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Off-diagonal short time expansion of the heat kernel

on a certain nilpotent Lie group

By

Hideaki UEMURA

0. Introduction

Let % be a differential operator of Hormander type;
1 r
L= Z Vaz + V()’
2,54

where V,, « =0, 1,---,r, are C®-vector fields on R?. Under the condition (H.1),,
of these vector fields given in §2 below, the fundamental solution p(t, x, y) of the

. Ou . . .
heat equation i Lu exists. Its short time expansion of the form

d(x, y)?

% )t_N/z(co +cit+--)ast)0

0.1) p(t, x, y) ~ exp( -

has been studied by many authors in both analytical and probabilistic methods, cf.

e.g. J.-M.Bismut [7], T.J.S.Taylor [21], S.Kusuoka [11], S.Watanabe [24],

R.Léandre [16], G.Ben Arous [3]. Among others, G.Ben Arous [3] has shown

that (0.1) holds with N = d when the pair (x, y) of points x and y is out of the cut-

locus, i.e. when

(i) there exists a unique hoe K&},

(ii) the deterministic Malliavin covariance with respect to x and h, is non-
degenerate,

(iii) x and y are not conjugate along h, (i.e. the Hessian of the mapping he K*’

1
—»§||h||§, is non-degenerate at hg),

cf. §2 for the precise meaning of notions and notations like K*?, KX, the
deterministic Malliavin covariance, etc. Also, d(x, y) in (0.1) is the control metric
or the Carnot-Caratheodory metric which coincides with the H-norm of elements
in K5}, Indeed, it was shown by R.Léandre ([13], [14], [15]) that, under the

assumption of (H.1),, it holds generally

0.2) lim2t logp(t, x, y) = — d(x, y)*.
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When the pair (x, y) is in the cut-locus, we can still expect that (0.1) holds but
the exponent N is usually greater than d. In the simplest case of x =y, the
expansion (0.1) with d(x, v) =0 has been obtained by G.Ben Arous [4], R. Léandre
[16] and S. Takanobu [20] under some restriction on the drift vector field V,. If
this restriction is violated, the situation is much more complicated, cf. G.Ben
Arous [5], G.Ben Arous-R.Léandre [6].

Consider the case (x, y) is in the cut-locus and x # y. First we consider
the case when (i) is violated but (i) and (iii) remain valid for every
hoe K%Y . Here, however, the definition of non-conjugacy in (iii) should be

modified as:

1
(iii)’ the Hessian of the mapping heK”—»i | k)% is non-degenerate at h, in the

direction normal to K3},

Then we can expect that (0.1) holds with N =d + dim K}, just as in the case of
the heat kernel on a sphere with & = a half of the Laplacian and y is antipodal to
x, cf. S.A.Molchanov [17]. Note that K7 is in one-to-one correspondence with
the set of minimal geodesics (minimal horizontal curves given in §2) connecting x
and y and hence dim K%}, = the dimension of the set of all minimal geodesics
connecting x and y. A typical example of this situation is the case of the
Heisenberg group realized by R* and x=1(0,0,0),y=(0,0,%),n#0 (cf.
B.Gaveau [9], R. Azencott [2]). In this case, K% constitutes a one-dimensional
submanifold in the Cameron-Martin Hilbert space and N=4=4d
+ dim K%Y, If, furthermore, the condition (ii) is violated, i.e., the deterministic
Malliavin covariance degenerates at he K%, we may still expect that (0.1) holds
with N > d + dim K}, however.

Purpose of this paper is to illustrate these situations in a concrete case of the
nilpotent Lie group N, , realized by R'®. In this case, an explicit integral
representation of the heat kernel was obtained by B.Gaveau [9] (cf. also
M. Chaleyat-Maurel [8]) and the short time expansion (0.1) could be obtained
directly from it. We follow here, however, a probabilistic approach given by
H. Uemura-S. Watanabe [22] which can explain well the role of dim K}, and the
degeneracy of the Malliavin covariance in the determination of N and which may
give some insight, we hope, in more general situations.

Finally, we explain briefly our method. First we represent the heat kernel as

(0.3) p(e?. x, y) = E[,(X})]

by a generalized expectation of a generalized Wiener functional in the sense of
S. Watanabe [24] where X is the solution of the following stochastic differential
equation:

dX,=¢ Y V(X)odw] + > V(X )dt
(0.4) a=1
Xo =X

S, is, of course, the Dirac’s d-function at yeRY. We evaluate the generalized

y
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expectation in the right-hand side of (0.3) by appealing to the theory of large
deviations and the theory of asymptotic expansions of Wiener functionals as
developed in S.Watanabe [24]. Roughly, X; conditioned by X{ =1y will be
concentrated on the set M*™ = {¢™"; he K32} of minimal horizontal curves
connecting x and y as ¢} 0, actually will be distributed uniformly on this set. It
will be shown clearly by our probabilistic method how this limiting behavior of
tied-down trajectories X? is reflected on that of p(e?, x, y) as ¢ 0.

Here the author wishes to express his sincere thanks to Professors
S.Watanabe and S.Takanobu for their valuable suggestions and hearty
encouragement.

1. Probabilistic preliminaries

In this section we introduce some notions and results on asymptotic
expansions of generalized Wiener functionals as are necessary in the future. The
reader is refered to S.Watanabe [23], [24] for details.

Let (W, H, p) be an abstract Wiener space. D5 (E)(seR, 1 <p < o) be the
completion of Z(E)(:= {E-valued polynomial Wiener functionals}) by the norm
I NI, = II(I = LY+ |,. where L is the Ornstein-Uhlenbeck operator (the number
operator), | - |, is the L”-norm with respect to the measure u, and E is a separable
Hilbert space. Especially when E = R, we denote Dj, instead of D}(R). Then it
holds that D)(E) = L?(E, u) and D;}(E)*, the dual space of D}(E), coincides with
D, *(E) under the identification of D(E)* (= L*(E, w)*) with itself, g being the
conjugate exponent of p; 1/p+ 1/g=1.

We define H-derivative D:?(E)->PHEE) by DF(w)[h]
:=limF(w+8Z)_F(W), heH. Here H E is a Hilbert space formed of all

el0

linear operators from H to E of Hilbert-Schmidt type endowed with the Hilbert-
Schmidt inner product. D can be extended to a bounded linear operator D} (E)
— D3 1(H @ E) and we denote this extended linear operator again by D. If D* is
the dual operator of D, then D* maps from D}"'(H ® E) to D$(E) and L=
— D*D. (See also N.Ikeda-S.Watanabe [10] or H.Sugita [19].)

Set D®(E):= | DiE), DE);:=QN U DYE), D =(E)

§s>0 1<p<w s>0 1<p<ow

=U N D,%E)and D"*(E):= U D,*E). We call an element of

s>01<p<ow $s>01<p<ow

D~ *(E) a generalized Wiener functional in analogy with the Schwartz distribution
theory. When E =R we denote them simply by D=, D*, D * D™=
respectively. For GeD® and @eD~ % (or GeD® and ®eD ), G- d(= @ G)
eD™® is defined by p-x{G D F)poi=p-wl{P, G F)pe [resp.
= 5-w{(D, G F)p] for all FeD™.

For F(w) = (F'(w),---,F4w))eD®(RY, i.e. Fiw)eD>, i =1,---,d, set ¢”(w)
= (DFi(w), DF¥(w)>y, i,j=1,---.d. Here (-, x>y means the inner product of
H. We call this d x d matrix valued Wiener functional a(w) = (6Y(W)); j_,....4 the
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Malliavin covariance of F. If o(w) is positive definite for almost all w and

furthermore {deto(w)} '€ () L"(u), we say that F is non-degenerate (in
1<p<ow

Malliavin’s sense), and in this case, for any Te #’(RY), a tempered Schwartz
distribution on RY, its pull-back T(F) is defined as an element of D™®. For
GeD®, we denote §-=<{T(F),G)pu(=p-={G T(F),1)p=) by E[T(F)-G]
or E[G-T(F)]. Especially when T=4,, the Dirac’s é-function at yeR’
E[G-0,(F)] = E[G|F = y]-p(y), p(y) being the C*-density of F.

Let F(e, weD}(E) for all e€(0, 1]. If [[F(e, w)|l,, = o(e") as ¢/0, we say
F(e, w)y=o0(") as €0 in Dy(E). When F(e, w)e D¥(E) for all e€(0, 1], we say
F(e, wy=o(e") as |0 in D*(E) if F(e, w) = 0(¢") as ¢ | 0 in D}(E) for all s > 0 and
pe(l, o). Similarly we define F(e, w) = o(¢") in D®(E), in D™®(E) and in
D~ *(E).

Let F(e, weDj(E) for all ¢e(0,1]. We say F(e, w) has the asymptotic
expansion in D;(E):

F(e, w) ~ fo(w) + &-f1 (W) + &2 f,(w) + ---as €0 in D(E)
if fw)eD;(E), i=0,1,2,---, and furthermore for all n,

Fleow)— 3 &-fiw) = o(e") as ¢ 10 in D(E).

i=0

Similarly we define the asymptotic expansion in D®(E), in D®(E), in D~®(E) and
in D"®(E). For example, we say F(e, w) has the asymptotic expansion in D®(E)
when for all n and s, there exists p = p(s,n) such that f(w)eDy(E), i

—0,1,2,-,n, and Fe, w)— . &fi(w) = o(e") as £ 10 in D5(E).

i=0
Let F(e, weD®([RY for all £€(0,1] and o(e, w) be its Malliavin
covariance. We say F(e, w) is uniformly non-degenerate if F(e, w) is non-
degenerate for all ¢e(0, 1] and furthermore

lsi_fg | {deta(e, w)} !, < for all pe(1, o).
Here we give an important theorem concerning the asymptotic expansion of
pull-backs.

Theorem 1.1 (S. Watanabe [24]). Let a family F(e, w)eD®(RY), 0 < e < 1, be
uniformly non-degenerate and have the asymptotic expansion in D®(RY):

F(e, w) ~ fow) + & f1(w) + -+ as €0 in D®(RY).

Then for all Te %’ (RY), its pull-back T(F(e, w))eD™® and has the asymptotic
expansion in D™

T(F(e, w)) ~ Po(W) + & D (W) + -~ as 0 in D™,

Furthermore, these coefficients @,(w), i =0, 1, 2,---, are obtained from the formal
Taylor expansion of T, i.e. formally from
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T(F(e, w)) = T(fo) + aT(fq)(B'f1 + 82'f2 + )
1
3O Tf)e fi+ 8 fot )@ fi+ 8 fo+ )+,

namely ®,(w) is obtained by picking up all coefficients of ¢ in the right-hand side
above. For example, @&,=T(f,), D, =0T(fo)f, and @,=203T(fy)f,

+3PTU S @ i

Corollary 1.2. Under the same assumptions as in Theorem 1.1,

E[T(F(e, w))] ~E[@;W)] + ¢ E[®,(W)] + --- as €]0.

2. Stochastic representation of heat kernels

Here we discuss the stochastic representation of the fundamental solution of
heat equations by using the above results. Consider the following differential
operator % of Hérmander type on R‘:

1 r
g = 5 Z Vaz,

=1

A B .
where V(x)= ) V;(x)g, a=1,,r, and we assume Vi(x)eCZ(R%:= the
i=1 i

totality of C*-functions such that all derivatives are bounded. Let p(t, x, y) be

the fundamental solution of % — %, ie.

0
Ep(t’ X, y) = gx p(t’ X, Y)
leilrgl p(t, x, y) = d,(x).

p(t, x, y) can be obtained probabilistically by the following way: Let (W}, P) be

an r-dimensional Wiener space, i.e. W§:= {w = (w,)eC([0, 1] > R"); wo =0} is a

Banach space endowed with the norm |w|:= sup |w,| and P is the Wiener
te[0, 1]

measure on W§. Let H be the Cameron-Martin subspace of W§, i.e. H is a Hilbert
space consisted of all absolutely continuous functions on [0, 1] whose Radon-
1 2 1/2
Nikodym derivatives are square integrable with the norm |h||,:= <J % dt> .
0
Then (W§, H, P) is an abstract Wiener space. Now consider the following
stochastic differential equation (abbr. S.D.E.) on R“:

dX, = Y Vi(X)odw]

2.1
@1) Xo=x.
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Here w,=(w!,--,w))e W] and -dw? denotes the stochastic differential of
Stratonovich type. We denote by X, the solution of S.D.E. (2.1). We assume the
following Hormander-type condition on the vector fields ¥, o« = 1,---,r:

(H. 1), If we set
H(n) = {xeR% £.o. {[V,, Vo, [V > %, J1--1 (),
ae{l,---,r}, k <n} = T, (RY}

then ) H(n) = R%

N
Here /.5. means the linear span. In the case (J H(n)(= H(N)) = RY, we say the

n=1

condition (H.1)y is fulfilled. From now on we always assume (H.1),,. Then it is
known (cf. S.Kusuoka-D.W.Stroock [12]) that the Malliavin covariance o(t) of
X,eD>*(R? is non-degenerate for each fixed te(0, 1], more precisely positive
constants K; = K,(p) and K, exist such that E[|deta(t)| "P]'? < K,t X2, te(0, 1],
pe(l, o0). Hence 5Y(X,)el~)‘°°. Moreover we can see that

p(t, X, y) = E[ay(Xl)]
Let X/ be a solution of the following S.D.E. (2.2):
dX,=¢ Y Vi(X)odw;
a=1

(2.2) Xy - x

Then it is easy to see that {X [} L {X,2}, so the fundamental solution p(t. x, y) can
be expressed also by

p(e?, x. y) = E[5,(X})].

In the following we use this representation to study its asymptotic behavior as
el 0.
For each he H, consider the following differential equation:

de(t) ¢ _dh‘,’

e a; V.(c(t) 0
2.3)

c(0) = x.

We denote the solution by c¢*"(t). Such a curve for some x and h is called a
horizontal curve with respect to {V,}. For all x, yeR set

K*¥ = {he H; (1) = y}.

Then under the condition (H.1),, it is well-known that K*? # ¢ for all
x, yeRY(cf. J.-M.Bismut [7], Th.1.14). Thus, for all x, yeR?, we set

d(x, y) = min{||h|ly: he K**}.
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This defines a metric called the control metric of x and y. Let
Kah = {heK*; |hly =d(x, y)}.

Then it is also well-known that K3 # ¢ (cf. J.-M.Bismut [7], Th.1.14). We
define M*¥ by

M* = {c*": he KX

min

and call its element the minimal horizontal curve connecting x and y.

Consider the following differential equation on d x d matrix:
dY(t) r dh“

Za dt

a=1

Y0) = I,

2.4)

where c(t) is the solution of (2.3) and dV(x) is a d x d matrix whose (i, j)-
component is 0V}(x)/0x;. This solution is denoted by Y*"(t). With this solution
we define a d x d matrix ¢*" by

O.x‘h — i J\l Yx.h(l)Yx.h(t)—l K(Cx'h(t))

a=1]Jo0
® Y*M(1)Y*"(0)~ V(P (1) dr.

This o™" is called the deterministic Malliavin covariance with respect to x and h
and plays an important role later when we discuss the minimal horizontal curve.
We define the Hamiltonian function associated to the vector fields V,, «

Z p. V(0% (p. x)€ THRY),

N !

where ¢+, *) denotes the coupling of elements in T*(R%) and T.(RY). Consider
the following Hamilton equation with respect to H(p, x) above:

OH

2 5‘1 = ap (pn xl)
(2:3) . 0H
Pr= — F (pn x1)~
X

where ~ denotes the time derivative o The solution of this equation (2.5) is

called a bicharacteristicc.  We denote the bicharacteristic with an initial value
(po. Xo) bY (P:(Po, Xo)s X:(Po- Xo)). Now we summarize some results concerning to
the bicharacteristic. Refer to J.-M. Bismut [7] for details.

(2.6-1)  Let p;:=p,(po, Xo), X,:= X,(Po, Xo) andh =P, (x> Lpps Vix)D).
Then
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(1) = x,(Po, Xo)-

(2.6-I1)  If the deterministic Malliavin covariance ¢**, heK}%?, is non-
degenerate, i.e. deto*" > 0, then there exists a unique p, such that

(1) = x,(po> Xo)-

(2.6-1II) The following (H.2) is a sufficient condition on vector fields V,, «
=1,...,r, for the non-degeneracy of its deterministic Malliavin

covariance:

(H.2) £, {Vi(xo)s o W(xo)s [V, Y1(xo),o+s [V, Y1(xo)} = T (RY)

for every fixed A =(4,,---,4,)eR"\{0} setting Y= Zr: AV
a=1

Namely, if (H.2) is satisfied at x,e R?, then deto** > 0 for every he H
such that h # 0.

3. Nilpotent Lie groups of order r with n-generators

In this section we introduce a nilpotent Lie group which will be the main
subject of this paper (cf. B.Gaveau [9]). Let ¥,---, ¥, be C~-vector fields. For
I=(iy,,i)e{l,---,n}* we define ¥, and ¥} by

I/['” = [I/il’ [I/iZ’“.[I/ik-], V;k]]‘
V=V, V, -V

[

and let |I| be the length of I. (In this case |I| = k.) It is easy to show that there
exist constants A;; such that

I{I]ZZAIJ'V:I

Definition 3.1. We say that a system of vector fields {V],---, ¥} is free of
order r at x if Y a;-Y,(x) =0, a;eR, implies ) a; A;; = 0 for all J satisfying

(T=r r=r
|J|<r. LetV=~{~a {V,-,V}. Wesay the vector space V is free of order r if
{W,---, ¥} is free of order r for all x.

Definition 3.2. Let g be a Lie algebra.
i) g is said to be nilpotent of order rif g=V' @ - @ V" where Vi, i=1,---,r,
are vector subspaces of g satisfying V2 =[V! V'], V3=[V! V] ..V’
= [V!, V' 1], [V, V"] = {0} and [V, V] < Vi*i,
ii) Furthermore g is said to have n generators if dimV?! = n and moreover V!
is free of order r.

We say g is a nilpotent Lie algebra of order r with n-generators if i) and ii)
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above are satisfied and denote it by n,,. Let N,, be a Lie group corresponding
to n,,. This N,, is called a nilpotent Lie group of order r with n-
generators. From now on, we assume r = 2.

Proposition 3.1. Let n,, =V' @ V? {V, i=1,---,n} be a base of V', and

Vie=1[V,, W]. Then a system {V,, V,: 1 <i<n,1<j<k<n}is a base of n,,.

Proof. Set Y a; VY,(x)=0 where a, =0 if I =(i,, i,) satisfies i, > i,.
=2

Since V' is free, ), a;-A;; =0 for all J. Therefore by taking J =i,i=1,---,n,

=2
or J=(jk),l <j<k<n, we see easily that a,=0, ie. {V,V;1<i<n,
1 <j<k<n} is linearly independent. Since ¥, i,y = — Ypuiry it is clear that

the above system is a base.

With this base we can introduce a canonical coordinate on N, , as follows:

<—+exp(.;x,~V,‘+ Y X4y Vi) €Ny

1<j<k<n

(x;, x(jk))l

<i<
1<j<

n
j<k<n

Hence N, , is realized by R*™*!/2 under this coordinate and the group action
is given as follows by Campbell-Hausdorff’s theorem:

1
(xis XGiy)* Vis Yijry) = <xi + Vi Xwy + Yy + i(xjyk - xkyj)>‘

Define mappings L("i-x(jk)) and R(Yiv)’(jk)) on R"(n+1)/2 by
Ly xegon @i 200) = %o Xig)* (205 25
and

Ry Zis Ziy) = (s Z)* Vs Yijuo)-

Then both L, ., and R, , ., are affine mappings with the determinants 1 and
so the Haar measure of N, , is the Lebesgue measure. Under this coordinate ¥ is
expressed as follows:

o 1 i g
. =gt Zxg— = Txa— ).
@.1) b0x; + 2<kZiXk 0 iy kZiXk ax(ik))
Set
A=Y V2.
i=1

Obviously {¥, 1 <i<n} satisfies (H.1),. The group N,, is called the 3-
dimensional Heisenberg group (cf. B.Gaveau [9], H.Uemura-S. Watanabe [22]),
and the group N;, does not play a different role from N,, in our future
considerations. Thus, in this paper, we assume n = 4 and study the group N, ,
exclusively.
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Notations. (cf. H.Uemura-S. Watanabe [22]) i) xeR!® is denoted by x
= (Xi» X(iy)i=1,.a OF by [x, X] where xeR* and X ev(4):= the totality of 4 x 4

1<j<k<a

real skew-symmetric matrices, defined by x = (x,,---,x,) and
Xij) if i <j,
0 otherwise.

We also denote such X by .Z.x(,»j,é,»j - .Z.x<f“5"1"
ii) For every Qe0(4) weKéeﬁne a n;;éping T(Q) on R!° by
TQ)x =[2x, 2X'Q].
iii) For X, Yev(4), define X ~ Yif and only if X = QY'Q for some Qe0(4).

Remark 3.1. Noting that 2X'Qev(4) and that | X || = | 2X'Q]|, |- || being a
16-dimensional Euclidean norm by regarding X as an element of 16-dimensional
Euclidean space, we know T(2)eO(10). And it is easy to see that 'T(Q) = T('Q).

4. Computation of minimal horizontal curves

In this section we determine all the minimal horizontal curves on N, ,
connecting the origin 0 and x = [0, X]. For each he K®*, the horizontal curve
c(t) = (c™i(t), ™P(t)),_, .., and the deterministic Malliavin covariance

1<j<k<4
ol gimm
a(=a(h) = ok ok mn)
1<i,j<4,1<k<l<4.1<m<n<4

are given as follows:

ity =hi,i=1,-.4,

t . .,
chuk(t) = %j {hi-h% — hE-hi}ds, l<j<k<d4,
0
Cd
where = = ' and ¢"(1)=[0, X] and
o =8y,

o =gl =0 if k #j and [ # j,

1<ij<4

1
o.(kl)k — o,k(kl) - _ J‘ h:dt,
o

1
0.(hl)l — O.l(kl) — J h:t dt»

0
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o®Dm) = 0 if {k, I, m, n} = {1,2, 3, 4},

1
kDD _ f {(h)? + (W)*} dt,

0

1
UWWM=j H by dr,

o]
1

O.(kl)(mkb — G(Mk)(kl) - _ J h£ h:n dt
0
and
1
wWM=JMmML

(o}

Proposition 4.1. [f rank X = 4, the above deterministic Malliavin covariance o
is non-degenerate.

Proof. For all Xev(4), there exists Uen(4) such that U = u,(5,, — J,,)
+ uy(034 — 043) and X ~ U. If rank X =4, then rank U =4, i.e. u,, u, #0. It
is enough to prove in the case X = U because

a(Qh) = T(Q)a(h)' T(Q), Qe04),
which is easily obtained by that
YO () = T(Q) YO'(1) T(Q)

and that

4
Q) Z,l Vo (c"(0) ® Vale"(1)) T(€2)

Il
NI

V(") @ Vile™(®),

Y*" and ¥, being as in (2.4) and (3.1) respectively.
Since he K%10-U),

0
1! . .
5 (hrl h12 - hlz'hll)dt = ul(séo)s
JO
@.1) A .
3 (h} -kt — bt hY)dt = uy(#£0).
JO
| L e
3 (hy-hi — h!-h)dt = 0 if (i, j) # (1, 2), (3, 4).
JO

It is easy to show that ¢ is transformed into the following 6 by a general
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linear mapping: 69 = §;;, 0% = =0 for all 1 <i<j<4, k=14 and
- .o — . 1 .
gD are given by replacing h with h in ¢@*?, where hj:= h; — J hids. Clearly

(4.1) remains valid under replacing h with h. 0

Now it is enough to show that ‘@& =0 implies £ =0 where we set @
= (fUNKD) o and &="¢5, &3, E1as €235 €24y $34).  Since
4

1 - — -
'ié’)f:j {(—=&a-h) + &3 b + Eyy b)Y
0

+(f12'i’:2+513'flz3 +él4'ﬁf)2
+(&50h! +523‘i’12—534'ﬁr4)2
+(f14";zl + 524‘512 + 534";:3)2}&,

we see that ‘(@& =0 is equivalent to the following (4.2):

— &g hf + &y P+ oy =0,
Evgrht+ &b+ &y =0,
Eva hi + &ay b — Exu- b =0,
Eva- b+ Epu B + E3u B} =0,

4.2)

Then substituting (4.2) into (4.1), we can easily show & =0. This completes the
proof.

Thus, in view of (2.6—1II), the minimal horizontal curve in this case is obtained
from bicharacteristics. This is also true in the case rank X = 2, because we can
reduce this case to that of Heisenberg group.

Now we determine the bicharacteristics on N, ,. Substituting (3.1), the
Hamilton equation (2.5) is given by

. | . .

i k k k
xt=pi4 Y xf-p¥? = Y xt-pi},
25 i

x‘,”’=§(x§'xf—x{'xi),

pi= — E{Z_p,“pi'” = 2 -}
l<j

>j

1 . . .
L, (i), p(lj) L, p(J) |, (i
_Z{zxz'pt ’prJ +th'p:ﬂ'pzj
I<j >
i<j i>j

1 (ij) (F1)) k kj ji)
— Y xt-ppdh — N xppD. iy,
i<j<l k<j<i

2 =0
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Moreover it is easy to show that
(44 hi(:= {pes V(X)) = x{.

Since p{ = p{i and {x{*’} are obtained by {x}, setting x, = ‘(x;},---,x*) and p,
='(p},-,p}), we must solve the following equation:

45 d(x\ —A 1 X,
s ili)-Ca Z)G)

Here A = (a;)); j=,,.4€0(4) is given by
1

_. (ij), i< i,

2 Po J

al..= 1 i . .
T e i>
0, i=j,

and I denotes the 4 x 4 identity matrix.
Proposition 4.2. For all Qe0(4),

{P:(T(-Q)Po’ T(©2)xo) = T(Q)p.(Po. Xo)
X (T(Q)po, T(2)x,) = T()x,(po, Xo)-

Proof. 1t is easy to see that
d [ 2x, —0QA'Q I Qx,
E(Qm) B ((QA’Q)Z - 9A’9><9p.>’
so the assertion of this proposition is obvious.

Remark 4.1. We know that for all 4€v(4), there exist 2e0(4) and Qe Q(4)
= {q1(812 — 021) + q2(634 — S43)€0(4); 0 < g, < g,} such that

A =000

Thus, by the proposition above, we can conclude that determining all the minimal
horizontal curves connecting 0 and x = [0, X'] is equivalent to determining all (p,
(= [Po» 2Q]), 2)eR'°x O(4), Qe Q(4), such that the H-norm of h, given by (4.4)
from the solution of (4.3) with the initial value (f,, 0) satisfying x, (p,, 0) = T('Q)x,
takes a minimum.

Replacing 4 by Qe Q(4) in (4.5), we have

XU = =g x4 p!
s 2i 2i-1 2i
Xi =4 X + P
(4.6) Y2-1 _ 2 201 _ o p20
12 - qi - X% qi* P

pr=—aqi-xF+aqe-p?t i=12
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with initial value (xq, po):= (0, o). We denote the solution of (4.6) by
(x,(Bo)» P(Bo)). (In the folowing we always assume xo = 0, so we always omit X.)
In this case clearly h, = x, and the solution of (4.6) is:

a)  ifq=0
Xt (po) = Py 't
x71(Po) = o't
2 (o) = o !
p? (po) = po’
by if ;>0
X271 (Bo) = (B3~ /2q;)sin 2q;t + (B5'/24:)(cos 2q;t — 1)
x2(Bo) = — (6"~ ' /29)(cos 2q;t — 1) + (P5'/2q;) sin 2q;t
p? 1 (Bo) = (5"~ ' /2)(cos 2q;t + 1) — (p3'/2)sin 2¢;t
pE(po) = (P2~ 1/2)sin 2q;t + (P3'/2)(cos 2g;t + 1),

thus, always | hlE =3 li ph)2.
By the condltlon xi(Fo) =0, i =1,---,4, we must have that
qi=rm, eNif (55771, ) # (0, 0),
and we set r; =0 when p2i~' = p3' = 0.

. 1
x(po) and 3 [h|% are computed as follows:
i) In the sase 0 =r, =r,,
. 1
x{’(po) = 0 and 3-[[hf = 0.

ii) In the case 0 =r, <r,,

x{(Po) =0 if (ij) # (34),

1
xP9 (o) = 7—{(P3)* + ()}

4r27[
and
1 2 34) (s
5 [ hllf = 2rym- x5 (Po)-
i)’ In the case O <ry =r, =r,

(o) = o — (B0 + (3?).
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- | =
x{' (o) = yr—_ {P5- B3 — Po- P}
1

x(lm)(lio) = m {ﬁ(l)ﬁg + 13(2) ‘ﬁg}’

- -1 . . oy
x?(po) = e {Po- B3 + Ps- P}
. | P 1 =
xP9(po) = ypees {P5- B3 — Po- P}
i

— {33 + (53)*}

(34)(5 | _
x5 (Po) I

and
1 . -
o IhllE = 2rr- {x{" 2 (Bo) + x4 (Po)} .

iii) In the case 0 <r, <r,,

x{1(po) = arom : {(ﬁ(l))z + (130)2},

1
4r,m

xP9 (o) = A{(B3)* + (B},
x{P(po) =0  otherwise

and

5' ||h||121 = 2"177‘)‘(112'(50) + 2"27T'x(134)(l~)o)-

Thus, by setting x,(py) = [0, X(po)], we know that:

in the case i), rank X (p,) = 0,

in the case ii) or ii), rank X (p,) = 2
and

in the case iii), rank X (p,) = 4.

Therefore the cases that the given matrix X is rank 0 (i.e. X = 0), rank 2 and
rank 4 correspond respectively to the case i), the case ii) or ii) and the case iii).

Finally we find the minimal horizontal curves x, connecting 0 and x
= [0, X]. Equivalently we determine all he K%

min*

L. The case of rank X =0, i.e. X = 0.

In this case clearly x, =0 and h = 0.
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I1. The case of rank X = 2.

First of all we show that the case ii)’ can be reduced to the case ii).
Define ©,€0(2) and Ay’ 0(4) by

cosf —sinf
@0= N QGR,

sinf  cosf
and
47 A(‘”=<cost9,-@92 —sind,; - Oy,
' ¢ sinf, -0y, cosb,- Oy,

where 0 = (6, 0,, 05, 0,) and 65 = — 6, + 05 + 0,. Then it is easy to see that
for given Qe Q(4) such that q, = q,, 2€0(4) satisfies 2Q'Q = Q if and only if Q
= A", and that for all ze R*, there exists § such that A{¥z = (0, 0, Z;, Z,). Thus
if (po(— [5,, O1), ') attains the minimal horizontal curve and furthermore Qis as
in ii), there exists € such that

T(A)po = [Fo. 01, Bo =0, 0, Po*, Bo*)-

So, by Proposition 4.2 and the invariance of H-norms under the orthogonal
mapping, the case i) is reduced to the case ii) (Recall that we set g; = 0 if pg'~*
= p3i =0.). Therefore we only consider the case ii).

Let U, = u(d34 — 043), u >0, be the matrix satisfying X ~ U,, thus there
exists Qe 0(4) such that ‘QXQ = U,. All of such Q are obtained by {Q, A>; 0
= (6,, 0,)e[0, 2n)*}, where 2, is an element of O(4) satisfying ‘Q, XQ, = U, and

(4.8) Ag”:(@"* o )
0 6,

This is easily seen from the fact that
'QU,Q = U, if and only if Q = AP for some ¢
and that 'Q X Q) = U, implies 'Q,Q2,U,'Q1Q, = U,.
Since x3*(p,) = U, 5 |h|4 = 2run and this takes a minimum when r, = 1.

1
So x$¥(po) = E{( 0)2 + (B} = u, ie.

(B3)* + (F5)* = 4nu.

Thus, for some ae[0, 27), we can write

{138 = /4nu-cosa
P = /4nu -sina.

Therefore
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hi (Bo) = hi(po) = 0

and

<h;”(f)o)> o (a/u/n~sin27rt )
kit (Bo) "\ Jujn-(1 —cos2nt)/
Noting that ©,-0, = @,,,, every element of K2 is obtained by

min

he=Q, AP,
where
(4.9) h, =0, 0, \/u/n -sin2nt, /u/m-(1 — cos 2nt)).

Since h! = h? = 0, we can change A to the following A$":

I o
(4.10) As,”=<0 @0>, 0e[0, 2n).

Thus every element of K%X is obtained by

4.11) W = Q, APk, 0€[0, 27).

III. The case rank X = 4.
III-a) The case X ~ U, = u,(8;, — 051) + uy(034 — 843), u; > u, > 0.

Similarly to the case II, we know that all Qe O(4) satisfying ‘QXQ2 = U, are
obtained as in the form Q = Q,4%, 6 =(0,, 0,) [0, 2n)?, R, being any fixed

1
element of O(4) such that 'Q,XQ, = U,. Also 7 |hlG = 2ryu;mt + 2ryu,m, so it

takes a minimun when r; =1 and r, = 2. Therefore every element of K% is
obtained by

4.12) = Q,4Ph

where

(4.13) hy = "(/uy/m-sin2nt, Ju,/n-(1 — cos2nmi),
\/m-sin%t, \/uZ/_Zn-(l — cos4nt)),

and A{ is as in (4.8).

I11-b) The case X ~ Uz =u(d;5 — 651 + 834 — 643), u>0.

Similarly to the case II or III-a) we know that all Q satisfying 'QXQ = U,
are obtained by Q = Q,A4§" where Q, is any fixed element of O(4) satisfying

'Q,XQ; =U;. After all every element of KX is obtained by

min

4.14) he = Q3 A8h, 6 =(6,, 0,, 65, 0,)€[0, n/2] x [0, 27)°,
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where A§® is as in (4.7) and h is given by

4.15) h, ='(J/u/n-sin2nt, Ju/m-(1 — cos2nt),
Ju/2n-sindnt, Ju/2n (1 — cos4nt)).

5. Asymptotic expansion of the heat kernel on N, ,

Here we compute the asymptotic behavior of the heat kernel p(e?, 0, x), x
=[0, U] #0. x is classified into the following three cases (cf. §4).

(Case A) U ~ u(d34 — 043), u>0.
(Case B) U~ u,(6;, — 951) + uy(034 — 043), u; > u, >0.
(Case C) U ~u(dy; — 0,1 + 034 — 043), u>0.
Now consider the following S.D.E. associated to % on the 4-dimensional

Wiener space:

4
dX,=¢ Y V(X)odw?
(5.1) ' azx '

XO=0

where V,, o =1,---,4, are given in (3.1). We denote the solution by X® = (X7,

XPU9)._ ., . Then X! is obtained in the following concrete form;
1<j<k<4a

Xpi=ewl,i=1,-.4,
XPU0 =28kt w), 1 <j<k<4,

where
. [ . .
S, w) = —J (Wi dwk — wkdwi).
2Jo
Define an v(4)-valued process S(t, w) by

S(t, w) =Y. S9(t, w)o,; — Z.Sﬁ(t, w)d;;.

i<j i>j
Then
p(e?, 0, x) = E[5,(X)]
= E[d0,v)([ew,, e2S(1, w1
For every Qe0(4), set U' ='QUQ. Then, recalling Remark 3.1, we see
E[10,u1([ewy. €25(1, w)1)]
= E[drcao,v1([ewy, 281, w]
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= E[é[O,U](T(Q)[SWIs EZS(I» w)1)]
= E[élo,ul([EQWp e28(1, 2w)])]
= E[d10,1y([ewy, €2S(1, w)1)].
Therefore, it is sufficient to treat the following three cases:
(Case A) U = u(03, — 043), u>0.
(Case B) U = u,(8;, — 031) + u3(034 — O43), 4y >u, >0.
(Case C) U =u(d,, — 05y + 034 — 943), u>0.
(Case A) U = u(634 - 543), u> 0.

In this case every element h® of K% is obtained as in (4.11):

K = AL, 0[O0, 27),

where A{" and h are given in (4.10) and (4.9), respectively.

We want to obtain the asymptotic behavior of the heat kernel p(e?, 0, x) as
¢ 0 through the expression p(e?, 0, x) = E[J,(X%)] by evaluating the generalized
expectation of the right-hand side. Roughly, the family of diffusions {X{}
conditioned by X{ = x will be concentrated on the family M®*, actually, will be
distributed uniformly on M®* as ¢/ 0. To see how this fact will be reflected on
the asymptotic behavior of p(e?, 0, x), we will proceed as in H.Uemura-
S.Watanabe [22].

First, we need the following lemma.

Lemma 5.1.A (cf. H.Uemura-S.Watanabe [22]). For every fixed 6,€[0, 27),
there exists no >0, such that for each n, 0 <n <n,, there exists y=y(n) >0
satisfying

d ~ d? -
L | 50<@<A(ol)hvW>H>.<_W<A(0Uha W>H>d9= 1
0—60| <n

on {w;lw— AMhl, <y},
and
(5.2) {0: VAL h — AQRL, <y} < {616 — 6o| < 1}

Here (h,w)y is the extended H-inner product of he H and we Wyt defined by
4 1, .
ChowHy = z f h;dw,
i=1Jo

and -1, is defined by

1
Iwl3 = |w,|?> + J [w, 2 dt, we Wyt
0
d () j ; i a M j
Proof. Let F(0, w) =E<A9 h, w)y and its Jacobian W<Ao h, w)y be
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denoted by J(f, w). Clearly J(6, w) is continuous with respect to the norm |6|
+ Iwl, and it is easy to check that

J (0o, AG)h h) = — 4nu(# 0).

So we can find Mo and 7, such that J(6, w) < 0 for all (6, w)e{0; |6 — 0o| < 1o}
x {w; lw — A‘O’hI] < 79o}. Furthermore for any # < 5o, we can choose y = y(n)
<9, such that for every we{w;lIw — A, <y} there exists some 6,€{6; |0
— 6,| < n} satisfying F(6,,, w) = 0. The reason is as follows:

Let W, = {0; 16 — 6,| <n} and F}, = {F(0, w); 6eW,}. That Oe F,, is easily
seen from that F(6,, A“’h) 0. On the other hand it is easy to show that if
xeFl n( U F! ), then xedF},,. But F}, is open and hence if xeF

Wi #F W0, Wn = W0
there exists y(n) > 0 such that x e F7, for all w satisfying lw — wol, < y(y). Setting
Wwo = A(f,’h and x = 0, we conclude the above statement.

Let G(w)e D™ be a Wiener functional whose support is contained in {w; Iw
— ARk, <y}, Then

wo?

E[J Oo(F(8, w))-(— J(6, W))dBG(w):l
|6 —80| <n

= J E[0o(F (6, w)-(— J(0, w))- G(w)]db
|6 =60l <n

ntoo

= limJ E[o,(F(6, w))-(— J(8, w))-G(w)] db.
16 —80l <n

Here {¢,} is a sequence in & (R?)(:= the Schwartz space of rapidly decreasing C *-
functions on R?) which converges to J, in the distribution sense. Now clearly
(5.2) is satisfied for all y small enough. Note that the support of G(w) is contained
in {w;lw— Aﬁ,t’le]z <y}. Thus, by the change of variable x = F(6, w), the above

is equal to
lim EU 9a(x)dx G(w)]
F,

=E[GW)],

and this completes the proof.
Remark 5.1. We can easily show that

d(,z AR Wy = AR Wy

and

d ~ ~
d‘0<A1)”h’ w)H = <Agll(n/2)h’ w>H»
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so the equality in Lemma S5.1.A is equivalent to

j 50(<A(01+)-(n/2)h'5 W>H) <A(01),;a W>H dg = 1'
|6 =60 <7

Since K1 = K% is compact, for all y > 0, there exist {h‘s',---,ha"} < K, such

that K, < U V. where

V= {weWg; lw— h¥12 <y?/2}.
Set
U= {weWslw—h2 <y o 1.

Let y(¢)eC*(R) satisfy 0<y <1, y({)=1 on [¢|<y?/2 and ¥(£) =0 on
|E] > 92 Set ¥(w) = ¢(Iw — k%12). Then it is easy to see that ¥,eD® and

Iy,(w) > Wiw) > 1, (w).

Setting d(w) =1 — [] (1 w)), we see clearly

i=1

1= @W) <1y,

and () V¢ is a closed set which is disjoint from K,;. Now

i=1
p(e?, 0, x) = E[6,(X%)]

= E[6,(X))(1 — ®(ew))] + E[6,(X})P(ew)]
—J I,

Here y which appears in the definition of @ is the constant y(y) in Lemma 5.1.A
associated with n which will be decided in Lemma 5.4 below.

Lemma 5.2 (cf. S.Watanabe [24] Lemma 3.3). There exists a constant ¢ > 0
such that

JP(= E[5,(X9)(1 — D(ew))]) = O(exp{ — ([l |} + c)/2¢?}).
Proof. Clearly for every ¢ >0,
E[5,(X{)(1 — @(ew))]
= E[6,(X)-¥(1X§ — xI>/y%)-(1 — ®(ew))].

By an integration by parts, the above integral can be given in the form

Y E[P(e, Wy (IX] — x|*/6?) D V)" (lew — K13 (X9)],

1
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where P, (e, w) is a polinomial of X5, |X5 — x|?, lew — W2, y(g)(:= the inverse of
the Malliavin covariance of X§) and their derivatives, and ¢ is a bounded
continuous function on R!°. Appealing to S.Kusuoka-D.W.Stroock [12], we
know

E[|P,(e, w)|P1'"" = 0(e™%)  for some keN.

Thus there exists a constant M such that

JU < e !M-P[|XS — x| < 8y, ewe ) V]9,
i=1
1 1
where — + a = 1. By R.Azencott [1], we have
p

@szlogP[l)(‘1 — x| <&y, ewe () V]
& i=1

< - inf{%- IhI: O*(1) — x| < by, heb1 V}
Now the right-hand side of the above inequality is strictly less than — % I A Z by
taking & small enough, because, otherwise, by taking 6 = 1/m, there exist h, e H
satisfying |c®"(1) — x| < y/m, h,,,e‘(_'l\ V¢ and Tim |h,|% < |h|3. Then taking a
subsequence {h,.} of {h,}, therel;;ists h such that h, —h weakly. Such h
satisfies ||h|3 < ||fl||,2,, c“”T(l) =x and he {f\ Ve. Therefore he K, and this is a

i=1

contradiction because () V7 and K, are disjoint.
i=1

This completes the proof.

In the following, therefore, we consider J4". Let

d5=1—[f[(1—'1’i)=221<1>,.,

i=1

where @, = ¥,, @, =¥,(1 — ¥)), &3 =Y¥,(1 — ¥,)(1 — ¥,),---. Then clearly
&;-1,,=®;, i=1,---,n. By Lemma 5.1.A and Remark 5.1,

J 8o(CAY w2y s WO CAD By wyy dO- Dy(w) = D(w),  i=1--.n.
10—8il<n

So
JY) = E[0,(X])P(ew)]

= 3 E[0,(X) (o]
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||M=

[5[o,u1([3W1 > 328(1, w)])P;(ew)]

MM=

J E [S;0,01([ewy, 28(1, w) 1) (CH*H T2 ew )
0-8il<n

(O, ewdy - Di(ew)] dO

||M=

f exp(— [[K°[|7/2¢%)- E[exp(— <k, w)y/e)
16—8il<n

1
X So.op((Ewss ¢ f (4 dwl — K dwi) + £2ST(1, w))
0

X So(ChPH ™2 RO 4 ewdy)- CHO, RO + ew )y - Dy(H° + ew)]db,

Where the last equality is due to the Cameron-Martin transformation (abbr. C-M
transformation) w —» w + (h?/e). Now we give some notations.

Notations. For w, we Ws', we define 4 x 4 matrices w @ W, w® W and
w@ w as follows:

1
(w @ W); = f w;- W] dt,

0

(V.V ® W)ij = Jl vT){dwf

0

and
. l . .

0

Of course, we define them only when the right-hand sides have meaning as
ordinary or stochastic integrals.

Remark 5.2. It is easy to see that

S(1, w)=%(w®v'v—v'v®w)
and that, for every 4 x 4 matrix A4,
(AW) @ W =AW @ W), w® (4W) = (w ® W) A
(AW) @ W = AW @ W), w ® (4W) = (W ® W)'A4,
(Aw) @ W = A(w ® w) and (w ® AW) = (w ® W) A

Then

JP = }: exp(— | AV R (1/26%) E[exp(— <AL R, wpy/e)

16—8il<n
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2
x Solew)Soe(As" F @ W — 0 @ AP + S (w @ 0 — v @ w))
X 50(<A§91«3(u/2)};, Agl)ﬁ + ewdy)
x (ALR, AV + ewdy- B (AP + ew)]dO

and noting that A{”e0(4) and Remark 5.2, this is equal to

eXp(-||}~1||§1/2t32)'z1f Efexp(—<h, ‘AP wy/e)
=1J10-8i<n
x do(eAG" - 'A5w))

X 8o(AN {e(h @ AP W — AP W @ h)
2
+ %(’Aﬁ,“w ® 'Ag“t:v _ ‘Aﬁ,”v'v ® ‘A},”w)}‘Ag“)
X 8o(CAL AN ayh, b + e AP WD)
x Chy b+ e " AP WwD - DAL (7 + & AP w))] d6.

By the invariance of Wiener measure under an orthogonal transformation, we see,
noting also that 'A{"- AfY ) = AUL,

i=1

J‘z”=exp(—||ﬁ||?;/282)',iJ _Efexp(=<h wHu/e)
16 —6il <n

X 010,0)(T(A") [ewy, 8(h @ W — W @ h) + §(w @w—w@w])

x 8o(CAWLA, b+ ew)y)

x (hy b+ ewdy- @ (AD R + AP w)] d6.
Since <A§,‘/’25, B>y =0, —<h w)y/e=2n-S**(1,w) under the condition that
(H®w_w®ﬁ)+§(w®w_w®w):o and that A'w, =0 (note that Al
= h*=0) and T(A?)e0(10), we have finally,

JP =exp(— |1h13/26)- Y. E[exp {27-S*(1, w)}

i=1J1e-8il<n
-~ 2 . .
X 8o(ew;)0oe(h @ W — w® h) + %(w RQw—w®w)
x 8o(CAGLh, ewdy)
x (B, b+ ewdy- DALV R + eA w)] d6.

Define R'!-valued Wiener functional gi’(w) by

(53) gy (w) = (wy, S*3(1, w), h®w—-w® ﬁ)ij,lsi<js4’ <Aitl/)25’ won),

(L,)#(1,3)
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then by Lemma 5.4 and Lemma 5.5, given below, we can conclude that

(5.4) JP ~exp(— | h|34/262) ¢ 12 Z &,(AL Ry do

10—8i<n

E[exp{27-53*(1, w)} 6o(g6"W)1- 1211z as 0.

3
Lemma 5.3.A. E[exp {27S3*(1, w)}d,(g5"(w))] = 3T

Proof. Define &, n{’, k=1,2,---,and 49, i =1,---,4, by

1
(5.5) ED = \/EJ sin2rnkt dwi, k=1,2,---,i=1,---,4,
(0]

1
n}j’=\/§f cos2mkt dwi, k=1,2,, i=1,---,4,
0

and
ne = wi, i=1,---,4.

Then we can easily show that

$Y(1, w) = [Z {&0 — /2-n8) - "’(nﬁ"’—ﬁw%’”)}],
l<i<j<4,

F@Ww—w @Ry = — Juj2m &,

B@w—Ww® h)yy =/ u/2n (0" — /2.7,

AW —Ww® h)yy = — Ju/2n &P,

h@w—w® h)yy = J/u/2n (P \/",1(2)

h@w =W @ hag = /u/2m (& + (1 — /2-15))

and
CAGLh, wy = /2mu (EQ — nP).
Thus
E[exp {2253*(1, w)} 60(gs"(w))]
= E[5o(n", 1§, S'2(1, w), — Ju/2m- &, Juj2m(n) — /2-n),
—\/u/27r-é‘2’ Ju/2m(n® - /2-n$))]
x E[exp { Z {é“’(n“’ V20 — B0 — 216} )

8o, 18", Su/2r{ED + (P — /2-1)}, /2nu(E® — )]
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=J@® x JP,

By Proposition 5.1 below, we see that J§) = On the other hand,

|
s = E[eXP{kZZE(éi‘”ni‘” - é?;’”nk“’)}]

x E[exp (&Pt — &) G = 6" = &P + P = & — 1t = 0]
x {(2m)*- /detC}~*,

where C is the covariant matrix of (n§”, n§", \/u/2n (&® + 1), /2nu (&> — #?)
and it is easy to see that detC = 4u®. So, by a slight computation, we have

wofi(i L)
k=2 k?
x E[exp( {9 —n®)/ V21 + {0 + n&‘%/ﬁ}%)] X e
@ I -1 <] s 2 1
=kl:[2<1 —k—2> X <(1/ﬁ)f_we‘x dx) X —

16mu?’

Thus the assertion of this lemma is concluded.

Proposition 5.1. Let JY be as in the proof of above lemma. Then

3
167u*°

® .
J C—Zmrx dt — 5)‘,
= o0
it is easy to see that

[e o]
JP = J E[exp{—2m’t-
o K

) = nP =& = &P = pV = P = 0]-171(0) dt,

(I
J3 -

Proof. Noting that

118

1
e — g}

where p,(x) is the density of the law of (i, n®, — /u/2n - &Y, Ju/2n-(niV
1
—V20) = ufam &R a2 (0 = J20f)) and pi(0)=5—5. By a

slight computation, the above conditional expectation is equal to
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k]jz E[exp { — 2ni~£(§§‘“;1}(2) _ ff)'li”)}]

© k2
= rl—_TT___T
r=24mitt + k
2n%t
=(1 4 2.2 -
(1 + 4% )sinh2n2t
Thus
1 (= 2%t
J(l) — 1 2.2
> 2mu? f_w( +an )sinh 27z2tdt
_ 3
T 167U’

It is easy to see that ||ﬁ||,2, = 4znu and hence,

2mu 3 3 h
1 kit PO E SR ®,(A5" h)db.
J2 exp( 82 >8 257[2142,';1 10-8i]<n l( ! )
Now

y j (A h)do
=1J1-8i<n

n r ~ ~

=) Iy (ASVh)- (A h)do
i=1J19-8;)<6

f2n

=Y | Iu(AP k) (A h)do
0

n (2n -
=Y | &i(aR)do =27,

i=1 Jo

We have, therefore,

2nu 3
a _ -12
JY exp( 22 )e T6ma? as ¢|0.

Therefore, we can now conclude the following.

Theorem 5.1.A. In CaseA, i.e., x =[0, U], U ~ u(d3, — 6,3), u>0,

2
p(e%, 0, x) ~ exp( —g>8_12

o as ¢0.

(Case B) U = u,(6;; — 631) + (034 — 043), uy > uy > 0.
In this case every element h? of K% is obtained as in (4.12):

he = APh, 0 =(6,, 6,)€[0, 21)?,
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where AP and h are as in (4.8) and (4.13), respectively. We set hY) and A% by
WY = *(Juy/msin 2z, \Ju;/m(1 — cos2nt), 0, 0)
and
WA =10, 0, \/u,/2nsindnt, \J/uy/2m (1 — cos4nt)).
Similarly as in Case A, we need only to evaluate
JP = E[0,(X]) P(ew)]

where X¢ is a solution of S.D.E. (5.1) and @ is defined as in Case A associated with
K,:= K%, x=[0, U]. Again y(y) used in the definition of @ is given by the
following lemma with # determined by Lemma 5.4 below. In the following we use
the same notations as in Case A.

Lemma 5.1.B. For every 0,€[0, 2n)%, there exists no > 0 such that for each
ne(0, no) there exists y(n) > 0 satisfying

f %((imzf’h, w>H> >
18— 8ol <7 a6, i=1,2

52
(2)
det{(agiaej<Ag h, w>H>

on {w;lw— AP'hl, <y}

}d@ldez —1

i,j=1,2

and
{0: 140 — APhL, <9} = {0510 — 6] < n}.
Proof is similar to Lemma 5.1.A and omitted.
Remark 5.3. It is easy to see that
0
6—07<A§2)h’ Wiy = <A:gl)+(n/2).02)h“)’ Won,
0
3_0;<Ag)h’ Wy = <A25|),92+(n/2))h[2]$ Wy
and

aZ
(2)
det {(aglaoj <AQ h& W>H>i'j= 1‘2}

= CAPHY, WYy CAP R, w .

Thus, denoting d@ = df,d0,,
JP = E[0,(X7)P(ew)]



Off-diagonal short time expansion 431
Z E[0,(X5)®;(ew)]

Z E[0o(ew)dy(e?S(1, w))

10-8il<n

X 50(<A(e,+(n/2).92)h[1]» 3W>H)‘<A§2)hm» W)y
X 50(<A§§:,92+(n/2))h[2]7 3W>H)'<Ag)h[2]» ew - D;(ew)]do.

Note that AP'A, ew )y is a function of 6, and (w', w?), and {AP W%} ew ), that
of 6, and (w3, w*).
By the C-M transformation w — w + (A§?h/e),

@) —
J¥ =

||M=

J exp(— | AP h15/2¢%) E[exp(— CAPh, why/e)
([ Q||<’l

x 3o(ew1)Ioe(APh @ W —w @ APh) + —(wWRwW—w@w
X 0o(CAR) + m2ronh!s AZh + ewdy)
X 0o(CARF) o, + aanht®, AP h + ew)p)
x CAPRY, APh + ew )y - CAP R, APh + ew)y
x @(AP h + ew)]do
and noting that A€ 0(4) and Remark 5.2, this is equal to

exp(— [ hllf/2¢e?) Z E[exp(—Ch, 'APw )y /¢)

18—8il<n
X 8o(e AP ' AP w,)

x 8o(AP {e(h ® 'AP'w — 'APw ® h)
2
+ _(IAE’Z)W ® 'A}_;Z)V'V _ IAéZ)"'v ®lA§2)w)}1A£62))

x Oo(C' A AiG) + w200 hM, b+ AP W) p)
x 0o(C'AG - AG) o, + iy H1) h + e AP WD)
x (h b+ a‘Ai,“w)H- (ht2) k4 8'Aéz)w>,_,
x ®(AP (h + ' AP w))] db.

By the invariance of Wiener measure under an orthogonal transformation, we see,
noting also that (A{Z), o)h"), hdy = CAR) 2 B2, hyy =0,

n

JP = exp(— | hl}/2e%) Zj Efexp (= <k whi/e)
10—8il<n

2
x 5[o,ol<T(A§2’)[sw1, eh@w—w®h) + %(w RQw—w® w)])
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X BolEC ARl o h11, WY )3 (6 < AZ I, w10
x ChY R+ ewdy- (2 b+ ewdy- (AP (h + ew))]do.
Since T(A§)€0(10) and —<h, why/e = 27-S12(1, w) + 4n-S3*(1, w) under the

condition that (h @ w — w ® h) + %(w ®w—w® w) =0 and that 4P w, =0, we
have finally,

JP = exp(— Ilhll7/2¢%) Z J

18-8il<n
E[exp {2nS'2(1, w) + 4nS>*(1, w)} oo (ew,)
2

X dpeh@w—w®h) + w®w—w®w

X 50(5<A}72:/)2,0)hm~ W) 50(8<Az(z)fn/z)h[2]’ L)

X CHY, b+ ewdy - ChP b+ ew )y - Di(AF7 (h + ew))]d.

Therefore, setting R'2-valued Wiener functional g{¥’(w) b
(5.6) 9P w) = (wy, (h & w—wQ® h)iji<i<j<as
<A§12:/)2.0)hm» WO, <A=3fn/2)h[2]’ won),

we have by Lemma 5.4 and Lemma 5.5 below,

(5.7) JP ~exp(— I hlF/2e%)- e~ 12 AU - [ RPN

J ®,(APh)do
18—8il<n

E[exp {27S'2(1, w) + 4nS3*(1, w)} 8o (9P (w))] as &|0.

X

||'M=

Lemma 5.3.B. E[exp {2nS'2(1, w) + 47S3*(1, w)} 8o(98>(W))]
3

T 64ntu u, (i — ud)’

Proof. Let p,(x) be the density of the law of gi¥'(w). Then
E[exp{2nS*2(1, w) + 42S>*(1, w)} 50(gi¥'(W))]
= E[exp{27S'2(1, w) + 47S34(1, w)}|g@ (w) = 0] p,(0),

1
16m*u uy(Quy + uy)?’
Let 5%, 1<i<j<4, be the (i, j)-component of (1 @ w — w® h). Then

ij oo

@ = Juy 2182 + Ju, 22D — /20,
\/“1/2”5(3) \/“2/47T€(2“*

and it is easy to see that p,(0) =

[x]

2)
13

[x]
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= i -
= Ju 220 — /208 — \/uz/4n€‘2’,
— Ju,2n(n® \/',1(4) /u ,/4m(n \/’”(2)

)

)
5e

and

EQ = Vua /4 E + a4 (1) — /20,
Here &, n{* are as in (5.5). Set
EPi= (Ao i Wy = = /2 (€0 = )
and
EP:= <A(o n/2) 2wy, = — oV 4nu, (&P — 77(24))-

Then
Elexp {27S'2(1, w) + 4ns3“(1, w)}g§ (w) = 0]

2 o k k B
= SR — /2-mY) )Ig‘o”(W)=0]

2
= [1 Elexp(@n* ™ — &) 2. 1 50 = 0. 5 = 0]

1
< B exp et — e+ 260 - e |

2 k)
% E ex (é(Zk) (2k—1) égk—l) £nZk) }]
[ Mol &
=1, xI, xIj.
5‘2’ 1 <i<j<4, denote random variables constructed by excluding the

Here =
terms n"" from ZP.

1 2w K2
We see easily that I, = — and that Iy = [] n<l——> =9. So all we

. 4 k=1m=3
must do is to compute I,.

Define X{?, i=1,---,4, by
X§2)= _ u/ ,7(3)+ / 6(2)
XP = fu2E0
X = a2+ - &
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and

XP=— / 2.9 — /ul .
Then
1
exp {5(6‘22’11‘2“ — EOn) + 20 c?)n‘;*’)}
= exp {(2(u; + 2u)/Quy + u))(— XPXE + XPXP) + Po(5)}
=2) B2) 22

where P,(Z) is a polynomial of degree 2 in 4 variables = = =(EY, EQ. 23, BY)

whose constant term is 0. This equality is obtained by the orthogonal

decomposition in L2(P) of &9 and y® with respect to Z.0.{Z{%, (%, 23, 53},

for example, ¢ is decomposed by

P = (f X@ — Jnuy - EF).

2u, + u,)
Noting that X® ~ N(0, u; + (u,/2)), i =1,---,4,
I, = E[exp {2(u; + 2uy)/Quy + up)’)(— XPP X + XPXP) ]
= (Qu; + u)*/3(uf — ud).
Combined I,, I, and I with p,(0), we conclude this lemma.

It is easy to compute that [[h|% = 4nu, + 8ruy, | |G = 4nu, and |KPF
= 8nu,, and we can show that

IIMx

j ®(APh)df = 4n>
16—8:l <n

in the same way as in Case A. Therefore we have

L 6

JP ~exp(— 2m(u; + 2uy)/e*) e ! 5 as ¢ 0.

“% —uz
In conclusion, we have

Theorem 5.1.B. In Case B, ie., x=[0, U], U~ u;(01, — 05y) + t3(d34
— 043), Uy > Uy >0,

6
p(e?, 0, x) ~ exp(— 2m(u; + 2142)/82)8_12“2 Y as 0.
1 U3

(Case C) U = u(élz _ 621 + 634 - 543), u> 0-

In this case every element h? of K% is obtained as in (4.14):

= Ak, 8 =(0,, 0,, 05, 0,)€[0, 7/2] x [0, 27)%,

where 43" and h are as in (4.7) and (4.15), respectively.
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Now we need a lemma corresponding to Lemma 5.1.A or 5.1.B, but we must
0 .
take care that the Malliavin covariance X of ( 30, (AP, w),,) is degenerate

i=1,.4
at 8, =0 or 0, =n/2 since det =32.2°.7*.u*.cos?f,-sin%0,. Thus the

corresponding lemma is as follows.

Lemma 5.1.C.  For every 0,€(0, n/2) x [0, 2r)>, there exists n, > 0 such that
for each ne(0, ny), there exists y = y(n) > 0 satisfying

s ((— (AR, w>,,> >
Jle—gokn 00 =14

62
det CAP R, w > } do =1
{(aoiaej ¢ ") et

on {w;lw— AP hl, <y},

and
{6; ﬂAé‘”h - Ag))hﬂz <y} c{6;18 — 6ol <n}
where df = df,d0,d0,do,.

Remark 5.4. Now we fix §,€(0, n/2) x [0, 27)3, then for every 4 x 4 matrix

A we have
é (( (AP h, Aw>H> >
flﬂ—ﬂokn 06; =14

62
@) —
det{(aa 30, CARPh, Aw)y ),j_l'..w}dg 1
on {w;lAw — A hl, < y}.

Moreover if 4€0(4),

(5.8) J S (( (A A““h Su > >
16 — 8ol <n 60 " i=1,,4

62
(4. 4@ -
det{<60i60j<z4 A h,w>H>i,J_=l‘my4} ag - 1
on {w;lw—"4-A§hl, (y}.

Especially let A be Ag-A®, 6€[0,n/2] x [0,2n)*. Then ‘A-A¥h
= A§Ph. Therefore Lemma 5.1.C is extended in the form (5.8) for all elements of
KO X

min*

Now we define @, @,, etc. in the same way as in Case A or in Case B, and it is
enough to treat

I = E[8,(X5) D(ew)].
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By (5.8), the definition of ®;(w) and the transformation w — AP ‘4% w, we have

0
50<<—<A§4)h’ W>H> >
J‘IQ—QoI<'1 00, i=1,,4

az
aet Kaaiaej AR, W>">. 4} dg- (A5 AGw)

Lj=1,

= &,(A5" AP w).

So

JP = 3 E[5,(X%) @(ew)]
i=1

i=

=Z

f E[éo(swl)éu(szS(l, w))
i=1J10-00l <n

0
<l (aeanon) )

62
AWk
" det{(@fnaﬁj( ¢ 8w>)}
x @A) A5 w)]do

n

=3 J exp(— || A5V h |5 /26*) ELexp(— {AG'h, w)y/e)
18- 80l <n

i=1

2
X So(ew1) Oo(e(APh @ W — w @ AHh) + 8—2—(w R W —w® w)

h’=Ag‘)h +£w>i= 1,“'.4>

62
x det{( CASh, B ) }
60139] 0 f h'=Ag‘”h +ew/ i, j=1,",4

X DAL AW . AR + AP AP W)] dO.

0

where the last equality is obtained by a C-M transformation w—ow
+ Ah/e. Noting that A3»€0(4) and Remark 5.2, this is equal to

le exp(— | hilfi/2e*>) E[exp(— <h, ‘AP W)y /e)
t=1J19-00l<n
X 8o(eA§-"APP wy)

x So(AP {e(h @ 'APw — AW @ h)

2
+ %(rAgt)W ® 'Ag"\;v . 'Ag"v'v ® zAgt)W)}zAgt))
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f= 44 a). 4)': >
h Aé)h+cA§)‘A§)w i=1,,4

62
 det <Ay )]
{(60 59 ¢ H B =AGh+eA® ADOw/ i j=1,4

x B (A5 AR APh + A5 ‘A“" A“" ‘A“"w)]d()

0
" 5°<<5@<A§“h, Woa

By the invariance of Wiener measure under an orthogonal transformation,

%(Ag"h, h >y =0 and T(4{")e0(10), we finally see, noting that

W=A®h

—(h,wHyle = 278 12(1, w) + 4183*(1, w) under the condition (h @ w — w ® h)
+§(w®v‘v—v‘v®w)=0 and w, =0,

n

J$ = exp(— I hl13/26) Zf Elexp {2782(1, w) + 4n87(1, w)}
18— 8ol <n

x o(ew,) 50< h@w—-—w®h) + —(w®v'v—W®w)>

x &0 (& —<A“”h h) > )
<< 06; Hh=,4g')w i=1,7,4

& )
x det AR 1 > }
{(ae 26, = agon veagon i1

X DA AD - AR + eAD AR - AP W)]dO.

Define R'*-valued Wiener functional g§)(w) b

(5.9) go,g(W) =w,h® w—w &® h) ijl<i<j<4>

—(A“"h h> > >
<69 " W=A@pw/i=1,4

Then, by Lemma 5.4 and Lemma 5.5, given below, we have

(610) P~ exp(— Ihl/20e4 3
i=1J19-00l<n
El[exp{27S'3(1, w) + 4nS3*(1, w)} 60955 (w))]

62
X det{( CAP R KD ) }
80,00, ~"* H w=a@®n/ij=1,4

x DALY AR - A k) db.
Lemma 5.3.C. E[exp {22S'%(1, w) + 4nS3*(1, w)} 5,(g§}5(w))]
1
©219.3.45. 7% 5in6, -cos b,
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Proof. Let pY(x) be the density of the law of g§’j(w), then
El[exp{2nS*2(1, w) + 4nS>*(1, w)} d,( g‘(%(w))]
= E[exp {22S'2(1, w) + 4nS3*(1, w)}|g5h(w) = 0]- p2(0),
1

it i hat p&(0) = . Let E® =(h® w
and it is easy to see that p%(0) 57 33 25 7850, cos D, et ZP=h@w
—w®h), 1<i<j<4, and E,i3’=—<A“"h WYy , k=1,---,4. Then

a0,
. i . = A(4)
using &P, 7 in (5.5), we have = Aghw

P = u/2n &P + Ju/2n () — /208,
4 = Juj2m &P — Jujan &,
EQ) = Ju/2n & + Juldn (n — 21,

[x]

29 = — Jul2n () — /2-1§) — \/u/W &P,
=) — u/ 27 (@ \/_ 1y + Ju/dn (n \[ 72,
EQ) = \/zm &+ Juldn () — /2 n?’),
EP = dru cos (0, — 03) (1Y) + £P)
4nu sin (6, — 05)(8Y) — 1)
2mu cos (6, — 0;) (1 + &)
2nusin (0, — 05) (P — 1),
3 = — /2nucos 20, (& — n?)
4nu sin@, cos 6, sin (0, — 0;) (" + £2)

4nu sin 0, cos ), cos (0, — 05) (£ — n$?)
2nu sin 6, cos 8, sin (0, — 6;) (1> + &)
27u sin 0, cos 6, cos (8, — 05) (P — n'®)
47 cos 20, (€3 — 1),

EQ) = — J4nu (&S —ny))

and
9 = — f2zusin20, (& — 4?)
4mtu sin 6, cos 6, sin (6, — 0;) (1 + &)
4mu sin 6, cos 6, cos (0, — 65) (EL — nP)

2nu sin 0, cos 6, sin (6, — 0,) (1> + &)
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2nu sin 0, cos B, cos (0, — 0,) (£ — n®)
4ru cos 260, (€ — M.

Now set = = Z + 5 and £ = Z» + cos 20, (5P — £9?)), i.e.

=/ 2mu (& — 1)

2

4

H

and

lay

4nu sin 6, cos 0, sin (8, — 05) (1" + E@)
4ru sin 6, cos 0, cos (0, — 0;3) (& — nP)
2nu sin 6, cos 0, sin (0, — 05) (1> + &)

2nu sin 6, cos 0, cos (6, — 6;) (£P — #'®),

and let 5’,‘13’, 1 <i<j<4, be random variables obtained by excluding the terms
ny, k=1,-,4, from Z;. Then

E[exp {278 '2(1, w)+4ns34(1 w)}gbh(w) = 0]

=E[exp(‘;1 Z {5(2“('1(2" 1) \/5‘,1(02:(—1))

— E2k 1 (k) _ \/‘ 'I‘”")}) 192y (w) = 0]

~rexp( 3 58 g+ ez )
k=1m=1M
EP =0 1<i<j<4 2P =50 =59 =5 = 0]
— E[exp{ _ 6(11)’7(12) + 6(2) 1)) + (_ 6(3) (4) (4),1(3) }l
EXJE R PR

1
x E[exp {E(é‘”n‘” &) + 200 — &Y n‘f")}

|E‘(3)_ T(3) — F3) — TG _ 73 _ 5‘(3)_0]
S13 T S1d T E23 T S T e T ey =
B k van,@k-1 2k—1) ,(2k
xnnEexp—(f()( ) ) 2k

k=1m=3 m
=1, x1I, x1I;

Here the second equality is obtained by that ) =0, i = 1,---,4, and that =¥
=EZ® =2® =0if and only if £ = 2 = £ = 0, and it is easy to see that I,

2 0 k2 -1
=11 n<1—m—> =9 and that

k=1m=3
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I, = Efexp(— & n{)| EL = 0] x Ef[exp (&7 n{)| ZY = 0]
x Efexp(— &' 5125 = 0] x E[exp (&8 45| 257 = 0]

4
2 1
=<(1/‘/27t)J‘ e~ dx) =7
Define X®,i=1,---,4, by

(3> — \[ "+ 2- 5(2)
X = /289 - 20,
XP =289 +2.8

and
XP =~ /20 —2.9@.
Then
1
.11 exp e — e + 2060 — e |

1
= exp{ — SXPXP - XPXO) + Ps(s)}

where P4(Z) is a polynomial of degree 2 in 4 variables = = (£%, £3), £, £

whose constant term is 0. This equality is obtained in the same way as in Case
B. Noting that

EQ® = /ru{(XP — X{P)cos(d, — ;) — (X + XP)sin(6, — 0;)}

and that

E® = /nusinf, cos b,
x {(XP — XP)sin(, — 03) + (X + XP)cos(8, — 03)},

we have (¥ = Z® =0 if and only if X{¥ — X{¥ =0 and X§3’ + X =0. Thus
1
I, = E[exp{ — E(XP’X?’ — X‘f’X}f’)H

XP - XP =0, XP + XP = 0]

1
=E|:exp<—gX‘13’X§3’>
Lo yo
x E| exp 5X3 X5

X® - XP = 0]

XQ + XP) = 0]
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for X + X3, XP — X3P ~ N(O, 12).
Combined I,, I, and I, with p&(0), the proof is completed.
It is easy to compute that

02
det (s > )
{ 26,00, "¢ liwagon/ i1

=3%2.2°.7* . u* cos 20, sin 26,

and that ||h||% = 12nu, so we have

JP ~ exp(— 6nu/e?)e” 14

Proposition 5.2. Define a metric g on K%* by
g=2y9;,d0'do’

where

0
L= — AW (4)
gij <60A hOOA h>H.

If we introduce another metric g on KX by

g =Y gi;d0"dg’
where
0 0
l= @p 44
gij <60’A h60A h>H

and, for some a€[0, n/2] x [0, 2n)*, Ay = AP - AP, then g = g'.
Proof.

0 6 iy, 2 20
h, @), 4@
9ij = < aekaa' 2 Ao Zae,aa'A A h ;
36,36,/ 3. 0
- AP @), 4@
£ 36, 0, <aa,, h g, A Adh .

M

86,06, / 9 0
— A (4)
£100; 00; <a9k B ao,Aﬂ h>H

kZaa 061 “p ki -

So it is easy to see that g =g'.

Since || A§¥h||% is independent of @, it is clear that

441
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0 0 0?
— AWh, — AP h > = — (AW R
< 06; ! agj ! H aeiaei ! " h'= 4Gk
Thus

||M,~,,

IngE

—-

M=

]

1)

r

dii(Ag" AR - AP h)sind, cos 6, df
10— 6ol <n i

Iy, D) (AL 45D - A hysin 6, cos 0, df
18— 80l <n B
.

Iy, D) (A5 ' AG - AGP h)sin 6, cos 0, df

8e[0,m/2]x[0,27)3 -
.

Iy, D) (AP h)sin b, cos 6, df

i=1)

9e[0,m/2]1%x[0,21)3

n
= j Y. ®,(A5"h)sin6, cos 0, df
0e[0,n/21x[0,2m)3 =1

=473,

Here the third equality is due to Proposition 5.2. Therefore

6
J® ~ exp(— 6nu/82)e““7n as ¢ 0.

In conclusion, we have

Theorem 5.1.C. In Case C,i.e., x =[0, U], U ~u(d;5 — 85, + 034 — 043), U
> 0,

6
p(e2, 0, x) ~ exp (— 6nu/82)s“147n as ¢|0.

We finish this section by proving two lemmas quoted above which assured the
asymptotics (5.4), (5.7) and (5.10).

Let y;: R"™ R, i=1,2,3, be C*-functions satisfying Suppy; < {|x| < 1}
where n(1) = 11, n(2) = 12 and n(3) = 14.

Lemma 5.4. A) We can choose n > 0 such that for all i=1,---,n,

exp {27834(1, w)} 11 (9" (W) DAL (h + ew))

= exp{27S3*(1, w)} 11 (g (W) D(ASV D) + O(e)
as |0 in D® if|0—§,~| <.

Furthermore O(g) is uniform on {0; |6 — 6, < n}. Here @, 6,,i=1,---,n, are as in
the statement after Lemma 5.1.A.
B) We can choose n >0 such that for all i=1,---,n,
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exp {278 12(1, w) + 4nS>4(1, w)} 1, (g2 (W) B (AGP(h + ew))
=exp{2aS'2(1, w) + 4nS3*(1, w )} x2(98 (W) D(A5V h) + O(e)
as £/0 in D® if|Q—éi| <.
Furthermore O(¢) is uniform on {8; |0 — éi| <n}.
C) For all 6,€(0, n/2) x [0, 2n)* we can choose n > 0 such that for all i = 1,---,n,
(5.12) exp {27812 (1, w) + 4nS34(1, w)} x3(gi3(w))
D (A5 AR - AP (h + ew))
= exp{22S'2(1, w) + 4nS>*(1, w)} x3(g5h(w))
D (ASY ALY AP h) + O(e)
as €0 in D® ifIQ—éil <.
Furthermore O(g) is uniform on {6; |0 — 5‘ < n}.

Here g'(w), g¥'(w) and g§h(w) are as in (5.3), (5.6) and (5.9), respectively, and
we define gi(w), g@(w) and g3)(w) by

g (w) = (wy, S12(1, w),

(R@W— W@ )+ S, W)ijs, icjcan <AL Wp),

(L) #(1,2)
gAW) = (wy, (h@w—w®@h) +&S(L, W) 1 <i<jcar
<A§1zz/)2,0)ha Wk, <AE(2)31!IZ)h’ )

and

9?)( ) = (Wls (h@w—w® h) + eS(l, W))ij1<i<j<ds

h'=A§4)w>|'=1,"-,4>

Proof. We prove only C), the others being similarly proved. We use the
same notations as in Lemma 5.3.C.
It is enough to prove that we can choose # > 0 such that

0
<ﬁ CAPh, Wy

(5.13) sup . _ llexp {218 72(1, w) + 4nS34(1, w)} x3(9{3(wW)

0<e<1,|8-8il <

-@,.(Ag’-'A;,?.A;,“(h + ew)) [l Lrpy < O

for some p > 1. This is because the estimate (5.12) is true for almost all w and
(5.13) guarantees the uniformly integrability, thus (5.12) is valid in the sense of L?
for some p > 1: The [P-estimate of its higher order H-derivatives can be obtained
in the same way.

Using &9, 7 in (5.5) the integrand of (5.12) is expressed by
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exp{— &VP \/‘,7(2))4_5(2) (1) \/‘nm

(3)(,7(4) \/’ '1(4)) + 5(4)(’1(3’ \/‘ '7(3)
A3 (gRW)) - DALY AR - AP (h + &w))

x exp< éu)(ntz) \[ nP) + ER (D — \/5,,151)>}

+2{= ED — J20) + EPD — /21
2303 W) BAL 1AL - AP (h + ew))

xexp<z i é(zm (2k-1)_\/§"7§)2k—1))

é(Zk 1) (2k) \/’ n(zk) )
x3(gi2 (W)

=1, x I, xIj.

[t is easy to see that sup E[I5] < o0, 1 < p < 3/2, thus all we must do is to verify

(5.14) supE[(I, x I,)*] < o0, for some g > 3.
o0

If ¢i(Afa‘f’-’A§?'A1;" (h + ew)) > 0, then we have
1457 A5 - AP (h + ew) — AR, <y

where y = y(n) is as in Lemma 5.1.C. Hence

1 1
&2 f |w,|2dt—2f | AV AGD (A — AGOR, |2 dt < 2y,
0 0

1 1
gZJ |w,|2dt—2f (A — A, |2dt < 292
0 0

For all n> 0, there exist y" = y'(y) such that |4} — A |, <" if [ — G| <n
and 7'} 0 as n]0. So there exists a constant K >0 satlsfymg

1
(5.15) szf |w,|2dt < 2y? + 2Ky'?

0o

for all €€(0, 1]. On the other hand, x3(gt3(w)) > 0 implies that
[w,| <9,
|ZD) + eSH(1, w)| < 6
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and

‘6%<A§4)h’ h' >y <9

‘= A(4)
h Ag w

for some 6 > 0. Clearly, for any constant c, €R,

exp (e, {ER0P — /2-1)}) 1363 (W)
= exp(c; E0nP)exp(— /2¢,E9n8) 1393 (w)
< exp(c, &P exp(le;|-/2-8- &)
and exp(|c;|-/2-8-EP)eL? for all ¢ >0. Therefore we can assume 7’ = 0 in

(5.13).
First we treat with the term I,. Clearly

exp (— &VnP) x3 (g (w)

- ew(%{((é&“ N/2P — (& + 1)/ /) 2‘)1(3 (6w
1
= exp{ - 5((&&” + n‘f’)/ﬁ)’}em {(ES)?/8ru} x3(g3(w))

|
< exp(62/2nu) exp{ - 5((6‘1” + n‘lz’)/ﬁ)z}eLq for all g > 0.

Similarly we can prove exp(— & 1) xs(gi3)e L? for all g > 0. Next

exp (P n{") = eXp{ - %((é‘f’ - n‘#’)/ﬁ)’}em {g(i‘ﬁ’)z}

exp{

< exp<%{(1 +u/m)d + |eS*3(1, W)|2}>-

and

NI

(5';3;)2} (A5 AGD - AP (h + ew))

It is easy to show that there exists a Brownian motion B(t) on W} such that

1
eS12(1, w) = B(azj {wWh)? + (w?)?*} dt).
0
Appealing to (5.15), for each ¢ > 1 we can choose # such that
sup E[exp {‘15(12)’711)} ¢i(Af;‘?’~‘A§t"A‘g“’(h +&w))] < 0.
£,0 =t -

Similarly, for each ¢ > 1 we can choose n such that
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suopE[exp (g€} DAS AR - AP (h + ew))] < oo

Therefore it is easy to check that
supE[l]<oo q>1

As for the term I, it is enough by (5.11) to treat with the terms

1
exp{ — E(Xle - X3X4)} and exp{P;(£)}. Clearly
IPyE) < Y el EPL+ Y sl EP1- 1 ZQ)
<Y alEP+ 2032(|~m|2 +IEPP).

Noting that |Z| <&+ |eSU(1, w)| on yx; >0, we can control the term
exp {P5(Z)} in the same way as in I,. Furthermore, noting that |Z{¥| < ¢ and
|E®)| < § if x5 > 0, we can easily show that | X; — X,|* + | X; + X,|* < 262, the

1 . . .
term exp{—g(X X, — X 3X“)} is also controled in the same way as in
I,. Therefore

supE[I J< oo for all g > 1

and this completes the proof.
Lemma 5.5. Al of g\*, g* and g3} are uniformly non-degenerate.

Remark 5.5. The above lemma ensures the asymptotic expansions of d,(gt"),
30(@?) and 8,(g), thus, combined with Lemma 5.4, we can justify the
asymptotics (5.4), (5.7) and (5.10) and furthermore the asymptotic expansions of
JV, J? and J&. Hence, we can conclude that p(t, 0, x) has the expansion of the
form (0.1), the main term of which is given by Theorem 5.1.A, B and C
respectively.

Proof of Lemma 5.5. Here we treat only g'! since the others can be proved
in a similar way.
Let g{})(w) be the R'!-valued Wiener process given by

gg‘lt)(w) = (w,, Slz(t, w),

t
<I (hidwi — hidwi) + eS¥(t, w) >1<:<1<4’ J (Aﬁtll’zh Ldwi).
0

(L) #(1,2)

Clearly g{}(w) = g{"(w). Then g{}(w) satisfies the following S.D.E.:

dgi))(w) = Z L,(e, t, g,/ () o dwf
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where L,(e, t, (), a = 1,---,4, { =(;,+,{;;) = (x, x))eR'!, are given by

0
Lyt D=5
1 0 ~ 0 ~ 0
— = x,- + (ex3 + 2h})- + (ex4 + 2h})- >,
2< ’ 0x(12) ’ " 0xs, ¢ : 0% (14)
Ly t, C)=§2
1 0 ~ ~ O
+ o X150 — (ex3 + 2h)- — (exq + 2h7)- >
2< 1 ax(lz) 3 t ax(23) ( 4 t) ax(24)
0
L3(89 t, C)=_
X3

1 ) 0 ~ 0
+ | ex; —— + ex,- — (ex4 + 2h})- )
2( b Oxas) * 0x(s * " 0xa)

. 0
47u sin 2nt e

and
0
L, t, () =—
4& 1, 0) %,
1 0 0 0
+ | ex + &x + (ex3 + 2h2)- )
2< : a"(14) 2 0x04) X(24) } 0X (34
47u cos 2nt

ax'
Let Y7 be the 11 x 11 matrix given by

dYF = 0L,(e, t, g'V) YFodw?

where  OL,(e, t,{) is the 11 x 11 matrix given by (0L, t, {));

= 5{2_[} (6, t, {). Then we have

{DgM(w), DgM(w) >y = Y‘ J ()" Ly(e, t, gt (w))
®(Y‘) VLo(e t, g (w)) de'YE.

By a slight computation, we know that det Y; = 1. Therefore we will only
evaluate the integral part which will be denoted by a(e, w).

Let I ="'(I;, I, 1"),_, .., €R''". Then we can easily compute that
1<j<k<4
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o (e, w)l

1
= f ({l; = l;5-wE = ly3(ew} + \/u/m sin2xt)
(1]

— li4(ew + Ju/m (1 — cos 2nt))}?
+ {ly + 11, -w} — I,5(ew? + \/u/msin 2nt)

— Lyg(ewf + Ju/n(1 — cos2nt))}?
+ {3+ li3-w + 15w}

— Ly4(ew? + J/u/m(1 — cos 2at)) — I' -\ /dnu sin 2nt}?
+{ly + L4 w) + Ly wE

+ L34(ew? + /u/msin2nt)) + I' - /dnu cos 2nt}?) dt.

Now we will prove that for any T large enough,

=1

1 c
(5.16) P( inf ‘lo(e, w)l < ?> <ce"T?

for some positive constants ¢, ¢, and c; all of which are independent of &. We
know easily that

P< sup ‘la(e, w)l > T> <c e T
=1

for some positive constants ¢, and c¢s; which are independent both of ¢ and
I. Thus it is enough to estimate

P<'la(e, w)l < %)

uniformly in [ (cf. S.Kusuoka-D.W.Stroock [12], Appendix). Appealing to
J.Norris [18] or N.lkeda-S.Watanabe [10], however, it is easy to check that

1 C
P('la(s, w)l < —) <cge T
T
where cg, ¢, and cg are positive constants all of which are independent of . Thus

(5.16) is concluded.
Then it is easy to see that

Tim E[|det (g{"(w), g{"(W) | "] < o0
for all p> 0, and this completes the proof.
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