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Representations of Lie superalgebras, 11
Unitary representations of Lie superalgebras
of type A(n, 0)

By

Hirotoshi FURUTSU

Introduction

In this paper we introduce a new method of constructing irreducible unitary
representations (=IURs) of a classical Lie superalgebra of type A. Then we classify
all the irreducible unitary representations of real forms of Lie superalgebra A(l, 0) and
construct them explicitly by using this method.

In the previous paper [4] we define unitary representations of Lie superalgebras
and introduce a general method of constructing irreducible representations of any
simple Lie superalgebras. Let us explain it briefly. Let g=g,-+g, be a Lie surperalgebra
over R. Take a representation (p, W) of g, and consider a g,-equivariant linear map
B from ¢,®ag, to gl(W). We gave necessary and sufficient conditions by means of B
that there exist an irreducible representation (x, V), V=V,+V,, of g such that its even
part V, is isomorphic to W as ge,-modules. Further, we can construct (zx, V) from
(p, Vo) and B cannonically.

Moreover in that paper we classify and construct all the irreducible (unitary)
representations of classical Lie superalgebra osp(l, 2). Further we gave the similar
results for real forms of the Lie superalgebra 2((2, 1)(=A(, 0)) exhaustively for the
case where (p, W) are irreducible, but there remains to study the case where (p, W)
are reducible.

In this paper a new method is induced, which uses a Z-gradation gc=g¢'PgéDgé’,
with gé=g, ¢, of Lie superalgebras gc=A(n, 0) instead of the Z,-gradation g=g,Pg,
of a real form g of gc. In more detail, (i) first we study the weight distributions for
IURs (&, V), and see in particular that any IUR must be a highest (or lowest) weight
representation because of its unitarity (see Proposition 2.2). (ii) Next we consider
induced g¢-module V(A)=Indi<L(A). Here L(A) is an irreducible highest weight
representation of g, ¢ with highest weight 4 and p=géPgé'. We extend L(A) as p-
module by putting gé¢'-action as trivial. Any irreducible representation V(A) of g¢ with
highest weight A is a quotient of V(A). (iii) Therefore we should determine the
maximal submodule I(A) of V(A) to get V(A)=V(A)/I(A).

We give in Lemma 2.4 a necessary and sufficient condition for the irreducibility of
V(A) by means of its highest weight 4. V.G. Kac [6, §2] proved this criterion in
case L(A) is finite-dimensional. In 2.5, we determine branching rules of V(A) res-
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trected to go,¢ for ge=28I(2, 1) and 8I(3, 1). They are crucial to determine the maximal
submodule I(A).

In §3, we classify all the IlURs of real forms of 8[(2, 1) using these results. The
case of g=38u(2, 1; 2, 1) (see Theorem 3.3) is similar as the case of g=3u(2, 1; 1, 1) (see
Theorem 3.6). So we show here our results in the case of g=8u(2, 1; 1, 1). In this
case go=1u(l, 1). Let {H, C} be a basis of a Cartan subalgebra Y)¢c of gc=281(2, 1) given
as H=diag(l, —1, 0) and C=diag(l, 1, 2). And let a, B, b be positive roots of gc¢
such that a(H)=2, a(C)=0, B(H)=p(C)=—1, r=a+B, and put 6=8+rsht. Then we
get a complete result for the case of g=38u(2, 1; 1, 1) as follows.

Theorem 3.6. (1) Any irreducible unitary representation V of Lie superalgebra g—
a2, 1; 1, 1) is a highest or lowest weight representation. If V is a highest weight
IUR, then V is isomorphic to one of the representations V(A) with highest weight A
such that A(H)S A(C)S—A(H)—2 or A(H)=A(C)=0.

(2) As go-module, the above V(A) is decomposed into go-irreducible components as
follows :

(i) V(M)=L(A) for A(C)=A(H)=0,

(ii) VDH=LDDLA=y)  for AC)=AH)=-1,

(iii) V(D)=LDDLA-=B)  for AC)=—A(H)—-2=0,

@iv) V(D)=LMNBLAN-BPLA-1PL(A-d) otherwise.

Realizations of the IURs of type (i) (ii) (iii) were given in the preveous paper, and
those for type (iv) are given in 3.4.2 of this paper.

This paper is organized as follows. In §1, first we recall the definition of unitary
representations of Lie superalgebras, given in [4, §1], and introduce the basic classical
Lie superalgebras of type A(m, n) after Kac [5, §2] and give their structure in 1.2.
Then we list up all the real forms of Lie superalgebras of type A(n—1, 0)=38l(n, 1).
There are two types of them: (i) 8l(n, 1; R) and (ii) 8u(n, 1; p, I)([n—1/2]<p<n)
up to isomorphims and transition to their duals.

In §2, we give some properties of representations of Lie superalgebra 8((n, 1). In
2.1, the case of 8l(n, 1; R) is mentioned. Then we study irreducible unitary representa-
tions of real forms g=38u(n, 1; p, 1) as follows. In 2.2, we give a necessary condition
for unitarity of an irreducible representation by means of the set of its weights. Then
in 2.3 we introduce Z-gradations in Lie superalgebra &I(n, 1), in its universal envelop-
ing algebra and also in its representation space, and we get some properties of IURs
of g with respect to these Z-gradations. In 2.4, we introduce a highest weight repre-
sentation V(A) of 8l(n, 1) which is induced from p=g@+gé' starting from IUR L(A) of
go. Then a necessary and sufficient condition for its irreducibility is given in Lemma
2.4, In 2.5, we give branching rules of V() restrected to the even part gy ¢ of gc¢
for n=2 and 3, and in 2.6, datailed calculations in some cases are given.

In §3, we classify all the IURs of real forms of 8[(2, 1) and give their explicit
realizations except the cases already treated in the previous paper [4, §8]. Applying
the branching rules in §2, we get the complete classification of IURs of 8u(2, 1; 2, 1)
in Theorem 3.3, and that for 8u(2, 1; 1, 1) in Theorem 3.6. In 3.4, we give a standard
orthonormal basis in each V() in connection with the g-action, and write down ex-
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plicitly the action of g, with respect to them. Finally in 3.5, detailed calculations for
these results are given.

§1. Preliminaries

1.1. Unitary representations of Lie superalgebras. Let g=g,+g, be a real Lie
superalgebra and (x, V) be an irreducible representation of g on a Z,-graded complex
vector space V=V,+V, in the sense of Kac [5, §1]. On the even part V, and also
on the odd part V, of V, we have naturally representations of the even part g, of
which = is called an extension. We call = unitary [4, §1] if V is equipped with a
positive definite inner product <-, > in V satisfying

(i) VoLV, (orthogonal) under <-, -, and

(ii) <., -) is g-invariant in the sense that

Gr(X, v =, in(XW'> @, v'eV, Xeg,),
Gaw, v'H=<v, jr@EW’> v, vV'EV, &g,

where i=+/—1 and j is a fixed forth root (depending only on z) of —1, i.e., j=ei
with e==+1(cf. [4, §1]). We call ¢ the associated constant for m. Here, both n(g,)| Vo
and =(g,)| V, are usual unitary representations of g,.

1.2. Simple Lie superalgebra A(m, n). Now we define the Lie superalgebra of
type A(m, n). We denote by M(p, ¢; K) the set of all matrices of type p@q with
entries in a field K. The underlying vector space is v=M(m+n, m+n; C). Let E,;
1<4, j<m++n, be an element of v with components 1 at (7, j) and 0 elsewhere. Let
v, be a complex subspace of v generated by

{Eij; 1=i, jsmbU{E.;; m+1=i, jSm+n},
and further v, ,(resp. v,,-) a complex subspace of v generated by
{Ei;; 1Sism; m+lsjsSm+n},
(resp. {Ey;; m+1<ism+n; 1S7sm}),
and put v,=v, .+, .. The bracket product
[X, V]=XY—(-1)"YX for Xevu, Yey,,

where s, t€{0, 1}, makes v a Lie superalgebra, denoted by I(m, n), where I(m, n),=v,
(s=0,1). We put (m, n), .=b,., then (m, n)=I0m, n), _+I(m, n)+I(m, n), . gives a
Z-gradation of I(m, n). For the algebra I(m, n), we define the supertrace str, a linear
form on it, as follows:

str X=tr A—tr D for X:(él g)et(m, n),

where A, B, C and D is in M(m, m; C), M(m, n; C), M(n, m; C) and M(n, n; C) res-
pectively. Define 8l(m, n) as

8l(m, n)={X&l(m, n); str X=0},
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.
then this is an ideal in [(m, n) of codimension 1. In case m=n, 8l(n, n) has one-
dimensional center j consisting of scalar matrices A-/,,(A=C). We set

A(m, n)=8l(m+1, n+1) for m, n=0, m+#n,
A(n, n)=8l(n+1, n+1)/; for n>0.

We denote by gc the complex algebra sl(n, 1)=A(n—1, 0), keeping the symbol g to
its real forms. For later use, we give two kinds of basis (1.1) and (1.2) of a Cartan
subalgebra §¢ of gc:

(LD Hi=E; :+Enii a0 for 1<i<n,

and

H@)=F; i—Eis1,in1 for 1<i<n-—1,
(1.2)

C=2isisnEiitnEnyi nsr.
We also give a basis of g, ¢ as
&=FE; s for 1<i<n,
(L.3) { )
Ni=FEni.: for 1<i<n.
II,={a;; 1<i<n—1}\U{B} denotes a system of simple roots of (g¢, hc) given by
1 for i=k,
(1.4) a;(Hy)=5 —1 for i=k+1,
l 0 for i#k, k+1;

and

—1
5 Hy)=
(1.5) B(H) { 0

for 1<ksn—1,

for k=n.

1.3. Real forms of 38l(n, 1)=A(n—1, 0). Here we list up real forms g of g¢=5I(n, 1)
(cf. [5, §5]). There exist two types of them. A real form of first type is

§l(n, 17 R)=38l(n, DNM(n+1, n+1; R).

Real forms of second type are defined as follows. Let 0<p<n and ¢<{0, 1}. For
s=0, 1, put

su(n, 1; p, @e={XE8I(n, 1);: [p. X+ X, =0},
where ‘X is the transposed matrix of X, and
‘[P-Q:diag(lr T 1, -1, -, -1, —(—1)q(’\/—_1)8)

where the number of 1 is p and the number of —1 is n—p and diag(-, -, --) denotes
a diagonal matrix. Then 8u(n, 1; p, ¢)=3u(n, 1; p, q)D3u(n, 1; p, g), is a real Lie
superalgebra for each (p, ¢).

Proposition 1.1 (cf. [5, §5]). Real forms of 8l(n, 1) are isomorphic, up to transi-
tion to their duals, to one of the following :
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(a) 8l(n, 1; R);
(b) su(n, 1; n, 1);

© su(n, 1: p 1)  for [ . ]gpgn—l.

§ 2. Generalities for irreducible unitary representations of real forms of 2i(n, 1).

2.1. Irreducible unitary representations of 8l(n, 1; R). Let g=8I(n, 1; R). Then
there exist no irreducible unitary representations (=IURs) except trivial one. More
generally, we have a similar situation as above for this type of real form &l(m, n; R)
of 8l(m, n):

8l(m, n; R)=8l(m, n)"\M(m—+n, m+n; R).

Theorem 2.1 [4, Th. 6.2]. Let g=8l(m, n; R), m, n=1. Then it has only a unique

irreducible unitary representation, the trivial one.

2.2. Weight distributions for IURs of &u(n, 1; p,1). The odd part g, of g=
gu(n, 1; p, 1) contains the following elements

vtV =19, for 1<k<p,
(2.1) Tkz{

&e—~—1y, for p+1<k<n.
Applying the positive-definiteness condition to these elements, we get a condition on

the distribution of weights pebh¥ for an IUR of g.

Proposition 2.2. Let (x, V) be an IUR of a real Lie superalgebra 3u(n, 1; p, 1).
Then there are {€x}i<izn, Ee==%1, satisfying

(1) e==€p=—€pp='"=—6,, and

(2) any weight p of V satisfies

exp(H)20  for all k.
Proof. From the definition of unitarity, we have
7K Q)a(Qv,, v,>20,

where {<g, and v, is a non-zero weight vector with weight peb¥. Put {=r,=& +
V=19, (1<k<p), then 2Qr@)=n([€s, vV —19:])=+—1n(H,). Therefore

_'EP(HI:)<U,” U,,>go,
where ¢ is given as j?=e¢i. Similarly, put {=r,=& —+/ —19,(p+1<k<n), then
ep(HXv,, v4020.

Thus we can set e,=—¢ for 1<k<) and e,=¢ for p+1<k<n. Q.E.D.

2.3. Z-gradations. Let gc=28I(n, 1) and C'=(1/1—n)C <&, then g¢ is decomposed
into C’-eigenspaces as
gc=gc'DacDgt’,
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where gé'=g,,. and gé=gs,c corresponds to eigenvalues +1 and 0 respectively. By
this grading, gc becomes a Z-graded algebra, and so is U(ge) and U(g,..), that is,

(2.2) CU(QC)Z@-nskanUk, U(81,:)=Dosrsn U(L k),

where U* and U(k) are C’-eigenspaces of U(ge) and U(g, .) with eigenvalue £ res-
pectively. We remark that U0)=C, U(£1)=g,,. and U(@")=U(g,,-)U(g.c)U(g:. ).
Let (x, V) be an IUR of g, then V is decomposed into n(C’)-eigenspaces, that is,

V=@BnecV™,

where V™ denotes the n(C’)-eigenspace with eigenvalue m. Conserning this eigenspace
decomposition, we have the following

Lemma 2.3. (1) There exist a complex number M such that V¥ #(0), and if V™+
(0) then M—m is in Z,\J{0}.

(2) (mlgo, V¥) is an IUR of g.

) V=uU(g,.-)V™.

4) Put VO=V¥-* then V=VOPVIP.---PV™, Moreover there exist an integer
k such that V™ +£(0) for 0sr<k, VO =(0) for k+1<r<n, and (m|go, V**) is an IUR

of go.
(5) The decomposition of the representation space

V=VOPVOF ... V&

is a Z-gradation compatible with that of gc.

Proof. For (1) it is enough to remark that V is irreducible and the grading of

U(ge) is finite.
Let us prove (2). Let v be any element of V¥, then from the irreducibility of V,

V=U(gcv=U(g:,-)U(go,c)U(81, +)V.

But eigenvalues of C’ on (g, +)v are of the form M+s, seZ,\U{0}. From the
“maximality” of M in (1), we get U(g, +)v=Cv since VU(0)=C. Thus we have

(2.3) V=U(gcv=D(g:. -)U(o.c)U(81, + v
=U(g:,-)U(80. c)Cv=U(81,-) V' =Dosssn U(— R)V’,

where V'’ denotes a go, c-submodule of V generated by »v. Since C’ commutes with go, ¢,
each U(—k)V’ is contained in C’-eigenspace with eigenvalue M—k, hence V¥-*=V®
=U(—kR)V’ for 0<kZn.

Moreover V¥=V®=V’ is irreducible g, c-module because any non-zero ve V¥
generates V'=V¥, Thus we get (2).

The assertion (3) follows from (2.3). Changing the role of + and — of grading,
we get (4) similarly as (1) and (2).

The assertion (5) is true since all the gradings are defined by eigenvalues of the
same operator C’. Q.E.D.
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2.4. Induced highest weight modules for g¢ (the functor L(A)—V(A4)). Let gc=
3l(n, 1) and p=go.c+g..+, then p is a subalgebra of gc since [g 4, 8..+4]=0. Let b, be
a subalgebra of g, ¢ generated by

{E.;; 1<i<j<n}Ulc,

then b=b,+g, . is also a subalgebra of gc. For A&h¥, denote by L(A)(resp. V(4))
the irreducible highest weight module of g, c(resp. g¢) with highest weight 4 and by
vseL(A) a non-zero highest weight vector. Then Cv, is a b-module. We define a
g1, +-action on Cvy by Lv,=0 for any (&g, . then Cv, becomes a B-module. Now
define a gc-module V(A4) by

P(M)=Ind¥Cv1=gc@u(Cv4).

On the other hand, we define a g, ,-action on L(A) by {v=0 for any {<g, .+ and
any ve L(A4). Then L(A) becomes a p-module and we get

24 V(A)=Indg L(A)=8,.-®cL(A).
Lemma 2.4. The gc-module V(A) is irreducible if and only if
IisesaCAH)+n—k)#0.

Proof. We can induce a Z-grading of V() from that of U(gc). We can decompose
V() into C’-eigenspaces as

V=V+V_ i+ 4V 0,
where V_,=U(—k)L(A). Therefore we see that V_,=L(A) as [go.c, 8o,c]-modules and
that w=9,7; - v, iS @ go,c-highest weight vector of V_,. Because of the irreduci-

bility of V_,, V(A) is irreducible if and only if w, generates V(A4). And the latter is
equivalent to the condition

Enbnoy o E1w %0,
Calculating [&;, :], we get finally
§nén-1 - 10 = {TLigr sn(A(H)+n—R)}v 4.
This gives the lemma. Q.E.D.

Remark 2.5. (1) When V(A1) is irreducible, it is called a typical representation.
Kac shows the above criterion for the case L(A) is finite [6, §2].

(2) V(A) is a unique irreducible quotient of V(A) and we can define a functor
LTV (M)—V(A).

2.5. Branching rules of induced g-modules V(A1) restrected to g,. Now consider
the branching rules of V(A) restrected to g,. It is not easy to give an exact rule
generally for g=3I(n, 1). Moreover when L(A) is infinite-dimensional, ¥(A) is not
necessarily semisimple with respect to g,. Here we restrict ourselves to the case of
g=38[(2, 1) and 8((3, 1).

If the branching rule is acquired, we can obtain V(A) as follows:
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2.5.1. Method of constructing V(A) from V(A). We construct V(A) according
to the steps (1)~(4).

(1) First we decompose each V_,=(—k)L(A) into irreducible representations of
g0, or determine its subquotient structure, where U(—*k) is as in (2.2).

(2) Check the g, .-action on each component.
Ve
Notation. We denote n(g, -)V.=V,PV, by a diagram .~ ™~~~ where V,, V,
V

b c

and V. are g,-modules.

In the following we take as V, a g,-submodule of V_,. Then we see that these
branching diagrams are independent of the value A(C) for the central element C.

(3) 7(g,.+)V. depends on the value of A(C). So we calculate its structure case
by case.

(4) Finally, from (2) and (3) we get the unique maximal submodule /(A4) and obtain
V(D)= V(A)/I(A). (We note that a submodule is understood to be Z,-graded.)

2.5.2. Case g=28[(2,1) and dim L(A4)<eco. In this case n=/A(H) is a non-negative
integer and we have two cases.

CASE 1: n=1. In this case V(A) splits into four ge-irreducible components as
follows:

V, = L(A)

® VAN
V.= L(A-B) ©® LA—p)
® N

V.= L(A—=B—7)

Here B is defined in (1.5) and y=ea,+8 with a, in (1.4).
Cast 2: n=0. In this case V(A) splits into three g,-irreducible components, as

‘70 @ V—l GB V—2
Ul I Ul
L(A) —> L(A—B) —> L(A—B—7)

2.5.3. Case g=381(2, 1) and dim L(A)=co. In this case n=A(H) is a negative in-
teger. Then we have two cases.

CASE 3: n<—2. In this case V() splits into four g,-irreducible components as
follows :

Vo = LA

@ / \

V_ = L(A-B) ® L(A—-y)
D

V_.= L(A—B—7)
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CASE 4: n=-—1. In this case V() is not g,-semisimple and

Vo = L)

@ /

V_.= Vo DV, D LA—7)
® N/

V_ .= L(A—=B—7)

Here the g,-module V, is not semisimple, and V,./V,=L(A—7), V,/L(A—7)=L(A—p)
as go,-modules.

2.5.4. Case g=3I(3, 1) and dim L(A)<oco. In this case m=A(H(1)) and n=A(H(2))
are non-negative integers. We illustrate the branching rules in four cases separately.

CasE 1: m=1 and n=1. In this case V(A) splits into eight go-irreducible com-
ponents as follows:

Ve = L(A)

7 /l

Vo= LA=By) @  LA-B) d  L4-B)
@ o< <
= LA—B—B) @D LA=B:—B) D L(A-B.—B)
@ NS

V.= L(A—Bs—B—B)

Here {B,, B., B;} are positive odd roots given as
ﬁk(H,)=—1+5,,,, for l§k, ]§3.

Case 2: m=1 and n=0. In this case V(A) splits into six gc-irreducible com-
ponents, as

Vo = L)

@ VAR

V.= L(A—By) ® L(A-B))
® | ™~ |

Vo= L(A—Bs—B») @  L(A-B:—B)
&

DA

L(A—B:—B.—

N
T:z
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CasE 3: m=0 and n=1. In this case V(A) splits into six go-irreducible com-
ponents, as

vV, = L(A)

@ /

V.= L(A—By) @ L(A—B2)
V_ZE L(A—.Bs—ﬂz) ) L(A—ﬁz—ﬁl)
@ N/

V.= L(A—Bs—B—B))

CASE 4: m=n=0. In this case V() splits into four ge-irreducible components, as

Vo @& V. S Ve, @ =
1l I 1l ]
L) — L(A—=Ba) —> L(A—Bs— o) —> L(A—Bs—f—B))

2.6. Calculations for some cases in 2.5. In this subsection we give a sketch of
calculations for the above diagrams in two cases. The other cases can be calculated
similarly.

Case I. Diagrams in 2.5.4 for g=38I(3, 1).

We use the next lemma.

Lemma 2.6. Let g=38I(n; C) and V be an irreducible finite-dimensional g-module
with highest weight A. "Take F an irreducible finite-dimensional g-module such that each
weight has multiplicity 1. Then g-module VQF is isomorphic to a quotient of the fol-
lowing g-module

@lsism L(/I—X,) ’

where {A;}icism 1S the set of weights for F, and L(A) is a highest weight g-module with
highest weight A.

Proof. Since V and F are irreducible and finite-dimensional, both of them can be
assumed to be unitary for 8u(n) and then V®F becomes a unitary representation.
Therefore VQF is decomposed into a direct sum of IURs of au(n). Each of these re-
presentations is a highest weight representation of g. Thus all we have to do is to
find all the highest weight vectors in VQF. Each weight vector w of VQF is of the
form

W=5ismViQf ¢,

where, for 1<i<m, f, is a weight vector of F with weight A, and v; is a weight
vector of V. A simple calculation shows that one of v; is a highest weight vector of
V when w is a highest weight vector. Thus we get the result. Q.E.D.

Let U(—1)CU(g,..) be as in (2.2). From the above lemma, V_,=L{()RQU(—1) is
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a quotient of

L(A=B)DLA—BIDL(A—Bs)

since dim U(—1)=3 and its weights are —8;, 7=1, 2, 3. To get the decomposition of
V., it is sufficient for us (fortunately in this case) to calculate the dimensions of
L(A—B;) and V_, and compare them.

Similarly we can prove that ¥ _, is a quotient of

L(A=Bi—B)DL(A—Bi—BIDL(A— P2 — o) .

Now we determine arrows from V_, to V_,. Take a component L(A—p;) of V_,
and consider the image g, _-L(A—f;) in V_,. Then g, _-L(A—B,) is a quotient of
go-module L(A—B;)®g,,-. Thus using Lemma 2.6 again, we see that g,, .- L(A—B;) is
a quotient of g,-module @,5;.5L(A—B;—B;). On the other hand g, _-L(A—8,) is also
a quotient of

L(A—Bi—BIDL(A—B1— BIDBL(A—B— )

because g,, .- L(A—B;) is in V_,. Therefore, taking the common components of the
avobe two g,-modules, we see that g, _-L(A—pB;) is a quotient of ;. L(A—B:i— ;).
Then we check the image under g,,. in V_, of the highest weight vector of L(A—B;).
Then we get the arrows from V_, to V_,. The arrows in other places are obvious.

Cask II. Diagram of Case 4 in 2.4.3 for g=31(2, 1) and A(H)=-—1.

In this case ¥, and V_, are irreducible. So we study the structure of V_,. Let
v, be a non-zero highest weight vector of V,, and W be a subspace of V_, given by
E..€g0 as _ _

W={veV_,; E,.-v=0}.

Then W is two dimensional and we give a basis {w,, w,} as
Wy=MNzV,, wz=7)2Ez.1'U1—7)x'U1-

Then w, (resp. w,) is a weight vector with weight A—f8 (resp. A—7). We put Vo=
V_., Vo=U(go)w, and V,=U(go)w,, then both V, and V, are highest weight submodules
of V4, and V,DV, since E,, ,-w,=w,. Now all the weight spaces V, ; with weight A
of V, are two-dimensional except dim Va'/,_ﬁzl. Therefore examinig the highest
weight vectors and weight distributions for V,, we get the following resuits:

Ve=V,/ Ve L(A—71), and V,/V.=L(A—pB) (one dimensional).

Thus we get the diagram since the arrows in this case are all obvious.
Diagram of weight distribution for V,:
—_— —— — — tseee
Pie Vit &2 fta—)r-a €= V,(la-)r—za = Vi sa o2
th) «”

-8
\ c) —> — —— —
V/l—r € - pjf_)r_a P pp——— Lh‘lr-za €—=- Vﬁf—)r-aa € ——— vesee

The arrows —> and <--- denote g, .- and g, ,-action, and each space V{*, V{ and
V{® has weight 4 and dimension 1. Here

V=3 V/(lr)’ Ve=V.+ Vjtb-)ﬁ and V.=V, +3ZV{¥.
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§3. Classification of irreducible unitary representations of real forms of 3((2, 1).

3.1. Positive roots for s1(2, 1). Let g¢=sl(2, 1), and {a, B} be simple roots of
(8¢, Bc) given as
a(H)=2, a(C)=0;

BH)=—-1,  B(C)=-1,

where {H=H(1), C} is a basis of ¢ in (1.2). Another positive root is given by 7=
a+fB. We also introduce a notation d=8+7, the sum of positive odd roots.

3.2. Classification of IURs of #u(2, 1;2, 1). Let g=su2, 1;2, 1), then g,=u(2)
and any IUR of g, is finite-dimensional. From the definition, any unitary representa-
tion of g is unitary when it is restricted to g,. Therefore an IUR V of g is finite-
dimensional and so a highest weight module (by Lemma 2.3). Let the highest weight
be A<h¥, then L(A)C.V becomes a unitary representation of g,, and so A has to satisfy
the following conditions:

3.1 A(H) is a non-negative integer, and
3.2) A(C) is a real number.

For the classification of IURs, first we must check when V() is irreducible. From
Lemma 2.4, we get,

Lemma 3.1. V(A) is not irreducible if and only if one of the following conditions
holds :

(1) A(C)=A(H),
(i1) AC)y=—A(H)-2.

Next we must check the unitarity condition. From Proposition 2.2, we get,

Lemma 3.2. Let L(A) be a go-irreducible component of an IUR V() of g, then A
satisfies the similar conditions as (3.1), (3.2) and also

0A(H)= [A(CO)].

Summarizing these results, we get the following

Theorem 3.3. (1) Any irreducible unitary representation of Lie superalgebra
a2, 1: 2, 1) is isomorphic to one of the irreducible highest weight representation V(A)
with A(CYS — A(H)—2 or A(H)S AC).

(2) As go-modules, the above V(A) is decomposed as follows:

(i) VD=L  for AC)=AH)=0,
(ii) VIDH=LNSLA=1)  for (C)=A(H)=1,
(i) VID=LMBLA=B)  for A(C)=—A(H)-2,
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(iv) V(MD=LMPLA—-BPL(A-0I) for A(H)=0 and A(C)<—2, 0<A(C),
(v) VD)=LDLAN-BYPLA—7YDL(A—3) - otherwise.

Realization of the type (v) will be given in 3.4.1 and those of other types have
been given in [4, §8].

Note 3.4. The Z,-gradation V,PV, of V(A) in the above theorem is given by
Vo=L(A) or L(APL(A-0d),
Vi=(0), L(A—-PB), LA=7) or LA=BRPL(A-T).

3.3. Classification of IURs of 2u(2, 1:1,1). Let g=3u(2, 1;1, 1), then go=u(l, 1)
and IURs of g, are classified as

(PCS) principal continuous series;

(DS) discrete series:

(LDS) limit of discrete series;

(CS) complementary series;

(T) the trivial representation.

Let V be an IUR of g, then each g,-irreducible component W of V is also unitary
for g,. By Proposition 2.2, W is a highest or lowest weight g-module and so is V
accordingly. Since the situation is parallel, we may take V a highest weight repre-
sentation V(A). Since L(A)c. V(A) be unitarizable, /A satisfies the following two con-
ditions :

3.3) A(H) is a non-positive integer, and
3.9 A(C) is a real number.

In this case, Lemma 3.1 still holds. From Proposition 2.2, we get

Lemma 3.5. Let L(A) be a go-irreducible component of an IUR V(A) of g, then 2
satisfy the similar conditions as (3.3), (3.4) and also
AH)S —14(C)].

Thus we get

Theorem 3.6. (1) Any irreducible unitary representation V of Lie superalgebra
82, 1; 1, 1) is a highest or lowest weight representation. If V is a highest weight IUR,
then V is isomorphic io one of the representations V(A) with A(H)S A(C)S—A(H)—2
or A(H)=A(C)=0.

(2) As a go-module, the above V() is decomposed into go-ivreducible componnents as
follows :

(i) VH=LA)  for AC)=AH)=0,
(i) VD=L LA=r)  for ACO)=AH)=-1,
(il) VM=LMDBLA—B)  for A(C)=—A(H)—220,
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(iv) V(D)=L(NHDLA-BDL(A—-1)PBL(A—8)  otherwise.

Realization of the type (iv) will be given in 3.4.2 and those of other types were in
[4, §8]. The Z,-gradation of V(A) is given as in Note 3.4.

3.4. Realizations of Irreducible unitary representations. Now we give explicit
realizations of I[URs classified in 3.2 and 3.3. Except the last types in Theorems 3.3
and 3.6, we have given their realizations in [4, §8]. So we treat here the case where
V(N)=V,PV, with

Vo=L(DHBL(A=0),  Vi=L(A-BBL(A-T).

In this case, the Z-gradation in Lemma 2.3 is given as V"=L(A), V=V, and V®
=L(A—0). So we must calculate at first the explicit decomposition of V=V, as
go-module. In each irreducible g,-submodule the inner product is determined uniquely up

to constant multiples, therefore we should determine these multiplicative constants.
Put n=A(H)+1, m=A(C), |=—A(H) and Z,={k€Z; k>0}.

3.4.1. The case g=3u(2, 1;2, 1). In this case n=dim L(A) and m>n—1 or m<
—n—1 from Theorem 3.3(v). Put o¢=sgn(m). Let v{eL(A) be a unit highest weight
vector of V(A) and {v9},..<» be a standard orthonormal basis of L(A) given by

(3.5) VE(n—=kWl =n(E, W)  for 1£k<n—1.
And let {v{},5e5n be a standard orthonormal basis of L(/4—48) given by

- 2
3.6 0 :‘_'.'1;_.. R —————— o f ls /‘e S y
(3.6) v} Y ot b iy ()7} or lsk<n
where %;’s are as in (1.3). Thus we fixed a basis for V,.
Next we define a basis of V, by choosing standard orthonormal bases {v&}icsgns:

and {v}}igesn-y of L(A—B) and L(A—7) respectively, given by

V2 —_ .
ﬁ:_'_" =T - 2 = - 1 0—1 »
3.7 vé Vit (Vn—k+1a(nvi—~k—1a(n,)3-1)
V2 . .
)r,= T ontinoTmmoeoe 2 0+l —_ 1 g .
(3.8) vk AT (VEr()0ier v n—kr(n)vl)

Now we write down the operator #({), {€g,, in the form of blockwise matrix
(Dj.k)j,k.—_o,ﬁ_y_a' where
Dy i L(A—Fk) —> L(A—]).

If {=g,.+, then D; =0 except the cases (7, £)=(0, B), (0, 1), (B, 9), (7, 0). If L=qg,. -,
then D; =0 except the cases (j, k)=(B, 0), (7, 0), (6, B), (8, ). Therefore each =({)
=(Dy,,) is of the following form respectively depending on {&g, + or {g,, -

0 = * 0 0 0 0 O
0 0 0 = + 0 0 O
(3.9) Dy s k=0, g.1.0= 000 0 ] %1+« 0o o0 o
0 0 0 0 0 % = 0
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And the action of g, c=g.+@a. - is given with respect to these bases as follows:
For g,,+:

D,, .8 & Do, n(é, W=—0C_a, -1, n(EWi=0C b},
Dy & Dys: (& Wi=0C by vh+0oC ar iy,

Do.s & Doy w(&vh=0C bi_1v}, n(EWi=0C 1a x4 ,
Ds.; & Dys: aEi=0C avi,—aC by},

For g, -:
Do & Dyo: a(nwi=—C_awh+C.buvk,
Ds.p & Diy: ﬂ(ﬂl)U€=C+bk_,v2 , ﬂ(ﬂl)vizc—akvgﬂ ,
Dﬁ,o & D?’vo: ”(ﬂz)vg=c-bk-nv‘i+C+ak-1v£_, s
Ds.p & Dip: a(gawh=Cuaa-wir,  w(pk=—C-buk,
where
(.10) ayr=vk, by=+/n—k and C. \ﬁ."%/’_;'*'l‘

3.4.2. The case g=8u(2, 1;1, 1). In this case [=—A(H) is a positive integer since
L(A) is a holomorphic discrete series or its limit. Further /=22 and —I<m<!—2 from
Theorem 3.6(iv). Let v L(A) be a unit highest weight vector of V(A), and {vi}rez,
be a standard orthonormal basis of L(/) given inductively by

1
Vi = \/(k—H—-l)k ————n(E,, )V} for keZ, .

Next let {vi}sez, be a standard orthonormal basis of L(A—0d) determined by
2
x/(l+m)(l m—2)
We define standard orthonormal bases {v8}icz, and {vi}icz, of L(A—pB) and L(A—7)

respectively by

——n(p)n(pp for keZ,.

vi=

h= T__;_:.(Vz+k o () vV E=17(n)0-1),

V72
V== m—=2)
As in 3.4.1, we write the operator w({), {€g,, in the form of (Dj)j s=0p.7.5
where D; 1 L(A—Fk)=>L(A—j). Then the blockwise matrix (D;,:) has the same form
as in (3.9) depending on {€g,, . or {€g,, .. And the action of g, c=g,.+@Pg. - is given
as follows:
For g, +:

Do"g & DO,T: 7[(&1)11’9:"'6-013-11)2—1 s n(El)v£=é+5kvg ’

(\/Fﬂ'(ﬂz)vg+)_’\/2+ k _177(7]1)1)2) .

vi=

Ds.s & Dyt w@wi=—Cibuwh—C as_wi.,



686 Hirotoshi Furutsu
Dos & Doy w(Ewh=C by ny,  wl@wi=—Crai,
D3 & Dyt n(€)vi=Crawhy,+C be},

For g, _:
Dso & Dyt e(pe=C_awwh, —C. bl
Dis & Dg i a(pwh=Cby %, x(pi=C_axi,.,
Ds.o & Dyo: m(oy=C by v8—C,a,_ i,
D5 & Djy: 2 E=Cax- i, w(pi=C by,
where
(3.11) G=vh,  Be=viFh—1 and &= YU-DEED

3.5. Method of determining the orthonormal basis of Vin 3.4. Both case 3.4.1
and 3.4.2 are similar, and so we discuss here the case in 3.4.1.

Step 1. First we take a unit highest weight vector v\ L(A)CV, Then we
determine inductively one vector from each weight space so that all n(Z), Z&g,. are
expressed by hermitian matrices, namely

(3.5) , NV k(n— kWi =n(Es, )0} for 1sk<n—1.

Then {v¢},cr.n is an orthonormal basis of L(A).

Step 2. Here we give certain orthogonal bases of L(A—f), L(A—7y) and L(A—0)
temporarily. Then in Step 3 we normalize them. Since L(/4—4) is isomorphic to L(A)
as [g,, 80]-modules, we determine

3.12) N=n(n)x(ny for 1<k=Zn.

Then {#}},<rsx becomes an orthogonal basis of L(A—4) such that |#|=constant.

Next, as the (A4—p)-weight space (V)),.3 of V,=L(A—-B)DL(A—7) is one-di-
mensional, we can take m(n.vi(V,),.5C L(A—pB) as a non-zero highest weight vector
th of L(A—B). Then we can define an orthogonal basis {98} 4.4 of L(A—R)
similarly as {v?}, namely

(3.13) VEmHT—kWE, =n(E,, )08  for 1<k<n.

Now the (A—7)-weight space (V)),_, of V,is two-dimensional and {z(9,)v}, m(n.)v3}
gives a basis. Simple calculation shows that

m(E, N x(n)vi+~vn—1a(p, i} =0.

Therefore we can take m(n.)v3++n—1x(7,)v} as a non-zero highest weight vector o
of L(A—y). Similarly as for L(.1—p) we can define an orthogonal basis {#]},<s<n-,
of L(A—7) inductively as follows

(3.14) Ve(n—1—=k)oh,=n(E, )¢, for 1<k<n-—2.

Step 3. From Steps 1 and 2, each operator n(Z), Z<g,, are expressed by hermitian
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matrices with respect to the above determined basis. So we should consider the g;-
action and normalize the basis in four components. According to the definition of
unitarity, we have
1719812 =CGm(Eatina 8, m(new> =<0}, jr(€e+in)m(nvi)

=i, (H =] '"—;“—rl B

Here
__ em=—n+tl)
= 5 .
Therefore we must take vi=c;D8, where cg=2/e(m—n+1). Note that this determines
the constant ¢ uniquely since —e(m—n-+1)>0. Thus we put vﬁ:cﬁﬁ‘?, for all # and we
get (3.7) giving vf by means of {v}}.
Similary, since

enGntntl)

5 .
we must take v]=c,d], where ¢,=2/en(m+n+1). We put vi=¢, 2% for all £ and get
(3.8).

2

. F IR, R . S
Finally we define vi=cs0 with c¢; Vo m=n T’ and get (3.6).

o] =—

Thus we get the normalized basis of V as {vi}\U{vE}U{vihU{vl}).
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