On *H*-spaces which are the homotopy fibres of self-maps of spheres

By

Akira Kono and Akihiro Ohsita

§0. Introduction

Let p be an odd prime, X(n, j) a 1-connected H-space satisfying

$$\tilde{H}_{k}(X(n,j); \mathbf{Z}) = \begin{cases} \mathbf{Z}/p^{j}\mathbf{Z} & (k \equiv 0 \mod 2n, k > 0) \\ 0 & (\text{otherwise}) \end{cases}$$

where n, j are integers and n > 1. The purpose of this paper is to show

Theorem A. There exist $a \in H_{2n}X(n, j)$ and $b \in H_{2n+1}X(n, j)$ such that as an algebra

$$H_*X(n,j) \simeq S(a) \otimes E(b)$$

where H_* denotes the mod p homology, S the symmetric algebra, and E the exterior algebra.

Let $S^{2n+1}\{p^j\}$ be the homotopy fibre of the self-map of S^{2n+1} of degree p^j . It is homotopy equivalent to that of the self-map of $S^{2n+1}_{(p)}$ of degree p^j . Since $S^{2n+1}_{(p)}$ is a homotopy commutative *H*-space (cf. [1]), $S^{2n+1}\{p^j\}$ is an *H*-space. An easy calculation with the Wang exact sequence shows $H_*(S^{2n+1}\{p^j\}; \mathbb{Z}) \cong H_*(X(n, j); \mathbb{Z})$. Therefore $H_*S^{2n+1}\{p^j\} \cong S(a) \otimes E(b)$ for any *H*-structure of $S^{2n+1}\{p^j\}$ by Theorem A and the case $\lambda_i = 0$ in Lemma IV of [4] does not occur. This simplifies [4] very much. Moreover in §2 we have

Theorem B. If X(n, j) is a loop space then

(1) $H^*BX(n, j) \cong S(x) \otimes E(y)$ where |x| = 2n+2 and |y| = 2n+1.

(2) There exists a weak homotopy equivalence of $S^{2n+1}\{p^j\}$ to d(n, j) and n divides p-1.

Throughout this paper H_* stands for the mod p homology, S the symmetric algebra, and E the exterior algebra.

Received December 3, 1987

§1. Proof of Theorem A

First recall that

$$\tilde{H}_k X(n,j) = \begin{cases} \mathbf{Z}/p & (k \equiv 0, 1 \mod 2n, k > 1) \\ 0 & (\text{otherwise}) \end{cases},$$

the *l*-th Bockstein homomorphism $\beta_i^* = 0$ for l < j and $\beta_j^* \colon H_{2nk+1}X(n, j) \to H_{2nk}X(n, j)$ is an isomorphism for each k > 0. For simplicity we denote $H_kX(n, j)$ by H_k . Let *a* be a generator of H_{2n} and $b = (\beta_j^*)^{-1}(a)$, which spans H_{2n+1} . Using the fact that β_j^* is a derivation (cf. [3]), we have $\beta_j^*(ab) = a^2 = \beta_j^*(ba)$. Since β_j^* is an isomorphism, it follows that ab = ba. $H_{4n+2} = 0$ by the dimensional reason and so $b^2 = 0$ (note that n > 1). Therefore *a* and *b* generate a commutative Hopf subalgebra of H_* . If $a^k \neq 0$, then $a^k b \neq 0$ and so is $a^{k+1} = \beta_j^*(a^k b)$. Since dim $H_{2nk} = \dim H_{2nk+1} = 1$, a^k and $a^{k-1}b$ generate H_{2nk} and H_{2nk+1} respectively for k > 0. Therefore $H_*X(n, j) \cong S(a) \otimes E(b)$.

§2. Proof of Theorem B

First $\tilde{H}_k(BX(n, j); \mathbb{Z})$ is a finite *p*-group for any *k* by Serre's *C*-theory. The Rothenberg-Steenrod spectral sequence [7] happens to collapse and so $H_*BX(n, j) \cong S(x) \otimes E(y)$ where H^* means the mod *p* cohomology, |x| = 2n+2, |y| = 2n+1 and $\beta_j y = x$. Clearly BX(n, j) is 2*n*-connected and $\pi_{2n+1} BX(n, j) = \mathbb{Z}/p^j \mathbb{Z}$. Let $\pi: S^{2n+1} \to BX(n, j)$ be a generator of $\pi_{2n+1} BX(n, j)$, X is its homotopy fibre and $i: X \to S^{2n+1}$ the canonical map. Then the comparison theorem of the Serre spectral sequence in the mod *p* cohomology shows

$$H^*X = \begin{cases} \mathbf{Z}/p\mathbf{Z} & (*=0, 2n+1), \\ 0 & (\text{otherwise}). \end{cases}$$

Thus we have $H^*(X; \mathbb{Z}) \cong H^*(S^{2n+1}; \mathbb{Z})$. Because X is 1-connected, we have a weak equivalence $f: S^{2n+1} \to X$. It follows from the homotopy exact sequence that the degree of $i \circ f$ is p^j . Therefore the desired weak equivalence is obtained.

Using the Adem relations, if j=1 we have *n* devides p-1 from the form of the mod *p* cohomology of the classifying space ([2], [4]). If j>1, since β acts trivially on $H_*BX(n, j)$ and $\mathcal{P}^{n+1}x \neq 0$ we must have \mathcal{P}^1 acting non-trivially (by considering secondary operations in [6], [8] or [9]). Thus the degree of \mathcal{P}^1 has to be divided by 2n+2. Therefore the proof of the latter half of (B) is essentially same as that of [4].

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY

456

H-spaces

References

- [1] J. F. Adams, The sphere, considered as an *H*-space mod *p*, Quart. J. Math. Oxford, **12** (1961), 52–60.
- [2] J. Aguadé, Cohomology algebras with two generators, Math. Zeit., 177 (1981), 289-296.
- [3] W. Browder, Torsion in H-spaces, Ann. of Math., 74 (1961), 24-51.
- [4] H. Cejtin and S. Kleinerman, A criterion for delooping the fibre of the self-map of a sphere with degree a power of a prime, Ill. J. Math., 30 (1986), 566-573.
- [5] S. Kleinerman, "The conomology of Chevalley groups of exceptional Lie type", Mern. AMS., 268 (1982).
- [6] A. Lieulevicious, "The factorization of cyclic reduced powers by secondary cohomology operations", Mem. AMS., 42 (1962).
- [7] M. Rothenberg and N. E. Steenrod, The cohomology of classifying spaces of H-spaces, Bull. AMS., 71 (1965), 872–875.
- [8] N. Shimada, Triviality of the mod p Hopf invariant, Proc. Japan Acad., 36 (1960), 68-69.
- [9] T. Yamanoshita, On the mod p Hopf invariant, Proc. Japan Acad., 36 (1960), 97-98.