , V 2 = if 2 V

Then, the results in I and II above yield

g(t)(log <e>)2 nI v(t)12dt

2 (log <C>)2

n{ g I vi l2 d t+  g I v2 12 dt}

L071 •17i dtd- L4-v 2 • dt}

8e • d t+  remainder .

Observe now that the remainder is estimated by

86 , 211v 12dt ,

and that the coefficient of DT - k  in [Dr, 2,] is the sum of terms of the form

(2.12) Const. ock')(a le 'yo) fa ci) ICI 1 / 2 1  p

with
E j • p ;  = k  a n d  k ' = E l l ;

Moreover, since a  el 7 /2 1/2 in the support of Ok' ) (a I 1/2), (2,.12) is not larger
than

Const. I CI " 1 2  X -W(t) le ink •
Now, recalling Lemma 1, we can see that (2.8) holds for all ve cm —8, (7)

and I C I ; sufficiently large.

Remark 2 .2 . If f(t).._ Const. g(t), then it is easily seen that

,f.(t)(log <0) 2m I v(t) 1 2 dt

e g (t)72 2 'n I v(t)I 2dt

< 6 L,.v(t)•v(t)dt ,
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if  1721 is sufficidntly la rge . Moreover, in the region 112, it is clear that

g(t)(log <e>) 2m I
 v ( t )

 I 2 c/t

< e g (t)en lv (t)1 2dt

e L o ,(t)•v(t)dt ,

i f  I 721 is sufficiently la rge . So in  this case, we can prove (2.2) in the region A 2 ,
without using the condition for g(t) in (A .3 ) . On the other hand, notice that the
condition for g (t) in (A.3) is not in need for the proof of (2.2) in the region Al .
Thus we can remove the condition for g (t) in  (A.3), in the case where f ( t )S
Const. g(t) for —8 <t <S.

§3. Microlocal energy method

To prove Proposition 2 in the preceding section, let us recall some reductions
for the proof of hypoellipticity in [3]. At first, we define the following Sobolev
space.

Definition. We denote by H/4 1 (R 3)  ( -0 0  <k, /.<o0) the space of all distri-
butions u E S' (R3) satisfying

6( r ,  e I  2(1 +  r 2) k( i • - 2+ 4-  + 0 1c/2- de dn <00 ,

where 6 is Fourier transform of u.
Furthermore we say that u  gY  is locally of class W4 1  a t (4, x„ y o)  if there

exists a function e  M R ') w ith  = 1  in  a neighborhood of (to, xo, yo)  such that

N ow  w e can  see tha  fo lloe ing  following facts. The f irs t is  th a t, if
u E .0 1'(( —6, 8)x 2 )  and (t0 , x0, y 0) E ( - 4 ,  (3) x ‘2, then there exists a pair of real
numbers (k, 1) such that u eH k. 1 at (t0, x 0 , yo). The second is that, if ue H /4 1  and
Lue C -  at (t 0 , X0 , y 0), then we have u e  Hk+2'n, 1 - 2 'n at (4, x0 , y o). Moreover repeat-
ing this fact, we can see that u is locally of class n H k - q.k - i  at (to, x0, 3/0). Thus in

the proof of Proposition 2, the partial Fourier transform of u at (t0 , x0 , yo), i.e.,

xolefrur(t ; e, 72) (270' C, 77)dr , ,

where x (t)e  C (7(R) with x (t)= 1  in a neighborhood of t= t o  and Vf(x, y)e CAM)
with Ik(x, y )= 1  in  a neighborhood of (x , y )= (x o , yo ), is smooth with respect to t
for almost every (e, 77).

Next, we define the notion of microlical smoothness of u —ô, a) x12),
since our proof of Proposition 2 will be m icrolocal. (It is more precise to say "semi-
microlocal".)
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Definition. Let (to , xo, yo) (— 8, .3)x S2 and (C°, 77°) E  \ 0 . For u  .gf(( —8,
.6) x 2) we say that u is microlocally of class I I " n H ° •1) at (to , xo , yo; eo, i f

there exist a function G C ;.° ( ( , (3) x S2) with q5 =1 in a neighborhood of (to, x0, yo)
and a conic neighborhood r  ( CR2) of (e°, such that

I (00(r e 72)1 2(14-E2 +772)sdrdf dn < 0 0

(t.Inero

for any positive number s.

Remark 3 .1 .  By standard argument in microlocal analysis, one can easily
show that u EH°. -  at (t o, xo, yo)  if and only if  u is microlocally of class H "  at
(to, xo, Yo eo, for all (OE2 , 77°).;

Remark 3 .2 . In the proof of Proposition 2, it suffices to show that u is of
class H "  at (to , xo , yo)  if L u is of class C -  a t (to , xo , yo). The reason is that the
smoothness of u in t-direction follows from the smoothness of u in (x, y)-direction,
since L is non-characteristic in t-direction.

We end the preparation of the proof of Proposition 2 by recalling microlical
energy method in [3].

Choose first a  sequence N E C ô (R 2 ), N=1,2, ••• with 11,  N= 1  in  {(x, y);
x2 -4,-y2 414} and afr, =0 in  {(x, y); x2 +y 2 r }  satisfying:

I DP : "  VP NI C Ko (CN ) 115

for I p l s N , (Here C  and Ciro are  independent of N . )  We define the
microlocalizers la n(e, 77), fin(x, y)}  by

an(e, 72) * N „ ( -
e
- —e°, —720) , f in (x , y ) y 0— Y

with
N„ =  [log n]+1 .

Our microlocal energy of y E  2 ' is

S'Av) E  liclqaV) (Dz, D,)19„(Q)(x, Y)v112

I
with

= 2LJ - 1 1 '4111 • niP I • (log n) - IP+ql

(Here cr;,P)0 2 , r „ ( e , 7 7 ), =.DliDgy 2fin (x, y). j I  f i  stands for the norm in
L2 (10).)

Then, we have the following lemma whose proof is given in section 6 of [3].

Lemma 2. Let u U Hcl'i locally at (t o , xo, yo). Then u is mocrolocally of class

H "  at (t o , xo , yo ; if and only  if  there exists a Junction x(t) G CA R) w ith x =1
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in a neighborhood of t =t o  such that the microlocal energy of xu is rapidly decreasing
as n---> 0 9  ( i f  r0> 0 is small), i.e.,.for any positive number s, there exists constants M
and Cs  such that

S,11(xu) C5n-23

when n is large . (We abbreviate as Sm„(xu)=0(n - 2 ').)

Now we come to the proof of Proposition 2. We will show that u is micro-
locally of class H "  at (0, .x0 , yo; 50, f o r  every (50 , if L u is locally of class
C -  a t  (0, x0 , yo). (Notice that the ellipticity of L  except at t=0 allows us to
restrict our consideration to the case 4=0.)

Proof of Proposition 2. Let x (t )  and 1,/r(x, y )  be smooth functions whose
suports are contained in small neighborhoods of t=0 and (x, y)=(x o , A) respec-
tively. Observe now that the right hand side of the equation

*L(Xu) = xlud-xlitLu

is of class Co° if Lu is class C -  a t (0, x0 , y0). Therefore it suffices to show that
the microlocal energy of v=xtt is rapidly decreasing if so is that of *Lv.

Assume that I p+q  I A i - -2m  and r 0 > 0 is chosen sufficiently small so that
,8,,c  C V ,. Let us first operate a (Dx , Dp)19 (x, y ) to  the equation *Lv = h,
namely,

a(P)fi .n(q)Lv = fin nco h

The asymptotic expansion gives (notice that [L, cr;,P) ] =0)

(3.1) L v p q +  E hpq
0<11■152rn

where vp q —a° ) fin c o v, hp 0 =a;n9„ ( o h and L (' ) is a  differential operator with symbol
L (v) (t; 5, 77) =a„ 1-(t; r, 5, 77). Thus we have

(3.2) (Lvpq, vp0 ).5_ E  I  (Loovp,,,,, vpoi+ ellhp
q i 12+  I 1 vpq 112

Moreover, multiplying the both sides of (3.2) by (4 5)2 , we obtain

(3.3) (Livpq, wp 0 ) 5  E  (log n)' 11I4I'l I (L
) w 0,, w p q )0<ivi 2,7$

+ 6 - 1 114qhp0 112 - keliwp0 112

where wp q — c v p  5. (Notice that 4 0 —AfIvI(log +

Now in the following, we are going to estimate the first terms of right hand side
of (3.3) (see (3.4) below), under the assumption (5°, 77°) E i l1 — { ( e ,  77); 177i 5_ 21ei}
(this implies c- i •tr _.<c-n for (S, n)e supp [cy]). In the case of (e°, 71°) E  4 2 =

{(S, 77); le*I -2 1771, one can do in the pari a parallel way, interchanging the roles
of (f (t ), 0  and (g(t), 77).

1) For v=-(k, 0) (i.e. L ( ' ) =const.f(t)D !'), we see the following: Since
c '• f lS  151 Sc•n for (e, 77) supp [an ], we can see
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I (Lv)wp,q+v ,wpg)1

Const. I f(t)OE2m- k iv (t; e, n) • wp,q (t., e , n)dt de

5 Const. n- k{ f • em(  4,„ 12+ 1 WA I 2)dtdedn} •

Therefore it follows

(log n)' 1M (L ( ") wp ,q + ,„ wp q )

W  p 4 -1 )± (L W  p v  W  p q )}

if n is sufficiently large.
2 )  For v=(0, k) (i.e. L ( ' ) —const. g ( t ) D ' " ) ,  w e see the following: Observe

that

(log 0 11111' 1 I(L ( v) wp ,o _„, wp q )I

Const. (log n)k Mk I g(t)722m-  kwi;,q ,(t ; e,77)•ve,p(t ; e, 72)dt dedn I

and
( Mlog n)k I 77 Fni - k 5_6•P - 1 •772 'n+e - r•g - 1 •( Mlog nrk

where p=2m1(2m—k), q=2mIk and r —k)/k2. Therefore it holds

(log n)'IM Iv I I (0 ) wp,g -v, wpq/1

Const. .1,-1 • ?72m  e-r • q - 1 - (M log n)21- x

xg{14,,,,1 2 + I w,/,̀q 12}dtded77

Const. e {(Lwp ,q + ,„ wp ,q „ )+ (L w p ,, wpq )}

if n is  sufficienly large (notice that log n---log <e> in the support of wPq (t; OE, 77)
with I p±q I N„).

Thus we obtain, for any e>0,

(3.4) (L w  w  )< ePq' Pq E  (LwP,q+v , wp, q +v)± 6 - 1 14qhpplI 2 + 5 11wpq 112

i f  n is sufficiently la rg e . Now let us sum up (3.4) with respect to  (p, q) satisfying
p+ql _- ..N„-21n. Then the first terms on right hand side of (3.4) will be abso-

rbed into the left hand side (by taking e> 0 sufficiently small). Namely we have

(3.5) E ( L w ,  wp q ) = 0(n - 2 s )-k e  E  Ilw  112
pq11

1 P + q 1 5 N „ 1P-1-416.N

for any positive number s. (To see (3.5), notice that we may assume

(L w ,  wp p ) 0(n - 2 s)
„

by taking M sufficiently la rg e . C f lemma 1 of [2].)
On the other hand, it follows from Poincare 's inequality
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(L w ,C o n s t .  I I wpg 112 •

So it holds: for any s> 0, there exists a constant M such that

S,(xu) IIwpH2 0(n
2

s) .

The proof of Proposition 2 is now complete. El

§4. Proof of Theorem 3

The proof of Theorem 3 will be quite analogous to that of Theorem 2. So
we sketch it and point out the difference.

P ro o f o f  T heorem  3. The same arguments as in the proof of Proposition 1
together with the astumptions (A.1), (A.3) and (A.5) yield

(4.1) g(t)(log<o)iv(t)12dt _- 51 13,v(t)•v(t)dt I

and

(4.2) f(t)(log <77>)2m I v(t) 2 dt e l Po,(t)•v(t)dt

where we denote P=DP"H-f(t)Œ 2 m -fig(t)n . In  order to prove Theorem 3, we
have only to obtain, fro any e> 0,

(4.3) I (Pwpq
, wp ) 1 e E l ( P w p , q + ,, wp,q +,)I

+e 1 llcIghp,112 +511wp,112 ,
if n is sufficiently large. (For the above notations, recall §3.) We shall show this,
in the region Ai = {( 72): 17,1 52 I I },  applying (4.1). One can show (4.3) in the
region A2 = -Re, 77)1 ; I el 21 77 I 1, applying (4.2) and the same arguments as in the
preceding section.

First observe that the argument in the first part of §3 yields

(4.4)I  (Pwp g , wp q )I E  (Al log n)I'l I(P ( ' ) w p ,q + ,„ wp q )1
O<IVI 52m

+ e- '114,17pq 112 +ellwp,112

We are going to estimate the first terms on right Sand side of the inequality (4.4).
1') For v =(k, 0) with 11<k 2m (i.e. P (v) =const.f(t),D! ' ) ,  we can do in

the same way as 1) in the preceding section.
2') For v—(0, 1) (i.e. P ( ' ) =ig (t)), we can see the following: The inequality

(4.1) together with the fact that c - l •ti_-<_ e  - _c•n for (e, 72) supp [a n ] will yield

(ilf log n)II"j(P ( ' ) wp ,q + ,„ wp q )I

(M log n)' 1 I g(t)4,, q + ,(t; C, 77)• w;q (t ; e, odtded721
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< (M  log nri { 11 g(1w ; + ,1 2 +1 4,1 2)dt de d 27}

(Pwp, q +v, wp, q +v)i (Pwpq , wpq)i }
if n is sufficiently large (notice that Iv 1 =1).

Thus we obtain (4.3) and with this the proof of Theorem 3 is complete. El

§5 . Appendix

Here we present an extension of' theorem 2  in the preceding paper [3]. We
consider the operator (in R i )  of the form

(5.1) L  = atk(t)DxiDxk
j .k =1

with real-valued C -  functions d i k ( t )  satisfying aik (t)= a/JO
Now let us denote A (t)=(at k (t)), C='(e„ • • • , e,) and introduce

(5.2)
21(t) = inf (A(t)C,

22 (t) = sup (A(t)C, C) .rci=i
Then we have:

Theorem 4 .  Let L be a differential operator of the form (5.1). Assume:
(i) 21(0)=-0. 2 1(0> 0 for t *0.

(ii) 21(t) G O R ). Both of 21(t) and 22 (0 are monotone increasing for 0<t<8,
and monotone decreasing for —8 <t <8.

(iii) lim  V22 (t ) 1 t log 21(t) I =

Then L is hypoelliptic in R 1 + 1 .

Proof . At first, let us observe some basic inequalities (see (5.4), (5.5) and (5.6)
below) necessary for the proof. Set

d"(5.3) Lc = —   d t2  d- i i cti k (t)e i e k

— ±(A(t)C, C) .dt 2

Then the definition (5.2) implies

4v(t)• v(t)dt V(t)12+(A(t)C. C)1v(t)1 2)-dt

-(1 .1(t)1 2 + 2 1(t)1C1 2 1v(t)1 2 }dt

We can see by the argument in section 3 of [3] that the assumptions (i), (ii) and (iii)
yield

for j, k  =1, •••,L
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(5.4) 22(0 (1°g <C>2)  v(t) I 2 dt

e {1 14t)1 2 + 2 1(t)IC 1 2 1 v(t)1 2} dt

e L o , (t)•v(t)dt

On the other hand, from the fact that A(t) is positive swmi-definite, it follows

05 a 1(t ) 5 ,12(t) , j 1, • • • , 1

I I a 1 ( t ) a  ; J (0- ak k (t)-5 22 (0 , fo r  j  k

a (A(t)C 2V-a (ON/ (A(t)C ,

2.\/22(t)Y(A(t)C, C) ,J  --- 1, 1.

Now, let us explain our proof. To prove Theorem 4, we have only to obtain,
for any e> 0,

(5.7) (Lwpl, E „  
0 1.1,1

+e - '11c;qhpq 112 +611wpq 112 ,

if n is sufficiently large. (For the above notations, recall § 3 .)  Observe now that
the argument in the first part of §3 yields

(5.8) ( L w  w  ) 5  E  (Al log n r 1 (L (v) w w ) Ip q , pq pq0<11,152

+6 - 1 114,17112 +511wpg 112 .

In order to show the inequality (5.7), let us estimate the first terms on right hand
side of (5.8) in the following way:

1") F o r 11, 1 = 2 , the inequalities (5.4) and (5.5) together with the fact that
c '• n 5  I C I 5  c•ri for C  supp [an] will yield

IV] =2

52(M  log n)21  a i k (t)1 g  ,_,(t ; wA(t; C)1 dt d
1, 1= 2

Const. E 22(t)(10
1101 =2

g  < C > ) 2 ( W ;,q+1, 12+ I w i \m1 2 ) d t  dC

E  {(Lw p q , w  )±(Lw w p ,q , ) }

i f n is sufficiently large.
2") For I I = 1 , the inequalities (5.4) and (5.6) together with the fact that

(5.5)

and

(5.6) ae;

E (Al log n) 1(L( ' ) w wpq )1

PI =2

c'•n51C15c•n for supp [an] will yield
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E W log n)i'l I (L ( ' ) w p ,q „, w 1,01iv1=3.

_.<.(M log n) a e  i (A(t)C, C) ,,.,.,(t ; C) • w;,(t ; C)I dt dC

Const. E {E- 1 22 (t)(lo g  <C>)2
- 1- e(A(t)C, C)} (I 4, q + ,12 +14,12 )dt dC

11, 1=1

- Const. e E -[(Lwp q , wp ,)+(Lw p ,q + ,, wp ,q + ))-11, 1=1

if n is sufficiently large.
Thus we obtain (5.7) and this proves Theorem 4. 111
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