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The existence of varieties whose hyperplane

section is Pr - bundle

By

Eiichi SATO  and  Heinz SPINDLER

Introduction

In  the  present paper we consider

Problem 1). For what kind of Pr-bundle ( = Y) over a projective variety S,
does there exist a  smooth projective variety X containing Y as an ample divisor ?
(Remark 2.11)

Problem 2). Let {Ai } be a  sequence of smooth projective varieties such that
A i is  an ample divisor in  A i + ,  for every positive integer i. Assume that A 1 i s  a
Pr-bundle over a  non-singular projective variety S. Then, does {A i }  terminate or
not ? (Conjecture of ifi in [So])

When S  is a  curve, for every Pr-bundle over S (= Y), T. Fujita showed the
existence of smooth X containing Y in the Problem 1) and gave an example of an
infinite sequence in  Problem 2). (See 4.21 4.22 in [Fu]).

But, when dim  S > 2, Problem s 1 a n d  2  become m ore complicated rather
than  the  ones in  case  of cu rves. In fact, it is  p roved  in  [Fa + So], [Fa + Sa
+ So], [Sa + Sp] and [Sa] that if S is a  smooth surface and there exists a smooth
X in Problem 1), Y must be a projective bundle associated with a vector bundle on
S except for a special surface S (See ii) in Proposition 3.1). On the other hand, it
is k n o w n  t h e r e  e x i s t  m a n y  P 1 -bundles, n o t  a s s o c ia te d  w ith  v e c to r
bundles. M oreover, there exists a projective bundle associated with a  vector
bundle which cannot be ample in any smooth variety. (See Theorem 2 in  [Sa
+ Sp]).

If a surface S has a  suitable good property and  F is a  vector bundle on  S,
then we can give a  sufficient condition of P(F) to  be  ample divisor in  a  smooth
variety.

Namely, we have

Theorem II (in § 2). Let F be an ample vector bundle over a projective factorial
surface S with I-1 1 (S, F * )  O. Assume that

1) every  curve C  on S is num erically  effective and dim la c C1 > 1 w ith a
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positive integer a c ,
2) 1-11 (S, ( s ) = 0,
3) F  is generated by  its global sections.
Then, in characteristic zero, there is a linebundle L and an ample vector bundle

E  on  S  enjoying the following exact sequence:

0 C s - - E - - - * F C ) L - - >  O.

N ote here  that P 2 a n d  generic surfaces in P 3 w ith degree > 5 satisfy the
above conditions 1), 2).

A s fo r Problem  2), we give a  sufficient condition o n  S  under which the
sequence {A i } terminates.

In fact, we have

Theorem III (in §. 3) L et S  and  A i b e  as  in  the  Problem  2). A ssume that
Pic S  Z  and L ) =  0 f o r every linebundle L  over S  and m oreover that the
characteristic of  the base f ield is zero. T h e n , w e  have the following

1) If  r > 2, then the sequence terminates.
2) If  r = 1 and dim S  = 2, then the sequence terminates except f or the  case

that S  is either P 2 w ith A , = 13 1  x  P 2 or a suf ace with K(S) = 2  and q = P g = 0.
2') if  S  = P n (n > 2), then there is an  infinite sequence {A i }  w ith A i P 1

pn+i-l .

Another example o f  a n  infinite sequence {A i } satisfying the condition in
Problem 2) will be given in 3.7.

Finally, let us state the content in each section briefly. In section 1, given a
vector bundle E and an ample vector bundle F enjoying the exact sequence :
- *E - >F--  0, we shall consider a  necessary and sufficient condition for E  to be
am ple in the sheaf-theoretical language (Theorem II).

In section 2, we shall prove Theorem II. A key for the proof is a  vanishing
theorem of the first cohomology o f a  vector bundle (Proposition 2.8).

In section 3, we prove Theorem III.
We work over an  algebraically closed field k  of any characteristic. Variety

means a n  irreducible, reduced algebraic k-scheme. F o r  a  vector bundle E, E*
denotes the dual vector bundle of E.

§ . 1 .  Ampleness of a  vector bundle

In  the present section, let S  be an n-dimensional projective variety and F  a
vector bundle on  S  of rank r + 1.

(1 .1 )  Let us assume that F is ample and let a be an element in 1-11 (S, F*). a
provides us with an extension E  = E , of F  by Cs  :
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Let p : P(E) —> S be  the canonical projection.
Throughout this section we shall keep this assumption and the notation.
O ur m ain aim  in  this section is  to  show the following.

T heorem  I. L e t  th e  notations an d  assum ption be a s  in  (1.1). T hen the
following are  equivalent to each other.

1) E  is an  ample vector bundle.
2) For every  curve C on S , E l c  is am ple.
3) Fo r every  pair (C , ço) o f  an  irreducible sm ooth curv e C an d  a  .finite

morphism C — > S, (p* E is not isomorphic to Cc Cp* F.
Moreover, assume that the characteristic of the ground field is zero. Then, the

above conditions are equivalent to the .following:
3') For every curve C in S and the normalization (h: C —> C OE S) of  C h*E is

not isom orphic to ec@ h * F.

Remark 1.1.1. Let M be a vector bundle on a singular curve C, p  : C C  t h e
normalization and T the quotient of cp* Coe  by C c . Let q be the non-zero element
in  th e  im a g e  o f  th e  n a tu ra l m a p  H

°
(C. M *  T) —> 11 1 (C, M * ) . Then, the

extension defined by q

0 Cc Eq M 0

does not split, but the lifting

0 ---> (p* Eqç o *  M  - - - >  0

to  the normalization does.

F or the  proof of Theorem I, we shall make several preliminaries.
The following are  well-known :
(1.2) 1. The divisor Y=  P(F) v ia  in  X =  P(E) defines the tautological line

bundle e 
P ( E ) U )

 o f  E  which is denoted by L.
2. Since L ly i s  the tauotological line bundle of P(F) and F  is ample, there is a
positive integer m o su ch  th a t for ni >

1) The complete linear system of L ®  yields a birational morphism 4 , :  X

2) Om is isomorphic near Y.
See Theorem 4.2 in  Chapter III of [Ha].
Thus, O m i s  a  finite morphism if  a n d  on ly  if  Y  i s  am ple, namely, E  is

a m p le . Hereafter, let 4) be such a 4) and letX
Ix e (P(X)I dim 4) 1 (x ) > 11. T h e n ,  X   is at most a  finite subset and A  = (X 4,)
does not intersect with Y.

This notation A  will be used very often.
The above result immediately yields.

Proposition 1.3. U nder t h e  notation  o f  (1 .1 ) , assu m e  t h a t  E  i s  n o t
am p le . Then, we have

1) A  is not empty,
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2 )  PIA : A  ->S is a finite morphism.

Proof . 1 ) is obvious. Since p: X  - * S is a Pr + '-bundle and Y is a member of
the tautological line bundle of E , 2) is trivial by virtue of 2) of (1.2). q.e.d.

Next, we obtain

Proposition 1.4. L e t  F  b e  an  am ple vector bundle on a projectiv e variety
S. T h e n , a  vector bundle (9 s  e  F  h as  a  unique trivial quotient linebundle.

P ro o f . L e t  L  b e  a  t r iv ia l  quotient linebundle o f  (9s  (1) F (0: (9 sF
- ÷ L). Since F is ample, we infer that H

°
(S , F*) = 0 and hence, (/) is the projection

of e sF  to  Cs. q.e.d.

Applying this to our situation, we obtain

Proposition 1.5. U n d e r the n o t a t i o n  o f  ( 1 .1 ) ,  l e t  u s  a s s u m e  E
= Cs JO F . T h e n , A  (= 0 '(X 0 )) coincides with the unique section induced by the
direct summand (9s  o f  E.

P ro o f . Since P((9s )n P(F)  is empty, A  contains P((9s ). N ow  assume that
th e re  is  a n  irreducible component B  o f  A  w hich does not coincide w ith
P((9s ). Pick a closed curve B ' in B  such that B ' is not contained in P((9s ). Take
the normalisation g; B  - + B' and pull back the vector bundle E by gp on K. Then,
there are at least two sections of gp*(P(E)) which do  not intersect with gp*P(F),
namely one section induced by P((9s ) and another by B'. Hence, it follows that
gp*(E) (= g p * ( F ) )  has ano ther triv ia l quotient line bundle induced by
B'. N oting that g p * F is  ample, Proposition 1.4 leads u s  t o  a contradiction.
Thus we are done. q . e . d .

Particularly, when S  is  a  curve, we have

Proposition 1.6. Under the notation of  (1.1), le t  S  b e  a  curve. Then, the
following are equivalent to each other.

1) E  is not an am ple vector bundle.
2) A  is an  irreducible curve in P(E) such that

PIA A  -* S  is a finite surjective morphism and A  n P(F)= 4).
More precisely, for the normalisation of A  (g: A - * A ) and its induced bundle

map: #: P(gp*(E))-+ P(E), A  is equal to 4(P(0,4)). (Note that eA is a unique trivial
direct summand of gp*(E))

Moreover, assume that the characteristic of  the base f ield is zero. T hen , the
above two are equivalent to

2') For the normalization f: S  S  o f  S ,  
f *

 E is isomorphic to (Ps-CDP F .  (In
case that S  is sm ooth, f  m eans the identity)
Hence, the above 

P IA
 i n  2) is birational.

P ro o f . 2) im p lie s  1 ) obv iously . N ow  assum e 1). Then, w e have 2) by
virtue of 2) of Proposition 1.3 and the argument in Proposition 1.5. Finally in
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characteristic zero, it  is  trivial by virtue of Proposition 4.18. in [Fu]. q.e.d.

Before proving Theorem I, we show

Proposition 1.7. U nder th e  s itu atio n  o f  (1.1), assum e t h a t  E  i s  n o t
am ple. T hen, maintaining the notations in (1.2), w e have the following.

1) For every irreducible curve C on p(A ), p
-

'(C)n A  has only  one irreducible
component which is a  curve.

2) In  characteristic zero, p: A —> S is injective outsides at most f initely  many
p o in ts  o f  A . W hen S  is a norm al variety, P IA A —> S is surjective if  and only if  E
splits.

P ro o f . Take a  closed irreducible curve C  in  p (A ). Then since 9p ( E i c ) (1)
= (91,(E ) (14- i (C ) , we see that E i c  is  no t ample. This and Proposition 1.6 imply 1)
a n d  th e  first p a r t  o f  2 ) .  F o r  th e  remainder of 2), assum e th a t PIA : A --+ S is
surjective. Take a n  irreducible component A ' of A  such that p(A ') = S. Then
p: A ' —>S is a finite, birational morphism by 2) of Proposition 1.6 and therefore, an
isom orphism . Consequently it yields a section of p. Noting that A' n Y is empty,
we see that E  splits. q . e . d .

(1.8) Proof  of  T heorem  I. 1) obviously implies 2). 3) follows from 2). 3) gives
rise to 1) by Proposition 1.3 and Proposition 1.6. Similarly Proposition 1.6 yields
the equivalence between 1) and 3'). q . e . d .

Hereafter till §2, let us consider a  vector bundle E on S with the conditions in
(1.1) and an additional condition :
(1.9) fo r  every com ponent Ti o f  A  (see  2) of (1.2)), S  i s  a  closed
embedding. (in other words, E l p ( T i )C )  F i p ( T i ) .)

Remark 1.10. F or the  above vector bundle E  with (1.9), le t 9 :  C  S  be a
finite m orphism  from  a  curve C  t o  S. T hen i f  (p*E ( p * F ,  th e re  is  a
compoment Ti o f  A  such that 9(C)

N ow , le t us consider a  sufficient condition for E  to  satisfy the condition
1.9. First, we have

Proposition 1.11. L et E be a vector bundle on an irreducible, reduced curve S
enjoy ing (1.1). A ssum e E  is  g e n e rate d  b y  its  g lobal sections and it i s  n o t
am p le . Then E splits to (I s @ F .  Consequently, A  satisfies the condition 1.9.

P ro o f . First, by the  assumption that E  is globally generated :
N+1

(#) e  es E 0 (N  + 1 = dim H
°
(S, E))

t h e  r a t i o n a l  m a p  0 ,  in  ( 1 .2 )  defines a  m o r p h is m . L e t  X ,  b e  a  s e t
{x e 4  ,(X )Iclim ch - (x ) 11. Then, we have

C la im . 1. X , is not empty.
2. Every fiber of p : P(E) S  is linearly embedded via (/), in PN
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3. For each point h in  X  dim 4 j 1 (b) = 1. Moreover, (Pi-  (h) n p (s) for each
point s in  S is  one point.
4, There is a morphism f : S G r(N , r + 1 )  such that the exact sequence () is the
pull back of the following exact sequence via f

N+ 1

eG r(N ,r+  1) E(N, r + 1) 0,

w here  G r(N , r + 1) m eans the  G rassm ann  m anifo ld  parameterizing (r + 1)-
dimensional linear spaces in  P N  a n d  E(N , r + 1) the universal quotient bundle of
rank r + 2. ( W e  use the notations in §1 of [Ta])

Proof  of  C laim . Since E is not am ple , 0 , is no t a  finite morphism, which
yie lds 1 . Note that a  linear system of (9,„(1) which defines a morphism coindices
with the complete linear system. Since ep (E ) (1)1p _ i(s) "1- ( 9 p

-
 1 (s ) (

1 )  f o r  e v e r y  p o i n t  s

in S, 2 is obvious. When Y is an m ( > 2) dimensional subvariety in P(E), there is
a point s in S  such that dim p -  '(s)n Y  >  1 . Thus we get 3 by virtue o f 2 . T he
last assertion is  the universality of the Grassmann manifold.

Thus, for every point s in S, we can take P(E lp _ i (s )) as a linear subspace in P N

by  2  of Claim. To complete our proof, it suffices to show the following.

Sublemma. L e t Y  be a  subvariety in  Gr(N , r + 1) where we have the exact
sequence (4) in  4  o f  the  abov e C laim . A ssume that there is a poin t B  in  P N

contained in every (r + 1)-dimensional subspace P(& y )(y e Y). T hen, f , has a trivial
line bundle as a direct summand.

P ro o f  L e t  u s  c o n sid e r  th e  S c h u b e r t c y c le  Q  =  S 2 O,N — r,N — r + 1 ...... N ( B )

=  { X  E  Gr(N , r + 1)1B e Lx }  where Lx  i s  the  (r + 1)-dimensional subspace in  P N

corresponding to a  po in t x . N o te  that Q is isomorphic to Gr(N  —  1, r). Now it
is well-known that the (r + 2)-th Chern class Q' of is rationally equivalent to the
cy c le  tx  Gr(N , r + 1) IL.,  is contained in some hyperplane on P N I  ( Gr(N — 1,
r + 1)). Since the intersection Q • Q' is zero modulo the rational equivalence, the
(r + 2)-th Chern class of 6 1.0 is zero (see for example Lemma 1.3 in [Ta]). B y  the
assumption that 6'1,2 is globally generated, it has a trivial line bundle as a direct
sum m and. O n  the  o ther hand, Y is contained in  Q , which yields our desired
result. q . e . d .  for Sublemma.

T hus by  v irtue  of P roposition  1 .4 , P roposition  1 .5  and  4  of Claim, we
complete the proof of our proposition. q.e.d.

The above immediately gives rise to a  corollary.
Corollary 1.11.1. Let E be a vector bundle on S enjoying (1.1). Assume that

E  is generated by its global sections. Then, A  has the condition 1.9.

Remark 1.11.2. Under the condition (1.1), assume that 11 1 (S, (9s ) = O. T h e n
if F  is generated by its global sections, so is E.
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(1 .1 2 )  Let us give anothr condition which is equivalent to the conditions in
T h eo rem  I. F o r  a  curve C  o n  S , le t us consider the exact sequence :

(S) Ic es - - )
 (o c - 4  O ,

where l c  i s  the sheaf of ideals of C  in  S.
Tensoring F*  to ($), we have

0 -*  F *  C )  l c  - - *  F *  - * F * Ic,

which provides us with an exact sequence

(1.12.1) F* C)I c ) -* I-11 (S, F*) Hi(C, F * 10

Then we have the following

R em ark 1.13. A ssum e t h a t  E  en joys t h e  property (1.9). T h e n ,  each
condition in Theorem I  is equivalent to the following :
4) F or every curve C  o n  S, g c (a) does not vanish.

§. 2. Smooth varieties containing a projective bundle as an ample divisor

In the present section, let S  be a projective locally factorial surface and let us
maintain the notation F, E , and the assumption in (1.1), the natation in (1.2) and
the additional condition (1.9). Assume furthermore that a 0 O.

Then, our goal in  this section is  to  show Theorem II.

Remark 2.1. In the case where the base space is a  curve, Theorem II holds
good without any assumption. See Example 4.22 in  [Fu].

To measure the degree that E is near to an ample vector bundle, we introduce
a  notation :
(2,2) B(F, = tan irreducible, reduced curve C  in  S F c =  Cc  (j)

Then we obtain

Proposition 2.2.1. W e have
1) A  in  (1.2) contains every  curve C in B(F, a).
2) B(F, a) is  a f inite se t or an  empty set.
3) E ,  is a am ple if  and only  if  B (F, a) is empty.

P ro o f .  1) and  3 ) a re  obvious by the definition o f A  a n d  B (F, a) and the
condition (1.9). Assum e th a t  B(F, a )  i s  a n  infinite set. T h e n ,  dim A  = 2  by
Proposition 1.3. Thus, there  is a n  irreducible component Ti o f  A  w hich is a
surface . Since it yields a section of p, E  splits, which contradicts the assumption
a 0 O. q . e . d .

Now, we have the following sequence :
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F*(— C)) 111(S, F*) (C, Fjc ) .

(See 1.12.1). N ote tha t if C  is  in  B (F, a), g(a) = O.
Hence, we have a non-zero element a' in I-1 1 (S, F*( — C)) which goes to a by

hc ,  which provides us with a non-trivial extension of vector bundle :

(2.3) 0 Cs Ea, F(C) O.

Then, similarly to B(F, a) above, we investigate B(F(C), a') and, in particular, the
relation between them.

Now, let C ' be an irreducible smooth projective curve and cp : C' S  a  finite
morphism with dim (ço(C )n O. Then, by  the exact sequence :

0 F*( — C) F* --+ 0

we have the following exact sequence on C ':

0 (p* F*( — C ) --+ * F * *(F*) O.

This provides us with the following exact commutative diagram

(2.4) 111 (S, F * — I (S , F *) H (C, F rKc )

4D I g D

*F*( C)) (p*F*) cp*(F)) .

We obtain therefore

Proposition 2.5. L et a, a' and C , ço be as abov e . If cp* E does not split to
(j) (p*F, neither does ço*E a .

Moreover, we have

Corollary 2.6. Under the  sam e no tation  as in  2.3, w e assum e th at C  is
numerically effective. T h e n ,  we have
1) F(C) is an am ple vector bundle.
2) Ea , has the condition 1.9 and B(F(C), a') OE B(F, a).
3) Particularly  if  B (F(C), a') is em pty , E„, is ample.

P ro o f . Since  t h e  ten so r p ro d u c t o f  a n  a m p le  vec to r bund le  a n d  a
numerically effective line bundle is ample, w e have 1). 2) is obtained by using
Proposition 2.5 and 3) by  Proposition 2.2.1. q . e . d .

Hereafter we shall discuss a condition for B(F(C), a') to be a  proper subset of
B(F, a). First, we have a

Proposition 2.7. L et G be a vector bundle on a complete variety Z and D an
irreducible, reduced Cartier divisor on Z .  A ssume that D  is numerically effective
and G ID is am ple. Then, f or a vector bundle on Z, denoting e z ( m D )  b y  C(m),
we have
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(1) f o r every non-negative integer m, G(m) 1,  i s  an am ple vector bundle and
H ° (D, G*( — m) 1D)  vanishes.

(2) dim 111(Z, G*( — m)) is a monotone-decreasing function of
m (> 0). Hence, there is a positive integer mo such that for every integer m  ( > mo ),
dim H i (Z, G*(—  m)) is constant.

Suppose furtherm ore that H ° (Z, G*( — mD)) vanishes f o r all m  > O. Then, we
get

(3) H ° (hD, G*(— m) I h D )  vanishes f o r all h  > 1.

Proof . (1 ) is  trivial. Looking at the following exact sequence

0 G*( — m — 1) G*( — m) G*( — m) ID0  ,

we see that (1) implies (2).
Now, let gn i :11 1(Z, G*(— m — 1)) — > I-11 (Z, G*(— m)) be the canonical homo-

morphism induced by (#). N ote tha t g injective by (1).
L et us consider an exact sequence

G*( —  h) --0 G* ,

which gives rise to the exact sequence of cohomologies

H ° (Z, G*) H°(Z, Grch D ) 111(Z, G*( — h)) 111(Z, G*).

Then, since i can be factored to the product go i is injective, which
yields H

°
(Z, G D ) = 0 by virtue of the extra assumption. Finally, replacing G* by

G*(— m), we can prove (3). q.e.d.

Combining the above and 1.7, we get a  key result which implies vanishing of
the first cohomologies of some vector bundles.

Proposition 2.8. L e t  F  b e  an am ple vector bundle on a norm al projective
v ariety  Z  and D  an irreducible, reduced Cartier divisor on Z .  A ssume that D  is
numerically effective and there is a positive integer a such that dim  laD I>  1. Then,
in  characteristic z ero, there is an  integer mo such that f o r every  integer m  > mo ,
111(Z, F*( — mD)) = O.

P ro o f . Noting (2) in Proposition 2.7, assume that there is an  integer m o and a
p o sitiv e  co n stan t Q  s u c h  t h a t  f o r  every m  > m o d i m  111 (Z, F*(— mD))
= Q .  T hen , tak ing  a  n o n -ze ro  element a  i n  11 1 (Z , F*( —  mD))(m > mo ), we
consider the exact sequence :

0 F*((— m — a)D) F*(— mD) F* (— 0

where C A i s  a  m um ber in  laD l. It provides us with an exact sequence

(2.8.1) H
°
 (CA , F*(— mD) ic ,) —+ F*((— m — a)D)) 111 (Z, F*(— mD))

111 (C F*(—  mD)1c,)-
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Thus, since H ° (aD, F*(—  m D ) 1 , ,D )  =O  by (3) in Proposition 2.7, we infer that for
almost all elements C A in  I aD  H ° (C F*(—  m D) i c „,) = O. S in c e  i in (2.8.1) is an
isomorphism, j ( a )  vanishes, which sh o w s th e  f a c t  th a t  f o r  su c h  C ,  E at ic„,
=  F ( M D ) i  A , w h e r e  E  a  non-triv ia l ex tension  of vector bundles by
a. N o w , n o te  that F(mD) is ample and let X  be P(E Œ) and Y be P ( F ) .  Applying
(1.2) to X , Y and P(E„icd,), P(F(mD) icA ), we see that A n p -1 - (Ci ) contains the section
P ( 0 0  corresponding to trivial quotient line bundle Cc,. of E co cA  =  F ( m D ) 1 c , ,
by Proposition 1.5 and therefore, A (1.2) dominates Z  with respect to the canonical
projection : X Z .  Hence, from 2) in Proposition 1.7, it follows that E„ splits to
(9 (Di F(mD), which contradicts the assumption that Q is  positive. q.e.d.

(2 .9 ) Now, let us maintain the notation in (1.1) and assume the condition
1.9. Moreover suppose th a t  C  is  in  B(F, a)  such that there exists a positive
integer a  with dim I aC1 > 1. Then note tha t C  is numerically effective.

Consider the exact sequence of cohomologies:

11 1(S, F*(— m — 1)C) —-+ F*(— mC)) 111(C, F*(—  rnnic)

induced by the exact sequence:

0 ---+ F*((— m — 1)C) F*(— mC) F*(— mC) IcO .

Then, we have

Proposition 2.9. Under the above situation 2.9, assume that the characteristic
of the base field is zero. T hen there is a positive integer t and a non-zero element a,
in 11 1 (S, F*(—  tC)) satisfying the following:

i) a = 1 h ho) (a t)
ii) k i t i c  0 (9 C) F(tC), where E„, is a  vector bundle defined by a,.

P ro o f . Take an element a, e 11 1 (S, F*(—  C)) such that h o (a i ) = a and go(c)
=  0  by the condition. Now consider two cases

(2.9.1) g (u ,) o o
(2.9.2) g  ( a l) = O.

In  the  first case , a , is what we want.
In the latter case taking the same procedure as above, we can take a non-zero

elem ent a2 eH 1 (S, F*(—  2 C ))  s u c h  th a t  h 1 (a 2 ) =- a,. O n  t h e  o th e r  hand,
Proposition 2.8 says that such procedure must terminate, which implies that there
are  elements o-

i  (1 < j  t  — 1) in  H l (S , F*(—  jC)) such  tha t hi (ai + ,) =  o-
i  a n d

gi (o-,) 0 O. T h u s  w e  are done. q . e . d .

Proof  o f  Theorem II. By the assumption (2), (3) and  Remark 1.11.2, E , is
generated by its global sections. Thus, the vector bundle satisfies the condition
1.9 by Corollary 1.11.1 Thus, the descending induction on the order of ../3(F, a)
proves Theorem II by Corollary 2.6 and Proposition 2.9.1. q . e . d .
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Example 2.10. L et us consider a  vector bundle F  o n  a  smooth projective
surface S enjoying conditions and assumptions in Theorem II. Then P(F) can be
contained in a smooth projective variety as an ample d iv iso r . Compare Example
4.21 in  [Fu].

Remark 2.11. G iven a projective variety  Y, w e can alw ays construct a
projective variety X  containing Y  as an am ple divisor if  w e allow  X  to  have
singularities. F o r  example, we embed Y  in  a  p ro je c tiv e  space P N  b y  a  very
ample line bundle of Y and make a  cone X  p N + 1 )  yD  Y and a point outsides
P N . Then, X  is  a  desired o n e . B u t  there a re  several projective varieties that
cannot be ample in any sm ooth projective variety (See [S o], [Fu])

A s a  corollary to Theorem II we have the following

Corollary 2.12. Under the sanie conditions as in Theorem II, let us assume that
for every  curve C on S, dim I C > 1 (e. g. P 2 )  and m oreover, that dim I-11 (S, F*)
=  1 .  Then, a vector bundle E a  defined by a non-zero elem ent a in I-11 (S, F*) is an
ample vector bundle. (e. g. S = P 2 an d  F = Tp2)

Pro o f . Assume that Ea is not am ple. Then, by the assumption and Remark
2.2.1, B(F, a) is not em pty. Take an  irreducible, reduced curve C in B(F, a). As
shown in (2.2), there is an non-zero element a' in H 1 (S, F*(— C)) such that hc (o- ')
=  a  w h e r e  tic : F*( — C)) ( S ,  F * )  is a  canonical homomorphism
(2.2). S in c e  Ea  splits on almost all C i t i n  CI, E a splits to (9 C) F in the same way
as in Proposition 2.8. Namely, a  is the zero element, which gives a contradiction.

q.e.d.

§.3. A sequence of ample divisors

First we need the following

Proposition 3.1. L e t B  be a sm ooth  am ple div isor in a  sm ooth projective
variety  X  and it  B  T  a Pr-bundle over a  sm ooth variety . Then,
i) When r > 2, n is extended to a Pr + 1 -bundle (1): X T  with dim  T< r + 1 and B
is the tautological line bundle in X  with respect to  4). Nam ely , there is an exact
sequence o f  vector bundles on  T:

such that P (M )=  X , P (N )=  B  and M  is ample.
ii) Let r  =  1 . Assume that T is a curve but B is not isomorphic to 13 1  x  P 1 o r that
T  is  a  surface w hich is neither P 2 n o r  a  surface of  general ty pe w ith p, = q
=  0 .  Then, the same conclusion as in i) abov e holds. I f  T = P 2 , then X is a P 2 -
bundle over P 2 unless B = p l  x  p 2 .

H)' . In  case of  T = P '  (n 3 ) ,  B = P 1 x  P "  and X  is  a P '-b u n d le  over P l .

See [S o], [Fa + S a + S o], [Sa + S p] and  [Sa].
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Thus we can restate Problem 2) in  terms of vector bundles.

Proposition 3.2. Under the condition in Problem 2 , we have
1) When r > 2, A i is a Pr + i - l -bundle over S. F o r  each i, there is an ample vector
bundle E. o f  rank (r + i), a  line bundle L i o n  S and an ex act sequence

0 ---> - -> E , - - -> E i _ i ® L i _ i --->0

such that P(E i) = A i .
2) W hen r = 1, w e assum e that S  is  a surface w hich is neither P 2  n o r one of
general type with pg  q  =  0  or that in case of  S = P 2 , B is not isomorphic to P l

X P 2 . Then, the sam e conclusion as above 1) holds. 1

2)' I f  r = 1 and S = P' (n
x  p n .

3), then A iP 1

Taking Proposition 3.2 into account, le t us consider Problem 2).
(3.3) First, le t  u s  study a  sequence of couples of vector bundles E. a n d  line
bundles L i on  a  smooth projective variety S (dim S > 2) such that for each integer
i 1), they enjoy the following
0 ) ra n k E = r + i.
1) Pic S  ZL, where Lis a m p le . Hence, L i can be written in a form O a t  with ai

a n  integer.
2) There is an exact sequence :

0 Os -->  E i --÷  E i _ 1 0  L i _ 1 ( =

3) E i i s  ample for 1  and L, =  (9s  ( a  = 0).

Then, we show

Theorem 3.4. Under the above condition (3.3), let us assume that r is positive
and I-11 (S, M ) vanishes f o r all line bundles M  o n  S . T h e n , th e  above sequence
terminates.

P ro o f . The sequence 2) in (3.3) can be described a s  follows:
111 Tri

e  ( 9 s OE ai ) Em(am) --+ E E .
i=2j  = i i = 1

Letting bi =  E a;  w ith b o  = 0, we reformulate the above in  the  following form :
i=

m-1
0 ,C) s (bm  — bi ) Em(am) E i (bm )0 .

i=1

Here, recall that E l (bm )  is  ample.
Now assume the existence of an infinite sequence {E m }.
Then we obtain

C laim . B = {b„In E NI is bounded.

P ro o f . Dualizing the above sequence * m , w e have
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1
0 — b m ) - - ÷ — am )  - -+ s(b  —  b) ( = N )--+ O .

Note that the first cohomology of the above quotient vector bundle vanishes by
our assum ption. On the other hand, since Em + 1  is  ample, the exact sequence in 2)
of (3.3) does not split and therefore, H 1(S, E m*(— am )) does not vanish. Thus, B is
bound by Serre's vanishing Theorem and Serre's duality.

F rom  now  o n , w e  show  th a t  th e  above claim  yields two results which
contradict each other.

First, the Claim implies dim H i  (S, — bm )) is bounded when m runs over
every positive integer m . O n  th e  other hand since E m (am )  is  ample H ° (S, E n ,*
( — am )) = O. T h u s  d im  H ° (S, N m ) m u s t  b e  b o u n d e d  a s  a  fu n c tio n  of
m .  Secondarily, we can take an integer b such that the cardinarity of U = {ml bm

= b}  is not finite by the above argum ent. It follows that dim H ° (S, N m ) is not
bounded when m ranges over U , which is a  contrad ic tion . Thus we are done.

q.e.d.

The above gives rise to a  corollary.

Corollary 3.5. Let our condition be as in (3.3). A ssume that there is a smooth
subv ariety  T  in  S  such that T  satisf ies the sam e assum ption a s  S  in  Theorem
3.4. Then, the sequence A i terminates.

N ote tha t a restriction of an ample vector bundle to a  closed subvariety is
ample.

Remark 3.6. If S  is a  generic smooth surface of the degree r ( > 4) in P 3 o r
an n ( > 3)-dimensional complete intersection, then the condition 1) of (3.3) and the
assumption in  Theorem 3.4 are satisfied.

Proof  o f  Theorem IR. 1) a n d  2 )  a re  obvious by virtue o f  i)  an d  ii)  o f
Proposition 3.1 and Theorem  3.4. N ext, le t us consider 2)'.

Taking 2) and 2)' in Proposition 3.2 into account, it suffices to consider the
case where A 1 =  P n x  P 1 an d  to construct an exact sequence of vector bundles of

r+1
o - * (90 16 (9(r + 1) O.

For this purpose, take (r + 1) points A 1 ,..., A r + i  in  P l and let si be a section
of H ° (P 1, (9(r)) such that si (A i ) =  0  for every j i. Then s l , sr + 1  a re  a  basis
of H ° (/31 , (9(r)). Now let a non-zero section of (9 correspond to (s l , ,  r  1 ) in
r+1

(9(r). Then we see easily that i  is  an injection as an vector bundle. Hence,
we have only  to  show

C laim . Coker (i) = (I) (9(r + 1).
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Proof . L etting E ' the left-hand side of the above, we see E' = C) C(b i ) with
b, < b 2 < < b r a n d  r < b 1 . Now, assume tha t b, = r.

Then, the exact sequence
r+  1

O - - +  6 )C ( r ) E ' — 4  0

provides us with another exact sequence

0 (I) (9(r) C) ( (b i)
i= 2

which contradicts the property that. . . . . sr , , form a basis of
H ° (P 1, (0(r)). Therefore, we infer that hi = r + 1, since O E ')  = r(r + 1). This
completes the proof of our claim  and then Theorem III is proved. q.e.d.

(3 .7 )  We notice that the infinite sequence {A i } in the final case of Theorem
III is essentially the  one  in  case  o f dim S  = 1. Therefore, le t  u s  give another
example in  an  n  ( > 2)-dimensional case.

Let C  be a  smooth complete curve of genus g. Then, fixing a point p o in  C,

the correspondance Cm D (p i , . . . ,  pm ) ( . . . ,  E s P j W ,  . . . )  gives rise to a  canonical
i =

morphism am  : Sm(C) J ( C )  from m-fold symmetric product of C  to  the jacobian
variety of C , where w.(1 < i < g) is a  basis of H 1(C, (9 c ). It is well-known that if
m > 2g —  1, am  i s  a  Pm + 1 - g -bundle over J(C).

Moreover we have the following diagram :

Cm Sm(C) J (C)

flm I Y m i
C 4 ' S m  ±  ( C )

where flm  is a morphism defined by (p i , . . . ,  pm ) (p i , , pm , pm +  i ) and it naturally
yields ym .

Then we have
Proposition 3.8. L e ttin g  A,„ = Sm + r(C), A m  i s  a n  a m p le  d iv iso r in

A m + i . Thus, there is an  infinite sequence {A i }  satisfying condition in  Problem 2).

Pro o f . When we consider t h e  m orphism  qi : C m  C m ' defined by
P.) = (P i , -  ,  p i-1 , Po , Pi , • ,  Pm ), we see that s m +  ,(q i (Cm)) = Tm (Sm(C))

f o r  every j. O n  t h e  o th e r  hand , it i s  e a s y  t o  check  th a t  th e  u n io n  o f
qi (C m )(0 j  m) is ample in Cm + 1  by Nakai's criterion. Thus, since s m is a finite
morphism, we get the desired result. q . e . d .
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