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Indefinite Uhler metrics

of constant holomorphic sectional curvature

By

Shigeyoshi FUJIMURA

§ 1. Introduction

Let (M, g ) b e  a  connected (indefinite) Riemannian manifold of dimension
n ( >  1). From the well-known fact that a  Riemannian manifold (M, g) of constant
curvature is conformally flat, making use of a conformal change of a Euclidean
metric, the following theorem was obtained :

Theorem A ([3 ; §27]). L et (M , g) be  an  indefinite Riemannian manifold of
dimension n (>  1 )  and of  index  m . If  (M , g) is of  constant curvature K ,  then each
point of  M  has a coordinate neighborhood {U  ; x ,•••  , x n}  in which the components
g p q (p , q  =  n )  of  g  are  given by

E

g1,9
P

6
Pq

2 (not summed f o r p ) ,
n 

1 —  E  c r ( X r) 2 }

4  r = 1

where e t =  —  1  o r 1  according as  t m  or t >  m.

Concerning the  fac t tha t a  Riemannian manifold of constant curvature is
projectively flat (cf. [4; §34]), the following result is known :

Theorem B  (cf. [3 ; § 27], [16; §3 in Chapter V ] ) .  Let (M , g) be a Riemannian
manifold of dimension n ( >  1 ) .  If  (M , g) is of constant curvature K ,  then each point
of  M  has a  coordinate neighborhood III ; x 1 ,••• , x"} in  which the components g p q

(p , q  = 1 ,• • •  ,n )  of  g  are  given by

11 K ( x r) 2 }  p q KX` X q

r = 1

K  E  ( x r )212

r = 1

Let g ' be another indefinite Riemannian metric on (M, g). When the Levi-
Civita connection induced from g  is projectively related to that induced from g',
the  metric g  is called a projective change of g'. The local expression of g  in
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Theorem B  has been given w ithout m aking use of a projective change of a
Euclidean m etric. O n  th e  o the r hand, T . L evi-C ivita  [18], L . P. Eisenhart
([3], [4]), B . K agan [15] and  other authors ([17], [25]) investigated projective
changes of (indefinite) Riemannian metrics and  obtained interesting results. In
particular, B. Kagan proved the following theorem :

Theorem C  ( [1 5 ]) . Let (Ra, g o ) be a Euclidean space of dimension n(> 1) with
the canonical Riemannian metric g o . I f  an  indefinite Riemannian metric g  is  a
projective change of go , then in terms of  the natural coordinate system x 1 , • • • , xn of
R , th e  components g p q  (p, q = 1,—  . n) o f  g  are  locally expressed by

(a)

(b)

1 ( a2 0a o )
g  P q  =  40 2 124) OxPexq OxP 0.xq

1 a2 (
g 2 t /  i  O x P ax q)

for , O,

f o r  K  = 0,

where K  is  the constant curvature of  g and 4) (resp. IP) is a  quadratic polynomial
(resp. a linear polynomial) of x 1 ,••• , xn.

Theorem  C  im p lie s  th a t a n  indefinite R iem annian m etric of constant
curvature has the local components expressed by (a) or (b) in Theorem C, which
contain the local expressions of g  in  Theorem B  a s  a  special case.

By making use of projective changes of a Finsler metric, M. Matsumoto [19]
studied a projectively flat Finsler space of constant curvature and obtained some
interesting results. And by restricting his consideration to the case of Riemannian
manifolds, he showed the local expression (a) in Theorem C.

For the complex case, S. Bochner [2] and other authors ([5], [11], [12] ; see
[16; Chapter IX]) investigated Kdhler metrics of constant holomorphic sectional
curvature, T . O tsuki and Y . Tashiro [20] studied a holomorphically projective
change of a Kdhler metric (for the definition, see §2 in this paper), and thereafter
several authors ([9], [10], [13], [14], [21], [22], [23], [24], [27]) obtained many
interesting results. A n d  in  these directions, the following theorems a r e  well
known :

Theorem D ([2]). L et (M , J, g) b e  a K iih ler m anifold o f  re al dimension
2n(> 2) and of  constant holomorphic sectional curvature K. Then each point of
M  has a  real coordinate neighborhood fU ; x ',•-• , x 2 "1 in  which the components
g i i (i, j = 1, • • • , 2n) o f  g  are  expressed by

2n a2f
=  E (67 (511 + J J )  

a,b = 1 j  aXa aX b '

where f  is given by

f =
 1  l o g  { 1K (xi)2}

K 2 i = i

f o r  , O,
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1 2n
f= —A E oci)2

i =
f o r  K = 0 ,

and J.( m ean the components o f  J such that 6 n , J7 =  6 i i .

Theorem E ([9], [20], [24]). L et (M , J, g )  b e  a K ahler m anif o ld  o f  real
dimension 2n ( > 2). The following conditions are equivalent:
(a) (M, J, g) is of  constant holomorphic sectional curvature.
(b) The holomorphically projective curvature tensor of (M, J,  g )  vanishes.
(c) ( M ,  J ,  g )  is holomorphically projectively flat.

From Theorems C and E, we can surmise that Theorem D is directly obtained
by making use of a holomorphically projective change of a complex Euclidean
metric.

Recently, M . Barros and A. Romero [1] investigated an  indefinite Kdhler
manifold of constant holomorphic sectional curvature, a n d  in  particular they
mentioned the classification of complete and simply-connected indefinite Kdhler
manifolds of constant holomorphic sectional curvature. But they did not show
the local expression of such metrics except an indefinite complex Euclidean metric.

And for the contact case, the present author considered a CHP-change g  of
the contact Riemannian metric o f  a  K -c o n ta c t  Riemannian manifold and
determined such a  metric g  without a condition for curvature ([6], [7], [8]).

The main purpose of this paper is to write down explicitly all holomorphically
projective changes of a complex Euclidean metric in  term s o f  th e  natural
coordinates. Consequently, we can obtain the local expression of an indefinite
Kdhler metric of constant holom orphic sectional curvature, which is the
generalization of Bochner's Theorem  D. And by virtue of the similar method, we
can show the generalization of Theorem B.

Throughout this paper, we assume that all objects under consideration are
differentiable of class C  and all manifolds are connected. And, unless otherwise
stated, indices {a, b, c, d, h, i, j, k } , 1p, q, r, sl and {a, )6, y} run over the ranges
{1, • • , 2n}, {1, • • • , n} and {2, • • • , n} respectively, a n d  w e  u se  th e  summation
convention.

The present author would like to express h is gratitude to Professors M.
Matsumoto and S. Takizawa for their valuable suggestions and encouragement.

§ 2. Holomorphically projective changes

Let (M, J, g) be an indefinite Kdhler manifold of real dimension 2n( > 2) and
of index 2 m . Then there exists an orthonormal base {e 1 , • • • , e2 } with respect to g
for the tangent space Tx (M ) at each point x e M such that

n+ m  2 n

g(X , Y) = — E x ,  +  E  xP y P  —  E  x P  +  E  x ,  r
p = 1 p = m + 1 p = n + 1 p = n + m + 1

for any X  = X e 1, Y  = re i e T (M ), and its metric g  and its complex structure J
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satisfy

V g = 0, Vx  Y — Vy X — [X , Y ] =0

j 2 =  -  I, g(J X , JY ) = g(X , Y ), V J = O,

for any X , Y e X(M), where we denote by I, V  and X(M) the identity tensor, the
Levi-Civita connection induced from  g  a n d  th e  s e t  o f  vector fie lds on  M
respectively (cf. [1]).

A curve x(t) on (M, J, g) is called a  holomorphically planar curve with respect
to  V  if x(t) satisfies the differential equation

17 (0 .ic(t) = a(t).i(t) + Nt) .c(t)

for certain functions a and fl of a real parameter t, where ic(t) is the tangent vector
of x(t). Let g ' be another indefinite Kdhler metric on (M, J )  and  V ' the  Levi-
Civita connection induced from g'. If V and V' have all of their holomorphically
planar curves in  common, then g  is called a  holomorphically projective change,
briefly an HP-change, of g'. As is well known (cf. [23], [24]), g is an HP-change
of g ' if and only if there exists a  1-form P  o n  M  satisfying

(2.1) V , Y  =  'x  Y + P(X )Y  + P(Y )X  —  P(J X ) JY  —  P(J Y ) J X

for any X , Ye X(M). We can easily see that the 1-form P in (2.1) is equal to the
differential df  of a certain function f  on M  and an  indefinite Hermitian metric g
satisfying (2.1) is Kdhlerian. In  this case, when we denote by K  (resp. K ') the
curvature tensor of g  (resp. g'), we have

(2.2) K(X , Y )Z = K'(X , Y )Z —  P(Y , Z)X  + P(X , Z)Y  + P(Y , JZ)J X

— P(X, JZ )JY  — IP(X, JY ) — 13 (Y, J X )}  JZ,

and when we denote by R  (resp. R ') the  Ricci tensor of g  (resp. g'), we have

(2.3) R(X , Y ) = R '(X , Y ) —  2nP(X , Y ) —  2P(JX , JY ),

where we put

/3 (X , Y) = P(Y, X ) = (V:13 )Y  —  P(X )P(Y )+ P(J X ) P(J Y).

O n the  other hand, since g  and g ' are Kdhlerian, we have

(2.4) R (X , JY ) + R (JX , Y) = 0, R '(X , JY ) + R '(J X, Y) = 0

(for the definite case, see [26; p.71]). From (2.3) and (2.4), we have

(2.5) 1.5(X , JY )+ 13 (JX , Y ) = 0,

(2.6) R  = R ' — 2(n + 1)P.

Thus, from (2.2), (2.5) and (2.6), we see that the following tensor field H is invariant
under an  HP-change :
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H(X , Y )Z  = K (X , Y )Z
1
IR (Y , Z )X  —  R (X , Z )Y

2(n + 1)

— R(Y , JZ) J X  + R(X  , JZ) J Y  + 2R(X , J Y ) J Z} .

W e call such a  tensor field H  the holomorphically projective curvature tensor.
A n  indefinite K dhler m anifold (M , J, g )  is s a i d  t o  b e  holomorphically

projectively flat when, for each point x e M, there exist a  neighborhood V of x and
a n  indefinite flat Kdhler metric g ' o n  V such that g  is  an H P-change of g ' on
V. I n  t h i s  case , the  ho lom orph ica lly  p ro jec tive  c u rv a tu re  te n so r  o f  g
vanishes. Conversely, if the holomorphically projective curvature tensor of an
indefinite Kdhler manifold (M , J, g) vanishes, then for each point x e M, there exist
a  neighborhood V' of x and a flat symmetric affine connection V' o n  V' such that
V ' J = 0 and the Levi-Civita connection V induced from g is an HP-change of V',
that is, V and V' satisfy (2.1) (cf. [24]). Thus there exist a  neighborhood V of x in
V' and an indefinite flat Riemannian metric g' on  V whose Levi-Civita connection
co inc ides w ith  V ' (cf. [4 ; § 29]), a n d  w e  c a n  c h o o s e  a s  g '  a  Hermitian
metric. Therefore g  is locally an HP-change of g ' and (M , J, g ) is holomorphi-
cally projectively flat.

A 2-plane it in the tangent space Tx (M ) at x e M is said to be holomorphic if
J it n ,  and non-degenerate with respect to g if it h a s  a  base {X 1 , X 2 } satisfying

g(X ,, X  ,)g(X 2 , X 2 ) — g(X ,, X 2 )2  O .

F o r  each holom orphic non-degenerate 2-plane i t  c  T ( M ) ,  its holomorphic
sectional curvature p(n) is defined by

g(K (X , JX )JX , X)
P(n) g(X , X ) 2

for a vector X  en such that g(X , X) O .  When p  is constant for all holomorphic
non-degenerate 2-planes in Tx (M ) at each point x e M , (M , J, g ) is said to be of
constant holomorphic sectional curvature. As is well known (cf. [1]), the curvature
tensor K  of (M, J, g ) of constant holomorphic sectional curvature K  is expressed
by

(2.7) K(X , Y )Z = —
4  

Ig(Y, Z )X  — g(X , Z)Y

—  g(Y , JZ)JX  + g(X , JZ)JY  + 2g(X , JY ).1Z1

for any X, Y, Z eX (M ), and  from which, it follows that (M , J. g ) is  an Einstein
space whose Ricci tensor R is given by

(2.8)
n + 1

R = Kg .
2

And it is easily seen that (M , J, g) is of constant holomorphic sectional curvature
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if  and  only if (M , J, g) has the  vanishing holomorphically projective curvature
tensor.

From the argument above, we can obtain the indefinite analogue of Theorem
E:

Proposition 1. Let (M, J, g) be an indefinite Keihler manifold of real dimension
2n(> 2). Then the following conditions are equivalent:
(a) (M, J, g ) is of constant holomorphic sectional curvature.
(b) The holomorphically projective curvature tensor of (M, J, g )  vanishes.
(c) ( M , J,  g ) is holomorphically projectively flat.

§ 3. The condition for the existence of holomorphically projective changes

Let (M, J, g') be an indefinite U h le r  manifold of real dimension 2n ( > 2) and
of index 2m , and assum e that (M, J,  g ')  is  of constant holomorphic sectional
curvature K'.

When we take a  real-valued function f  on M , we shall consider an indefinite
Kdhler metric g  which is an HP-change of g ' satisfying (2.1) fo r the  1-form P
=  d f .  Then it follow s from  Proposition 1 th a t g  is  of constant holomorphic
sectional curvature. And from (2.1) we have

(3.1) (Fx g)(Y, Z) = 2P(X )g(Y , Z) + P(Y )g(X , Z)

+ P(Z )g(X , Y ) —  P(JY )g(JX , Z) —  P(JZ)g(J X , Y)

for any X , Y, Z e X(M), where we denote by V ' the Levi-Civita connection induced
from g'. The integrability condition of (3.1) is given by

(3.2) g(K'(X , Y )Z, W ) + g(K'(X , Y )W , Z)

= P( Y, Z)g(X, W) — 13 (X, Z)g(Y , W) — 13 (Y  , JZ)g(J X , W )

+ P(X, JZ)g(JY , W ) + 13 (Y , W)g(X, Z) — 13 (X , W )g(Y , Z)

— 13 (Y , JW )g(JX , Z )+ 13 (X , JW )g(JY , Z),

where we denote by K ' the curvature tensor of g'. From (2.5), (2.7) and (3.2), we
have

(3.3)

where we denote by {e1 , ••• , e,„} and [g ii] the local frame and the inverse matrix
of the matrix [g(e i , e.)] respectively, and  we put

1 ..
= —

2 n

e  113 (e1, e.) — —

K  

gi(e i , e )} .
4

Covariantly derivating (3.3) and  using (2.5), (3.1) and (3.3), we have
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X 'fi • g(Y , Z) = (Vjr03  — P)Z — 2P(X)(FI,P)Z — 2P(Y)(17d3 )X

—2P(Z) (17 P)Y  4P (X )P (Y )P (Z )

±  71 { 2 0 Y , Z )P (X ) g'(X , Z)P(Y ) + g'(X , Y )P(Z)
le

— g'(JX , Y )P(JZ ) —  g'(JX , Z )P(JY )}  ,

from which, we have

X f3 • g(Y, Z) — • g(X , Z) = (K '(X , Y )P)Z + P(K '(X , Y )Z) = O.

Hence we see that /5 is co n stan t. In  this case, from (2.6), (2.8) and (3.3), — 4i5 is
equal to the constant holomorphic sectional curvature K of g. Therefore, we can
obtain

Proposition 2. Let (M , J, g') be an indefinite Kahler manifold of real dimension
2n(> 2) and of  constant holom orphic sectional curvature K', a n d  f  a  real-valued
function on M . A ssum e that there exists a holomorphically projective change g of g'
defined by (2.1) f o r th e  1-form  P = df .
(a) If  the constant holomorphic sectional curvature K of  g does not vanish, then g
and P satisfy

(3.4) g(X , Y ) = —
4  

g'(X, Y ) — (VP)Y+ P(X)P(Y) — P(J X)P(JY) ,
4

(3.5) (17/31) J Y + ([703 ) X = 2P(X)P( Y) + 2P( J X)P(Y) ,

(3.6) (r7W d 3  17ViYP)Z

2P(X) (f7 P)Z + 2P (Y) (f7“))X + 2P (Z) (F7J') Y

— 4P (X)P(Y)P(Z) — —
4  

12,0 Y , Z )P (X ) g'(X , Z)P(Y )

+ g' (X , Y )P(Z) — g'( J X , Y )P(JZ) —  g'( J X  , Z)P( JY )}  ,

(b) f  K vanishes, then g  an d  P satisfy

(3.7) (F7 .;,g)(Y, Z) = 2P(X )g(Y , Z) + P(Y )g(X , Z)

+ P(Z )g(X , Y ) —  P(JY )g(JX , Z ) —  P(JZ)g(JX , Y ),

(3.8) (VP)Y— P(X)P(Y) P( J X)P( Y) — —
4

g'(X , Y ) = 0

f o r any  X , Y , Z e X (M), w here V ' is the Levi-Civita connection induced from g'.

§ 4. Holomorphically projective changes of an indefinite complex Euclidean metric

Let R 2 n be the real vector space of 2n-tuples of real numbers [x i]  and Cn the
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complex vector space of n-tuples of complex numbers [ zP]. From  now  o n  we
identify R 2 n  w ith  C" by the correspondence

[e] =
[

x i  + .\/— ixT

X n ± .  — 1.XF

where xP =  x " " .  W e denote by (R 2 ", J o , g 2 s )  a  complex vector space R2 " ---- C"
endowed with the  canonical complex structure J ,  and  the  canonical indefinite
complex Euclidean metric g 2 s  o f  in d e x  2 s , a n d  c a ll  i t  a n  indefinite complex
Euclidean space of index 2s. Then. (R 2 ", Jo , g 2 s ) is of zero holomorphic sectional
curvature, and in terms of the natural coordinate system x', — • , X2 n  of R 2 n, J o and
g 2 s  have  the  following matrix representations :

— Is O 0

[ 0 i„ iO I„_ s

Jo
 —  Lin0

g2
  = 0 0 — I s0

0 0 0I _ -

where I p i s  a n  identity matrix of degree p.
W e denote by g i i  t h e  components o f  a n  indefinite Hermitian metric g  on

(R 2 ", J o , g 2 s ) in x', • • • , x' and by G = [G pq] the Hermitian matrix defined by G pq

= g p q  + g

Assume that the differential P = df  of a  real-valued function f  on (R 2 , g 2 ,)
and an  indefinite Hermitian metric g  satisfy (a) or (b) in Proposition 2.

(1) The case where K x2nis not z e ro . In  terms of x', • • • , (3.6) is rewritten as
the system of differential equations

3
3f 2 (  o f  0 . 2f  +  o f  a  2f a f  a 2f 2  a f  a f

(4.1)
ax i ax'ax kO x l  O x ' a x ka x i  Oxk ex i O x k ax iax , a x i axk)

When we pu t 4) = + exp( —  2f), from (4.1), we obtain

03 (/)  =  .aXi aXk

Thus, we have

= A i i x i x i + 2A i xi +  A ,

w here Au ( =  A i i ), A i a n d  A  a r e  re a l constan ts. Therefore, from  (3.4), the
components gi i  o f  g  are given by

(4.2) gii = 
 4  

2 14)Ai i — (676,i + J,i )(A a c x` + A a )(A„„x d  + A b )}

where '2n =  [ ii ] ,  and J i
i  a re  th e  components of J o .

O n  th e  other hand, from  (3.4) and  (3.5), w e see  that g  is Herm itian and
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A a b  7.111 =  A u .  Therefore, from (4.2), the components gi ; o f  g  are expressed by

(4.3) = 076 ,  +  f7 a ) c aaa2)ch lo g  14)1
)  '

where, f o r  a  scalar f ,  I f  m eans its absolute v a lu e . In  term s o f  th e  natural
complex coordinate system z1, ..• , zn in  C" = R 2", we have

=  p q g  Z qp g  7 1 p Z P  +  A,

4 —
(4.4) G p q  =  2 {4 )24  pq - (A p r zr + A p )(A q s fs + Aq )}

a2
afPazq

(.4— l o g  14 )1 )

where 171 pq = A pq 1 Ap-q , Â p = A p + —1A f r a n d ,  f o r  a  complex-valued
quantity Q, means its conjugate.

(2) T h e  c a se  w here K  i s  z e r o .  I n  th is  case , using  x 1, , _ 2nx , (3 .8 ) is
expressed by the system of differential equations

from which, we have

a2f
axi ax i

af O f b  af a f
axi ax i j i  ax . ax b'

a 2f a f  o f o f   3f a2f

axPaxq ax P  ax q ayP ayq —a y P a y q '
(4.5)

a2f afO f  a ie5 2f
axPayq a x P  a y q  a y P  axq a y P a xq '

af
Pwhere y  —  x . W h e n  w e  p u t  hp  = 2  w e  s e e  f r o m  (4.5) t h a t  hp  a r eP

ZP

holomorphic with respect to  zP = xP + — 1 y" and  satisfy

ah
P  =  h  hazq P

from which, we have

(4.6) h
Bp

P  =
Bq zq + B

where /3p  a n d  È  are complex constan ts . From  (4.6), we get

f =  — logli3p zP + .

If [F3 p ]  vanishes, then g  is affinely related to g2 s , and the components gi ; o f g
and  G p q  are given by



10H p q  

OH p q

Our

avr

iip H rq  +  fig Hp r  +  2 a
af,. H pq

— 1(hp H r q  —  q 1-1pr ) + 2 —

O f  
pq

H  p q  = Fiq p

(4.8)
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(4.7) g = (67 611 + J b.) a2( 41
J a x a  x b 4

a2
G  =  4),

P q a Z q

where 4) is  the quadratic polynomial used in (1).
Assume that [B p ] does not vanish and let us consider the complex coordinate

transformation [zP] [wP] such that wP = qzq +  C P , [CO e G L (n, C ), C  =
and CP = 6P1 13. When we denote by [ D ]  the inverse matrix of [CO and put H pq

=  G  „  D rp D sq  and rzp  =  hc/D1„ from G pq =  q p  and (3.7), we have

where wP = uP + — 1 VP. Since f  is dependent only on  u1 a n d  t)1 ,  we see that
iiŒ (oc =  2, • • • , n) vanish and, from (4.8), we have

2u 1O H al3 _
a u l =  ( 0 2 + (v 1)2 H Œpn' a v l (u1)2 +  (v 1)2 

H O

OH43
OH

=  œ f j  — 0 ,
au 0 0

from which, Ho  are  given by

(4.9) H  —
œfl

where Eo  are complex constants and Eorp =  EflOE . Similarly, using (4.8) and (4.9),
we have

HOE,  =

H 1 1 =

114'114 
( E

2'9
0  —

w
114 (E«p( 0 —  E OEW — EOEw2 +  E ),

where EŒ are  complex constants and E  is a  real constant. When we put

{ 7 1 p q  =  E a f lC a p C , ;4.  p = — EOECŒp ,  A =  E,

(4.12) = ii p q fPzq + ;a"  + ;Lip zP + A ,

=1w 1 12 = I13„z P + 1312
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from (4.9), (4.10) and (4.11), we obtain

1 {aAp q  —  s fs i i ) ( 2  f +  ) Bpr P

(13 sZs + 13)13 p(1- „fr 2q) ± 013

=  
0

2

 ( 4 ) )
 a g a z q  )  •

In terms of x 1 , • • • , x2 n, from (4.12) and (4.13), ci and the components gi j  o f  g
are given by

a =  (Ba xa + B 0 )2 + (B a Jg x b + B 0 )2 ,

(4.14)

= (676 11 + ,17 J  ax a ax b 4 0. )

where /3  =  Bp  + —  1 B = B 0 + J  —  1 Bo and 4) is the quadratic polynomial
of x 1 , ••• , x' induced from (4.12). Thus, from (4.3), (4.7) and (4.14), we can obtain
the complex analogue of Theorem C:

Proposition 3. In an indefinite complex Euclidean space (R 2 ", .10 , g 2 s ) of index
2s, if  an indefinite Hermitian metric g  is an HP-change of g 2 s , then in terms of the

nnatural coordinate system  x1,••• x 2n of  R 2 , the components g i j  o f  g  are  locally
expressed by

a2

=  
(67611

a X a a X b  
f

and the function f  is giv en by  one of  the followings:

(a) f  = 1— log 14)1 f o r  K  0 ,

(b) f  = f o r  K  =  0 ,

(c)1 =  
4

f o r  K =  0  ,

where K  is the constant holomorphic sectional curvature of g, 4  = A u x i x i + 2A i x i

+ A, o- = (B i x i + B 0 )2  + (B i J +  B-0-)2 ,  an d  A i »  A i ,  A ,  B i ,  Bo , BE, a re  real
constants such that A i i =  A  = .1 7 /lab, [A u] trJ, [B i] 0.

§ 5 .  The index of g

Let A  =  [Âpq] be the Hermitian matrix taken in  § 4 .  Then there exists a
unitary matrix U  of degree n  such that U*ÂU is equal to a diagonal matrix

(4.13) Gpq=
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—

D ==

) . ‘

0

o-.
a n d  in  th is case, A  is  s a id  to  b e  of singnature (C — ri), where ;t1 , • , are
positive constants and U* is the adjoint matrix of U .  As is well known, in order
to determine the  index  of the  indefinite Hermitian metric g , it is sufficient to
consider th e  in d e x  o f  th e  H erm itian m atrix  G = [ G p q ]  induced from  g  in
§ 4 .  From  now  on, r(T ), s(T ), i(T ) a n d  T1 m ean the  rank  o f  a  matrix T , the
singnature o f  a  symmetric (Hermitian) matrix T , th e  in d e x  o f  a  non-singular
symmetric (Hermitian) matrix T  a n d  th e  determinant o f  a  s q u a re  m atrix  T
respectively. The above-mentioned notations are also used in  §6.

(1) The case where k  is  no t zero and the quadratic hypersurface 4  =  0  is
cen tra l. We denote by [le] the center of the quadratic hypersurface (/) = 0 in R 2 n

and put k" = k" + —  1 k. T a k in g  the complex coordinate transformation [zP]
[Or] =  U*([zP] — Lk-PR 4 is expressed by

(5.1) (/) = [01TD[OP] + 0 0 ,

where 0 0  = [P]*71[P] + [71 p ]* +  [kP]*[ii p ]  + A .  Furtherm ore from  (4.4),
we have

4
(5.2) U * GU = 42 {OD — D [OP] (D [OP] )* } .

From  (5.1) and (5.2), we get

I F I = 0 for C <  n,

Fi = (—  1 )1 /1 1 . • • An(PoOn 1

where F  =U * ( G ) U .  Thus we have
4

Lemma 4. G is non-singular if and only if A  is non-singular and both of 4) and
4)0  d o  not vanish.

Next, we shall consider the index of G .  Suppose that G  is non-singular and
i(71) = pi . W hen  w e  deno te  by  A  the diagonal matrix

for = n,
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and by OW the characteristic polynomial of the matrix t A - 1 FA - 1 , from (5.1) and
(5.2), we have

• = ( t  — (1))" - 1 (t — 0 0 ) f o r  i  = 0 ,

• = (t + 1(t — n -q -  1

X  (t 2  t  E ApoPoP — 004)) f o r  0  <  < n,
p= 1

0(0 = (t + 1 (t + 00) for = n,

from which, by virtue of Sylvester's law of inertia, we obtain

Lemma 5. A ssume that G  is non-singular and 1(2) =
(a) I f  >  0 ,  then i(F) = îi (0 n) or ri + 1 (0 < n) according as 0 0 > 0 or
0.3 <O.
(b) If  (/) <0, then i(F) = n —  ti + 1 (0 < n) or n  —  (0 n) according as
0 0 > 0  or 0 0  < O.

(2) The case where k  is  no t zero and the quadratic hypersurface 4  =  0  is
n o n -cen tra l. A s is w e l l  k n o w n ,  w h e n  w e  t a k e  t h e  complex coordinate
transformation [zP] —> [OP] = U f[zP] + [â P ] fo r a  certa in  unitary m atrix U 1 o f
degree n  and a certain  vector [& ]  E C n , then 4 is expressed by

(5.3)4  =  [OP]*D[OP] + [bP]*[OP] + [OP]*[1;P] ,

where v is a positive constant and fix = w5r, Furthermore from (4.4) and (5.3),
we have

4
(5.4) Ur GU i  = {OD — (D[OP] + [I;P]) (D[OP] + [1-)P])*l

From  (5.3) and (5.4), we get

F =  0 for < n — 1,I 

IF11=-- ( - 1 )' + 1 21 . •• An-1v 2 0" - 1 f o r = n - 1 ,

where F 1 U  
( 0 2

 G ) L I , .  Therefore we have
4

Lemma 6. G is non-singular if and only if (/) does not vanish, r(À ) = n —  1 and

r _A p r

q jA  IA 1) = n + 1 .

Next, we shall consider the index of G .  On the same conditions as in Lemma
6, we assume tha t s(ii) = (n — —  1 , ri) and denote by A  the diagonal matrix
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1

and by OW the characteristic polynomial of the matrix tz1 - 1 F 1 A - 1 . Then from
(5.3) and (5.4), we have

• = (t — 4)' 2 {t 2t V ( V  — 0" — 0") — v2 4)} f o r  ri = O,

n-1
• = (t + (t — — — 2 It 3 t 2  E  A p o p o p + 1 ,2)

p=  1

— 4)(On 
+ o n ) v 2 0 2

1 f o r  0  <  <  n — 1,

• = (t + 4)" 2 {t2 t V ( V  + Û " + On
)  +  01 f o r  ri n — 1,

from which, we obtain

Lemma 7. S uppose  the  sam e co n d itio n s  as  in  L em m a 6  and s(2) =
(n —  —  1, ri) (0 n — 1). Then i(F 1 ) = +  1  or n — ri according as >  0  or

< O.

(3) The case where K is zero. Suppose that g is given by (b) in Proposition
3 and put

111 —[ [7 4 ?1 ,L [A ] A H2
[  E  [E X ]

= [E OE] [E arfl] ] .

From (4.9), (4.10), (4.11) and (4.12), we have

1 1 0(5.5) G = w1(13: H 2 [
W 1  n — 11 [C ] ,

ci

0[C ]*  [00  [ E O E f l ] l [CO ,

= [ 0 [C ]

E 0 [ E Œ]* -

0 0 0

.. [EGJ  0  [E c o ]

- 1
o [c]

from which, on the assumption that [CO is non-singular, it follows that G is non-
singular if and only if a. 0  and H2 is non-singular and in this case, by virtue of
Sylvester's law of inertia,

s(G)= s(H i ) = s(H 2 ), s(71) = s([E,0 ]).

On the other hand, since n — 1 r ([E,0 ]) r ( H  2 ) — 2, we only consider two cases



1 0 E-Ép1*

0 A [ A p ]*

[ p] [Ap] 74

1 o [T3 p ]*

o A [14p] *

_ [ p] [A r ]

= 1 ) ' q 0 1 An-1 k n it ,

[ I 2  0
I_ 0 LI]
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where [E c o ]  is  of rank n - 2 or n -  1.
(3 -1 )  The case where r([E,03])=  n  -  1. T h e n  r (2)= n -  1. If  G  is non-

singular, then r(H 1) = n, the quadratic hypersurface (/) = 0 is central, and therefore
we can use the same method a s in  (1 ). Furthermore assume that s(Â ) = (n -
-  1, ri). T h en  ta k in g  t h e  com plex coordinate transformation [zP] [OP]
=  U *([zP] -  [rel), we have

n-1
(5.6) =  - ApOPOP E  ApOPOP +  0 0 ,  0 0

p=1 p =n+l

and i(G)=  i i  o r  ri + 1 according as 0 0  >  0  or 0, < o, where U, [ ZP] and 0 0  are
the same quantities as in (1). O n the other hand, from (4.13) and (5.6), we have

=  U*GUI =  ( -  1 ) u - n - 1 0021—

where = U *[B-
 p]. Thus we get

Lem m a 8. Assume that s(i71) =  (n  -  -1 ,1 7 ) . T h e n  G is non-singular if and
only if c 0 ,  r ( H ,) =  n  and

- 1 o [13-

0 A ['A]*

p] p]

  

= n + 2 .

  

In this case, i(G )= r i or  n + 1 according as 0 0 > 0 or  0 0 <  0.

(3 -2 )  The case where r([.Eacp])=  n  -  2. T h e n  r (2)= n  -  2. If  G  is non-
singular, then r(H 1) = n , the quadratic hypersurface 4 = o is non-central, and
therefore we can use the same method as in (2). Furthermore assume that s(i)
= (n -  i -  2, ri). Then taking a certain complex coordinate transformation [zP]
-÷ [O P] =  U r [ z ]  +  [& ] ,  we have

n-2
(5.7) =  -  E A poPoP + E ApoPoP + v(on-i +

p=1 P=11+1

and i(G)=  j  +  1, where U 1 , [& ] and y are a unitary matrix of degree n, a vector
of C " and a positive constant respectively. And from (4.13) and (5.7), we get
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IG =  U T G U 1  I = orrl- 1 0 .-n -  1 v 2 ̂ 1A An- 2 1ln h-ri,

1 0 [ ]* - o [13,]* -

o A [Ai)]*
[ 1 2  0 1 *

0  U , i
0 A [A ] *

[ 13-[  p ] _O p ]  [Ap]

= (_ iyiv 2 A,•••/1„- 2 T3n13.ri

where 0 .3- ;,] = U * [k]. Thus we get

Lemma 9. A ssume th at s (2 )=(n  —  —  2 . . T h e n  G is non-singular if  and
only  if  a *0, r(H 1 ) = n and

o [ p] *  -

r 0 A [ i p ]* = n + 2.

_ [ p] [2p]

In  this case, i(G) = ii + 1.

(4) If g is given by (c) in Proposition 3, then its components gi i  are equal to
constants A u ,  and therefore i(g) = i([A i i ]).

§ 6. Theorems

From  the argument in §5, we can obtain

Theorem 10. Let (R 2 ", J o , g 2 s ) be  an  indefinite complex Euclidean space of
real dim ention 2n(> 2) with the canonical complex structure J o and the canonical
indefinite complex Euclidean metric g 2 , of index 2s, and let x l , •• • , x 2 " he the natural
coordinate system of R 2 ". If  an indefinite Hermitian metric g  is a holomorphically
projective change of g 2 s ,  then in terms of  x ',••• , x 2 ", the components g i i  o f  g are
locally expressed by

02

= J
7

J
,

)  ax a axb

and satisfy  one in T able 1, w here J, are the components of  J o .

Corollary 11. On the same conditions as in Theorem 10, if a holomorphically
projectiv e change g of  g 2 ,  is positive-def inite, then in  term s of  x l ,••• x 2 ", the
components g i i  o f  g  are  locally expressed by

02

= (" ' ; axa tax "

 f

and satisfy  one in Table 2. In addition, if  this metric g  is globally defined on R 2 ",
then g  is  o f  t y p e  I ,  o r V I in T able 2, and  its  constant holomorphic sectional
curvature is non-negative.

[12 0
Lo  v i i
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Table 1

type f 95=0 signature
of [A11] 0 00 x index

of g

x> 0 277
0>0 sbo>0

I
x<0 2n —277

x>0 2n —277
Sb<0 00<0

x< 0 277
central (2n-277, 27))

A f) X > 0 272+2
HI 0>0 r () '

x<0 2n - 277- 21
(71<n)

--log  01

112 0< 0
, ° „ ,
Ç6 x>0 2n-272+2

x<0 277- 2(77>0)

x>0 277+2
II11 0>0

non-central (2n-272-2' 2 ) x<0 2 n -2 77- 2

x>0 2n - 27)(77<n)
1112 0<0

x<0 277

IV 0
4a

central (2n-277-2, 27))
(71<n)

27700 >0

x=0
00<0 277+2

V non-central (2n-277-4, 277)
(

71<n —1) 272+2

VI 0
4

central (2n-277, 277) 27)

K  i s  the constant holomorphic sectional curvature o f  g ,  ift• = 4)(x i) = A i i x i xi
+ 2A ix 1 +  A , a = (B ix i + B 0 )2  + (B i f i

i xi + B.6 )2  *0 , [k i]  is the center of a central
quadratic hypersurface 0(x 1) = 0 and 0 0 =  4)(ki), where A  A i, A , B i , B o and B o
are real constants such that A.  =  Ai i =  and for the cases of types IV and
V, the matrix

1 0 0 0 t[Bi]

0 1 0 0 t(.1

0 0 A 0 TAi]

0 0 0 A W o[A ])

_  [B e] J0 [B1] [ A i ]  .4 P d [A u]

is non-singular.

Let g be the indefinite Kdhler metric of type I, II or III mentioned in Theorem
10, which has nonzero constant holomorphic sectional curvature K. We put G p q

=  g p q 1  g  for the components gi i o f  g  and we shall consider G = [G p q ].



Up = 2vIKI (DP

Ap0 1) (1) t i ) ,

= N / 2 v 1 K 1 c 0 P + 1

a p ( l i  —  *icon+ 1)
(11 < p < n),
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Table 2

type f 0=0 [A11]of [Au] 0 4
_

X

I1

1
log101

x

central

(2n, 0) 0>0 00>0
x>0

(0, 2n) 0<0 00<0

12
(0, 2n) 0>0 q50>0

x<0

(2n, 0) 0<0 450<0

111 (2, 2n-2) 0>0 00<0

112 (2n-2, 2) 0<0 00>0

1111

non-central
(0, 2n-2) 0>0

1112 (2n-2, 0) 0<0

IV 0
4a central (2n-2, 0) 00>0

x=0
VI 95

4 central (2n, 0)

If we take the complex coordinate transformations [ e ]  [Or] used in § 5 and
[O P ] [coP] such that
for the case of type I,

p 'K O  01 cop

N/2,Ap

for the case of type Il i ,

01 '  =  

OP  = 00 (DP 

K  A „ 1 0 + 1

*ri + 1
cog + 1

for the case of type 112 ,

o N/200 N/00a)P 
—    ,  OP —

N /I K I 2„ 
for the case of type HI, ,



[aco P1 1 0
aw q (0 2 [ — w I„ -
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on = 
+  K 10 + 1

for the case of type 1112  ,

I 

/ 2 V I K Iop _ N COP

f i l —p (ii —  N  / i KkOn )

On —  . \ / + N/I K IW n  

— N/ 1 KkOn
 5

— ,/iKiw"+1

(p  <n),

then, for G  of each type, we get the inequality

K
45 1 = 1 + Epo)PcoP > 0

p = 1

after a change of ordering if necessary, and G p q  are transformed into an indefinite
Fubini-Study metric

O f  Ors 2
Gr

s (4i)2P
fq5—  1±- E CO

q

P E 6 q } (not summed for p  and q)
P  P q 20 0 ) (1  

a6P a

a2
 -

1( 

lo g
( 4

where we p u t i(g) = 2m and e, = —  1 o r  1 according a s  t m o r  t > m.
Next, le t g  b e  a n  indefinite Kdhler metric o f  ty p e  IV  o r V  mentioned in

Theorem 10, which has zero holomorphic sectional curvature. W hen we put i(g)
= 2m, the Hermitian matrix H2 in (5.5) is of index m and H2 is induced from the
canonical indefinite complex Euclidean metric g2 m  of index 2m on  R 2 n = Cn by a
linear transformation of complex coordinates. W hen we consider the system of
differential equations.

for holomorphic functions co", we have the solutions

wŒ1 _ D1 = D  , — DOE,

w here D1 , ,  Dn a r e  complex constan ts. T hus, from  (5.5), w e  s e e  th a t  the
components o f  g  a r e  induced  from  those  of g 2 ,, b y  t h e  linear fractional
transformation of complex coordinates.
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A nd if g  is  of type V I mentioned in  Theorem 10 a n d  i(2) = m , then g  is
affinely related to g2 s , and thus the components of g are induced from those of g 2 ,n
by a  linear transformation of complex coordinates.

Therefore from the argument above and Proposition 1, w e can obtain the
generalization of Bochner's Theorem D as follows :

Theorem 12. L et (M , J, g) be an indefinite K aler manifold of real dimension
2n(> 2 )  an d  o f  in d e x  2m. I f  (M , J, g )  i s  o f  constant holomorphic sectional
curv ature K, th e n  e ac h  p o in t  o f  M  h a s  a  real coordinate neighborhood

; x 1 , . . ,  x2"1 in which the components g o  o f  g  are  expressed by

=( 6 16 '.1 + J'J') ax ae x bf ,

where f  is given by

f  = —

1  

log [ 1 + E Eploci2+(xn+ 121] f o r  K
K p=1

1 n
f v  e

p 1
( x p)2 ( x n +p ) 2}

4 P=  

and et = —  1 o r 1 according as  t m  or t > m.

f o r  K  =  0 ,

§ 7 .  Remarks

7 - 1 .  Projective changes of a Euclidean metric. Applying our method to a
projective change of an indefinite real Euclidean metric, from Kagan's theorem, we
can obtain the following result : Let (Ra , g s ) be an indefinite real Euclidean space
of real dimension n (> I) with the canonical indefinite Euclidean metric gs of index
s. If an indefinite Riemannian metric g is a projective change of gs , then in terms
of the natural coordinate system x 1 , • • • , xn of R ,  t h e  components gp q  o f  g  are
locally expressed by

{ .020
g p q  =  24)414 2O X P a X q

1 .02 /4)\

g P q  = O X PD X q tp)

2gPq a x aPaxq ( 4; )

ao
XP  aX q  f

for , O,

for K  =  0 ,

f o r  K  =  0 ,

and  satisfy one in  T able  3 , where K  is  the constant curvature o f g, 4 = (/)(xP)
= A p q xPxq + 2A p xP + A, = Bo x" + B , [kP] is the center of a central quadratic
hypersurface 4)(x1') = 0 , 4  =  4)(kP), and A p q (  =  A q  p ) , A p , A, B p , B are real constants
such that [A p q ]  ,  [B p] * 0  and for the case of (b) in Table 3, the matrix
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Table 3

gPq 0 = 0
signature
of [A pq] 0 00 x index

of g

x>0 77
00>0

x< 0 n — 77
0>0

95o<0 x > ° 77+1

( 7 7 < n ) x<0 n —  77- 1
central (n — 72, 77)

0 o>0 x>0 n — 77+1

(a) 0< 0
(77>0) x<0

77-1

x>0 n — 77
(ho< 0

x< 0 77

x>0 77+1
0>0

non - central ( n  7  7 —  1, 77)
x< 0 n — 77- 1

x>0 n -7 7( 77<n)

0< 0
x< 0 Ti

central (n — 77-1, 77)
( 77( n )

00> 0 77

77+1(b) 00<0
x=0

non-central (n —  77- 2, ri)
(77<n-1) 77+1

(c) central (n — 77, 77) 77

1 0 t [ B ]

0 A T A  p ]

[B r ] [ 1 1  r ]  [A pq]

is non-singular.
Furthermore, by th e  sam e m ethod a s  in  Theorem  12, w e can obtain the

generalization of Theorem B as follows : Let (M, g )  be a n  indefinite Riemannian
manifold of dimension n ( > 1) and of index in. If (M, g )  is of constant curvature
K ,  then each point of M  has a  coordinate neighborhood { U ; y ', • • •  ,  yn}  in  which
the components g p q  o f  g  are expressed by

g Pq

{1 K  E r( Y r ) 2 } p6 pq KE qYq
r = 1 (not summed for p  and q),

{ 1  +  K  E Er(yr)2 }2

r= 1

where 1 + K  E e r ( y r )2  >  0  and e, =  —  1  o r 1  according a s  t m  o r  t > m.
r = 1
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7- 2. Generalized changes of a Euclidean metric. Generalizing some changes
of (indefinite) Riemannian metrics mentioned in § 1, we can consider the following
problem : Let (M, g ' )  b e  a n  indefinite Riemannian m anifold of rea l dimension
n (>  1) and V ' the Levi-Civita connection induced from g'. W hen a  symmetric
tensor field T  of type (1, 2) is given on (M , g'), does there exist a n  indefinite
Riemannian metric g  on (M, g ' )  whose Levi-Civita connection V  satisfies

(7.1) Vx Y = Y  +  T(X , Y)

for any X , Ye X(M)?
It is well-known that, if g  is another indefinite Riemannian metric on (M, g'),

then there exists a unique symmetric tensor field T of type (1, 2) satisfying (7.1).
The changes of (indefinite) Riemannian metrics mentioned in § 1 are those

which g '  and  T satisfy some conditions, and we have been able to solve (7.1) for
such special g '  an d  T  B u t fo r  an  arbitrary symmetric tensor field T of type (1, 2)
given on (M, g'), there does not necessarily exist an indefinite Riemannian metric
whose Levi-Civita connection satisfies (7.1).

It is easily seen that (7.1) is equivalent to

(7.2) (V g)(Y , Z ) = g(T(X , Y), Z) + g(Y , T(X, Z))

and the integrability condition of (7.2) is

(7.3) g(K '(X, Y )Z, W ) + g(K '(X, Y )W , Z)

= g(([1,T)(X, Z), W) — g((r2 T)(Y, Z), W)

+ g(T(Y , T(X, Z)), W) — g(T(X, T(Y , Z)), W)

+ g(Z, (V,T) (X, W)) — g(Z, (17 ( T)(Y, W))

+ g(Z, T(Y , T(X, W))) — g(Z, T(X, T(Y , W)))

where K ' means the curvature tensor of g'. Our problem is to determine a  non-
degenerate symmetric solution g  of (7.2).

Now we shall show two examples as follows : Let (R", go ) be a  real Euclidean
space of real dimension n (>  1) with the canonical Euclidean metric go and the

0
na tu ra l coord ina te  system  x 1 , • • • , xn. W e  d e n o te  b y  {

}
--  

and
Ox ax"

dx , ,  dx"} the natural frame and its dual frame respectively.
(1) L et T be a  symmetric tensor field on R" given by

a T  E
aXP

 d x P  0 dX P .
p = 1 

If a symmetric tensor field g  of type (0, 2) on R" satisfies (7.2) for this T, then the
components gp q  o f  g  satisfy

Og
P q  =

P
 + 6,. )gPq (not summed for p  and q).xr 
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Solving the above system of differential equations, we get

g p q  =  A pqexp(x P  +  x q )  (not summed for p  and q),

from which, it follows that g  is non-degenerate if and only if [A p q ]  is non-singular,
where Apq = Aqp are constants.

(2) Let T be a  symmetric tensor field on R" given by

a
T = (dx1 dx l  + d x 2 d x 2 ).

If a symmetric tensor field g  of type (0, 2) on R" satisfies (7.2) for this T, then from
(7.3), we have

aa(X' Y2 — x2 yi){ g (w , z 2

1

 +  g(Z , W2 1 )}  = 0aX a
a

for any X, Y, Z , We X(R"), where X = XP  and so  o n .  Taking X, Y, Z , We
axP

X (R ) such that

aar y 2 —  x 2y i *o, z  =  w =ax2' axr'

we obtain

g 1 = 0  ( r  = 1 ,• • • ,n ) ,

from  w hich , it fo llow s that g  is degenerate a n d  there exist n o  indefinite
Riemannian metrics on R n whose Levi-Civita connections satisfy (7.1) for this T

DEPARTMENT OF MATHEMATICS
RITSUMEIKAN UNIVERSITY

References

M . Barros and A . Romero, Indefinite Kdhler m anifolds, M ath. Ann., 261 (1982), 55-62.
S . B ochner, Curvature in  H erm itian m etric, Bull. Amer. Math. Soc., 53 (1947), 179-195.
L. P . E isenhart, R iem annian G eom etry, Princeton Univ. Press, 1964.
L. P . Eisenhart, Non-Riemannian Geometry, Amer. Math. Soc., Colloq. Publ., 8, 1968.
S. -S . Eum , N otes on K aehlerian m etric, K yungpook M ath. J., 1 (1958), 13-21.
S. Fujimura, On changes of affine connections in an almost contact manifold, Tensor, New
Ser., 38 (1982), 142-146.
S. Fujimura, On changes of affine connections in an almost contact m anifold, II, Tensor, New
Ser., 41 (1984), 116-118.
S . F u jim ura , Some changes of metrics on  a  K -contact Riemannian manifold, Mem. Res. Inst.
Sci. Eng., Ritsumeikan Univ., 45 (1986), 1-5.
S. I. G oldberg , Note on projectively Euclidean Hermitian m anifolds, Proc. N at. Acad. Sci.



516 Shigeyoshi Fujimura

U.S.A., 42 (1956), 128-130.
[10] I. Hasegawa and K . Y am auchi, O n infinitesimal holomorphically projective transformations in

compact Kaehlerian manifolds, Hokkaido Math. J., 8 (1979), 214-219.
[11] N . S . H aw ley , Constant holomorphic curvature, C anad. J. Math., 5 (1953), 53-56.
[12] J . Ig u sa , On the structure of a certain class of Kaehler varieties, Amer. J. Math., 76 (1954), 669—

678.
[13] S. Ishihara, H olom orphically projective changes and the ir g roups in  a n  almost complex

m anifold, Tôhoku M ath. J., 9 (1957), 273-297.
[14] S. Ishihara and S. Tachibana, A  note on holom orphically projective transform ations of a

K a le r ia n  space with parallel Ricci tensor, Tôhoku M ath. J., 13 (1961), 193-200.
[15] B. Kagan, Über eine Erweiterung des Begriffes vom projektiven Rdume und dem zugeh6rigen

A bso lu t, Trudy Sem. Vektor. Tenzor. Anal., 1 (1933), 12-101.
[16] S . Kobayashi a n d  K . N o m iz u , Foundations o f  Differential Geometry, I, II, Interscience

Publishers, New York, 1963, 1969.
[17] M . K urita , Geodesic correspondence of Riemann spaces, J . Math. Soc. Japan, 8 (1956), 22-39.
[18] T. Levi-Civita, Sulle transformazioni delle equazioni dinamiche, A nn. M at. Pura Appl., 24

(1896), 255-300.
[19] M . Matsumoto, Projectively flat Finsler spaces of constant cu rva tu re , J . N a t. Acad. Math.

India, 1 (1983), 142-164.
[20] T. Otsuki and Y . Tashiro, On curves in Kaehlerian sp aces , Math. J. Okayama Univ., 4 (1954),

57-78.
[21] T. Sakaguchi, On the holomorphically projective correspondence between Kdhlerian spaces

preserving complex structure, H okkaido M ath. J., 3 (1974), 203-212.
[22] S. Tachibana, On an application of the stereographic projection to  C I " ,  Kyungpook Math.

J., 12 (1972), 183-197.
[23] S. Tachibana and S. Ishihara, O n infinitesimal holomorphically projective transformations in

K a le rian  m anifolds, Tôhoku Math. J., 12 (1960), 77-101.
[24] Y . T a s h iro , O n  a  ho lom orph ica lly  p ro jec tive  correspondence i n  a n  almost complex

sp a c e , Math. J . Okayama Univ., 6 (1957), 147-152.
[25] P. Venzi, Geodiitische Abbildungen in riemannscher Mannigfaltigkeiten, Tensor, New Ser., 33

(1979), 313-321.
[26] K . Y an o , Differential Geometry on Complex and Almost Complex Spaces, Pergamon Press,

Oxford, 1964,
[27] Y. Yoshimatsu, H-projective connections and H-projective transformations, Osaka J . Math.,

15 (1978), 435-459.


