Homology of the Kac-Moody groups I

Dedicated to Professor Masahiro Sugawara on his 60th birthday

By

Akira KONO and Kazumoto KOZIMA

§1. Introduction

Let *G* be a compact, connected, simply connected, simple Lie group of exceptional type and *g* its Lie algebra. The homotopy type of the Kac-Moody Lie group $\mathcal{K}(\mathcal{Q}^{(1)})$ is $\mathcal{Q}(\langle 2 \rangle \times G)$ where $\mathcal{Q}(\langle 2 \rangle)$ is the 2-connected cover of the space of loops on *G* (cf. [5]). The purpose of this paper is to determine $H_*(\mathcal{K}(\mathcal{Q}^{(1)})$; **Z**). The homology $H_*(G; \mathbf{Z})$ is known and therefore we need only determine $H_*(\mathcal{Q}G\langle 2\rangle;$ *Z*). Since $H_*(\mathcal{Q}G\langle 2\rangle;\mathbf{Z})$ is a finitely generated abelian group for any $*$, it is sufficient to determine $H_*(\mathcal{Q}G\langle 2\rangle;\mathbf{Z}_{(b)})$ for all prime p.

In [8], there exists an integer $d(G, p)$ such that

P.S.
$$
(H_*(\mathcal{Q}G\langle 2 \rangle; \mathbf{F}_p))
$$

= $(1+t^{2q^{d(G,p)-1}})(1-t^{2p^{d(G,p)}})^{-1}\prod_{j=2}^l(1-t^{2n(j)})^{-1}$

where $l = \text{rank } G$ and $1 = n(1) < n(2) < \cdots < n(l)$ are the exponents of G (cf. §2). Since $H_*(\mathcal{Q}G; \mathbf{Z})$ is free and $H_{2j-1}(\mathcal{Q}G; \mathbf{Z})=0$, for any ring R the Gysin exact sequence for the fibering

$$
S^1 \to \mathcal{Q} G\bigl\langle 2 \bigr\rangle \stackrel{\pi}{\to} \mathcal{Q} G
$$

splits as

$$
0 \to H_{2j}(\mathcal{Q}G\langle 2 \rangle; R) \xrightarrow{\pi_{*}} H_{2j}(\mathcal{Q}G; R) \xrightarrow{\chi} H_{2j-2}(\mathcal{Q}G; R) \to H_{2j-1}(\mathcal{Q}G\langle 2 \rangle; R) \to 0
$$

where *x* is a derivation (of degree -2). For $R=Q$, *x* is epic. Therefore $H_{2i}(Q)$ $\langle 2 \rangle$; $\mathbf{Z}_{(p)}$ is a free $\mathbf{Z}_{(p)}$ -module and $H_{2j+1}(QG; \mathbf{Z}_{(p)})$ is a finite p-group.

In this paper $H_*(\mathcal{Q}G\langle 2\rangle;\mathbf{Z}_{(p)})$ except $(G, p)=(E_6, 2)$ is determined (cf. Theorem 3.3).

The cases $(E_6, 2)$ and *G* of classical type are determined in part II.

§2. Mod p cohomology and homology

For the simplicity, we define a set of integers:

Received November 30, 1987

450 *Akira Kono and Kazumoto Kozima*

 $E(G) = \{n(j) | j > 1\}$.

Then $E(G_2) = \{5\}, E(F_4) = \{5, 7, 11\}$, $E(E_6) = \{4, 5, 7, 8, 11\}$, $E(E_7) = \{5, 7, 9, 11, 13, 17\}$ and $E(E_8) = \{7, 11, 13, 15, 17, 19, 23, 29\}$.

First, one can observe that

Proposition 2.1 (Borel [1].). $H_*(G; \mathbf{Z})$ has non-trivial p-torsion if and only if $p \leq [l/2]+1.$

First, we consider this case.

We define an integer $d(G, p)$ by the following table:

Let $M(G, p)$ be the \mathbf{F}_p -algebra $E(b_{2j+1} | j \in E(G))$ except for $G = E_8$, $p = 2$ and let $M(E_8, 2)$ be

$$
E(b_{2j+1} | j \in E(E_8) \cup \{14\} - \{7, 29\} \otimes P(b_{15})/(b_{15}^4)
$$

where degree $b_i = i$.

We define also the Hopf algebra over \mathbf{F}_p $N(G, p)$ by $P(h_{2i} | j \in E(G))$ except for $G = E_8$, $p = 2$ and $N(E_8, 2)$ by

$$
P(h_{2j} | j \in E(G) \cup \{14\} \}/(h_{14}^2)
$$

where degree $h_{2i} = 2i$ and except h_{2i} , all h_{2i} are primitive and $\phi(h_{2i}) = h_{2i} \otimes 1 +$ $h_{14} \otimes h_{14} + 1 \otimes h_{14}.$

Lemma 2.2. *Put* $e=2 \cdot p^{d(G,p)}$ *.*

 $H^*(G\langle 3 \rangle; \mathbf{F}_p) = P(x_e) \otimes E(x_{e+1}) \otimes M(G,p)$ as an algebra where degree $x_i = i$.

(2) $H^*(\mathfrak{AG}\langle 2\rangle;\mathbf{F}_p) = P(y_e)\otimes E(y_{e-1})\otimes N(G,p)$ as a Hopf algebra where degree $y_i = i$ *and* y_i *are primitive.*

(3) Let β_* be the homology Bockstein operation. Then $\beta_* h_{2j}$ =0 for all j and $\beta_* y_{e}$ $=y_{e-1}$

Proof. (1) is the reformulation of the results in Kachi [7], Kono-Mimura [9] and Mimura [11].

For (2), we consider the Eilenberg-Moore spectral sequence

$$
\mathrm{Ext}_{H^*(\mathcal{Q}G\langle 2\rangle\,;\,F_p)}\,(F_p,\,F_p)\Rightarrow H^*(G\langle 3\rangle;\,F_p)\,.
$$

By the result of Kono [8],

Homology of the Kac-Moody groups **451**

P.S.
$$
(H_*(\mathcal{Q}G\langle 2\rangle; \mathbf{F}_p)) =
$$
P.S. $(P(y_e) \otimes E(y_{e-1}) \otimes N(G, p))$.

If $H_*(\mathcal{Q}G\langle 2\rangle; \mathbf{F}_p)$ has more relations than the right side of (2), then by the dimentional reason, E_2 -term has the permanent cycles which correspond to the relations. One can easily check that no such elements appear in $H^*(G\langle 3 \rangle; \mathbf{F}_i)$ by (1). The Hopf algebra structure follows from Milnor-Moore [10]. For all $j \in E(G)$, $\beta_{\star}h_{\star}$ is clearly primitive and is not decomposable by the dimensional reason. $\beta_{*}h_{28}$ is not decomposable by the same reason. So $\beta_{*}h_{2j}$ is zero by (2). The last statement follows from that $\beta x_{\epsilon} = x_{\epsilon+1}$ which is also a result of Kachi [7], Kono-Mimura [9] and Mimura [11].

§3. $\mathbf{Z}_{(p)}$ -homology

Lemma 3.1. *Let* $\rho: \mathbf{Z}_{(p)} \rightarrow F_p$ *be the mod p reduction map.* (1) *For any* $j \in E(G)$ *, there is an element*

 $a'_2{}_j \in H_*(\mathcal{Q}G\langle 2 \rangle;\mathbf{Z}_{(p)})$ such that $\rho(a'_2{}_j) = h_2{}_j$.

(2) In the case $(G, p) = (E_8, 2)$, a'_{14} is divisible by 2. If we put $a'_{28} = \frac{1}{2} \cdot a'^{2}_{14}$, then $a(a'_{2}) = h$. $\rho(a'_{28})=h_{28}.$

Proof. Since $\rho: H_{2j}(AG\langle 2 \rangle; \mathbb{Z}_{(p)}) \rightarrow H_{2j}(BG\langle 2 \rangle; \mathbf{F}_p)$ is epic by (3) of (2.2), (1) is clear.

(2) is a result of Kono [8].

Let put $\pi_* a'_i = a_i$. Let $L(G, p)$ be the $\mathbf{Z}_{(p)}$ -algebra

> $P(a_{2i} | i \in E(G))$ for $(G, p) \neq (E_8, 2)$ $P(a_{2} | i \in E(G) \cup \{28\})/(a_{14}^2 - 2 \cdot a_{28})$ for $(G, p) = (E_8, 2)$.

We define $\mathbf{Z}_{(b)}$ -algebra $\Gamma(d, p)$ by

$$
P(u_{2i} | i \in \{1, p, \cdots, p^d\})/(u_{2i}^b - p \cdot u_{2pi} | i \in \{1, p, \cdots, p^{d-1}\})
$$

Theorem 3.2. *If* $(G, p) \neq (E_6, 2)$, *then*

(1) $H_*(\mathcal{Q}G; \mathbb{Z}_{(p)}) = \Gamma(d(G, p) - 1, p) \otimes_{\mathbb{Z}_{(p)}} L(G, p)$ as algebra.

(2) $\chi(a_{2i})=0, \chi(u_2)=1, \chi(u_{2i})=u_2^{b-1},$

$$
\chi(u_{2p^2}) = (u_2 u_{2p})^{p-1}, \cdots,
$$

\n
$$
\chi(u_{2p^{d(G,p)-1}}) = (u_2 u_{2p} \cdots u_{2p^{d(G,p)-2}})^{p-1}
$$

Proof. The algebra structure is the result of Duckworth [3]. Since χ : $H_*(\mathcal{Q}G)$; $Z_{(p)} \rightarrow H_{*-2}(\mathcal{Q}G; Z_{(p)})$ is epic for $* < 2 \cdot p^{d(G,p)}$, we can take the elements u_{2p} so that the theorem holds.

Let define a graded $\mathbf{Z}_{(p)}$ -module $C(d, p)$ as follows:

452 *Akira Kono and Kazumoto Kozima*

$$
C(d, p)_j = \begin{cases} \mathbf{Z}_{(p)} & \text{if } j = 0\\ \mathbf{Z}/p^{r-d} & \text{if } j+1 = 2p^r \text{ j}^{\prime}, \text{ (j}^{\prime}, p) = 1 \text{ and } r \ge d\\ 0 & \text{otherwise.} \end{cases}
$$

Theorem 3.3.

$$
H_*(\mathcal{Q}G\langle 2\rangle;\mathbf{Z}_{(p)})=C(d(G,p)-1,p)\otimes_{\mathbf{Z}_{(p)}}L(G,p)
$$

Proof. For the simplicity, we put $d=d(G, p)-1$. *X* induces a derivation of $F(d, p)$. We denote it as x_r .

We have only to show that $Coker(\mathcal{X}_r)_{i-1} = C(d, p)$ *_i*. $\Gamma(d, p)$ *_i* is spaned freely by

$$
\{u_2^{j_0} u_{2p}^{j_1} \cdots u_{2p}^{j_d} | 0 \le j_k < p \quad \text{for} \quad k \le d-1 \quad \text{and} \quad \sum 2p^k j_k = j \}.
$$

If j_k is the first non zero integer in (j_0, j_1, \dots, j_d) , then an easy calculation shows that

$$
\chi_{\Gamma}(u_{2p}^{j_k} \cdots u_{2p}^{j_d}) = (j_k + p \cdot j_{k+1} + \cdots + p^{d-k} j_d) u_2^{p-1} \cdots u_{2p^{k-1}}^{p-1} u_{2p^{k}}^{j_{k-1}} u_{2p^{k+1}}^{j_{k+1}} \cdots u_{2p^{d}}^{j_d}.
$$

Thus Coker(χ_P) is generated t by $u_2^{p-1} \cdots u_{2p^d-1}^{p-1} u_{2p^d}^{j_d-1}$ and its order is $p^{\nu_p(j_d)}$.

Now we turn to the other cases.

Theorem 3.4. *If* $(G, p) = (G_2, 3)$ *or* $p > n(l)$ *, then*

$$
H_*(\mathcal{Q}G\langle 2\rangle;\mathbf{Z}_{(p)})=C(0,p)\otimes_{\mathbf{Z}(p)}P(a_2')\,|\,j\!\in\!E(G))\,.
$$

Proof. In the case of $p > n(l)$, by the result of Serre [12], we have a p-equivalence of spaces

$$
G\widetilde{\longrightarrow }\ S^3\!\times\!X\,.
$$

Then the result is clear.

Since $H_*(\mathcal{Q}G_2; \mathbf{Z}_{(3)}) = P(a_2, a_{10})$ and we can take a_{10} as $\chi(a_{10}) = 0$, the same but more easy calculation as in the the proof of the previous theorem deduces the result.

Remark. (1) If $n(2) \leq p \leq n(l)$, then $d(G, p)$ is 2. (2) $n(2) > p > \frac{1}{2} + 1$ if and olny if $(G, p) = (G_2, 3)$

So we cover all cases.

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY OF EDUCATION

References

- [1] A. Borel, Sur l'homologie et la cohomologie des groupes de Lie compacts conexes, Amer. **J.** Math., **74** (1954), 273-342.
- $[2]$ R. Bott, The space of loops on a Lie group, Michigan Math. **J.**, **5** (1955), 35–61.
- [3] P. W. Duckworth, The K-theory pontrjagin rings for the loop spaces on the exceptional Lie groups, Quart. J. Math. Oxford (2), **15** (1984), 253-262.
- [4] V. G. Kac. Torsion in cohomology of compact Lie group and Chow rings of reductive alg. groups, Inv. Math., **88** (1985), 69-79.
- [5] V. G. Kac, Constructing groups associated to infinite dimensional Lie algebra, Infinite dimensional groups with applications, MSRI Publ. 4, 167-216.
- [6] V. G. Kac-D.H. Peterson, cohomology of infinite dimensional Lie groups and their flag varieties, (to appear).
- [7] Kachi, Homotopy groups of Lie groups E_6 , E_7 and E_8 , Nagoya Math. J. **12** (1968), 109–139.
- [8] A. Kono, On the cohomology of the 2-connected cover of the loop space of simple Lie groups, Pub!. RIMS. Kyoto Uriv., **22** (1986), 537-541.
- [9] A. Kono-M. Mimura, Cohomology operations and the Hopf algebra structure of the compact, exceptional Lie groups E_7 and E_8 , Proc. London Math. Soc., 35 (1977), 345-358.
- **[10] J.** Milnor-J. C. Moore, On the structure of Hopf algebra, Ann. of Math., **81** (1965), 211- 264.
- [11] M. Mimura, Homotopy groups of Lie groups of low rank, J. Math. Kyoto Univ., **6** (1967), 131-176.
- [12 J . P. Serre, Groupes d'homotopie et caisses de groupes abeliens, Ann. of Math., **58** (1953), 258-294.