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H”-well-posedness of two-sided problem for
Schrodinger equation

By

Kazuhiko IBUKI

§0. Introduction

There are many works on the initial boundary value problem in a half-space, but
there are few works on the problem in a domain limited by two parallel hyperplanes
which we call two-sided problem. For it is generally supposed that if the former
problem is solved, then the latter can also be solved. R. Hersh [1] shows that if an
operator is “well-behaved” then the above supposition is true, while giving the operator
(0/0t)—i(0/0x)?, which is not “well-behaved”, as a counter-example. However it may
not be construed as a counter-example in the sense of F/~-well-posedness that we will

consider.
The operator to be discussed is:

d 10 0\ &/ 0 \®
P(D,, D., Dy)—Dt+D§:+k§‘ Dik——i‘g—(‘a‘;) —,;; (‘a;k—)
(Schrodinger operator)

9 10 1 9

where D,:l. D,=—+- and D, ,=-—+—+— .
7 0x Ve 1 ayk

iot’
We will consider the initial boundary value problems in each of the following

domains :
200, )={(x, ¥); x>0, yeR*} (right half space),

Q(—oco, L)={(x, y); x<L, yeR?} (left half space)
and
0, Ly={(x, ¥); 0<x<L, yeR*} (slab domain),
where we denote y=(y,, y5, -+, Ya).
Problem P(0, ) (in the right half space)

P(D,, Dz, D)u(t, x, »)=f, x, y) in [0, Ty]1X £(0, ),

u0, x, y)=ux, y),

Bi(Dz, Dulze=4gi(t, 3),
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Problem P(—oo, L) (in the left half space)

P(De, D, D)u(t, x, y)=f(t, x, y)  in [0, To]X82(—oc0, L),
u(0, x, y)=ux, ),
By(Dy, Dy)ulz=L=g2(ty y) ,
Problem P(0, L)
P(Dl; Dr; Dy)u(t) X, y)=f(ty X, y) in [07 TO]X‘Q(Oy L)y
u(or X, y):uﬂ(x’ y))
B,(DI, Dz/)”l.::t):gl(tr y) y
BZ(DIJ Dy)“lt::l::gz(t; y)y
where
B,=1 or B,=D,+a-D,
and
B;=1 or B,=—D,+b-D,.
Here the vectors a=(a,, a,, -, ag) and b=(b,, b,, ---, by) are complex constant vectors
d
and a-D, denotes kz=}la,,D“.

The boundary operators B, at x=0 in P(0, L) and B, at x=L in P(0, L) are
identical to the boundary operators B, in P(0, ) and B, in P(—oo, L), respectively.

The present paper attempts to investigate the relation between H<=-well-posedness
of P(0, ) and P(—oo, L) and that of P(0, L). ,

In §1 we will mention our results. Theorems 1 and 2 give the necessary and
sufficient conditions for H=-well-posedness of the problems in the half-spaces and for
H>=-well-posedness of the two-sided problems respectively. Our conclusion is that the
two-sided problem P(0, L) is not always H=-well-posed even if each of the correspond-
ing problems P(0, ) and P(—oo, I.) in the half spaces is H=-well-posed. In §2 we
will provide preliminary arguments to prove the theorems by making use of Fourier-
Laplace transform. In §3 and §4 we will prove the theorems and in §5 and §6 we
will prove lemmata used in §3 and §4.

The author would like to thank Professor S. Mizohata and Professor N. Shimakura
for their invaluable suggestions and encouragement.

§1. Definitions and Theorems
We will first define some terminologies and notations.

Definition 1 (Compatibility condition). We assume that feH=([0, T,]1x£2(0, L)),
u,€ H=(£2(0, L)), g, H>([0, T,JxR?%) (j=1,2). Then a data {f, uo, £, &=} is said to
satisfy the compatibility condition for Problem P(0, L), if the following two conditions
(1.1) and (1.2) are met:
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(L. Biujleco=Digilie (7=0,1,2,3, )
and

(1.2) Bottjlze1=Dlgsltc0 (7=0,1,2,3, )
where

d
uix, 9)=—{Di+ 3 D, busese, NHDE lies G=1,2,3, )

Definition 2 (H>-well-posedness). We say that the problem P(0, L) is H>-well-
posed, if there exists a unique solution of P(0, L) for every such data {f, u., g, g2}
(feH>([0, To1x 80, L), uocs H=((0, L)), g, and g,=H=([0, T,]x R?)) that satisfies the
compatibility condition.

The compatibility conditions and H*-well-posedness for the problems P(0, ) and
P(—o, L) can be defined in similar fashions. We will try to find conditions on B,
and B, under which the problem P(0, L) is l{~-well-posed. In order to do this we will
classify the boundary operators B, and B, into the following three groups:

type 1: B,=1 or B,=D,+a-D, (Rea=0)
B,=1 or B,=—D,+b-D, (Reb=0)

type I: B,=D,+a-D, (Rea+0 and Im {(a-9)*}<0 for every neR?)
By=—D.+b-D, (Reb#0 and Im {(b-9))*} <0 for every n&R?)

type I: B,=D,+a-D, (Im {(a-9)*}>0 for some 7=R*)
Bs=—D,.+b-D, (Im {(b-%)*} >0 for some jR?).

Remark 1. The following conditions (i) and (ii) are equivalent.
(i) B, is of type II.
(ii) There exists a non-negative number A such that

Rea#0 and Ima=—ARea.

Now for the problems in half-spaces we have

Theorem 1. P(0, ) is H*-well-posed if and only if B, is of type I or of type Il
Similarly P(—oo, L) is H>-well-posed if and only if B, is of type I or of type II.

Our main theorem is as follows:

Theorem 2. The problem P, L) is H=-well-posed if and only if one of the fol-
lowing two conditions is satisfied:

(i) both B, and B, are of type I.

(ii) both B, and B, are of type Il and a+b=0.

In §3 we will prove that the problems are H=-well-posed and we will deal with
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unsolvable cases in §4.

Remark 2. From Theorem 1 and Theorem 2 it follows that if B, is of type I
and B, is of type II, then P(0, ) and P(—co, L) are H>-well-posed while P(0, L)
is not.

§2. Lopatinski determinant D(z, %)

In this section we will provide preliminary arguments to prove the theorems men-
tioned in the previous section.

We consider the following boundary value problem P (0, L) for the ordinary dif-
ferential equation with parameters r=¢—iy (¢=R and y>0) and neR?:

Problem P (0, L)

2.1 Di4r41nHa(x, T, 9)=0,
2.2) Bi( Dz, Ditlzco=8 (1, 7),
(2.3) By(Dy, Mlilzar=8:(7, 7).

We get P(O, L) from P(0, L) by extending u, f, g, and g, to t>T, and t<0 and
making use of Fourier-Laplace transform. We do not discuss here in detail how they
are extended. P(0, L) is obtained by putting f=0 for simplicity and deleting the
initial condition.

Given a function v(¢, y), we denote Fourier-Laplace transform of »(f, y) by

iz, m=|e- o, ydidy

:SSe'“"”’i‘”’{e'”v(t, ydtdy.

The general solution of (2.1) is written as
i(x, ©, 9)=C, 8 04 Che- W miz-I
where &z, 9)=+v —7—[9[? (Im v/—7—|7|?>0).
From (2.2) and (2.3), C, and C, are independent of x and are the solutions of
{ B\(&(z, 7), Ci+Bi(—&(, n), nete P Cr=4g,

By(&(r, 1), eSS LC + By(—&(T, 1), 7)Co=4g.
We set
B.(&(z, ), n) B(—&(z, p), petc L

B(z, ,r)):[
By(&(r, 1), pet*cmL  By(—E&(z, ), 1)

and
D(z, p)=det B(z, p) (r=0—ir,d=R, r>0 and nR?).

D(z, 9) is called Lopatinski determinant for the two-sided problem P(0, L). It is
a function of (z, »), where ¢ and » run over the lower half-plane and R¢, respectively.
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Incidentally, D(z, ) plays an important role in proving Theorem 2.

§3. Well-posed cases
Our results for solvable cases in Theorem 1 and Theorem 2 are as follows:

Proposition 3.1. If B, is of type I or of type 1I, then P(0, o) is H>-well-posed.
(Similarly if B, is of type I or of type II, then P(—oo, L) is H>-well-posed.)

Proposition 3.2. If B, and B, satisfy (i) or (ii) in Theorem 2, then P(0, L) is I*>-
well-posed.

For the proof of the above two propositions, we need the following two lemmata :

Lemma 3.1. [f B, (B,) isof type I or of type II, then there exists a positive num-
ber ¢ such that

o
IBI(G(T’ 7])’ 77)lg(|7|+|7)|2)”2

. cr
(respectively, 1B=8c 1 MIZ () 4] s
for any r=0—iy with y>0 and any n=R*.
Lemma A. If B, and B, satisfy (i) or (ii) in Theorem 2, then there exist positive
numbers 7, and c such that

5/2
| Dz, n)lngW for any t=0—ir with Y=Y, and any nER?.

Here we will not prove Lemma 3.1, because it is easily verified. Lemma A will
be proved in §5.

Since Proposition 3.1 can be proved in the same way as proposition 3.2, we will
prove only Proposition 3.2 here.

Proof of Proposition 3.2.

Existence of solutions. We referred the present proof to R. Sakamoto [3].

Given a data {f, u,, g, g} satisfying the compatibility conditions, we can find a
function w,(t, x, y)€H=([0, T,1Xx8(0, L)) such that

Q.1 Diw,leo=ux, ») (7=0,1,2,3, ),
where u;(x, y) are the functions in Definition 1. Let us put
(i, x, y)=ult, x, y)—w,(t, x, v),
where u is the solution of P(0, L) which is to be determined. Then
Py,=f,=f—Pw,,
(0, x, =0,
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B lzeo=8—By ]z,
Bovi|zar=ge— Bawil sz .
From the definitions of u;(x, ¥) and (3.1) we obtain
(3.2) Difilice=0 (£=0,1,2,3, ).
By virtue of the compatibility condition for P(0, L), it is easily verified that
Dig\—Bw,|z=0)l1=0=0 and Di(g,— Byw,|z-1)li=e=0  for £=0,1,2,3, ---.

Secondly we extend f, to x<0 and x>L in such a way that f, belongs to
H=([0, T,]XR**") and satisfies (3.2) in R?*'. Then we can find the unique solution
wyt, x, y)eH=([0, T,]1X R%*") of the Cauchy problem

{ Puw,=f, in [0, ToIX R,
w0, x, v)=0 on R¢*!

by means of Fourier transform with respect to (x, y).

Let us put
u(t, x, y)=vll, x, y)—wst, x, y),
then
(3.3) Py=0
(3.4) v(0, x, y)=0
(3.5) Bwlzo0=h(t, y)-——'gl"Blw1|x=o“‘Blw2|:=o s
3.6) - . Bavl o=t y)=gz—Bzwl | x=L“leUz|;;L .

We can easily verify that
Dihjlioo=0 for j=1,2 and £=0,1,2,3, ---.

Thirdly let us denote by /i;(¢, y) the extensions of hj(¢, y) as elements of H*(RX R?)
with supports in [0, 2T ,]JX R®. Let Ii,-(r. n) be Fourier transforms of e ™hyt, y).
We are going to find the solutions of

3.7 (Di+t+|7(50=0,
(3.8) B(Dy, 70| zco=h,,
(3.9) Bo(D, 7)0| sz =h,.

0, if exists any, shall be given by
oz, x, N=C\(r, N2+ Cy(r, pe tC-1E-b,

where Cj(z, n) satisfy

[c,@, 77)} V.(r, n)}
(3.10) B(z, 9) = .
| Co(t, 77) X

Lemma A guarantees the existence of Cy(zr, ). They satisfy

ha(z, 1)
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(3.11) Izl +19125% Celz, ﬂ)lng.”éMN,h

for any positive integer N and k=1, 2, where My, , are positive constant numbers in-
dependent of 7=7,.
Let us put

(3.12) v(t, x, y)=eT‘SSe“"‘+’“”D(t, n)dadr),

then v(¢, x, ) belongs to H*((—oo, T,]X2(0, L)) and satisfies
Py=0  in (—oo, T,1X (0, L),
Bw|za=hi,
Bovl|_r=h,.

Moreover, from (3.11) and (3.12) we get

supp vC{t; t=0},
therefore
V]i=o=0.

Accordingly v(¢, x, ) is the solution of (3.3), (3.4), (3.5) and (3.6). Finnaly, u=v+4+w,+w,
solves the problem P(0, L).

Uniqueness of solutions. Now let us assume that u(t, x, y)€H>([0, T,1X2(0, L))
satisfy

(3.13) Pu=0 in [0, T,]Xx 820, L),
3.14) u(0, x, y)=0,

(3.15) Biu|z20=0,

(3.16) Bou|,-1=0.

For any given function f(t, x, »)€C%(0, T,)X (0, L)), we consider the adjoint
problem (backward problem):

(3.17) Pv=f(t, x, y) in [0, T,]x 20, L),
(3.18) (T, x, v)=0,

(3.19) (Dz—a-Dyw|:00=0,

(3.20) (Dy+b-Dy)v|o-1=0.

We can find a solution of the adjoint problem in the same way as we find a solution
of P(0, L). Then from (3.13)~(3.16) and (3.17)~(3.20) we obtain

(u, ez, =, Pv)z  =(Pu, v)rz =0.

tr,y

Therefore u=0. Thus we have shown the uniqueness of solutions of the problem
P, L).
This completes the proof of Proposition 3.2.
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§4. Unsoluvable cases
Our results for unsolvable cases are divided into the following three propositions :

Proposition 4.1. If B,(B,) is of type I, then P(0, ) (resp. P(—oo, L)) is not
H>-well-posed.

Proposition 4.2. [If B, or B, is of type III, then the problem P(0, L) is not H>-
-well-posed.

Proposition 4.3. If one of B, and B, is of tvpe I and the other of type II, then
the problem P(0, L) is not H>-well-posed.

Proposition 4.4. [f both B, and B, are of type Il and a+b=0, then the problem
P(0, L) is not H*-well-posed.

We will present the lemma of the same kind as is often used to show that certain
conditions are necessary for well-posedness.

Lemma 4.1. [f the problem P(0, L) is H>-well-posed, then there exists a positive
integer m and a positive number ¢ such that

(4.1) lutt, x, Wlnz . ,SclllPulam

t,x,y— t,z,y

+||Blu|z=o||1;7fy+||Bzu|z=L||,,?‘»y}

+1uO, x, Mlar,

for every u(t, x, y)eH=([0, T,]1x2(0, L)).

This lemma is a simple consequence of Banach’s closed graph theorem. (See Mizo-
hata [2].)

As Proposition 4.1 can be proved in the same way as Proposition 4.2, we will not
present the proof of Proposition 4.1.

Proof of Proposition 4.2. Assume that B, is of type Ill. Then there exists a unit
vector 7 such that Im {(a-%)*}>0 and Im (a-%)<0. (If necessary, 7 is replaced by —7.)

Now let a(p) be the function such that a(p)€C3(RY), a(n)>0 in {n; |9|<1},
supp {a(m)}t={»n; In| =1} and [Ia(n)l]ngl. Put a,(n)=p**a(p(n—p7)), then we have
supp {a,}={75; Ip—p7|=1/p} and ||a,,(77)I|L§=1 where p is a large parameter.

We set

4.2) u,t, x, y)=§Rde“‘f<“"7>2+!vl21¢-<a-q)r+’7‘v'a,,(7))d1).
It is easily verified that
4.3) Biylzeo=0 and Pu,=0.
Set Im {(a-9)*}=¢, (¢,>0) and Im (a-7)=—c. (c:>0). For ne&supp {a,}



Schridinger equation 559
(4.4) Im {(a-9)*}=Im {(a-$)*} p*+2Im {(a-H)a-(p—pN}o+Im {(a-(n—p 7))}

=c¢,p°+0(1) (as p—oo),
and

(4.5) Im (a-p)=Im (a-9)p+Im {a-(n—p7)}
=—62p+0(-:;) (as p—e0),

From now on we denote positive constant numbers by ¢; (j=1, 2, 3, --). We have at
first

Nuolt, 2, Pliag , ,Zelluy(To, 0, )iz (Sobolev’s inequality)

tz,y

=cylle™ l<"'ﬂ>2'T°a,,(77)IIL§7 (Parseval’s formula)
Z e T (by (4.4)).
Secondly it is not difficult to justify

4.7 lun©, x, Man Zclo+1D™

z, ¥y

Thirdly (4.4) and (4.5) yield

*.8) |Battyamsllmpr, SeipLpmsiecit et

Ly

From (4.3), (4.6), (4.7), (4.8) and Lemma 4.1, if the problem P(0, L) were H>-well-
posed, then the inequality

e(clTU),ﬂgcs{(p+1):n_|_(p+1)2m+1e(c,7“,)p2—(4:21,),1}

with a certain constant ¢y independent of p should hold. However, as p tends to the
infinity, it cannot hold. Therefore the problem P(0, L) is not H*-well-posed. We can
also prove analogous results when B, is of type III.

Proof of Proposition 4.3. and Proposition 4.4. We can assume that B, is of type II
and B, is of type | or of type Il without losing generality. When B, is of type II,
we assume that a+b+0. Then we have

Lemma B. There exist positive numbers c, and ¢,, a sequence {9,}5_,CR?, a sequence
{Un}3=1 of open neighborhoods of 7, and a sequence {t.(9)}5%-, of complex valued func-
tions defined in U, such that

4.9) [9a] —> o0 as n—oo

(4.10) D(za(n), 7)=0 in U,,

4.11) alnals—Im {r,(MI=7an) in Uy,

(4.12) [6(Ta()), PI=Zcalnal  in U,

(4.13) B!(G(Tn(n)y 77)! 77)_. §2(_$(Tn(ﬂ)v v)! 77) él—zcl Z'n Un .

By(—&xa(n), 1), 1) Bu&(ra(n), 1), 7)
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This lemma will be proved in §6.
From (4.13) we can assume that

B )
(4.14) 'Bl(—E(Tn(n), . 77)|§1 ¢, in U, for all n,
or

Bo(—&@a(m), ), M| ¢ _ i ;
(4.15) B ’gl ¢ in U, for all n,

if necessary we take subsequences.
Now we assume (4.14). Let C,.() be the function defined in U, such that
SuPp{Cn.7z(7])}CUn and I|C1n(7])|lL%:1 And set

Cz, n(n): o Brz(é(‘l'rn(ﬂ)ggnf)_v)_eié(rn(y), C)Lcl,n(ﬂ)

By(—&(zu(m), 7), 1)
then from (4.10) we obtain

@.16) Blea(n), ”)[ZEZ;]:[E]

We put
@17 w(t, x, y>=Se“"'"""”'“fC.,nm)e'*‘«wv-v>1+cz.n<n>e-ié<fn<v>-w—“}dn.

then u, is a solution of Pu,=0, B,u,|.-0=0 and Byu,|...,=0.

Let us show that the inequality (4.1) does not hold for u, as n tends to the
infinity.

From (4.10) we get

wn(ts, 0, y>=§e“’""’“"*”'”’{cl.n<n>+cz.,.one‘f“"(w-W}dn

i Ba(§(za(m), 1), 218 2
demn(wowm{l—B;((—ég('riz];)])‘,%),v%)e i« 7’(”)'”)I}C1.n(ﬁ)d77

— ilry to+ney) _'BI(E(Tn(ﬂ): 7]);02.
= oy Bi(—&(ea(n), ), o Crntmd,

where 0<t,<7T,.
(4.18) can be obtained from (4.11) and (4.14).

1 B(§(za(m), 1, 1) \ ~
— _——_|{lpTatmt o oNRNTRNAD D
@18) e, 0, Mliy= g P e{l= g gt T TN ) :
¢ .
gme 1to! 7t .
Moreover, from (4.12) we can derive
(4.19) a0, x, My eI 154172,

If the problem P(0, L) were H>-well-posed, we could have (4.20) from Sobolev’s
lemma and Proposition 4.1
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4.20) lunte, 0, My <edlua®, %, Mg,

However, (4.20) cannot hold for any fixed positive number t, due to (4.9), (4.18) and
(4.19). An analogous results can be obtained when (4.15) is assumed. Thus Proposition
4.3 and Proposition 4.4 are proved.

§5. Proof of Lemma A

In this section we will prove Lemma A used in §3.

Lemma 5.1. Let ¢ be a positive number and a be a purely imaginary vector. Then
there exists a large positive number Yo=7.(c, a) such that

E(T 7]) a- 7] icér
Er. mFan’ »|s1

for every t=a—ir (Y27,) and every nER?, where &(r, n)=+/—t—[7[* and Im&(z, 7)>0.

'5(1'; ﬂ) a 77 lcE(' 7) .

S(T nta-7 From the

Proof. Let us put s=ia-5, ¢=Imé&(r, ) and K=
equality 2 Re{é(z, pHm{&(r, P}=r, we get

&, 7])=§r(—]+iq (4>0).

We also get

gAY 2

() +atsr

( ) +(g—s)

4g° s+’ +1" .

= e gpr =K@ T 9,
leading to

K(Q; 7 S)gl for S§0

and

a_K —16¢°(4g*s®*—4q*—7?) “aeq
ds dgs—gr 47 ¢

2
Then as a function of s=0, K attains maximum at s=\/ q*+ 47 . The maximum K(q, 7)

is as follows:
—
J— 2
Kl(q) T)—K((], 7'; \/q +4qz

B R i i i o ST

~Vagr—2e
=7"2{~/4q‘+7’2+2t12}2e'2°" .

Putting q=\/% p, then
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Ko(p, N=Ki(g, N={VDp*+1+p*}2e2ren
and

K, 7. S Kulp, NS@prA1e T ep,
We then have
K(g,71,5)=1 for y=4¢~* and any real number s.

Lemma 5.1 is proved.
Lemma 5.2, Let ¢ be a positive number. Then there exists a positive number c,
such that
e CITI/Z
etr:(..r,)|§_ B L T —
| (el +in o
for every t=0—ir (y=1) and every nER".

Proof. Note that |e'¢¢ 7| =¢¢!mi»  The following inequalities hold :

l—e*z2x/2 for 0<x<log 2
and
1—e-t=1/2 for x=log 2,

Therefore, when 0<Im &(z, 7)=<(1/c¢) log 2,
1— Iei(-é(r. r,)l 2(6/2) Im E(T; 77)
and when Im &(z, 9)=(1/c¢) log 2,

172
7

1
—_ ics(r, )
PR R e

We have only to show that Im &(z, 9)= By the definition of &(z, 7)

I
2|zl +nIHe

we obtain
_— o
Im &, N —
m & = \/{v<o+|r/|2>2+r ot 7D
ST/ 1
=2\ lal+In*+r
>

Y S
2(lal+r+1n10)"
Lemma 5.2 is proved.
Proof of Lemma A. Let us assume the case (i) in Theorem 2. Consider the sub-
case where B,=D,+a-D, and B,=—D,+b-D,(Rea=Reb=0). Then
(5.1) | D(z, )| =1B.(&, 0)B—E, 9)—Bi(—&, 9)Ba(&, n)e***|
B( E; 7])32(5, n) 2;]5

By, p)By(—¢, 77)
Because neither B, nor B, is of type IlI, we have (5.2) from Lemma 3.1 in §3.

=B, nB:.(—=§, 9|1
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‘ ) ar?
5.2 By(&, n)B(—§, Z
(5.2) | Bi(&, 7)Bo(—§, Pl el 4170
On the other hand, Lemma 5.1 and Lemma 5.2 derive
Bl(—er 7})32(6, n) 2iL
5.3 1— ¢
5.3) B B
B (_6’ 7]) B2($: 77)
>1— It A RN KAPYSVE Y ¥ 73 I Bt A XN LAY Q V1 51 7 23 i1L¢
=2-pE ) ¢ B(—& o e
=>1— ’eiLé|
Czrllz
AR DR
By (5.1). (5.2) and (5.3) we get
CST5/2

| D(z, 77)|_2_(W-

This completes the proof for this subcase. The remaining subcases of (i) are not
difficult.

Now let us assume the case (ii) in Theorem 2. In this case the equality
B,(—¢&, 7)By(&, 7)=B(¢&, 7)Bs(—&, 1) holds. Therefore, Lemma 3.1 and Lemma 5.2 yield

| D(z, )| =|By&, n)B(—&, )|+ |1—e*|
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“(zl+191®) Uzl +1nP)ME
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This completes the proof for the case (ii) in Theorem 2.

§6. Proof of Lemma B

In this section we will prove Lemma B used in §4.
Recall

D(z, p)=B.\(é(t, n), n)B—&(z, 1), 9)—B.(—&, 1), 7)B(&(z, 7)), et L,

By putting A=|7], z:%I—E(T' 1))2\/—»[-:;?—1 and w(r])z#, the equation
(6.1) D(z, 9)=0

is equivalent to

(6.2) pitiz— Bi@ @) By(—2z, o(n)

Bi(—z, o())Ba(z, o(n))"

We will be concerned with some lemmata to prove Lemma B.

Lemma 6.1. We assume that B, is of type Il and that B, is of type I or of type
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II. Moreover, when B, is of type II, we assume that a+b+#0. Then there exists a
positive number z, and a non-zero vector 7 R* such that

B(z,, w(ﬁ))Bz("Zo. Q)(ﬁ)) <1

6.3) By(=z,, 0(7))Bazo, o) | "

Proof. When B, is of type I, we have |By(—z, w(9))/B.(z, w(n))|=1 for every
z€R and every p=R¢. Then we can easily find a z,>0 and a non-zero y=R? which
satisfy | B.(zo, 0(9))/ B\(—2,, ()| <1.

Now let us assume that both B, and B, are of type Il and that a+b+#0. We
attempt to prove (6.3) by reductio ad absurdum. Contrary to (6.3), assume that

)Bx(z, o(7)Bo(—2, o(7))
By(—z, o(n)Bs(z, o(7))

Replacing % by —z, the fraction is inverted

lBl(z, o())B—2z, w(7))
Bi(—z, a(n)Ba(z, w(n))

'zl for z>0 and every non-zero n=R?.

\gl for z>0 and every non-zero nR‘.

Therefore

Bi(z, @(9))Bx(—2, o(9))| _
CON e o) Batz, W)~

(6.4) holds for every positive number z if and only if

for z>0 and every non-zero nER?.

(6.5) ao(m+b,-w(n)=0 and (a. o(n)*=(b. o())
for every non-zero vector nER*
where a=a,+ia, and b=>b,+ib,.

From (6.5) and the assumption that both B, and B, are of type II, we have a+b
=0. Lemma 6.1 is proved.

Lemma 6.2. Let f(2) be a holomorphic function in a neighborhood V, of a point z,
on the positive real axis. Assume that |f(z,)| #0 and | f(z,)| <1, then there is a sequence
{Aa}3o1 of positive numbers, a sequence {z.}5-, of complex numbers in V, and positive
numbers ¢ and M such that
eLinzn— f(z.)

Ap —> o0 (as n—)
(6.6) Im{(@)*) 25

lza| =M

| f(za)| S1—c

Proof. For a positive number 6 (£(1/2)z,), let us consider a neighborhood
Us={zeC; |Re(z—z,)| <6 and 0<Imz<a}.

If & is small enough, U; is contained in V,. Moreover, we can assume that
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f@)—fz)|
f(z0)
For n=1, 2, 3, --- we put

Arg f(zo)+2nm
ZZoL

é and |f(z)|gli‘§?°—)'~ in Us.

A= with 0= Arg f(z,)<2r

and

212 L {LOg f(zo)+2n”z}

_ Arg f(z0)+2nm
- 22“[{ Zan IOglf(ZI!)I

=2z, — 21 T A log| f(z0)l.

We define z,,,’s succesively by

6.7) T L S 7708 [z +Log{L+ fGn. '}(')0) f (z°)}+2 i}
f(2n, p-1)—f(20) _
—n.t g gy Log {1+ Lol (pp 3.4,

o (__1\E-1
(—-;)—w*' for |w|<1.

where Log f(z,)=log|f(2°)|+i Arg f(z,) and Log (1+w)= ,,2=,
Then we obtain

-1
Rez, =z, and Imz,, ,_-21 12 log| f(z,)].

There exists an n,=n,(d) such that

6.8) 0<Im zn,,gg- and z,,€Us  for nzn ).
Then
f(zn.1)—f(20)

(6.9) 200 2ns =57 o |Los {1+ R 320)|

< 1 f(zn D= f(zo)

_22,.[, f(zo)

S5 1 L Mllzn 1— 2ol

Ml ‘—1

= hL"m log | f(z0)!,

where M,= sup 1@ and we used the following inequality:
€Us f(zo)

[Log(14w)—Log(14+w’)| £2- lw—w’]| for |w|, |w’] é% .
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Moreover we can choose an n,=n,(8) (=n,) such that

M, < M, 1
AnLl T A, L— Ml 2
Then we can prove by induction that

[Zn.p_]eua

(6.10)

if ngnz .

1
6.11) Imz,, ., Im Zn

1 -t —1
2= znpal S(5 ) o 108 1@
(p:Z’ 3’ 4& Tty n;nz)'

In fact (6.11) holds for p=2 from (6.8) and (6.9). Assume that (6.11) holds for p<k,
then

k
Zn, k—2n,| ép;z 1zn.p—2n.p—l|

p-1

5 -1
<5 () oy gl £

—1
é—an—Ml S L log | f(zo)]

——Im z, ,

therefore
Imz, s=Imz, ,+Im(z, r—2..1)

=Im Zn1— 20, k—2n.1|

and
[Zn, k=20 = |20, e — 20,1 |+ 122, 1—20]
1 1 3
§Z5+75—Z5,
proving that z, ,&U; Moreover
f@n )= f(20) f@@n,5-1)—f(20)
Faw Lo {le SR

2‘ S @)= f(2n,5-1)
f(z0)

|Zn,k+1—zn.k|=*2—21_L“ iLdg{l-{-

21L

1

1 L M1 |2nl¢ Zn.k—ll
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A

M, \¢ —1
(—Z,.—L_) ZZI log | f(zo)!
Thus (6.11) is proved for all p=2 and n=n,. From (6.10) and (6.11) the sequence

{zz, p15-1 converges as p tends to c. We denote the limit by z,. It is easily verified
that {A,, z,} satisfies (6.6). Lemma 6.2 is proved.

Proof of Lemma B. We set f(z, w)=B,(z, ®)By(—2z, )/ B,(—z, 0)Bs(z, ) (zeR and
wsS% "), Then from Lemma 6.1, there exists a positive number z, and a non-zero
real vector # such that |f(z,, o(7))| <1. We can also assume that f(z,, o(#))#0. For
{4, z,} obtained by Lemma 6.2, we have

a%{e““""—f(z, OO} | 5oz, =2 LAne M n5n—f (20, @(D)) .

The right handside is non-zero for sufficiently large n, say n=n,. Then from the
implicit function theorem, for each n there exists an open neighborhood U,CS?"! of
(7)), an open interval [, containing 1, and a continuous function z,(, ) defined in
I[.%xU, such that

etttimh = f(z,(2, ), @),
4
2 —_ .
Im {z:(4, o)’} =2 51,
|z.(4, )| <2M ,
and

| f(z.(2, W), w)|g1__;_

for every (A, @)1, XU,

We put 9,=A.0(7) and U,=1,XU,. Let us put z,(n)=—{z.(9)*+1}2* as a func-
ction of p=2w defined in U,. Then after renumbering again they satisfy (4.9), (4.10),
(4.11), (4.12) and (4.13). This completes the proof.
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