On the non-cocomutativity of the mod 2 cohomology ring of certain finite H-spaces

By

Akihiro OHSITA

§ 0 . Introduction

Since Heinz Hopf investigated the cohomology of a space equipped with a continuous multiplication, the study of cohomology of H-spaces has been developed by many authors. In the case where the coefficient group is $\mathbf{F}_2 = \mathbf{Z}/2\mathbf{Z}$, the cohomology $H^* = H^*$ (; F_2) has the structure of a (not necessarily coassociative) Hopf algebra over the Steenrod algebra, that is, Hopf algebra of which the underlying algebra-coalgebra structure is a "left module algebra-quasicoalgebra" one in the sense of Milnor-Moore [9].

In the latest paper of **J.** P. Lin [5], he got a non-cocomutative theorem on the mod 2 cohomology of certain finite H-spaces.

Unfortunately his result is not applicable to a finite H-space *X* whose mod 2 cohomology ring is isomorphic to that of $Spin(N)$. The purpose of this paper is to show

Theorem 1. Let *X* be a mod 2 finite *H*-space satisfying $H^*(X)$ is isomorphic *to* $H^*(\text{Spin}(N))$ as algebras for $2^{n+1}+2 \le N \le 2^{n+2}-4$ ($n \ge 3$). Then $H^*(X)$ is not *primitively generated.*

I would like to thank Professor. Akira Kono for his kind advises and help.

§ 1 . Proof of the main theorem

On the mod 2 cohomology of mod 2 finite H-spaces the following lemmas are known.

Lemma 2 ([3]). *Let X be a 1-connected* mod 2 *finite H-space*, *then* $QH^{even}(X)$ =0.

Lemma 3 ([10]). *Let X be a* 1-connected mod 2 *finite H*-space with $H^*(X)$ *primitively generated. Then the following hold.*

Received December 5, 1987

460 *Akihiro Ohsita*

(a) If
$$
\binom{2n-1}{2^k} = 1 \mod 2
$$
, $2^k < 2n-1$ then $Sq^{2^k} PH^{2n-1}(X) = PH^{2n-1+2^k}(X)$.
\n(b) If $\binom{2n-1}{2^k} = 0 \mod 2$, then $Sq^{2^k} PH^{2n-1}(X) = 0$.

Lemma 4 ([1]). Let *X* be *a* mod 2 *H-space and* P_2X *be its projective plane. Then we have the following exact sequence with properties (a) (b) and (c).*

$$
\cdots \to \tilde{H}^{q}(X) \xrightarrow{\overline{\psi}} [\tilde{H}^{*}(X) \otimes \tilde{H}^{*}(X)]^{q} \xrightarrow{\lambda} \tilde{H}^{q+2}(P_{2}X) \xrightarrow{\iota} \tilde{H}^{q+1}(X) \cdots
$$

(a) Each homomorphism commutes with the A-action, where A * denotes the* mod 2 *Steenrod algebra.*

- (b) Im $t = PH^*$ and if $t(y_i) = x_i \neq 0$ (i=1, 2) then $\lambda(x_1 \otimes x_2) = y_1 y_2$.
- (c) *Any threefold product vanishes in* $H^*(P_2X)$.

Let *X* be a 1-connected mod 2 finite *H*-psace. If $H^*(X)$ is primitively generated, $H^*(X)$ has a simple system of primitive generators $\{y_1, \dots, y_s\}$, that is, y_1, \dots, y_s are primitive elements such that $\{y_1^{\epsilon_1} \cdots y_s^{\epsilon_s} | \epsilon_i = 0 \text{ or } 1\}$ is a basis of $H^*(X)$. Then we have next two lemmas.

Notation. (1) *P*: the linear subspace spanned by $\{y_1, y_2, \dots, y_s\}$. (2) C : the linear subspace spanned by

$$
\{y_{i(1)}\,y_{i(2)}\cdots y_{i(t)}; i(1) {<} i(2) {<} \cdots {<} i(t), t \geq 2\}.
$$

(3)
$$
H = \tilde{H}^*(X), H_j = H^j(X), H_j^k = (\mathbf{H} \cdot \mathbf{H} \cdots \mathbf{H}) \cap H_j, P_j = P \cap H_j, C_j = C \cap H_j
$$

Note that $P \oplus C = H$ and $P_i \cdot P_k \subset C_{i+k}$ if $k \neq j$.

Lemma 5. For $k, l \geq 1$ the following hold.

- (a) $Sq^{2k+1} H_{2l} \subset C_{2k+2k+1}$.
- (b) $Sq^{\text{T}} C_{4k-3} \subset C_{4l-2}$
- (c) $Sq^2 H_{8l-2} \subset C_{8l-2}$
- (d) $Sq^* H_{16l-6} \subset C_{16l-2}$

Proof. (a): Sq^{2k+1} $H_{2l} = Sq^{2k+1}$ $H_{2l}^{2} \subset H_2^{2k+2l+1} = C_{2k+2l+1}$. (b): $C_{4l-3} = \sum_{i=1}^{k}$ $P_{2l-1-2l} \cdot P_{2l-2+2l} + \mathrm{H}_{3}^{4j-3}$. Lemma 3 says $Sq^{\perp}C_{4l-3} = \sum P_{2l-2l} \cdot P_{2l-2+2i} + \mathrm{H}_{4l-2}^{3}$. But $H_{4l-2}^{3} = C_{4l-2}$ and $P_{2l-2i} \cdot P_{2l-2+2i} \subset C_{4l-2}$. Thus we get (b). (c) and (d) can be proved in a similar way. $Q.E.D.$

Notation. (1) For $\alpha \in H^*(X \wedge X)$ we put $a = \sum a(i, n-i)$ where $a(i, n-i) \in$ $H_i \otimes H_{n-i}$ (note the preceding notations). (2) $C(i, n-1) = C_i \otimes H_{n-i} + H_i \otimes C_{n-i}$

Lemma 6. If $a \in H^{32n-5}(X \wedge X)$ satisfies $a(i, 32n-5-i) \in C(i, 32n-5-i)$ for $i=16n-2$, $16n-3$, *then the following hold.*

- (a) $(Sq¹ a) (16n-2, 16n-2) \in C(16n-2, 16n-2).$
- *(b)* $(Sq^4 a)$ *(i,* 32n 5 *i*) \in C*(i,* 32n 5 *i*) *(i* = 16n 2, 16n 3).

The proof is given by a calculation using the preceding lemmas. Now Theorem **1**is a corollary to the next theorem.

Theorem 7 . *Let X be a 1-connected* mod 2 *finite H-space satisfying the following conditions, where* $n \geq 3$.

(a) $H^*(X) = F_2[x]/(x^4) \otimes R$ *as an algebra, and* $x \in PH^{2^n-1}$.

(b) $QR^{2^{n}-1}=0$, dim $QR^{2^{n+2}-3}=dim QR^{2^{n+2}+1}$.

Then H(X) is not primitively generated.*

The proof of Theorem 1. Suppose $H^*(X)$ is primitively generated. We only have to show there is a primitive element x in $H^{2^{n}-1}(X)$ whose height is four. Now let x be the non zero primitive element. Anyway there is an indecomposable element y in $H^{2^{n}-1}(X)$ such that $y^2 \neq 0$ and $y^4 = 0$.^(*) Since $H^*(X)$ is a polynomial algebra for \ast < 2^{$n+1$} -1, x^2 \neq 0. If x^4 \neq 0, $(y-x)^4$ \ast \ast \ast \ast 0 and is primitive. On the other hand $(y-x)$ is decomposable and therefore its fourth power cannot be primitive. This is a contradiction. Thus $x^4 = 0$.

The proof of Theorem 7. If $H^*(X)$ is primitively generated, we have a contradiction as follows. Fix a simple system of primitive generators $\{y_1, \dots, y_s\}$ and use the above notations. Let y be an element in $i^{-1}(x^2)$, where i : $H^{2^{n+1}-2}(X)$ (see Lemma 4). Then $y^2 = \lambda(x^2 \otimes x^2) \neq 0$. By the assumption there exists $u \in H^{2^{n+2}-5}(X \wedge X)$ such that $\lambda(u) = Sq^{2^{n+2}-2}y$. Lemma 6 says that if $u(i, 2^{n+2}-5-i)$ \in C(*i*, 2ⁿ⁺² - 5 - *i*) (*i*=2ⁿ⁺¹ - 3, 2ⁿ⁺¹ - 2), (Sq¹ u) (2ⁿ⁺¹ - 2, 2ⁿ⁺¹ - 2) \in C(2ⁿ⁺¹ - 2, 2ⁿ⁺¹ (-2) . Then $x^2 \otimes x^2 + Sq^1 u = x^2 \otimes x^2$ mod $C(2^{n+1}-2, 2^{n+1}-2) \bigoplus (\bigoplus_{i \pm 2^{n+1}-2} H_i \otimes H_k)$ But the left hand side is in Ker λ , hence $x^2 \otimes x^2 + Sq^1 u \in \text{Im }\overline{\psi}$. Thus $x^2 \otimes x^2 \in \text{Im }$ $+C(2^{n+1}-2, 2^{n+1}-2) \bigoplus (\bigoplus_{i=1}^n H_i \otimes H_k)$, as is false. Therefore (1) there exists $x' \in P_{2^{n+1}-3}$, and $u \in H^{2^{n+2}-5}(X \wedge X)$ such that $x' \neq 0$, $Sq^{2^{n+1}-1}$ -2 $y = \lambda (x^2 \otimes x' + u)$, and $u(i, 2^{n+3} - 5 - i) \in C(i, 2^{n+2} - 5 - i)$ $(i = 2^{n+1} - 3, 2^{n+1} - 2)$.

Note that $Sq^{4} x' \neq 0$ because of Lemma 3 and the assumption. Moreover we get $Sq^{2^{n+1}-2}$ $y \neq 0$ from this by analogous computations.

(2)
$$
Sq^4 Sq^{2^{n+1}-2} y \neq 0.
$$

But by the Adem relations and for dimensional reason, $Sq^4 Sq^{2^{n+2}} y$ is equal to $Sq^{2^{n+2}} Sq^2 y$, and $Sq^2 y$ is an image of some w by λ . The dimension of w is $2^{n+1}-1$. hence $Sq^{2^{n+2}} Sq^2 y = 0$, as contradicts (2). $Q.E.D.$

Added in proof: In the proof of Theorem 1 we assumed $PH^{2^n-1} \neq 0$. This is *shown in a forthcoming paper to appear in Pub!. RIMS Kyoto Univ.*

> DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY

462 *Akihiro Ohsita*

References

- [1] W. Browder and E. Thomas, On the projective plane of an H-space, Ill. J. Math., 7 (1963), 492-502.
- [2] K. Ishitoya, A. Kono and H. Toda, Hopf algebra structures of mod 2 cohomology of simple Lie groups, Pub!. RIMS Kyoto Univ., 12 (1976), 141-167.
- [3] R. C. Kane, Implications in Morava K-theory, Mem. AMS, 340 (1986).
- [4] R. C. Kane, The homology of Hopf spaces (to appear).
- [5] J. P. Lin, Steenrod connections and connectivity in H-spaces, Mem. AMS, 369 (1987).
- [6] J. P. Lin, Steenrod squares in the mod 2 cohomology of finite H-spaces, Comm. Math. Helv., 55 (1980), 398-412.
- [7] J. P. Lin, On the Hopf algebra structure of the mod 2 cohomology of a finite H-space, Pub!. RIMS Kyoto Univ., 20 (1984), 877-892.
- [8] J. P. May and A. Zabrodsky, H* (Spin *(n))* as a Hopf algebra, J. pure and appl. alg., 10 (1977), 193-200.
- [9] J. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math., 81 (1965), 211-264.
- [10] E. Thomas, Steenrod squares and H-spaces I, II, Ann. of Math., 77 (1963), 306-317, 81 (1965), 473-495.