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Indefinite Kiahler metrics

of constant holomorphic sectional curvature

By

Shigeyoshi FuimMura

§1. Introduction

Let (M, g) be a connected (indefinite) Riemannian manifold of dimension
n(>1). From the well-known fact that a Riemannian manifold (M, g) of constant
curvature is conformally flat, making use of a conformal change of a Euclidean
metric, the following theorem was obtained:

Theorem A ([3:§27]). Let (M, g) be an indefinite Riemannian manifold of
dimension n(> 1) and of index m. If (M, g) is of constant curvature k, then each

point of M has a coordinate neighborhood {U ; x*,---, x"} in which the components
9poe (0, q=1,....n) of g are given by
€,0,4
Gpg = 5 (not summed for p),

14
K n
t+3 2

1

6 ()2

where ¢, = — 1 or 1 according as t <m or t > m.

Concerning the fact that a Riemannian manifold of constant curvature is
projectively flat (cf. [4: §34]), the following result is known:

Theorem B (cf. [3; §27], [16:§3 in Chapter V). Let (M, g) be a Riemannian
manifold of dimension n(> 1). If (M, g) is of constant curvature k, then each point
of M has a coordinate neighborhood {U ; x',---, x"} in which the components g,,
(p,g=1,---,n) of g are given by

{1+ (x)?}0,, — kxPx?

r=1

9pg =

{1+« il (x")?}?

Let g’ be another indefinite Riemannian metric on (M, g). When the Levi-
Civita connection induced from g is projectively related to that induced from g¢’,
the metric g is called a projective change of g'. The local expression of g in

Communicated by Prof. H. Toda, November 15, 1988



494 Shigeyoshi Fujimura

Theorem B has been given without making use of a projective change of a
Euclidean metric. On the other hand, T. Levi-Civita [18], L. P. Eisenhart
([3], [4]), B. Kagan [15] and other authors ([17], [25]) investigated projective
changes of (indefinite) Riemannian metrics and obtained interesting results. In
particular, B. Kagan proved the following theorem:

Theorem C ([15]). Let (R", g,) be a Euclidean space of dimension n(> 1) with
the canonical Riemannian metric g,. If an indefinite Riemannian metric g is a
projective change of g, then in terms of the natural coordinate system x',---, x" of
R", the components g,, (p,q=1,---.n) of g are locally expressed by

1 ¢ 3¢ o
0 = 42 {24’ oxroxs o oxtf 10 KO

2 (¢ B
(b) 9pq = 2 Gx7oxt <$> for k=0,

where Kk is the constant curvature of g and ¢ (resp. ) is a quadratic polynomial
(resp. a linear polynomial) of x',---, x".

(a)

Theorem C implies that an indefinite Riemannian metric of constant
curvature has the local components expressed by (a) or (b) in Theorem C, which
contain the local expressions of g in Theorem B as a special case.

By making use of projective changes of a Finsler metric, M. Matsumoto [19]
studied a projectively flat Finsler space of constant curvature and obtained some
interesting results. And by restricting his consideration to the case of Riemannian
manifolds, he showed the local expression (a) in Theorem C.

For the complex case, S. Bochner [2] and other authors ([S], [11], [12]; see
[16; Chapter 1X]) investigated Kéhler metrics of constant holomorphic sectional
curvature, T. Otsuki and Y. Tashiro [20] studied a holomorphically projective
change of a Kdhler metric (for the definition, see §2 in this paper), and thereafter
several authors ([9], [10], [13], [14], [21], [22], [23], [24], [27]) obtained many
interesting results. And in these directions, the following theorems are well
known:

Theorem D ([2]). Let (M, J,g) be a Kdihler manifold of real dimension
2n(> 2) and of constant holomorphic sectional curvature k. Then each point of

M has a real coordinate neighborhood {U ; x',---, x*"} in which the components
gij(i,j=1,---,2n) of g are expressed by
2n a?.f
= 598t 4+ Jogb ,
9 a,bz=l( Foj+J8)) dx“0x®

where f is given by

1 Kk 2n
f:—log{1+—2(x')2} for k%0,
K 25



Indefinite Kihler metrics 495

1 2n .
f=ZZ(x')2 for k=0,
i=1
and J} mean the components of J such that 8,J¢J" = §,;.
Theorem E ([9], [20], [24]). Let (M, J,g) be a Kihler manifold of real
dimension 2n(> 2). The following conditions are equivalent:
(@) (M, J, g) is of constant holomorphic sectional curvature.
(b) The holomorphically projective curvature tensor of (M, J, g) vanishes.
() (M, J, g) is holomorphically projectively flat.

From Theorems C and E, we can surmise that Theorem D is directly obtained
by making use of a holomorphically projective change of a complex Euclidean
metric.

Recently, M. Barros and A. Romero [1] investigated an indefinite Kéhler
manifold of constant holomorphic sectional curvature, and in particular they
mentioned the classification of complete and simply-connected indefinite Kdhler
manifolds of constant holomorphic sectional curvature. But they did not show
the local expression of such metrics except an indefinite complex Euclidean metric.

And for the contact case, the present author considered a CHP-change g of
the contact Riemannian metric of a K-contact Riemannian manifold and
determined such a metric g without a condition for curvature ([6], [7], [8]).

The main purpose of this paper is to write down explicitly all holomorphically
projective changes of a complex Euclidean metric in terms of the natural
coordinates. Consequently, we can obtain the local expression of an indefinite
Kidhler metric of constant holomorphic sectional curvature, which is the
generalization of Bochner’s Theorem D. And by virtue of the similar method, we
can show the generalization of Theorem B.

Throughout this paper, we assume that all objects under consideration are
differentiable of class C* and all manifolds are connected. And, unless otherwise
stated, indices {a, b, ¢, d, h, i, j, k}, {p, q,r, s} and {«, B, y} run over the ranges
{1,---,2n}, {1,---, n} and {2,---,n} respectively, and we use the summation
convention.

The present author would like to express his gratitude to Professors M.
Matsumoto and S. Takizawa for their valuable suggestions and encouragement.

§2. Holomorphically projective changes

Let (M, J, g) be an indefinite Kdhler manifold of real dimension 2n(> 2) and
of index 2m. Then there exists an orthonormal base {e,, -, e,,} with respect to g
for the tangent space T,(M) at each point xe M such that

m n n+m 2n
gxX, V)= Y X?yP+ Y XPyr— Y XPyP4+ Y XPYP
p=1 p=m+1 p=n+1 p=n+m+1

for any X = X'e;,, Y= Yie;e T.(M), and its metric g and its complex structure J
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satisfy
Vg=0,VyY—V,X —[X.Y]=0
Ji=—-1,9JX,JY)=¢g(X,Y),VJ =0,

for any X, Ye X(M), where we denote by I, ¥ and X(M) the identity tensor, the
Levi-Civita connection induced from g and the set of vector fields on M
respectively (cf. [1]).

A curve x(t) on (M, J, g) is called a holomorphically planar curve with respect
to V if x(t) satisfies the differential equation

Ve X(t) = a(t)x(t) + (1) J X(t)

for certain functions a and B of a real parameter ¢, where x(¢) is the tangent vector
of x(t). Let g be another indefinite Kdhler metric on (M, J) and V' the Levi-
Civita connection induced from ¢'. 1f ¥ and V' have all of their holomorphically
planar curves in common, then ¢ is called a holomorphically projective change,
briefly an HP-change, of g'. As is well known (cf. [23], [24]), g is an HP-change
of ¢’ if and only if there exists a 1-form P on M satisfying

(2.1) VyY=V4Y+ P(X)Y+ P(Y)X — P(JX)JY—-P(JY)JX
for any X, Ye X(M). We can easily see that the 1-form P in (2.1) is equal to the
differential df of a certain function f on M and an indefinite Hermitian metric g
satisfying (2.1) is Kédhlerian. In this case, when we denote by K (resp. K') the
curvature tensor of g (resp. g'). we have
(22) K(X,Y)Z=K'(X,Y)Z—-P(Y,Z)X + P(X, Z)Y+ P(Y,JZ2)JX
—P(X,JZ)JY - {P(X,JY)— P(Y,JX)}JZ,
and when we denote by R (resp. R’) the Ricci tensor of g (resp. g’), we have
(2.3) R(X,Y)=R(X,Y)— 2nP(X. Y) - 2P(JX. JY),
where we put
P(X,Y)=P(Y, X) = (VxP)Y — P(X)P(Y) + P(JX)P(JY).
On the other hand, since g and ¢' are Kihlerian, we have
(2.4) R(X,JY)+ R(JX,Y)=0, R'(X,JY)+R'(JX,Y)=0
(for the definite case, see [26; p.71]). From (2.3) and (2.4), we have
(2.5) P(X,JY)+ P(JX,Y) =0,
(2.6) R=R' —2(n+ 1)P.

Thus, from (2.2), (2.5) and (2.6), we see that the following tensor field H is invariant
under an HP-change:
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H(X, Y)Z =K(X, Y)Z ){R(Y, Z)X —R(X,2)Y

C2n+1
— R(Y.JZ)JX + R(X, JZ)JY + 2R(X, JY)JZ}.

We call such a tensor field H the holomorphically projective curvature tensor.

An indefinite Kéhler manifold (M, J,g) is said to be holomorphically
projectively flat when, for each point xe M, there exist a neighborhood V of x and
an indefinite flat Kdhler metric ¢’ on V such that g is an HP-change of ¢’ on
V. In this case, the holomorphically projective curvature tensor of g
vanishes. Conversely, if the holomorphically projective curvature tensor of an
indefinite Kihler manifold (M, J, g) vanishes, then for each point x e M, there exist
a neighborhood V' of x and a flat symmetric affine connection V" on V' such that
V’'J =0 and the Levi-Civita connection ¥ induced from g is an HP-change of V',
that is, ¥ and V' satisfy (2.1) (cf. [24]). Thus there exist a neighborhood V of x in
V' and an indefinite flat Riemannian metric g’ on V whose Levi-Civita connection
coincides with V' (cf. [4;§29]), and we can choose as g a Hermitian
metric. Therefore g is locally an HP-change of g’ and (M, J, g) is holomorphi-
cally projectively flat.

A 2-plane = in the tangent space T,(M) at xe M is said to be holomorphic if
Jn c n, and non-degenerate with respect to g if n has a base {X,, X,} satisfying

g9(X 1, X1)g(X,, X5) — g(Xy, X,)? %0.
For each holomorphic non-degenerate 2-plane = < T,(M), its holomorphic

sectional curvature p(r) is defined by

) — g(K(X, JX)JX, X)
P = (X, X

for a vector X en such that g(X, X) 0. When p is constant for all holomorphic
non-degenerate 2-planes in T,(M) at each point xe M, (M, J, g) is said to be of
constant holomorphic sectional curvature. As is well known (cf. [1]), the curvature
tensor K of (M, J, g) of constant holomorphic sectional curvature x is expressed
by

2.7) K(X, Y)Z = g{g(Y, Z2)X — g(X, Z)Y

—g(Y, JZ)JX + g(X, JZ)JY + 29(X, JY)JZ}

for any X, Y, Ze X(M), and from which, it follows that (M, J, g) is an Einstein
space whose Ricci tensor R is given by

(2.8) R =

And it is easily seen that (M, J, g) is of constant holomorphic sectional curvature
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if and only if (M, J, g) has the vanishing holomorphically projective curvature
tensor.

From the argument above, we can obtain the indefinite analogue of Theorem
E:

Proposition 1. Let (M, J, g) be an indefinite Kihler manifold of real dimension
2n(> 2). Then the following conditions are equivalent:
(@) (M, J,g) is of constant holomorphic sectional curvature.
(b) The holomorphically projective curvature tensor of (M, J, g) vanishes.
() (M, J, g) is holomorphically projectively flat.

§3. The condition for the existence of holomorphically projective changes

Let (M, J, ¢') be an indefinite Kéhler manifold of real dimension 2n(> 2) and
of index 2m, and assume that (M, J, g’) is of constant holomorphic sectional
curvature «'.

When we take a real-valued function f on M, we shall consider an indefinite
Kihler metric g which is an HP-change of g’ satisfying (2.1) for the 1-form P
= df. Then it follows from Proposition 1 that g is of constant holomorphic
sectional curvature. And from (2.1) we have

3.1 (Fxg (Y. Z2) =2P(X)9(Y, Z) + P(Y)g(X, Z)
+ P(Z)g(X,Y)— PJY)g(JX, Z)— P(JZ)g(JX, Y)
for any X, Y, Ze X(M), where we denote by V' the Levi-Civita connection induced
from g'. The integrability condition of (3.1) is given by
(32) ¢g(K'(X,Y)Z, W)+ g(K'(X, Y)W, Z)
= P(Y, Z)g(X, W) — P(X, Z)g(Y, W) — B(Y, JZ)g(JX, W)
+ B(X, JZ)g(JY, W) + P(Y, W)g(X, Z) — P(X, W)g(Y, Z)
— P(Y, IW)g(JX, Z) + P(X, IW)g(JY, Z),

where we denote by K’ the curvature tensor of g¢. From (2.5), (2.7) and (3.2), we
have

pa

-~ [~ "' ’
(3.3) pg=P—Zg,

where we denote by {e,, -, e,,} and [¢"] the local frame and the inverse matrix
of the matrix [g(e;, e;)] respectively, and we put

’

s_ U ip i
p=%g"{P(enel)—zg(el’e])}'

Covariantly derivating (3.3) and using (2.5), (3.1) and (3.3), we have
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Xp-g(Y. Z) = VxVyP — VyyP)Z — 2P(X)(VyP)Z — 2P(Y)(V2P)X
—2P(Z)(PxP)Y + 4P(X)P(Y)P(Z)

+ %I {29'(Y. Z)P(X) + g'(X, Z)P(Y) + ¢'(X, Y)P(Z)

—g'(JX,Y)P(JZ)—g'(JX, Z)P(JY)},
from which, we have
Xp-g(Y,Z)—-Yp-g(X, Z)=(K'(X, Y)P)Z + P(K'(X, Y)Z) = 0.

Hence we see that j is constant. In this case, from (2.6), (2.8) and (3.3), — 4p is
equal to the constant holomorphic sectional curvature x of g. Therefore, we can
obtain

Proposition 2. Let (M, J, g') be an indefinite Kihler manifold of real dimension
2n(>2) and of constant holomorphic sectional curvature k', and f a real-valued
function on M. Assume that there exists a holomorphically projective change g of g'
defined by (2.1) for the 1-form P = df.

(a) If the constant holomorphic sectional curvature k of g does not vanish, then g
and P satisfy

(3.4) g 9(X, Y) = %g'(x, Y) — (7xP)Y + P(X)P(Y) — P(JX)P(JY),
(3.5 (FxP)JY + (7yP)JX = 2P(X)P(JY) + 2P(JX)P(Y),
(3:6) VxVyP —Vyy P)Z

=2P(X)(VyP)Z + 2P(Y)(V;P)X + 2P(Z)(VxP)Y

— 4P(X)P(Y)P(Z) — % {29'(Y. Z)P(X) + ¢'(X, Z)P(Y)

+4g(X, Y)P(Z)— g (JX, Y)P(JZ) - ¢g'(JX, Z)P(JY)},
(b) if x vanishes, then g and P satisfy
(3.7 (Fxe)(Y, Z) =2P(X)g(Y, Z) + P(Y)g(X, Z)

+ P(Z)g(X,Y)— P(JY)g(JX, Z)— P(JZ)g9(JX, Y),

(3.8) (FyP)Y — P(X)P(Y) + P(JX)P(JY) — %/g'(X, Y)=0
for any X, Y, Ze X(M), where V' is the Levi-Civita connection induced from g'.

§4. Holomorphically projective changes of an indefinite complex Euclidean metric

Let R?" be the real vector space of 2n-tuples of real numbers [x'] and C" the
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complex vector space of n-tuples of complex numbers [z”]. From now on we
identify R*" with C" by the correspondence

x! z! x' 4+ /— 1xT
: — [ZP]=|: |= : ,
x2n z" X"+ /= 1x"

where x? = x We denote by (R*", J,, ¢,,) a complex vector space R*" = C"
endowed with the canonical complex structure J, and the canonical indefinite
complex Euclidean metric g,, of index 2s, and call it an indefinite complex
Euclidean space of index 2s. Then. (R*", J,, g,,) is of zero holomorphic sectional
curvature, and in terms of the natural coordinate system x',---, x2" of R?", J, and
g5 have the following matrix representations:

~I, 0 0 0
s _[o -n 0 DR S
(O 1" 0 s Gas = 0 0 _ Is 0 ’

o o0 0 I,

[x]=

n+p

where I, is an identity matrix of degree p.

We denote by g;; the components of an indefinite Hermitian metric g on
(R*", Jo, g5) in x',---, x*" and by G = [G,,] the Hermitian matrix defined by G,
=9pg t \/Tlgiq'

Assume that the differential P = df of a real-valued function f on (R?", J,, ¢,
and an indefinite Hermitian metric g satisfy (a) or (b) in Proposition 2.

(1) The case where k is not zero. In terms of x',---, x*", (3.6) is rewritten as
the system of differential equations

*f _2<6f o*f of f of f)zf 28f of 0f>

4D vk — =

ox' oxIaxk T ox axkox T axk axiox) ax’ 9xI ox*
When we put ¢ = + exp(— 2f), from (4.1), we obtain

3¢ _
oxioxioxk

Thus, we have
¢ =A;x'x) +24,x + A,

where A;(= A;), A, and A are real constants. Therefore, from (3.4), the
components g;; of g are given by

(4'2) gij ¢2 {¢Au (5a5b + Ju b) (Aacxc + Aa) (Ahdxd + Ab)}

where [,, = [6%], and J} are the components of J,.
On the other hand, from (3.4) and (3.5), we see that g is Hermitian and
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AnJiJ% = A, Therefore, from (4.2), the components g;; of g are expressed by

0* 1
4.3 = (6% + JeJb
( ) gl_] ( vy 1 j) axaaxb (K log|¢|>’

where, for a scalar f, |f| means its absolute value. In terms of the natural
complex coordinate system z',---, z" in C" = R?", we have

¢ =A,,2°2" + A,2P + A,z° + A,

~

4 ~ ~ ~ =
(4.4) G, = pors {pA,, — (A,2" + A,) (A2 + A)}

o* (4
= garsa (s 2141

where A, = A,, ++/— 145, A,=A4,+./—14; and, for a complex-valued
quantity Q, Q means its conjugate.

(2) The case where x is zero. In this case, using x!,---, x?", (3.8) is
expressed by the system of differential equations

af _of of Jagb of of

oxiox  oxi oxd U7 ox® oxt’

from which, we have

*f _of of of of &S

OxPOxT  OxP Oxi  OyP 0y!  0yPdyt’

4.5)

of _ oo oo &
OxPay?  0xP dy' © dy” dx1  0OyPox?’

_ 0
where y? = xP. When we put h,,=2—f we see from (4.5) that h, are

ozF’
holomorphic with respect to zf = x* + ./ — 1 y? and satisfy
oh
_(3—2—5 = hyh,.

from which, we have

U

(4.6) h,= — F__,
.2+ B

where Ep and B are complex constants. From (4.6), we get

i

f=—log|B,z" + Bl.

If [Ep] vanishes, then g is affinely related to g,,, and the components g;; of g
and G,, are given by
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4.7 ..—(5‘-‘5’?+J‘?J’?)L Q
. gu_ iYj i axaaxb 4 ’
aZ
""zazpazqd”

where ¢ is the quadratic polynomial used in (1).

Assume that [Ep] does not vanish and let us consider the complex coordinate
transformation [z?] — [w”] such that wP = Cfz* + C?, [CT]eGL(n, O), C,= BP
and C? = 6?B. When we denote by [D?] the inverse matrix of [C#] and put H ,
= G, DD and h, = h,D4, from G,, = G,, and (3.7), we have

= p
Hpq = Fqu’
o0H = o of
(438) 28— i Hpg + RoHy + 25 - .
oH — = - of
Wfq: - —l(th,q-thp,)+2prq,
where w? = u? + ./ — 1vP. Since f is dependent only on u! and v!, we see that
h,(a = 2,---, n) vanish and, from (4.8), we have
0H _ 2u! H 0H _ 20! H
out (u1)2+(vl)2 ap> oot (u1)2+(vl)2 ap >
0H _ 0H,; _
ou? ov’ ’

from which, H,,; are given by

E
4.9 Hy, = —2,
( ) af |W1|2

where E,; are complex constants and E,; = E,,. Similarly, using (4.8) and (4.9),
we have

51

w
(4.10) Hy = — |w—1|4(EaaWﬁ —E,),
| _
@.11) Hiy = e (Eug i — B — Ew + ),

where E, are complex constants and E is a real constant. When we put
A, =E4C3CE A,= —EC% A=E,
4.12) ¢ =4, + A, 77+ A,2P + A,

o = |w'|? =|B,z" + B2
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from (4.9), (4.10) and (4.11), we obtain
1 ~ ~ ~ ~ -~ =
4.13) Gy = — {04, — (B2 + B)(4,2 + 4B,
— (B,2* + B)B,(4,,7 + A,) + ¢B,B,)

__ (¢
R EIACA

In terms of x',---, x?", from (4.12) and (4.13), ¢ and the components gijofg
are given by

o = (B,x" + By)* + (B, Jix® + Bg)?,

4.14)
ay = 0185+ 91 1) 2 (),

ox°0x® \ 4o

where Ep =B,+ ./ — 1B; B= By + ./ — 1 Bj and ¢ is the quadratic polynomial
of x!,---, x*" induced from (4.12). Thus, from (4.3), (4.7) and (4.14), we can obtain
the complex analogue of Theorem C:

Proposition 3. In an indefinite complex Euclidean space (R*", J , g,,) of index
2s, if an indefinite Hermitian metric g is an HP-change of g,,, then in terms of the
natural coordinate system x',---, x*" of R?", the components g:; of g are locally
expressed by

62
gij = (6765 + J?J?)Wf

and the function f is given by one of the followings:

(a) f=%10g|¢| Jfor k%0,
(b) f=4i;— for k=0,
© r=% for k=0,

where K is the constant holomorphic sectional curvature of g, ¢ = A;x'xI + 24;x'
+ A, 6 = (Bix' + Bo)* + (B; Jix) + Bg)?, and A;, A, A, B, By, Bg are real
constants such that A;= A;; = J{J %44, [A;] %0, [B] %0.

§5. The index of g

Let A = [qu] be the Hermitian matrix taken in §4. Then there exists a
unitary matrix U of degree n such that U*AU is equal to a diagonal matrix
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A’r]+l

0 -

and in this case, 4 is said to be of singnature ({ — 1, n), where A, -, A, are
positive constants and U* is the adjoint matrix of U. As is well known, in order
to determine the index of the indefinite Hermitian metric g, it is sufficient to
consider the index of the Hermitian matrix G =[G,,] induced from g in
§4. From now on, ¥(T), s(T), i(T) and |T| mean the rank of a matrix T, the
singnature of a symmetric (Hermitian) matrix T, the index of a non-singular
symmetric (Hermitian) matrix T and the determinant of a square matrix T
respectively. The above-mentioned notations are also used in §6.

(1) The case where k is not zero and the quadratic hypersurface ¢ =0 is
central. We denote by [k'] the center of the quadratic hypersurface ¢ = 0 in R*"

and put kP = k” + ./ — 1kP. Taking the complex coordinate transformation [z”]
- [67] = U*([z"] — [k"]), ¢ is expressed by

(5.1) ¢ = [071*D[6"] + &0,

where ¢, = [kP1*A[k"] + [Z,,]*[/E"] + [E”]*[,Zp] + A. Furthermore from (4.4),
we have

(5.2) U*GU = ;\% {¢D — D[67](D[67])*}.
From (5.1) and (5.2), we get
|[FI =0 for { <n,
|F|l=(— 1A, - Aygpop"" " for (=n,

2
where F = U*(% G>U. Thus we have

Lemma 4. G is non-singular if and only if A is non-singular and both of ¢ and
¢o do not vanish.

Next, we shall consider the index of G. Suppose that G is non-singular and
i(A)=n. When we denote by A the diagonal matrix

Ji
/i
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and by @(t) the characteristic polynomial of the matrix ‘A" *FA~!, from (5.1) and
(5.2), we have

D(t) = (t — d)' "Mt — ¢y) for n=0,
P)=(t+ @) '@t—¢y !

x (241 2,070 — $oo) for 0<n<n,
p=1

D(t)=(t + ¢)' "Mt + do) for n=n,

from which, by virtue of Sylvester’s law of inertia, we obtain

Lemma 5. Assume that G is non-singular and i(A) = n.
(@) If¢>0,then i(F)=n0=n=<n)orn+1(0=n<n)according as ¢, > 0 or
¢ < 0.

by If ¢ <O, then i(F)=n—n+10<n=n)or n—n(0=n=n) according as
¢o >0 or ¢, <0.

(2) The case where x is not zero and the quadratic hypersurface ¢ =0 is
non-central. As is well known, when we take the complex coordinate
transformation [zP] — [07] = U¥[z"] + [a”] for a certain unitary matrix U, of
degree n and a certain vector [a”]e C", then ¢ is expressed by

(5.3) ¢ = [0°1*D[6] + [6°1*[07] + [071*[b"],
where v is a positive constant and b? = vof,,. Furthermore from (4.4) and (5.3),
we have

4 . .
(54) vteu, = KTV'{d)D — (D[67] + [b"])(D[67] + [bP])*}.

From (5.3) and (5.4), we get
|F1|=0 for (<n—1,
Fil= (= )" 2y 22" for [=n—1,

- h2
where F, = U’{‘(% G)Ul. Therefore we have

Lemma 6. G is non-singular if and only if ¢ does not vanish, r(A) = n — 1 and

A [71,,]* .
’<[[Z.,J i D‘"“'

Next, we shall consider the index of G. On the same conditions as in Lemma
6, we assume that s(4) = (n —n — 1, #) and denote by A the diagonal matrix
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VA

)'n—l
1

and by &(t) the characteristic polynomial of the matrix ‘4~ !F, A~ !. Then from
(5.3) and (5.4), we have

D) =(t — )" 2{t* + tv(v — 6" — 6") — v? ¢} for n=0,
n—1
D)=+ ¢) e — @y " 2{ +2( Y 14,0707 +v?)
p=1
—tvp(0" + 6" —v2¢p?} for O<np<n-—1,
D) =(t+ @) 2{t> + tv(v + 6" + 6") + v? ¢} for n=n—1,
from which, we obtain

Lemma 7. Suppose the same conditions as in Lemma 6 and s(A)=
m=—n—1,n0=n=<n-—1). Theni(F))=n+1or n—n according as ¢ >0 or
¢ <O.

(3) The case where x is zero. Suppose that g is given by (b) in Proposition

3 and put
[ A (41 [ E [EX*
H‘_[[ZPJ A ] Hz‘[[EaJ [Ea,,]]'

From (4.9), (4.10), (4.11) and (4.12), we have

1 » 1 0 * 1 0 »
) G:o_’[c"]*[—[wﬂ wlln_l] HZ[—[W“] wlzn-l][c"]’

~ 0 0
E 0 [EJ*

H - [ —1 0 ]* 0 o 0 [ —1 0
Lo req 0 el
[Ea] 0 [Eaﬂ]
from which, on the assumption that [CF] is non-singular, it follows that G is non-

singular if and only if 6 %0 and H, is non-singular and in this case, by virtue of
Sylvester’s law of inertia,

s(G) = s(H,) = s(H,), s(A) = s([E.,]).

On the other hand, since n — 1 2 r([E,z]) = r(H,) — 2, we only consider two cases



Indefinite Kdihler metrics 507

where [E,z] is of rank n—2 or n— L.

(3-1) The case where r([E,z]) =n— 1. Then "A)=n—1. If G is non-
singular, then r(H,) = n, the quadratic hypersurface ¢ = 0 is central, and therefore
we can use the same method as in (1). Furthermore assume that s(4) = (n — n
—1,n). Then taking the complex coordinate transformation [z?]— [6”]
= U*([z"] — [k"]), we have

n—1
2,07°07 + % 2,670° + o, do X0,

1 p=n+1

(5.6) ¢=-

S e

and i(G) = n or n + 1 according as ¢, >0 or ¢, <0, where U, [k?] and ¢, are
the same quantities as in (1). On the other hand, from (4.13) and (5.6), we have

|Gl = |U*GU| = (= 1)'a™"" Y oA, -+ A,_, B, B,

10 [B)]* I 0 [B]

el [ 0T < |12 0
0 A [4]*|= [0 U] 0 4 [4,] [02 U]
[B,) [4,] A4 [B,) [4,] 4

= (= 1" oky -+ 21 B, By,
where [E;,] = U*[Ep]. Thus we get

Lemma 8. Assume that s(A)=(n —n —1,n). Then G is non-singular if and
only if 6 %0, r(H,) =n and

1 0 [B,]*
rll 0 A [41||=n+2.

[B,] [4] A4

In this case, i(G) =n or n+ 1 according as ¢, >0 or ¢, <O.

(3-2) The case where r([E,z]) =n —2. Then HA)=n—-2. If G is non-
singular, then r(H,) = n, the quadratic hypersurface ¢ =0 is non-central, and
therefore we can use the same method as in (2). Furthermore assume that s(A)
=(n—n—2,5). Then taking a certain complex coordinate transformation [z”]
— [67] = U¥[zP] + [a*], we have

n _ n—2 _ _
(5.7) p=— Y 2,000+ Y 21,0007 +v(@" ' + 6" ),
p=1 p=n+1

and i(G) = n + 1, where U, [@"] and v are a unitary matrix of degree n, a vector
of C" and a positive constant respectively. And from (4.13) and (5.7), we get
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|G| = |U*GU,| =(— Nr+igTn-y24, --~/1,,_2§;,§;,,

10 [B* 10 [B*

o I, 0* - [ 0
o aar -|[5o| o o w0
(B, [4,] A [B,] [4,] A4

= (= VA, 4, BB,
where [E;] = U’{‘[Ep]. Thus we get

~

Lemma 9. Assume that s(A) =(n —n —2,n). Then G is non-singular if and
only if ¢ X0, r(H,) =n and

1 0 [B,J*
rl| 0 4 [4,]*||=n+2.

(B, [4,) 4
In this case, i(G) =n + 1.

(4) If g is given by (c) in Proposition 3, then its components g;; are equal to
constants A4;;, and therefore i(g) = i([4;;]).

§6. Theorems

From the argument in §5, we can obtain

Theorem 10. Let (R*", J,, g, be an indefinite complex Euclidean space of
real dimention 2n(> 2) with the canonical complex structure J, and the canonical
indefinite complex Euclidean metric g, of index 2s, and let x',---, x*" be the natural
coordinate system of R*". If an indefinite Hermitian metric g is a holomorphically
projective change of g, then in terms of x',---, x*", the components g;; of g are

locally expressed by
2

gy = (030} + J1J8) 5

and satisfy one in Table 1, where J ; are the components of J.

Corollary 11. On the same conditions as in Theorem 10, if a holomorphically
projective change g of g, is positive-definite, then in terms of x',---x*", the
components g;; of g are locally expressed by

02
gy = (6165 + JiJY) Wf
and satisfy one in Table 2. In addition, if this metric g is globally defined on R*",

then g is of type 1, or VI in Table 2, and its constant holomorphic sectional
curvature is non-negative.
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Table 1
signature index
type f =0 ng [A;] @ #0 x of g
x>0 27
$>0 0 >0 <0 32
x n—2n
I
x>0 2n—2n
#<0 $0<0 <0 5
x n
central (2n—2n, 27) 0 P
II ¢>0 ¢()<0 It> 7]+
Yl (<m) | w<o | 2n-29-2
—log| ¢
x el | x>0 | 2n—2n+2
: (1>0) x<0 272
x>0 2742
111 $>0
' (2n—21-2, 21) x<0 | 2n—27-2
non-central ’
(7<) x>0 | 2n—27
111, $<0 <0 5
x n
#0>0 27
v é central (@n _(27’<_§‘ 27)
—— < $0<0 2742
40 x=0
\Y% non-central (Zn(;irz—jl,)‘???) 2942
VI %’ central (2n—2n, 2n) 27

Kk is the constant holomorphic sectional curvature of g, ¢ = ¢(x) = 4;;x'x/
+24;x' + A, 0 = (Bix' + By)* + (B;Jix) + B5)? %0, [k'] is the center of a central
quadratic hypersurface ¢(x)) = 0 and ¢, = ¢(k'), where A, A;, A, B;, B, and By
are real constants such that A;; = A; = J{J%A4,, and for the cases of types IV and
V, the matrix

[ 0 0 0 8] |
0 1 0 0 B
0 0 4 0 14,

0 0 0 A (J[4)

L [Bid Jo[B1 [A] Jol4d [A;] |

is non-singular.

Let g be the indefinite Kéhler metric of type I, Il or IIl mentioned in Theorem
10, which has nonzero constant holomorphic sectional curvature k. We put G,

= gpq + / — 195, for the components g;; of g and we shall consider G = [Gpyl
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Table 2
_ signature
type f ¢=0 of [A;] ¢ %o x
(2n, 0) $>0 $0>0
I x>0
(0, 2n) $<0 $0<0
(0, 2n) $>0 | 4,>0
I, central
1 (2n, 0) $<0 | $<0
—log| ¢|
11, x (2,2n-2) $>0 $0<0
x<0
11, (2n—-2,2) #<0 $0>0
I, (0, 2n—-2) $>0
non-central
111, (2n—2,0) #<0
v 4;’; central (2n—2, 0) $>0
x=0
VI —:i central (2n, 0)

If we take the complex coordinate transformations [z7] — [6”] used in § 5 and
[67] = [wP] such that
for the case of type I,

gr = Y [l

= wp,

22

p
for the case of type II,,
g+t = v T 2¢o
AV |K|)'r]+lw"+l

ep=——m (p %1+ 1),
p

for the case of type II,,

" = ___V2¢0' 0r = @ (p é,\:r,)’
[K| A, @" \/z:w"

for the case of type III,,

2v|k| w?

= (=),
VA2 = Ikl

2v|Kk|wPt?
g =
vV 'q'p(\/5 — [l 1) tr<p<n.

p
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g Y2+ Ikl
VRN

for the case of type III,,

2v|k|w?

RNNCEN R
o — \/5+ | x| "

p

V2= Kl

then, for G of each type, we get the inequality

b =1+2 3 e,@%wf >0
2,5

after a change of ordering if necessary, and G,, are transformed into an indefinite
Fubini-Study metric

0z 0z 2 K
"G Bt (B T2

02 4
= - — l s
0” 0! <x o8 ¢1>

g,wPe,®"} (not summed for p and gq)

where we put i(g) =2m and ¢, = — 1 or 1 according as t <m or t > m.

Next, let g be an indefinite Kéhler metric of type IV or V mentioned in
Theorem 10, which has zero holomorphic sectional curvature. When we put i(g)
= 2m, the Hermitian matrix H, in (5.5) is of index m and H, is induced from the
canonical indefinite complex Euclidean metric g,,, of index 2m on R*" = C" by a
linear transformation of complex coordinates. When we consider the system of

differential equations.
o’ | 1 1 0
W B (WI)Z - [W“] WIIn—l

for holomorphic functions w?, we have the solutions

1 ! R U «
w = — - + D , W = -1 + D )
w w
where D!,..., D" are complex constants. Thus, from (5.5), we see that the
components of g are induced from those of g,, by the linear fractional
transformation of complex coordinates.
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And if g is of type VI mentioned in Theorem 10 and i(4) = m, then g is
affinely related to g,,, and thus the components of g are induced from those of g,,,
by a linear transformation of complex coordinates.

Therefore from the argument above and Proposition 1, we can obtain the
generalization of Bochner’s Theorem D as follows:

Theorem 12. Let (M, J, g) be an indefinite Kihler manifold of real dimension
2n(>2) and of index 2m. If (M, J,g) is of constant holomorphic sectional
curvature k, then each point of M has a real coordinate neighborhood
{U; x*,--+, x*} in which the components g;; of g are expressed by

a sb a 62
= @10} + It ) 5 )

where [ is given by

1 n
f== log[ +Z Y e, {(x")* + (x"+")2}] for kX0,
K 2 p=1
1 n
=3 L, e {6+ (7)) for k=0,
and ¢,= — 1 or 1 according as t <m or t > m.

§7. Remarks

7-1. Projective changes of a Euclidean metric. Applying our method to a
projective change of an indefinite real Euclidean metric, from Kagan’s theorem, we
can obtain the following result: Let (R", g,) be an indefinite real Euclidean space
of real dimension n(> 1) with the canonical indefinite Euclidean metric g, of index
s. If an indefinite Riemannian metric g is a projective change of g,, then in terms
of the natural coordinate system x',---, x" of R", the components g, of g are
locally expressed by

1 0% o¢p 0¢ )
(®) Ipa = dig? {2¢ 0xPox?  OxP ﬁ} Jor k%0,
1 o2 ¢
(b) I = 33 Gxroxa <E) Jor k=0,
62
(C) 9pg = Ox? Ox? <%> fO" K = 0,

and satisfy one in Table 3, where x is the constant curvature of g, ¢ = @(x?)
= A, x"x? + 24,x" + A, Y = B,x? + B, [k"] is the center of a central quadratic
hypersurface ¢(x?) = 0, ¢ = ¢(k), and A,,(= A4,,), 4,, A, B,, B are real constants
such that [4,,] %0, [B,] %0 and for the case of (b) in Table 3, the matrix
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is non-singular.

[B,] [4,] [4,]

Table 3
= signature index
gpq ¢—0 Of [qu] ¢ ¢O X Of g
050 x>0 n
>
450 ? x<0 n—n
>
B0<0 x>0 n+1
<n) 1 wco | n—n—1
central (n—n, n) )
6,>0 x>0 n-nt
() $<0
x>0 n—n
#,<0
x<0 n
s x>0 n+1
>0
x<0 n—n—1
-central | (1771, 7)
non (n<n) , x>0 n—n
<0
x<0 n
60 >0 7
central (n _(r/”<_nl)’ 7)
(b) %<0 0 n+1
xX=
non-central (?;2;—2'1)’7) n+1
(c) central (n—mn, ) 7
1 0 ‘(B p]
0 A ‘4 p]
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Furthermore, by the same method as in Theorem 12, we can obtain the
generalization of Theorem B as follows: Let (M, g) be an indefinite Riemannian

manifold of dimension n(> 1) and of index m.

If (M, g) is of constant curvature

Kk, then each point of M has a coordinate neighborhood {U; y',---, y"} in which

the components g,, of g are expressed by

{14+ K Y ey)}e,0,, — KkeyPe,y
r=1

9pg =

n
where 1 +k ) ¢(y")*>0 and ¢, = — 1 or 1| according as t <m or t > m.
r=1

{1+« Z & (y")?}?
r=1

(not summed for p and gq),
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7-2. Generalized changes of a Euclidean metric. Generalizing some changes
of (indefinite) Riemannian metrics mentioned in § 1, we can consider the following
problem: Let (M, g’) be an indefinite Riemannian manifold of real dimension
n(> 1) and V' the Levi-Civita connection induced from g'. When a symmetric
tensor field T of type (1,2) is given on (M, g'), does there exist an indefinite
Riemannian metric g on (M, ¢g') whose Levi-Civita connection V satisfies

7.1) VyY=",Y+ T(X,Y)

for any X, Ye X(M)?

It is well-known that, if g is another indefinite Riemannian metric on (M, ¢'),
then there exists a unique symmetric tensor field T of type (1, 2) satisfying (7.1).

The changes of (indefinite) Riemannian metrics mentioned in §1 are those
which ¢’ and T satisfy some conditions, and we have been able to solve (7.1) for
such special ¢’ and T. But for an arbitrary symmetric tensor field T of type (1, 2)
given on (M, g'), there does not necessarily exist an indefinite Riemannian metric
whose Levi-Civita connection satisfies (7.1).

It is easily seen that (7.1) is equivalent to

(7.2) 7xg) (Y, Z) = g(T(X, Y), Z) + g(Y, T(X, 2))
and the integrability condition of (7.2) is
(7.3) gK'(X, Y)Z, W)+ g(K'(X, Y)W, Z)
=g9(("yT) (X, Z), W) — g(Px T)(Y, Z), W)
+9(T(Y, T(X, Z)), W) — g(T(X, T(Y, Z)), W)
+9(Z, VyT) (X, W)) — g(Z, Px T)(Y, W))
+9(Z, T(Y, T(X, W))) — g(Z, T(X, T(Y, W)))

where K’ means the curvature tensor of g'. Our problem is to determine a non-
degenerate symmetric solution g of (7.2).

Now we shall show two examples as follows: Let (R", g,) be a real Euclidean
space of real dimension n(> 1) with the canonical Euclidean metric g, and the

oxt’ 7 ax"
{dx',---, dx"} the natural frame and its dual frame respectively.
(1) Let T be a symmetric tensor field on R" given by

. 0 0
natural coordinate system x! .-, x". We denote by { —} and

If a symmetric tensor field g of type (0, 2) on R" satisfies (7.2) for this T, then the
components g,, of g satisfy

99pq

P (6, + 6,9)9,, (not summed for p and gq).
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Solving the above system of differential equations, we get
9pq = Apg€Xp(xf + x%) (not summed for p and g),

from which, it follows that g is non-degenerate if and only if [4,,] is non-singular,
where A,, = A,, are constants.
(2) Let T be a symmetric tensor field on R" given by

T=%®(dx1 ® dx' + dx* ® dx?).

If a symmetric tensor field g of type (0, 2) on R”" satisfies (7.2) for this T, then from
(7.3), we have

(X'y? - XZYI){g<W, 2252-1> + g<z, w? a%)} =0

0
for any X, Y, Z, We X(R"), where X = X”ﬁ and so on. Taking X, Y, Z, We

X(R") such that
0

0
X'Y2 - X2Y'x0, Z=—, W=—
* ox? ox"’

we obtain
dir =0 (r= ]’...’ n)’

from which, it follows that g is degenerate and there exist no indefinite
Riemannian metrics on R" whose Levi-Civita connections satisfy (7.1) for this T.
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