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Hypoellipticity for infinitely degenerate
elliptic and parabolic operators II,
operators of higher order

By

Toshihiko HOSHIRO

§1. Introduction and results

The present article is a continuation of the previous work [3] concerning the
hypoellipticity of second order operators. Here we are mainly concerned with
hypoellipticity of differential operators of the form

(L.1) L = D{"+f(t)D"+g(t)D3" .

Throughout this paper, we assume that f(z) and g(¢) are functions of class C*
satisying the following condition:

(Al) 1) f(0)=g(0)=0, f(t)>0 and g(¢)>0 for t %0.
il) Both of f(t) and g(t) are monotone increasing for 0<t<<d, and mono-
tone decreasing for —6 <t <0.

Then, the same argument as in the proof of theorem 1 of [3] will give the follow-
ing (we omit its proof):

Theorem 1. Let L be a differential operator of the form (1.1) with f(t) and g(¢)
satisfying (A.1). Assume moreover:

(A.2) there exists a constant a with 0<a <<l such that
ny/g(ar)|tlogf(t)| =e>0  for 0<t<5.
Then L is not hypoelliptic.

This result gives a necessary condition of hypoellipticity for operator L. Our
main purpose of the present paper is to prove that a certain condition (see (A.4) be-
low) almost complimentary to (A.2) is also sufficient for hypoellipticity of L, under
the assumption (see (A.3) below) concerning magnitudes of derivatives of f(¢) and

g(®).
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Theorem 2. Let L be a differential operator of the form (1.1) with f(t) and g(t)
satisfying (A.1). Assume moreover the followings:

(A.3) Functions a(t)={f(t)}"*" and b(t)={g(t)}"*" satisfy

j
|(%) a(t)
for —0<t<8, 1 < j<m, with some positive constants o (0<<o <<1/m) and C.
lim ™ \/g(1) |t log f(1)| = 0
lim **/f(z)| ¢ log g(r)| =0.

<Ca(t)""" and ‘(dityb(t)’g(;b(t)l-vi

(A4) {

Then L is hypoelliptic.

Remark 1.1. Of course, the assumption (A.3) is equivalent to

A3y (&Yrolscrr-.|(4)sw]scaw-,

j=1, «+-, m with another positive constant C’ and o’ =a/(2m).

Remark 1.2. If g(1)=0(t*) at t=0, then the assumption (A.3) implies a=>
2m/a. So in the case where both of f(¢) and g(z) vanish finitely at t=0, the assump-
tion (A.3) is very restirictive. But the hypoellipticity of L in that case is by now
well known, so we are interested in the case where one of (or both of) f(¢) or g(¢)
vanishes infinitely at t=0. Moreover, if f(t)<Const g(¢) for —0 <t<J, the
assumption for g(¢) (or b(¢)) in (A.3) can be removed. This will be seen at the
end of §2.

To understand our results, let us pay attention to the following examples.

Example 1. We put f(t)=exp (—1/|¢|?) with some positive constant 7, and
g(t)=t* with some positive integer k. Then f(¢) satisfies the assumption (A.3) for
any ¢>0, and f(#)=< g(¢) in a neighborhood of ¢t=0. Hence, Theorem 1 and 2
show that the operator

L = Di"+exp (—1/|1|)Di"+*Dim
is hypoelliptic if and only if 7 <k/m+-1.

Example 2. Let 7, and 7, be positive numbers. Theorem 2 shows that the
poerator

L = Di"+exp (—1/|t |")D:"+exp (—1/|¢|*2)D}"
is hypoelliptic.

Remark 1.3. Let fj(t) (j=1, -+, n) be functions of class C* satisfying the
conditions (A.1), (A.3) and
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lim /7@y |tlogfi))| =0 for jk=1,,n.

Then our arguments in the proof of Theorem 2 can also be applied to show that
the operator

L = D"+ 33f{)D;
is hypoelliptic in R**.
Remark 1.4. Theorem 2 has a generalization to the operators of the form
L = Di"+DI(f(t, x, y)D¥)+Dy(g(t, x, y) DY),

where f(¢, x, y) and g(¢, x, y) are functions of class C* satisfying the following
condition: There exist a pair of functions f(¢), g(¢) satisfying the conditions (A.1),
(A.3), (A.4), and a positive constant C such that

{ CTH=/(t, x, ))=Cf(2)
Clg(t)=g(t, x, y)=Cg(t)
and

| DIDf(t, x, y)| < Cf ()

1<k +1|<2m

I DiDg(t, x, y)| = Cg(t) .

For detail, c.f. theorem 3 of [3].

By a slight modification, our arguments can also be applied to the operators
of parabolic type:

Theorem 3. Let P be a differential operator of the form
(1.2) P = Di"+f(t)Di"+ig(t)D,,

where f(¢) and g(¢) are functions of class C* satisfying the conditions (A.1) and
(A.3). Assume moreover that

lim g(£)£*" |log f(1)| = 0
>0

}gszx/jTt)ltlogg(m:O-

(A.5)

Then P is hypoelliptic.
Example 3. Let r be a positive constant, and let k£ be a positive integer.
Then, the operator
P =D "+exp (—1/|¢|)D¥"+ir*D,
is hypoelliptic if and only if 7 <2k-+2m. The proof of necessity is due to the same

argument as in proof of Theorem 1 (c.f. section 2 of [3]). Also recall Remark 1.2
for the proof of the sufficiency.
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Our plan of the present paper, which is quite analogous to that of [3], is as
follows: In §2, we explain some basic facts necessary for the proof of Theorem 2.
The presence of Lemma 1 there is the most significant difference from the previous
article [3]. In §3, we complete the proof of Theorem 2. Finally, §4 will be
devoted to the proof of Theorem 3.

The author would like to express his sincere graditude to Professors S. Mizo-
hata, W. Matsumoto and N. Shimakura for their continuous guidance and helpful
encouragements.

§2. A priori estimates

We start this section by explaining our plan of the proof of Theorem 2. At the
beginning, let us introduce the ordinary differential opeartor with real parameters
{=(¢, ) as follows:

dZm

@1) Ly = (-1 4

+f()E " +g ()7 .

The proof of Theorem 2 is devided into the following two propositions.

Proposition 1. Suppose that f(t) and g(t) satisfy the assumptions of Theorem 2.
Then, we have the following inequality :

(2.2) Given any €0, there exists a positive number n, such that

[ 76108 <adpm1v(0) Pae | gte)t0g <D v(0) e
<e | Lowoyvoyar,

for all vECE™(—90, 6) and for all {ER? satisfying E*+n*=n. (Here we denote
E>=(1+1¢H").
Remark 2.1. In the right hand side of (2.2) ,notice that

[ Loy
- SIv(""lzdt-l—Sffz’”|v|2dt+Sg772'”|v|2dt.

Proposition 2. If L; enjoyes (2.2), then L is hypoelliptic.

The proof of Proposition 2 will be given in the next section, using microlocal
energy method. We shall devote the remaining part of this section to the proof of
Proposition 1. The technique of its proof here is quite analogous to the one in
Visik-Grusin’s paper [10].

At first, let us prove the following lemma, which will be necessary in the proof
of Proposition 1.
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Lemma 1. If f(t)=a(t)*" satisfies the conditions (A.1) and (A.3), then it holds
the following inequality:

For any r satisfying 0<r <(1—om)/(1+0), there exists a positive constant Cy
such that

@3 RNICOTHL Dt OIR

1<ksSm-1

<cyd {1opo) et | Sy o) Py

for all ve Cy(—0, 0) and for all EER.
Proof of Lemma 1. Choose 7’ so that
2.4) r/(1—om)<y’<(14+0)*.

I. First we prove (2.3) for w(t) supported in {t&(—9, 9); a(t)|&|"=1/2}.
Let us make a change of vairable as

h(E, t)dt =dy,
with
hE, 1) =a(t)|&] .

Furthermore we put

w(y) = b~ WDy(p) ,
Then

2.5) [ (om0 e vy ar
= { 11Drv i 1y
= { (@D, amu) |+ |y h-tay
- S {1 D7w|?+ | w|%} dy-- remainder ,
where “remainder” is of the form

Re S {| 33 coefficient x D7 ~*w|?+4

1<ksm

+2D7w- >3 coefficient x D7~ *w}dy .
1Sksm
We can prove recursively that “coefficient” is the sum of terms of the form
Const. TT {h)-hi"1}#;
i

satisfying
;J' pi=k.



502 Toshihiko Hoshiro

(Here we denote h¥? =(%)Jh.)

Now we can see that |A-h~/71| is small in the support of w(y) (or v(¢)) if
|€] is sufficiently large, because the assumption (A.3) implies

|hD i1 = |@®| g1

i
< Const. (@777 |&| Y
< Const. {|&] 7 a+}i

It is clear that

= j|p§w|2d.v§const.g{|D;"w|2+|w|2}dy.

1Sksm—1

So from (2.5) and the above observation, it follows that

5 (107D ycam-amy) 2t

oSksm

= 3 (iDtwiray

Osk=sm

< Const.S (DT |2+ | K" |3 dt .

Moreover, using the above argument again, we can see

2.6) = SIh'”""D’:vlzdt

1sksm-1
< Const. S {1 DFv |+ " %y,
which is a stronger inequality compared with (2.3). (Notice that
R2(h~ D)k (hm~Py) = hm~kDhv+ 3 coefficient X A" ~*D}v
1<k

and that “coefficient” is small in the suppost of v(z) if |£]| is large.)
II. For v(t) supported in {t&(—9, 9); a(t)|& |7 <2}, it is very easy to see
that

X (1@ 1erppria
< | €] 2%~k x Const. S | DP~*v | 2dt
< Const. [&] 72 -k S | Dy %t

which is a stronger inequality compared with (2.3).

III. Let us prove (2.3) for general ve C§(—9d, ). Choose a function
p=C7(R) so that ¢(¢t)=1 for |¢|=<1/2 and ¢(¢)=O0for |t|=2. Furthermore let
us put
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7)) = ¢(a(t)|5|y,) » () =1-x(),

and

n(t) =2, V() = .

Then, (2.6) and (2.7) will yield
[i@o1e1Dr-4ve) 2as
<2{ {1 @le et 17d + (@l #Dr 40 2dn
<Const. {|&] 2"~k S | DYy, | 2dt+ | & | 24Dk S (1 v, |+ | K™y |P)dt }
< Const, x |&| 20"~k S (| D7v|24 | K"v|?)dt +remainder .

(To see the last estimate, notice that r'>7.)
Observe now that “remainder” is estimated by

Const. | & | ~20'~Mk S |[D?, xYv|%dt ,

and that the coefficient of Dy~* (k =1, -+-,m) in [D?, #,] is a sum of terms of
the form
Const. $*(al€|") TT {a{®|€|"}*
with
?j-p,- =k and k' =§}p,—.
Furthermore, observe that the assumption (A.3) yields, in the support of ¢*"(a|&]Y),
];I {a¥|&]7}#i< Const. I,I {a=7 €|V}
=< Const. 1;[ |&| "0,
<Const. |&|™™ .

So we can see that “remainder” is estimated by
Const. ¢~ n-+-7 { | Dpy 2de

Since we have chosen r and 7 so that (¥’ —r)—omy’>0, we can now see that the
inequality (2.3) holds for all ve C§(—9d, 9). [

Now, we come to the proof of Proposition 1.

Proof of Proposition 1. We are going to prove the inequality:
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(2.8) S g(t)(log LEDY™ [ v(t) |*dt <e S Lev(t)-v(r)dt,
Vye Ci®(—9, d), |£]; sufficiently large ,

in the region 4,={(&, 7); |7]| =2|€|}. In 4,, it is clear the that
[raog covpminey 2ar e [ oem vy ot

if |&| is sufficiently large. So we can see that (2.3) holds in 4,, once (2.8) is
established. The proof of (2.2) in 4,={(£, 7); || =2|#|} is parallel, interchang-
ing the roles of (f(¢), &) and (g(z), 7).

I. First we shall prove (2.8) for v(¢) supported in {t & (-9, 8); a(t)|&|*"*
=1/2}, where 7 is the same number as in Lemma 1. It will be easily seen that, if
|&] is sufficiently large,

29) [ s208 <eop= 1300y 70
<e [1er v ar
¢ [@oerye v a
e [ Low)-ar.
II. To prove (2.8) for v(¢) supported in {t €(—9, 0); a(t)|&|** <2}, we must

do the following consideration.
Let z=z(¢) denote a positive number such that a(z)|€|"?=2 and write v(¢) as

— Z(z_ )m—l.. m
W) = — St—(mi—l)‘ Vm(s)ds .
Then it holds
(2.10) EOIROIRY
(Z___t)Zm—l

S0 a | 1vs) s
0

@m—1)(m—1)1

g(Z)’sz (m) 2
T 2m2m—1)(m—1) SI" (s)|%ds .

On the other hand, the assumption (A.4) together with the fact that z(§)—0 as
|&|— oo yield, if |&] is sufficiently large,

(2.11) (log £&>)" g(2)2*"
= (log <&>™) e(log f(2))~*"
= e(log <ED)m(log 22" | & |~y
< Const. €.
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Therefore, combining (2.10) and (2.11), we obtain (2.8) for »(¢) with support suffici-

‘ 0
ently near to r=0. (The integral S /g(t)lv(t)lzdt can be estimated in the same

way, where z'=z'(€) denotes a negative number such that a(z’) | & |**=2.)
III. Now, we shall prove (2.8) for general v(1)eC§"(—4d, 6). Choose a func-
tion 6 Cy so that ¢(t)=1 for |t|=<1/2 and ¢(¢)=0 for || =2. Put

(1) = o(a(@®) €17, Z(t) = 1-%(t)
and

W=TV, V=2V,
Then, the results in I and II above yield
[ st t0g <oy vt0y 2
<200g < { [ g l%dr+{ g v, %ar}
gze{s L;vlw_,dt—l—g Levy-ydt}
=8¢ 5 L;v+vdt+remainder .
Observe now that the remainder is estimated by
Ses |[DY, ZJv|%t,

and that the coefficient of D?~* in [DT, ¥ ,] is the sum of terms of the form

(2.12) Const. %(a| &™) IT {at|&|"2}*;
7
with
jzj-pj =k and Kk’ =12p,-.

Moreover, since a|&|"2=1/2 in the support of ¢*(a|&|"?), (2,.12) is not larger
than

Const. |& |2 x {a(t)|&|"?}* .

Now, recalling Lemma 1, we can see that (2.8) holds for all ve C3™(—4, d)
and |€]; sufficiently large. [

Remark 2.2. If f(t)< Const. g(¢), then it is easily seen that
NOIC IR OIR
=e | sty poy1an

geSLaayﬂﬁm,
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if |7| is sufficidntly large. Moreover, in the region 4,, it is clear that

[ @)00g cexp71900)
=e [ gy 1ar
<¢ [ Loy v,

if |#| is sufficiently large. So in this case, we can prove (2.2) in the region 4,,
without using the condition for g(¢) in (A.3). On the other hand, notice that the
condition for g(z) in (A.3) is not in need for the proof of (2.2) in the region 4,.
Thus we can remove the condition for g(¢) in (A.3), in the case where f(t)<
Const. g(t) for —0 <t <.

§3. Microlocal energy method

To prove Proposition 2 in the preceding section, let us recall some reductions
for the proof of hypoellipticity in [3]. At first, we define the following Sobolev
space.

Definition. We denote by H*/(R®) (—oo <k, | <oo) the space of all distri-
butions uE€ S’(R®) satisfying

SSSla(z’, & ) PA+(A+E24 7)) drdEdn<oo

where # is Fourier transform of u.

Furthermore we say that u€ 9 is locally of class H*' at (t,, x,, y,) if there
exists a function ¢ € C5(R®) with ¢=1 in a neighborhood of (f, Xy, ¥;) such that
sucs H*'(RY).

Now we can see tha folloeing following facts. The first is that, if
usg((—38, 86)x0) and (ty, Xy y)) E(—0, 8) X 2, then there exists a pair of real
numbers (k, /) such that u H*' at (¢,, x,, y,). The second is that, if u€ H*' and
Lues C™ at (t,, Xy, Vo), then we have us H¥+2m!=2m at (¢, x,, y,). Moreover repeat-
ing this fact, we can see that u is locally of class ]nH k+1k=J at (ty, Xo, ¥o). Thus in

the proof of Proposition 2, the partial Fourier transform of u at (¢,, x,, ¥,), i.€.,

.\
HOWNE € 1) = oy | ey, €, nde,

where x(t)e Cg(R) with ¥(¢)=1 in a neighborhood of t=t, and ¥(x, y) = C5(R?)
with ¥(x, ¥)=1 in a neighborhood of (x, y)=(x,, »,), is smooth with respect to ¢
for almost every (&, 7).

Next, we define the notion of microlical smoothness of u€.9'((—9, 8) X 2),
since our proof of Proposition 2 will be microlocal. (It is more precise to say ‘‘semi-
microlocal”.)
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Definition. Let (7, x,, y))E(—0, §) X2 and (¢°, 7)€ R\0. For ues (-9,

8) x 2) we say that u is microlocally of class H** (=N H™') at (t, X, yo; £° 7°) if
1

there exist a function ¢ € C5((—96, 8) x 2) with ¢=1 in a neighborhood of (¢, x,, ¥,)
and a conic neighborhood I'y (C R?) of (£° 7°) such that

/\
[(§ 1@oe. & nita+etryamean<e

- oo<‘r<oo
¢tmer,

for any positive number s.
Remark 3.1. By standard argument in microlocal analysis, one can easily

show that ue H®* at (t,, x,, y,) if and only if u is microlocally of class H> at
(to, X, o3 €% 2°) for all (£°, 7°).

Remark 3.2. In the proof of Proposition 2, it suffices to show that u is of
class H*™ at (t,, xo, ¥o) if Lu is of class C* at (t, x,, ¥o). The reason is that the
smoothness of u in t-direction follows from the smoothness of u in (x, y)-direction,
since L is non-characteristic in z-direction.

We end the preparation of the proof of Proposition 2 by recalling microlical
energy method in [3].

Choose first a sequence vyEC7(R?), N=1,2, -+ with ¢¥y=1 in {(x, »);
X4+y*<rij4} and ¥ ,y=0 in {(x, y); X>+y?=ri} satisfying:

| DP*¥ oy | < Cg (CN)?!
for [p|=N, |v|=<K, (Here C and Cy, are independent of N.) We define the
microlocalizers {e,(£, %), 8,(x, y)} by
a,(, ) = 'Shm(% —&°, %—77°> s Bau(x, y) =Yy, (X=X, Y—V0)
with
N, =[logn]+1.
Our microlocal energy of ve g’ is

SHO) = 3 1165:@P(Dsy DY VI,

SN
with
Chy = M"““I'-n”"-(log n)-lﬁ+ql .
(Here aff =0h0le,(&.2), B, =DhD%B,(x,y). |l || stands for the norm in
LXR’).)

Then, we have the following lemma whose proof is given in section 6 of [3].

Lemma 2. Let us U H®' locally at (ty, Xy, y,). Then u is mocrolocally of class
1]

H" at (ty, xo, ¥, €% 7°) if and only if there exists a function x(t)E Cy(R) with x =1



508 Toshihiko Hoshiro

in a neighborhood of t=t, such that the microlocal energy of Xu is rapidly decreasing
as n—> oo (if re>0 is small), i.e., for any positive number s, there exists constants M
and C, such that

SHrw)sCn~*
when n is large. (We abbreviate as S¥(xu)=0(n"%).)

Now we come to the proof of Proposition 2. We will show that u is micro-
locally of class H>> at (0, x, y,; &% 7°) for every (£° 7° if Lu is locally of class
C= at (0, xp, yo).- (Notice that the ellipticity of L except at t=0 allows us to
restrict our consideration to the case £,=0.)

Proof of Proposition 2. Let x(t) and ¥(x, y) be smooth functions whose
suports are contained in small neighborhoods of =0 and (x, y)=(x,, y,) respec-
tively. Observe now that the right hand side of the equation

v L(Xu) = y[D", Xlu+2xyLu

is of class C7 if Lu is class C™ at (0, x,, y,). Therefore it suffices to show that
the microlocal energy of v=xu is rapidly decreasing if so is that of y»Lv.

Assume that | p4+q| <N,—2m and r,> 0 is chosen sufficiently small so that
B,CCy. Let us first operate e (D,, D,)B, , (x, ) to the equation yLv=Ah,
namely,

aPB, Lv=aPB, h.
The asymptotic expansion gives (notice that [L, a{’]=0)

3.0 Lvy+ 33 (=D)MIiLoy, =k,

oL vi<2m
where v,, -—-aﬁ,”)ﬂ,,(q)v, hpg =a$,")/9,,(q>h and L™ is a differential operator with symbol
L™M(t; &, My=08},L(t; 7, &, 7). Thus we have
B2 Wi IS 5] 1E g vy |+ eyl el

0L |vi2m

Moreover, multiplying the both sides of (3.2) by (c},)?, we obtain
3.3) (Lwy,, wﬁq)gmézm(log A (LYW, 000 Wyo)|
e IchohplP4-ellwyll®

where w,,==c},v,,. (Notice that c;,=M"!(log n)"' ¢} 444.)

Now in the following, we are going to estimate the first terms of right hand side
of (3.3) (see (3.4) below), under the assumption (£°, 7°)E 4,={(¢, 7); | 7| =Z2|€|}
(this implies ¢™'+n< €| <Zc-n for (¢, 7)Esupp[e,]). In the case of (6, 7°)E 4,=
{(¢, 7); |€] =2|7]|, one can do in the parl a parallel way, interchanging the roles
of (f(¢), £) and (g(2), 7).

1) For v=(k, 0) (i.e. L™ =const.f(¢)D:"*%), we see the following: Since
chen< |€| Zcenfor (£, n)Esupp [a,], we can see
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I (L(V)wp,q+‘u 9wpq) I

— Const. |m FOER 4w o (8 €, 1) win(E; €, MdtdEd7|
=< Const. n7#{ SSSf E(|wp guy |2+ [ why | Ddtdédn} .

Therefore it follows

(log ™M™ [ (L™Wy,g1v, W)
ée{(pr,q-Hn Wp,q-v)+(Lqu: qu)}' >
if n is sufficiently large.

2) For v=(0, k) (i.e. L™ =const. g(t)D>"~*), we see the following: Observe
that

(log MMM ™ [ (LYW, 444, Wpo)
— Const. (log n)* M*| m GOV W) g unt3 €, 1) WiNE; €, Mt dEd|
and
(M logn)t|7|* *<e-p~len?™+e7" g7 - (M log n)’"
where p=2m/(2m—k), g=2m/k and r=(2m—k)/k*. Therefore it holds
(log MMM ™ (LMW, -y, Wpo) |
=< Const. SSS {e-p~leg?™e77. g™ (M log n)*} X
Xg{|wp, g4y | >+ wpy | %} dtd€ dn
< Const. € {(Lwy, g4vs Wp,q+3)+(LWpg, Wyt
if n is sufficienly large (notice that log n~log <> in the support of wjy(t; &, 7)

with | p+g| < N,,).
Thus we obtain, for any ¢>0,

(3.4) (prq’ wﬁq)éeogw%zm(pr'ﬁ'w Wp,q+v)+5_l|Iczthpllz'l'ellwpq”z s

if n is sufficiently large. Now let us sum up (3.4) with respect to (p, q) satisfying
|p+q| =N,—2m. Then the first terms on right hand side of (3.4) will be abso-
rbed into the left hand side (by taking ¢>0 sufficiently small). Namely we have

(35) 33, Wpg ) = 0@*ke 33 [yl

1p+aISN,

for any positive number s. (To see (3.5), notice that we may assume

(Lwpyy, wyp) = O(m™%) ,

N —2ms|prealsN

by taking M sufficiently large. C.f. lemma 1 of [2].)
On the other hand, it follows from Poincare ’s inequality
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(Lwyy, wyg) Z 1| DF Wyl = Const. [[wy,|I* .
So it holds: for any s>0, there exists a constant M such that
SHE) =, 33 [yl = 06:7).

The proof of Proposition 2 is now complete. []

§4. Proof of Theorem 3

The proof of Theorem 3 will be quite analogous to that of Theorem 2. So
we sketch it and point out the difference.

Proof of Theorem 3. The same arguments as in the proof of Proposition 1
together with the astumptions (A.1), (A.3) and (A.5) yield

@.1) [ s)t0g<en vy 7ar e [Py sy
and
(42) [ 10 G0 <rpm vy < o) { Py vy

where we denote P;=D?"-+f(t)*+ig(t)n. In order to prove Theorem 3, we
have only to obtain, fro any ¢>0,
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if n is sufficiently large. (For the above notations, recall §3.) We shall show this,
in the region 4,={(¢, 7); |7| =<2|£|}, applying (4.1). One can show (4.3) in the
region 4,={(&, 7)}; |€| =<2|7|}, applying (4.2) and the same arguments as in the
preceding section.

First observe that the argument in the first part of §3 yields

4.4 [(PWyg Wpd | = 0<]?T“S,2m (M log )™ [(P™w,, o1y, Wy
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We are going to estimate the first terms on right Sand side of the inequality (4.4).
1) For v=(k, 0) with 1=<k=<2m (i.e. P =const. f(t)D?"*), we can do in
the same way as 1) in the preceding section.
2" For v=(0, 1) (i.e. P™=ig(¢)), we can see the following: The inequality
(4.1) together with the fact that ¢™'-n<|€| <c-n for (¢, 7)Esupp [e,] will yield
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if n is sufficiently large (notice that |v| =1).
Thus we obtain (4.3) and with this the proof of Theorem 3 is complete. []
§5. Appendix

Here we present an extension of theorem 2 in the preceding paper [3]. We
consider the operator (in R'*') of the form

!
(5.1) L= D%+ 2 ajk(t)ijDx;,
jok=1

with real-valued C= functions a;(t) satisfying a;(t) =a,;(t) for j k=1, -, 1
Now let us denote A(t)=(a;(2)), {=!(¢,, +-+, &;) and introduce

A(t) =,§f’£ A@), §
(1) = sup (A4@), <) .

(5.2)

Then we have:

Theorem 4. Let L be a differential operator of the form (5.1). Assume:
(i) 40)=0. 2,(t)>0for t=0.
(i) A(t)eCYR). Both of A(t) and A,(t) are monotone increasing for 0<t<9,
and monotone decreasing for —6 <t <9.

(iii) lim /2,7 |t log A()| =0.
i d .
Then L is hypoelliptic in R'*.

Proof. At first, let us observe some basic inequalities (see (5.4), (5.5) and (5.6)
below) necessary for the proof. Set
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Then the definition (5.2) implies
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We can see by the argument in section 3 of [3] that the assumptions (i), (ii) and (iii)
yield
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On the other hand, from the fact that A(¢) is positive swmi-definite, it follows
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Now, let us explain our proof. To prove Theorem 4, we have only to obtain,
for any ¢>0,
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if n is sufficiently large. (For the above notations, recall §3.) Observe now that
the argument in the first part of §3 yields
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In order to show the inequality (5.7), let us estimate the first terms on right hand
side of (5.8) in the following way:

1”) For |v| =2, the inequalities (5.4) and (5.5) together with the fact that
clen<Z|{| Zc-n for {Esupp [,] will yield
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if n is sufficiently large.
2"y For |v| =1, the inequalities (5.4) and (5.6) together with the fact that
clen=Z | ¢ Zcen for {supp [a,] will yield



Infinitely degenerate elliptic and parabolic operators 513
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if n is sufficiently large.

Thus we obtain (5.7) and this proves Theorem 4. []
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