On the non-cocomutativity of the mod 2 cohomology ring of certain finite *H*-spaces

By

Akihiro Ohsita

§0. Introduction

Since Heinz Hopf investigated the cohomology of a space equipped with a continuous multiplication, the study of cohomology of *H*-spaces has been developed by many authors. In the case where the coefficient group is $F_2 = \mathbb{Z}/2\mathbb{Z}$, the cohomology $H^* = H^*$ (; F_2) has the structure of a (not necessarily coassociative) Hopf algebra over the Steenrod algebra, that is, Hopf algebra of which the underlying algebra-coalgebra structure is a "left module algebra-quasicoalgebra" one in the sense of Milnor-Moore [9].

In the latest paper of J. P. Lin [5], he got a non-cocomutative theorem on the mod 2 cohomology of certain finite H-spaces.

Unfortunately his result is not applicable to a finite *H*-space X whose mod 2 cohomology ring is isomorphic to that of Spin(N). The purpose of this paper is to show

Theorem 1. Let X be a mod 2 finite H-space satisfying $H^*(X)$ is isomorphic to $H^*(\text{Spin}(N))$ as algebras for $2^{n+1}+2 \le N \le 2^{n+2}-4$ $(n \ge 3)$. Then $H^*(X)$ is not primitively generated.

I would like to thank Professor. Akira Kono for his kind advises and help.

§1. Proof of the main theorem

On the mod 2 cohomology of mod 2 finite H-spaces the following lemmas are known.

Lemma 2 ([3]). Let X be a 1-connected mod 2 finite H-space, then $QH^{even}(X) = 0$.

Lemma 3 ([10]). Let X be a 1-connected mod 2 finite H-space with $H^*(X)$ primitively generated. Then the following hold.

Received December 5, 1987

Akihiro Ohsita

(a) If
$$\binom{2n-1}{2^k} = 1 \mod 2$$
, $2^k < 2n-1$ then $Sq^{2^k} PH^{2n-1}(X) = PH^{2n-1+2^k}(X)$.
(b) If $\binom{2n-1}{2^k} = 0 \mod 2$, then $Sq^{2^k} PH^{2n-1}(X) = 0$.

Lemma 4 ([1]). Let X be a mod 2 H-space and P_2X be its projective plane. Then we have the following exact sequence with properties (a) (b) and (c).

$$\cdots \to \tilde{H}^{q}(X) \xrightarrow{\bar{\psi}} [\tilde{H}^{*}(X) \otimes \tilde{H}^{*}(X)]^{q} \xrightarrow{\lambda} \tilde{H}^{q+2}(P_{2}X) \xrightarrow{\iota} \tilde{H}^{q+1}(X) \cdots$$

(a) Each homomorphism commutes with the A^* -action, where A^* denotes the mod 2 Steenrod algebra.

- (b) Im $\iota = PH^*$ and if $\iota(y_i) = x_i \neq 0$ (i=1, 2) then $\lambda(x_1 \otimes x_2) = y_1 y_2$.
- (c) Any threefold product vanishes in $H^*(P_2X)$.

Let X be a 1-connected mod 2 finite H-psace. If $H^*(X)$ is primitively generated, $H^*(X)$ has a simple system of primitive generators $\{y_1, \dots, y_s\}$, that is, y_1, \dots, y_s are primitive elements such that $\{y_1^{e_1} \dots y_s^{e_s} | e_i = 0 \text{ or } 1\}$ is a basis of $H^*(X)$. Then we have next two lemmas.

Notation. (1) P: the linear subspace spanned by $\{y_1, y_2, \dots, y_s\}$. (2) C: the linear subspace spanned by

$$\{y_{i(1)}, y_{i(2)}, \dots, y_{i(t)}; i(1) < i(2) < \dots < i(t), t \ge 2\}$$

(3)
$$H = \tilde{H}^*(X), H_j = H^j(X), H_j^k = (\underbrace{H \cdot H \cdots H}_{(k \text{ times})} \cap H_j, P_j = P \cap H_j, C_j = C \cap H_j$$

Note that $P \oplus C = H$ and $P_j \cdot P_k \subset C_{j+k}$ if $k \neq j$.

Lemma 5. For $k, l \ge 1$ the following hold.

- (a) $Sq^{2k+1} H_{2l} \subset C_{2k+2k+1}$.
- (b) $Sq^1 C_{4k-3} \subset C_{4l-2}$.
- (c) $Sq^2 H_{8l-2} \subset C_{8l-2}$.
- (d) $Sq^4 H_{16l-6} \subset C_{16l-2}$.

Proof. (a): $Sq^{2k+1} H_{2l} = Sq^{2k+1} H_{2l}^2 \subset H_2^{2k+2l+1} = C_{2k+2l+1}$. (b): $C_{4l-3} = \sum P_{2l-1-2l} \cdot P_{2l-2+2l} + H_3^{4j-3}$. Lemma 3 says $Sq^1 C_{4l-3} = \sum P_{2l-2l} \cdot P_{2l-2+2i} + H_{4l-2}^3$. But $H_{4l-2}^3 = C_{4l-2}$ and $P_{2l-2i} \cdot P_{2l-2+2i} \subset C_{4l-2}$. Thus we get (b). (c) and (d) can be proved in a similar way. Q.E.D.

Notation. (1) For $\alpha \in H^{n}(X \wedge X)$ we put $a = \sum_{i} a(i, n-i)$ where $a(i, n-i) \in H_{i} \otimes H_{n-i}$ (note the preceding notations). (2) $C(i, n-1) = C_{i} \otimes H_{n-i} + H_{i} \otimes C_{n-i}$.

Lemma 6. If $a \in H^{32n-5}(X \land X)$ satisfies $a(i, 32n-5-i) \in C(i, 32n-5-i)$ for i=16n-2, 16n-3, then the following hold.

- (a) $(Sq^1 a)(16n-2, 16n-2) \in C(16n-2, 16n-2)$.
- (b) $(Sq^4 a)(i, 32n-5-i) \in C(i, 32n-5-i)(i=16n-2, 16n-3).$

460

The proof is given by a calculation using the preceding lemmas. Now Theorem 1 is a corollary to the next theorem.

Theorem 7. Let X be a 1-connected mod 2 finite H-space satisfying the following conditions, where $n \ge 3$.

(a) $H^*(X) = F_2[x]/(x^4) \otimes R$ as an algebra, and $x \in PH^{2^*-1}$.

(b) $QR^{2^{n-1}}=0$, dim $QR^{2^{n+1}-3}=$ dim $QR^{2^{n+1}+1}$.

Then $H^*(X)$ is not primitively generated.

The proof of Theorem 1. Suppose $H^*(X)$ is primitively generated. We only have to show there is a primitive element x in $H^{2^{n}-1}(X)$ whose height is four. Now let x be the non zero primitive element. Anyway there is an indecomposable element y in $H^{2^{n}-1}(X)$ such that $y^2 \neq 0$ and $y^4 = 0$.^(*) Since $H^*(X)$ is a polynomial algebra for $* < 2^{n+1} - 1$, $x^2 \neq 0$. If $x^4 \neq 0$, $(y-x)^4 = x^4 \neq 0$ and is primitive. On the other hand (y-x) is decomposable and therefore its fourth power cannot be primitive. This is a contradiction. Thus $x^4 = 0$.

The proof of Theorem 7. If $H^*(X)$ is primitively generated, we have a contradiction as follows. Fix a simple system of primitive generators $\{y_1, \dots, y_s\}$ and use the above notations. Let y be an element in $\iota^{-1}(x^2)$, where $\iota: H^{2^{n+1}-1}(P_2X) \rightarrow$ $H^{2^{n+1}-2}(X)$ (see Lemma 4). Then $y^2 = \lambda(x^2 \otimes x^2) \neq 0$. By the assumption there exists $u \in H^{2^{n+2}-5}(X \wedge X)$ such that $\lambda(u) = Sq^{2^{n+1}-2}y$. Lemma 6 says that if $u(i, 2^{n+2}-5-i)$ $\in C(i, 2^{n+2}-5-i)$ ($i=2^{n+1}-3, 2^{n+1}-2$), ($Sq^1 u$) ($2^{n+1}-2, 2^{n+1}-2$) $\in C(2^{n+1}-2, 2^{n+1}-2)$. Then $x^2 \otimes x^2 + Sq^1 u = x^2 \otimes x^2 \mod C(2^{n+1}-2, 2^{n+1}-2) \oplus (\bigoplus_{j \neq 2^{n+1}-2} H_j \otimes H_k)$. But the left hand side is in Ker λ , hence $x^2 \otimes x^2 + Sq^1 u \in \operatorname{Im} \overline{\psi}$. Thus $x^2 \otimes x^2 \in \operatorname{Im} \overline{\psi} + C(2^{n+1}-2, 2^{n+1}-2) \oplus (\bigoplus_{j \neq 2^{n+1}-2} H_j \otimes H_k)$, as is false. Therefore (1) there exists $x' \in P_{2^{n+1}-3}$, and $u \in H^{2^{n+2}-5}(X \wedge X)$ such that $x' \neq 0$, $Sq^{2^{n+1}-2}$

Note that $Sq^4 x' \neq 0$ because of Lemma 3 and the assumption. Moreover we get $Sq^4 Sq^{2^{n+1}-2} y \neq 0$ from this by analogous computations.

(2)
$$Sq^4 Sq^{2^{n+1}-2} y \neq 0.$$

But by the Adem relations and for dimensional reason, $Sq^4 Sq^{2^{n+1}-2} y$ is equal to $Sq^{2^{n+2}} Sq^2 y$, and $Sq^2 y$ is an image of some w by λ . The dimension of w is $2^{n+1}-1$, hence $Sq^{2^{n+2}} Sq^2 y=0$, as contradicts (2). Q.E.D.

Added in proof: In the proof of Theorem 1 we assumed $PH^{2^n-1} \neq 0$. This is shown in a forthcoming paper to appear in Publ. RIMS Kyoto Univ.

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY

Akihiro Ohsita

References

- [1] W. Browder and E. Thomas, On the projective plane of an *H*-space, Ill. J. Math., 7 (1963), 492–502.
- [2] K. Ishitoya, A. Kono and H. Toda, Hopf algebra structures of mod 2 cohomology of simple Lie groups, Publ. RIMS Kyoto Univ., 12 (1976), 141-167.
- [3] R. C. Kane, Implications in Morava K-theory, Mem. AMS, 340 (1986).
- [4] R. C. Kane, The homology of Hopf spaces (to appear).
- [5] J. P. Lin, Steenrod connections and connectivity in H-spaces, Mem. AMS, 369 (1987).
- [6] J. P. Lin, Steenrod squares in the mod 2 cohomology of finite H-spaces, Comm. Math. Helv., 55 (1980), 398-412.
- [7] J. P. Lin, On the Hopf algebra structure of the mod 2 cohomology of a finite *H*-space, Publ. RIMS Kyoto Univ., 20 (1984), 877–892.
- [8] J. P. May and A. Zabrodsky, H* (Spin (n)) as a Hopf algebra, J. pure and appl. alg., 10 (1977), 193-200.
- [9] J. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math., 81 (1965), 211-264.
- [10] E. Thomas, Steenrod squares and H-spaces I, II, Ann. of Math., 77 (1963), 306–317, 81 (1965), 473–495.