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The inverse problem of variation calculus
in two-dimensional Finsler space

By

Makoto MATSUMOTO

In 1980 S. Hojo [4] gave five Finsler metrics in R*-O all the geodesics of which
are logarithmic spirals with the pole O, and he showed a certain sufficient condition
for a Finsler space to have such special geodesics. To find not only sufficient but
also necessary condition was the motive of the present paper, and then the author’s
attention was turned to the projectively flatness in two-dimensional case. Thus the
main result is stated as Theorem 2.

§1. Differential equations of extremals

It is well-known [2, p. 22] that every function y=f(x) which minimizes or maxi-
mizes a definite integral

(LD 1={"Fey2ax, 2=y,
x1
must satisfy the differential equation
F, ,
(1.2) [F]: F, — ‘2—; — F,—F,,—F,2—F,z =0.

This is referred to as Euler’s equation and the curve f=f(x) in R® is called an ex-
tremal for the integral (1.1).
If we deal with the same problem in a parametric form

t
a3 1=*Lenpod, p=% a=7,

1
then every set of functions {x=¢(t), y=y(¢)} as above must satisfy the differ-
ential equations

dL,
dr

(14) [L]I: = Lx - =0 N [L]2: = L’— ‘f[[t"q =0.

The curve {x=¢(t), y=v(¢)} in R’ is called a geodesics of the two-dimensional
Finsler space F?=(R?, L).
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From (1.1) and (1.3) we have

1) L5 9 = F(x3L)p,

where p=dx/dt is supposed to be positive. Since the fundamental function
L(x, y, p, q) of the F?is (1) p-homogeneous [8, p. 83], we have so-called Weierstrass’
invariant W(x, y, p, q) such that

(1.6) Ly, =Wq*, L,,=—Wpqg, L,=Wp.

The W is obviously (—3) p-homogeneous and we have

(1.7) w—Lu

p

Then two equations of (1.4) reduce to the single equation
(1'8) [W]: = qu_Lyﬁ'I_(pé—'qp) W =0 s
called Weierstrass’ form of Euler’s equation [2, p. 123], because we get the relations

(1.9) [LL=["]q, [L,=[W]p.

§2. Darboux’s solution of the inverse problem

The so-called inverse problem of variation calculus is formulated as follows [2,
p. 30]: Given a doubly infinite system of curves (functions) y=f(x; a, b) with two
parameters (g, b) to determine a function F(x, y, ") so that the given system of
curves shall be the extremals for the integral (1.1).

Remark. So far as the author knows, we have two papers ([5], [6]) on the
inverse problem among literatures of Finsler geometry. Our problem may be the
same with theirs in essential, but the latter belongs rather to the category of metri-
zability problem ([10], [11]).

Our inverse problem was already solved by Darboux [3, Nos. 604, 605] and
has always an infinitude of solutions which can be obtained by quadratures as fol-
lows:

First of all, from

@0 y=f(x;ab), z=f(x;a,b)

the parameters @ and b are solved as functions of variables (x, y, 2):
2.2 a=A(x,y,2), b=B(x1y72).

Then we have

2.3) 2’ =f.(x;4,B) =:Z(x,y,2).
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Therefore our problem is that (1.2) is equivalent to (2.3), that is, to find F(x, y, z)
such that

2.4 Fy—F,—F,z—F,Z =0

should be an identity in (x, y, z).
Secondly, putting G: =F,,, differentiation of (2.4) by z yields

(2.5) G,+G,z+G, Z+GZ, =0.

Thus we must solve the differential equation (2.5) for G. It is well-known that it
is equivalent to solving

(2.6) dx =Y %2 _

It is observed that the first two equations of (2.6) give the general integrals (2.1),
and then the third reduces to dG/G=—Z/(x, f, f,) dx. Thus, putting

@7 UG a,b): =exp | Z. £, £ dx,

we get another general integral G=c/U(x; a, b) with an integral constant c. By
solving those integral constants a, b, ¢ we get (2.2) and ¢=GV where

(2.8) V(x,y,2z): =U(x; 4, B).

Therefore (2.5) shows the existence of a functional relation among 4, B and GV,
which is written in

2.9) G(x,y,z) = H(A, B)/V,

where H (&, 7) is an arbitrary function of (¢, 7).
Consequently we obtain the F in the form

(2.10) F(x, y,z) = F*(x, y,2)+C(x, y)+zD(x, y) ,

where we take an indefinite integral

(2.11) F¥*(x,y,2) = Sg G(x, y, 2) (dz)?

and C(x, y) and D(x, y) are functions which should be determined such that F of
(2.10) satisfies (2.4), that is,

(2.12) D,—C,=F¥—F%—F}Lz—F% Z.

It will be obvious from (2.4) and (2.5) that the right-hand side of (2.12) does not
contain z.
Summarizing up all the above, we get

Theorem (Darboux). The solution of our inverse problem is given by (2.10)
together with (2.12).



492 Makoto Matsumoto

Example 1. We consider the family of straight lines y=ax-+b in R:. Then
we have z=a, Z=0, A=z, B=y—zx and U=V=1, and so G(x, y, z)=H(z, y—zx).
Since for any function f(u) we have the formula

2.13) (e @y = w—nroar,

we now get F*(x, y,z) = S (z—t) H(t, y—tx) dt. Then (2.12) becomes D,—C,=0,
0

and so we have a function E(x, y) satisfying C=E, and D=E,. Consequently we
obtain Darboux’s result ([3, No. 606], [2, p. 32)):

(2.14) F(x, y,2) = S (@—1) H(t, y—tx) dt+E,+2E, .
0
The functions H(¢, 7) and E(x, y) are arbitrary. See §4.

Example 2. The problem to find a surface of revolution having the minimum

area leads us to the integral J =S YV 1+(»')? dx, and the extremals for it are cate-

naries y=a cosh(x—b)/a. For this family of curves we have the 4 and B of (2.2):

(2.15) =2 | B=x—Alogiz+v7v), v=1+22.

v
In case of the above surface of revolution we have specially H(¢, 7)=¢, C=y and
D=0.

§3. The inverse problem in a parametric form

We shall deal with the inverse problem in a parametric form (1.3); this is just
regarded as a problem on Finsler metrics of dimension two. In this case a doubly
infinite system of curves with two parameters (q, b) is given as

@G.0) x=¢a,b), y=v(a0b),

and we have p=6 (¢; a, b) and g=+>(¢; a, b), where the dot stands for 8/at.

Since we are concerned with a problem of Finsler geometry, the homogeneity
of functions in (p, q) is important. In order to get the homogeneity of functions
which will appear later on, we take an auxiliary parameter ¢ such that x=¢(cz;
a, b) and y=vy(ct; a, b). It is remarked that the ¢ should be restricted to be posi-
tive, because the orientation of a curve is essential in Finsler geometry.

First of all, solving a, b and ct from

(3.2) x=¢(ct;a,b), y=v(ct;ab), £ =4t ab),
(4

for instance, we get

3.3) a=a* (x, ¥, —%) , b= ﬂ*(x, ¥, %) , ct=rt* (x, ¥, %) .



Two-dimensional Finsler space 493

Then we have

(3'4) 4 :'Jr(‘:‘*;d*, 19*) = :W<x9y9 '11):
c c

from which ¢ will be solved as

(35) c= T(x’ Y, D, q) .
Therefore (3.3) yields

3.6) b— g (x, »E

In (3.4) we observe (kq)/(kc)=¥ (x, y, (kp)/(kc)) for any positive k, which im-
plies ke=r (x, y, kp, kq) for (3.5), that is, 7 (x, y, p, q) is (1) p-homogeneous in (p, g).
In consequence a, £ and = of (3.6) are (0), (0) and (—1) p-homogeneous.

Next we have

p=9¢Gr;a,B)r*=:Px,p,9),

(3.7 .. ,
g=vGr;e,f)r*=:0(x,yp9,

both of which are (2) p-homogeneous obviously. Therefore our problem is to find
L(x, y, p, q) such that (1.8), that is,

(3.83) [Wl*: =L,,—L,,+RW =0, (R=pQ—qP),

should be an identity in (x, y, p, q). It is remarked that the function R is (3) p-
homogeneous, and so every term of [W]* is (0) p-homogeneous.

Differentiate [W]* by p or ¢. Then (1.6) shows that [W]¥, for instance,
=—(W,p+W,q) g+R, W+RW,. On account of the homogeneity we have —3W
=W, p+W,q and 3R=R, p+R, q, which lead us to

(W = —(W,p+W,q—W,R,/3+W,R,/[3) q.

Next we have 0, p=20—Q, q and P, q=2P—P, p from the homogeneity, and so
we have R,=3Q0—(P,+0Q,) q and R,=—3P+(P,+Q,) p. Therefore we obtain

(3.9 Wl = —qlWl, [WIF=plWh,
where we put
(3.9 (Wl = W.p+W,q+W, P+ W, 0+(P,+Q,) W.

The differential equation [W],=0 for W, as thus obtained, is to correspond
to (2.5) in the non-parametric form and to solve this is equivalent to solving
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(3.10) d _dy _dp _dg AW
p q P Q (P, +Q) W

If we equate the common ratio of (3.10) to dt, then we get dx/dt =p, dy/dt=q,
dp/dt=P and dg/dt=Q, which yield four general integrals

x = ¢(c(t+t));a,b), y=1v(c(t+1,);a,b),

(3.11) . .
p=6(c(t+t);a,b), q=v(c(t+t);a,b),

with fourth integral constant #,. Then (3.10) reduces to dW/W=—{P,($, v, 6, V)
+0Q,(%, ¥, 6, ¥)} dt and putting

(3.12)  U(c(t+1), a, b): =exp S {P (¢, ¥, 6, ¥)+0,(¢, ¥, 6, ¥} dt ,

we then get the fifth general integral

(3.13) W=

b

SIEY

with an integral constant d.

We are now in a position to solve the integral constants a, b, ¢, t, and d from
(3.11) and (3.13). First (3.5) and (3.6) show a=a, b=§, c=r, ty,=r—t. Thus, if
we put

(314) V(x’y’pa q)- = U(TT;(I, /9)7

then we get d=WV from (3.13). Consequently the differential equation [W],=0
shows the existence of a functional relation among «, 8, r, r—t and WV.

We must pay attention to the following two requests. First our W should not
depend on ¢ explicitly, and so we have a relation of the form WV=H*(e, 8, 1)
where H* is an arbitrary function. Secondly our W must be (—3) p-homogeneous.
Since V(x, y, p, q) is (0) p-homogeneous, the second request is that (W/k®) V=H*
(a, B, kr) for any positive number k, and so we obtain finally

_ H(a,p)
(3.15) W=

where H(&, 7) is an arbitrary function.
Now we shall return to (1.6) to get the L(x, y, p, q). Take indefinite integrals

SS W (dp)* and SS W(dq)? and put

(3.16) L¥: =g SS W(dpy, L¥:—p SS W (dg): .

Then we get L in the form L=L¥-+pC*+D*, for instance, where C* and D*
are functions of (x, y, q). Paying attention to the homogeneity again, we observe
that C* and D* must be (0) and (1) p-homogeneous in g respectively, and con-
sequently we may write C*=C(x, y) and D¥=gD(x,y). Therefore we obtain
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3.17) L = L¥4+pC(x,y)+qD(x,y), (i=1o0r2).
Substituting from (3.17) into (1.8), we have
(3.18) C,—D, = [W]*: = (L¥);,—(L¥),,+RW .

The [W;]* does not depend on p and ¢, as will be obvious from (3.9').
Summarizing up all the above, we have

Theorem 1. All the Finsler metrics L(x, y, p, q) in R® the geodesics of which are
given by (3.1) are written in the form (3.17) together with (3.18), where L¥(i=1, 2),
W, V and U are given by (3.16), (3.15), (3.14) and (3.12) respectively.

§4. Some examples

We shall again consider Example 1 in §2. Putting ¢ (ct; a, b)=ct, ¥ (ct; a, b)=
act+b, we have a=q/p, §=y—qx/p, r=p, t=x[p, P=Q=R=0, U=V=1, and so

W=H(q/p, y—qx/p)[p>. Then Lf=p~ SS H(qlp, y—ax/p) (dg)*=p SS H(z, y—zx)
(dz)? where z=q/p, which yields the previous result (2.14). In terms of Finsler
geometry is the result stated as follows:

Theorem 2. All the projectively flat Finsler metrics in R® are written in the
form

LG,y 5 3) = % | =0 H(t, y—1x) de+XE45E,

where z=x/y and H(E,n) and E(x,y) are arbitrary functions. This (x,y) is a re-
ctilinear coordinate system [7].

Remark. As to the additional terms xE,+VE,, see [4, the second remark in
p- 213] and [9].

Remark. Berwald [1] gave a table of all the projectively flat Finsler metrics of
dimension two the main scalar of which is a function of position alone. See [8,

§28].

Example 3. We are concerned with our original problem in which the geodes-
ics are logarithmic spirals r=exp(af-+b) in R*—O (x=r cos 0, y=r sin 8). Since we
get log r=af-+b similar to the case of Example 1 (x=6, y=log r), it is easy to show
that the fundamental function L is given by

@.1) L, r6,7) =6 S (z—1) H(t, log r—10) di+6Ey+FE, ,
0

where H (¢, 7) and E(0, r) are arbitrary functions and z=r'/ré.

Therefore we found all the two-dimensional Finsler spaces in R*—O having
such geodesics. These are projectively flat, and (0, log r) is a rectilinear coordinate
system.
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Example 4. The famous problem of Brachistochrone, i.e., to determine for a
heavy particle the curve of quickest descent in a vertical plane between two given
points [2, p. 126] leads us to the Riemannian metric L(x,y, p, )=V pP*+¢*/V y
and the geodesics are cycloids {x=a (t—sin t)+b, y=a (1—cos t)}. From (3.15) it
follows that this family of cycloids gives rise to Weierstrass’ invariant W=(y/p®)
H(E, 7) where é=y(p*+4¢%)/2p* and 7=x—¢& Arctan(2pq/(q*—p?))+yq/p. For the
Brachistchrone we have specially H(&, 7)=(2&)"¥2.

Example 5. We finally consider the family of semicircles (x —a)*+y*=b*(b>0)
in R2={(x,y)| y>0}. Then we have ¢(t; a, b)=a-+b cos t, Y (t; a,b)=b sin t
and (3.15) gives Weierstrass’ invariant W=(*/p®) H(x+yq/p, yN/ pP+¢*/p). It is
well-known that the family of semicircles are geodesics of the Riemannian metric
ds?=(dx*+-dy?)[y* of constant curvature —1, and that this metric is projectively flat.
Therefore the above W gives rise to Finsler metrics which are projectively flat, but
this (x, y) is not a rectilinear coordinate system, contrary to the case of Theorem 2.
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