Homology of the Kac-Moody groups I

Dedicated to Professor Masahiro Sugawara on his 60th birthday

By

Akira KONO and Kazumoto KOZIMA

§1. Introduction

Let G be a compact, connected, simply connected, simple Lie group of exceptional type and \mathcal{Q} its Lie algebra. The homotopy type of the Kac-Moody Lie group $\mathcal{K}(\mathcal{Q}^{(1)})$ is $\mathcal{Q}G\langle 2 \rangle \times G$ where $\mathcal{Q}G\langle 2 \rangle$ is the 2-connected cover of the space of loops on G (cf. [5]). The purpose of this paper is to determine $H_*(\mathcal{K}(\mathcal{Q}^{(1)}); \mathbb{Z})$. The homology $H_*(G; \mathbb{Z})$ is known and therefore we need only determine $H_*(\mathcal{Q}G\langle 2 \rangle; \mathbb{Z})$. Since $H_*(\mathcal{Q}G\langle 2 \rangle; \mathbb{Z})$ is a finitely generated abelian group for any *, it is sufficient to determine $H_*(\mathcal{Q}G\langle 2 \rangle; \mathbb{Z}_{(p)})$ for all prime p.

In [8], there exists an integer d(G, p) such that

P.S.
$$(H_*(\mathcal{Q}G\langle 2\rangle; F_p))$$

= $(1+t^{2q^{d(G,p)-1}})(1-t^{2p^{d(G,p)}})^{-1}\prod_{j=2}^l (1-t^{2n(j)})^{-1}$

where $l=\operatorname{rank} G$ and $1=n(1) < n(2) < \cdots < n(l)$ are the exponents of G (cf. §2). Since $H_*(\mathcal{Q}G; \mathbb{Z})$ is free and $H_{2j-1}(\mathcal{Q}G; \mathbb{Z})=0$, for any ring R the Gysin exact sequence for the fibering

$$S^1 \to \mathcal{Q}G\langle 2 \rangle \xrightarrow{\pi} \mathcal{Q}G$$

splits as

$$0 \to H_{2j}(\mathscr{Q}G\langle 2 \rangle; R) \xrightarrow{\pi_*} H_{2j}(\mathscr{Q}G; R) \xrightarrow{\chi} H_{2j-2}(\mathscr{Q}G; R) \to H_{2j-1}(\mathscr{Q}G\langle 2 \rangle; R) \to 0$$

where χ is a derivation (of degree -2). For R = Q, χ is epic. Therefore $H_{2j}(\mathcal{Q}G \langle 2 \rangle; \mathbf{Z}_{(p)})$ is a free $\mathbf{Z}_{(p)}$ -module and $H_{2j+1}(\mathcal{Q}G; \mathbf{Z}_{(p)})$ is a finite *p*-group.

In this paper $H_*(\mathcal{Q}G\langle 2\rangle; \mathbf{Z}_{(p)})$ except $(G, p) = (E_6, 2)$ is determined (cf. Theorem 3.3).

The cases $(E_6, 2)$ and G of classical type are determined in part II.

§2. Mod p cohomology and homology

For the simplicity, we define a set of integers:

Received November 30, 1987

Akira Kono and Kazumoto Kozima

 $E(G) = \{n(j) | j > 1\}$.

Then $E(G_2) = \{5\}, E(F_4) = \{5, 7, 11\},$ $E(E_6) = \{4, 5, 7, 8, 11\},$ $E(E_7) = \{5, 7, 9, 11, 13, 17\}$ and $E(E_8) = \{7, 11, 13, 15, 17, 19, 23, 29\}.$

First, one can observe that

Proposition 2.1 (Borel [1].). $H_*(G; \mathbb{Z})$ has non-trivial *p*-torsion if and only if $p \leq \lfloor l/2 \rfloor + 1$.

First, we consider this case.

We define an integer d(G, p) by the following table:

	G_2	F_4	E_6	E_7	E_8
p = 2	2	2	4	4	4
<i>p</i> = 3		2	2	3	3
p = 5					2.

Let M(G, p) be the F_p -algebra $E(b_{2j+1} | j \in E(G))$ except for $G = E_8$, p = 2 and let $M(E_8, 2)$ be

$$E(b_{2j+1} | j \in E(E_8) \cup \{14\} - \{7, 29\}) \otimes P(b_{15})/(b_{15}^4)$$

where degree $b_i = i$.

We define also the Hopf algebra over $F_p N(G, p)$ by $P(h_{2j} | j \in E(G))$ except for $G = E_8$, p = 2 and $N(E_8, 2)$ by

$$P(h_{2j} | j \in E(G) \cup \{14\}) / (h_{14}^2)$$

where degree $h_{2i}=2i$ and except h_{28} , all h_{2j} are primitive and $\phi(h_{28})=h_{28}\otimes 1+h_{14}\otimes h_{14}+1\otimes h_{14}$.

Lemma 2.2. Put $e = 2 \cdot p^{d(G,p)}$.

(1) $H^*(G\langle 3 \rangle; \mathbf{F}_p) = P(x_e) \otimes E(x_{e+1}) \otimes M(G, p)$ as an algebra where degree $x_i = i$.

(2) $H^*(\mathcal{Q}G\langle 2 \rangle; \mathbf{F}_p) = P(y_e) \otimes E(y_{e-1}) \otimes N(G, p)$ as a Hopf algebra where degree $y_i = i$ and y_i are primitive.

(3) Let β_* be the homology Bockstein operation. Then $\beta_*h_{2j}=0$ for all j and $\beta_*y_e = y_{e-1}$.

Proof. (1) is the reformulation of the results in Kachi [7], Kono-Mimura [9] and Mimura [11].

For (2), we consider the Eilenberg-Moore spectral sequence

$$\operatorname{Ext}_{H^*(\mathcal{Q}G\langle 2\rangle; F_p)}(F_p, F_p) \Longrightarrow H^*(G\langle 3\rangle; F_p).$$

By the result of Kono [8],

450

Homology of the Kac-Moody groups

P.S.
$$(H_*(\mathcal{Q}G\langle 2\rangle; F_p)) = P.S. (P(y_e) \otimes E(y_{e-1}) \otimes N(G, p))$$
.

If $H_*(\mathcal{Q}G\langle 2\rangle; \mathbf{F}_p)$ has more relations than the right side of (2), then by the dimentional reason, E_2 -term has the permanent cycles which correspond to the relations. One can easily check that no such elements appear in $H^*(G\langle 3\rangle; \mathbf{F}_p)$ by (1). The Hopf algebra structure follows from Milnor-Moore [10]. For all $j \in E(G)$, $\beta_* h_{2j}$ is clearly primitive and is not decomposable by the dimensional reason. $\beta_* h_{2s}$ is not decomposable by the same reason. So $\beta_* h_{2j}$ is zero by (2). The last statement follows from that $\beta_{x_e} = x_{e+1}$ which is also a result of Kachi [7], Kono-Mimura [9] and Mimura [11].

§3. $Z_{(p)}$ -homology

Lemma 3.1. Let $\rho: \mathbb{Z}_{(p)} \to \mathbb{F}_p$ be the mod p reduction map. (1) For any $j \in E(G)$, there is an element

 $a'_{2j} \in H_*(\mathcal{Q}G\langle 2 \rangle; \mathbf{Z}_{(p)})$ such that $\rho(a'_{2j}) = h_{2j}$.

(2) In the case $(G, p) = (E_8, 2)$, $a_{14}'^2$ is divisible by 2. If we put $a_{28}' = \frac{1}{2} \cdot a_{14}'^2$, then $\rho(a_{28}') = h_{28}$.

Proof. Since $\rho: H_{2j}(\mathcal{Q}G\langle 2 \rangle; \mathbb{Z}_{(p)}) \rightarrow H_{2j}(\mathcal{Q}G\langle 2 \rangle; \mathbb{F}_p)$ is epic by (3) of (2.2), (1) is clear.

(2) is a result of Kono [8].

Let put $\pi_*a'_j = a_j$. Let L(G, p) be the $\mathbf{Z}_{(p)}$ -algebra

 $P(a_{2j} | j \in E(G)) \text{ for } (G, p) \neq (E_8, 2)$ $P(a_{2i} | j \in E(G) \cup \{28\}) / (a_{14}^2 - 2 \cdot a_{28}) \text{ for } (G, p) = (E_8, 2).$

We define $\mathbf{Z}_{(p)}$ -algebra $\Gamma(d, p)$ by

$$P(u_{2i} | i \in \{1, p, \dots, p^d\}) / (u_{2i}^p - p \cdot u_{2pi} | i \in \{1, p, \dots, p^{d-1}\}).$$

Theorem 3.2. If $(G, p) \neq (E_6, 2)$, then

(1) $H_*(\mathcal{Q}G; \mathbf{Z}_{(p)}) = \Gamma(d(G, p) - 1, p) \otimes_{\mathbf{Z}_{(p)}} L(G, p)$ as algebra.

(2) $\chi(a_{2j})=0, \chi(u_2)=1, \chi(u_{2p})=u_2^{p-1},$

$$\begin{aligned} \chi \left(u_{2p}^{2} \right) &= \left(u_{2} \ u_{2p} \right)^{p-1}, \ \cdots, \\ \chi \left(u_{2p}^{d(G,p)-1} \right) &= \left(u_{2} \ u_{2p}^{\ldots} \cdots u_{2p}^{d(G,p)-2} \right)^{p-1} \end{aligned}$$

Proof. The algebra structure is the result of Duckworth [3]. Since $\chi: H_*(\mathcal{Q}G; \mathbb{Z}_{(p)}) \rightarrow H_{*-2}(\mathcal{Q}G; \mathbb{Z}_{(p)})$ is epic for $* < 2 \cdot p^{d(G,p)}$, we can take the elements u_{2p^i} so that the theorem holds.

Let define a graded $Z_{(p)}$ -module C(d, p) as follows:

Akira Kono and Kazumoto Kozima

$$C(d, p)_{j} = \begin{cases} \boldsymbol{Z}_{(p)} & \text{if } j = 0\\ \boldsymbol{Z}/p^{r-d} & \text{if } j+1 = 2p^{r} j', (j', p) = 1 \text{ and } r \ge d\\ 0 & \text{otherwise}. \end{cases}$$

Theorem 3.3.

$$H_{\ast}(\mathscr{Q}G\langle 2\rangle; \mathbf{Z}_{(p)}) = C(d(G, p) - 1, p) \otimes_{\mathbf{Z}(p)} L(G, p)$$

Proof. For the simplicity, we put d=d(G, p)-1. χ induces a derivation of $\Gamma(d, p)$. We denote it as χ_{Γ} .

We have only to show that $\operatorname{Coker}(\mathcal{X}_{\Gamma})_{j-1} = C(d, p)_j$. $\Gamma(d, p)_j$ is spaned freely by

$$\{u_{2^{j_0}}^{j_0}u_{2p}^{j_1}\cdots u_{2p^{d}}^{j_d}|0 \le j_k .$$

If j_k is the first non zero integer in (j_0, j_1, \dots, j_d) , then an easy calculation shows that

$$\begin{aligned} \chi_{\Gamma}(u_{2pk}^{j_k}\cdots u_{2pd}^{j_d}) \\ &= (j_k + p \cdot j_{k+1} + \cdots + p^{d-k} j_d) \, u_2^{p-1} \cdots u_{2pk-1}^{p-1} \, u_{2pk}^{j_k-1} \, u_{2pk+1}^{j_{k+1}} \cdots u_{2pd}^{j_d} \,. \end{aligned}$$

Thus Coker (χ_{Γ}) is generated t by $u_2^{p-1} \cdots u_{2p^{d-1}}^{p-1} u_{2p^{d-1}}^{j_d-1}$ and its order is $p^{\nu_p(j_d)}$.

Now we turn to the other cases.

Theorem 3.4. If $(G, p) = (G_2, 3)$ or p > n(l), then

$$H_*(\mathcal{Q}G\langle 2\rangle; \mathbf{Z}_{(p)}) = C(0, p) \otimes_{\mathbf{Z}(p)} P(a'_{2j} | j \in E(G)).$$

Proof. In the case of p > n(l), by the result of Serre [12], we have a p-equivalence of spaces

$$G \simeq_p S^3 \times X$$
.

Then the result is clear.

Since $H_*(\mathcal{Q}G_2; \mathbb{Z}_{(3)}) = P(a_2, a_{10})$ and we can take a_{10} as $\chi(a_{10}) = 0$, the same but more easy calculation as in the the proof of the previous theorem deduces the result.

Remark. (1) If $n(2) \le p \le n(l)$, then d(G, p) is 2. (2) $n(2) > p \ge \left\lfloor \frac{l}{2} \right\rfloor + 1$ if and olny if $(G, p) = (G_2, 3)$.

So we cover all cases.

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY OF EDUCATION

452

References

- [1] A. Borel, Sur l'homologie et la cohomologie des groupes de Lie compacts conexes, Amer. J. Math., 74 (1954), 273-342.
- [2] R. Bott, The space of loops on a Lie group, Michigan Math. J., 5 (1955), 35-61.
- [3] P. W. Duckworth, The K-theory pontrjagin rings for the loop spaces on the exceptional Lie groups, Quart. J. Math. Oxford (2), 15 (1984), 253-262.
- [4] V. G. Kac. Torsion in cohomology of compact Lie group and Chow rings of reductive alg. groups, Inv. Math., 88 (1985), 69–79.
- [5] V. G. Kac, Constructing groups associated to infinite dimensional Lie algebra, Infinite dimensional groups with applications, MSRI Publ. 4, 167–216.
- [6] V. G. Kac-D.H. Peterson, cohomology of infinite dimensional Lie groups and their flag varieties, (to appear).
- [7] Kachi, Homotopy groups of Lie groups E_6 , E_7 and E_8 , Nagoya Math. J. 12 (1968), 109–139.
- [8] A. Kono, On the cohomology of the 2-connected cover of the loop space of simple Lie groups, Publ. RIMS, Kyoto Uriv., 22 (1986), 537-541.
- [9] A. Kono-M. Mimura, Cohomology operations and the Hopf algebra structure of the compact, exceptional Lie groups E₇ and E₈, Proc. London Math. Soc., 35 (1977), 345–358.
- [10] J. Milnor-J. C. Moore, On the structure of Hopf algebra, Ann. of Math., 81 (1965), 211– 264.
- [11] M. Mimura, Homotopy groups of Lie groups of low rank, J. Math. Kyoto Univ., 6 (1967), 131-176.
- [12] J. P. Serre, Groupes d'homotopie et calsses de groupes abeliens, Ann. of Math., 58 (1953), 258-294.