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§1. Introduction

Let G be a compact, connected, simply connected, simple Lie group of excep-
tional type and & its Lie algebra. The homotopy type of the Kac-Moody Lie group
K(GM) is 2G{2> x G where 2G<2> is the 2-connected cover of the space of loops
on G (cf. [5]). The purpose of this paper is to determine Hy(K(G™); Z). The
homology Hy«(G; Z) is known and therefore we need only determine Hy(2G<2)>;
Z). Since Hy«(2G<2>;Z) is a finitely generated abelian group for any =, it is
sufficient to determine Hy(2G<2>; Z,) for all prime p.

In [8], there exists an integer d(G, p) such that

P.S. (H«(2G<2); F,))
— (1+t2qd(G,P)—1) (l_tzﬁd(G.P))—l ]_—’I (1 _tz,,(j))—l
ji=2
where /=rank G and 1=n(1)<n(2)<-:-<n(l) are the exponents of G (cf. §2).
Since Hy(2G; Z) is free and H,; ,(2G; Z)=0, for any ring R the Gysin exact se-
quence for the fibering
T
S = 8G{2> — 2G

splits as

T X
0 — H,(2G{2>; R) —> H,;(2G; R) = Hy;_(2G; R) — H,;_,(2G{2>; R)— 0

where ¥ is a derivation (of degree -2). For R=Q, ¥ is epic. Therefore H,;(2G
{2>; Z ) is a free Z,)-module and H,;,,(2G; Z ) is a finite p-group.

In this paper Hy(2G<{2); Z,) except (G, p)=(E, 2) is determined (cf. Theorem
3.3).
The cases (E;, 2) and G of classical type are determined in part II.

§2. Mod p cohomology and homology

For the simplicity, we define a set of integers:
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E@G) = {n(j)|j>1} .
Then E(Gy) = {5}, E(F) = {5, 7, 11},
E(EG) = {43 53 7, 8: 11} B
E(E)=1{5,7,9,11, 13,17} and
E(E) = {7, 11, 13, 15, 17, 19, 23, 29} .

First, one can observe that

Proposition 2.1 (Borel [1].). Hy(G; Z) has non-trivial p-torsion if and only if
p<[2]+1.

First, we consider this case.
We define an integer d(G, p) by the following table:

G, F, E E L
p=2 2 2 4 4 4
p=3 2 2 3 3
p=>5 2.

Let M (G, p) be the F,-algebra E(b,;.,|jE E(G)) except for G=E;, p=2 and
let M(Eg, 2) be

E(byj1| jEE(E)U {14} — {7, 29}) Q@ P(by5)/(b1s)

where degree b;=i.
We define also the Hopf algebra over F, N(G, p) by P(h,;| j € E(G)) except for
G=F;, p=2 and N(E;, 2) by

P(hy;| jEE(G) U {14)}/(h)

where degree h,;=2i and except hy, all h,; are primitive and ¢(/y)=h, Q1+
7 @i+ 1Qhy,.

Lemma 2.2. Put e=2-p?C:?,
(1) H*GL3); Fy)=P(x,)QE(x,+))QM(G, p) as an algebra where degree x;=i.
() H*(26<2>; F))=P(y)®E(y.-)®N(G, p) as a Hopf algebra where degree
y;=i and y; are primitive.
(3) Let By be the homology Bockstein operation. Then Byh,;=O0 for all j and By,
=Ye-1-

Proof. (1) is the reformulation of the results in Kachi [7], Kono-Mimura [9]
and Mimura [11].
For (2), we consider the Eilenberg-Moore spectral sequence

Extgsocez> s rp (Fy, Fy)=> H*(GS3>; F,) .

By the result of Kono [8],
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P.S. (H(8G{2); F,)) =P.S. (P(Y)RE(y.-)QN(G, p)) -

If Hy(2G<{2>; F,) has more relations than the right side of (2), then by the di-
mentional reason, E,-term has the permanent cycles which correspond to the rela-
tions. One can easily check that no such elements appear in H*(G<3>; F,) by (1).
The Hopf algebra structure follows from Milnor-Moore [10]. For all jEE(G),
Bxhy; is clearly primitive and is not decomposable by the dimensional reason.
Bhy is not decomposable by the same reason. So Byh,; is zero by (2). The last
statement follows from that Bx,==x,,, which is also a result of Kachi [7], Kono-
Mimura [9] and Mimura [11].

§3. Z,-homology

Lemma 3.1. Let p: Z(,—>F, be the mod p reduction map.
(1) For any j = E(G), there is an element

ay; EHW(RG2)>; Z,)) such that p(a};) = hy; .

(2) In the case (G, p)=(kE, 2), als is divisible by 2. If we put ajs =%-a{i, then
o(azs) =hys.

Proof. Since p: H,(8G{2)>; Z,))—H,j(2G{2>; F,) is epic by (3) of (2.2), (1)
is clear.
(2) is a result of Kono [8].

Let put z4a}=a;.
Let L(G, p) be the Z,)-algebra

P(ay;|JEE(G)) for (G, p)+(Es2)
P(ay;| JEE(G) U {28})/(a%—2-ay) for (G,p) = (B, ?2).
We define Z,)-algebra I" (d, p) by
Puyli€{l, p, -, p°D)hi—p -y | i€, p, - p*7'}) .

Theorem 3.2. If (G, p)=(Es, 2), then
(1) Hy(2G; Z(,)=T(d(G, p)—1, p)Bz,,L(G, p) as algebra.
) X(azj)=07 2 (up)=1, Z(uzp)zué"l,

X (upp?) = (u, uzp)p-l, ey,

X (Ugpaca,m-1) = (Uy Upy**Uppice,p>-2)P 71,

Proof. The algebra structure is the result of Duckworth [3]. Since ¥: H,(2G;
Z )~ Hy_(2G; Z ) is epic for ¥ <2-p?©», we can take the elements u,, so that
the theorem holds.

Let define a graded Z(,)-module C(d, p) as follows:
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Zy  if j=0
Cd,p);=1Z/p* if j+1=2p"j,(,p)=1 and r>d
0 otherwise .

Theorem 3.3.
HW(2G{2); Z(y) = C(d(G, p)—1, P)®2,,L(G, )

Proof. For the simplicity, we put d=d(G, p)—1. X induces a derivation of
I'(d, p). We denote it as X .
We have only to show that Coker(¥);_,=C(d, p);. I'(d, p); is spaned freely by

{ujo ujs--ujds|0< jy<p for k<d—1 and 3 2p*j, =j}.
If j, is the first non zero integer in (j,, ji, ***, j;), then an easy calculation shows that
2 (g uige)
= (JotpPJrrt 0" ) u{;’"---uﬁ;}.l ugzk—l u;';,th'"u;';a .
Thus Coker (%) is generated t by ué’“o--u;;}_l uig;‘ and its order is p¥»Ud),
Now we turn to the other cases.
Theorem 3.4. If (G, p)=(G,, 3) or p>n(l), then
Hy(2G2>; Z(y) = C(0, p)Q z(p) Plaz;| jEE(G)) .

Proof. In the case of p>n(l), by the result of Serre [12], we have a p-equiva-
lence of spaces

G=, $*xX.

Then the result is clear.
Since Hy(2G,; Z3))=P(a,, a,,) and we can take @, as ¥(a,) =0, the same but
more easy calculation as in the the proof of the previous theorem deduces the result.

Remark. (1) If n(2)<p<n(J), then d(G, p) is 2.
@) n2)>p> [§]+1 if and olny if (G, p)=(G,, 3).

So we cover all cases.
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