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3-folds with two /3 1 -bundle structures

By

Eiichi SATO

In  th e  present paper, the author determines the structure of 3-folds which
have tw o /3 1 -bundle structures.

L e t X  b e  a  pro jective  3-fold defined over a n  algebraically closed field
k. Then, X  is said to have two /3 1 -bundle structures (S, T; p, q) if there are two
/3 1 -bundles p: X - 4 S  a n d  q: X - 4 T w ith  projective surfaces S , T  in the etale
topology and moreover if (P) dim h(X) = 3, where h is the morphism : X  S  x  T
induced by p and q.

Then we have

Theorem . L e t  X  b e  a  sm oo th  3 -f o ld  w ith  tw o  1 3 1 -bundle structures
(S, T; p, q). A ssum e  that the characteristic o f  t h e  g ro u n d  f ie ld  k  is
arbitrary. Then, X  is one o f  the followings:

1) S x c 'T, where S and T are 13 1 -bundles over a  sm ooth curve C.
2) P(7 1,2), w here T 2 is the tangent bundle over P 2 .

The author has already shown the above theorem in the case of characteristic
ze ro  in  [S a ]. What is important for the proof is to prove that S and T are ruled,
which is trivial in characteristic z e r o .  Namely, the essential pa rt is only that a
projective surface d o m in a ted  b y  a  ru le d  surface is  r u le d  i n  characteristic
z e ro . (See Remark 1.3.1) But, in the case of positive characteristic, there are many
unirational surfaces which are of general ty p e  [Z a ] . Moreover, in the case, there
exists even a surface of general type which is regularly dominated by P 2  (See
Proposition 2.12 and remark in [E]).

Hence, in  order to prove the ruledness of S and  T, we prepare two sufficient
conditions about the ruledness : Proposition 2.4 and Proposition 2.7 in § 2. These
propositions leave us the following case : the second Betti number fl 2 (S, 1) = 2 and
K s  is numerically equivalent to zero, if S  is not ruled.

Finally, in § 3, we can rule out this case thanks to the fact in [Bo + Mu] (See
Proposition 3.7 in this paper).

Thus, throughout this paper, the characteristic of the ground field is supposed
to  be  positive.

N o ta tions. W e  w o rk  o v e r  a n  algebraically closed fie ld  k  o f  a n y  positive
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characteristic. A  variety means an irreducible and reduced projective algebraic k-
scheme. Letting  f : U  —* V be a morphism between verieties and Y a subscheme of
U, f l y : Y -4 V denotes the restricted map of f  o n  Y  F o r  a  coherent sheaf F on a
variety Y, hi (Y , F) denotes dim H i (Y, F ) .  F or a  smooth projective variety *, K(*)
denotes the Kodaira dimension of * (sometimes, abbreviated to K). Moreover, f2 *

denotes the  sheaf of holomorphic 1-forms o n  *  a n d  K *  deno tes the  canonical
bundle of *. F o r  a  vector bundle E, Sm(E) denotes the m-th symmetric product of
E.

§ 1. Preliminaries

In  the  present section we shall study some cohomological properties of P 1 -
bundles in the etale topology.

In  the  first place we recall a  few of facts which a re  well-known. For the
meaning of the notations, see §5 of [Mi].

(1.1) Fact : I) Let W be a P '-bundle over a  smooth projective variety V in the
e ta le  to p o lo g y . T h e n  x(W, 1) = x(V, 1) x(P 1 , 1)(1 0 c h a r  k). H ere  x(W, /) = E
( -  1)i fl1(W, /) and /3 1(W, 1) is the /-adic i-th Betti number of W (= dim Q i i i i (We „  Q1))
(See Corollary 2.14 in  §5  and  Corollary 4.2 in §6 in [M i]).
II) Particularly, if dim W= 2, we have

x((9  w ) = (K4, + x(W , /))/12. (See Theorem 3.12 of §5 in [M i])

III) For a  smooth projective variety W, let Alb(W) be the Albanese variety of W
Then, we have an inequality : dim Alb(W) = fil(W, 1)12 (W , w ). Moreover, if
H 2 (W, = 0, then dim Alb(W) = h1 (W ,( w ).

N o te  th a t  I-1' ( W, (9w ) is canonically  isom orphic to  the  tangen t space of
Pic°(W) a t  the  zero  poin t where Pic°(W ) is th e  connected component of the
Picard scheme of W containing O. See p.132 in [M i] and Lecture 27 in [M u].

Thus we have an easy

Proposition 1.2. le t Z  be a  geometrically ruled surface over a  smooth curve
C .  Then we have

1) fil(Z, 1) = 2h 1 (Z, (9g ) = 211 1 (C, (90 = (C, /).
2) Iq  = 8(1 —  (C, (9e )) and x(Z, = x (C , x (13 1  , 1) = 4(1 —  (C , e)).
3 ) fl2(Z, /) = 2.

Now let us state the property of a surface dominated by a geometrically ruled
surface.

Proposition 1.3. Let Y  be a smooth surface dominated by a geometrically ruled
surface Z .  Then, we have

1) iq2(Y, 1) is  1  or 2.
2) If  Y  is ruled, then it is a  geometrically ruled surface or P2.
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P ro o f . Since the surjective morphism : Z  Y induces an injection 1-12 (1et , Q1)
1-12 (Z e „ Q,), the former is  obv ious. The latter is  trivial. q. e. d.

Remark 1.3.1. If the above dominating morphism f : Z  Yin Proposition 1.3 is
separable, then Y is  r u le d .  F o r  th e  proof, fo r  exam ple, see Lem m a 3 .1  in
[ S a ] .  Therefore, in  characteristic zero, Y  dom inated by a  geometrically ruled
surface is ruled.

Finally in  this section, let us state

Proposition 1.4. L e t  X  b e  a  sm ooth 3-fold w ith tw o P 1 -bundle structures
(S, T; p, q). L e t  u s  a s s u m e  t h a t  S  a n d  T  a re  ruled. T h e n , S  an d  T  are
geometrically ruled surfaces or they  are 13 2 .

P ro o f .  First, recall that a  smooth, projective ruled surface dominated by a
geometrically ruled surface is a  geometrically ruled surface or 13 2 . Now, x(X, 1)
= X(S, OX(P 1 1) = x(T, Ox(13 1 , 1) by  v irtue  o f  F a c t I. H ence, w e have x(S, 1)
=  x(T, 1) because of x(13 1 , 1) = 2. Thus we get our proof, since x(/3 2 , 1) = 3 and
for a geometrically ruled surface Z, x(Z, 1) is a multiple of 4 by 2) of Proposition
1.2. q .  e .  d .

§2 . Two criterions on the ruledness of S  and T

L et u s  maintain a  variety X  w ith tw o /3 1 -bundle structures (S , T; p, q) in
Introduction.

Then, our m ain goal in this section is to get two sufficient conditions for S
an d  T to be ruled.

First, le t us begin with a n  easy

Proposition 2.1. L e t  X  b e  a  3 - f o ld  w ith  tw o  P 1 -bundle  structures
(S, T; p, q). T h e n , f o r each point s in S , qp - 1 (s)(= C )  is  a  curve. S im ilarly  for
each po in t t in  T, pq - 1 (t)(= C,) is a  curve.

By the condition P in Introduction, this proposition is easily shown (see proof
of Lemma 1.5 in [Sa]).

Now, for a point s  in  S , X s  denotes p q ' q p - 1 (s) and for t  in  T, X, denotes
qp -  p q -  ( t ) .  Then we have a

Proposition 2.2. Under the above notations, let us assume that there is a point
t in  T  such that X , is a  curve. T h e n  w e  have

1) C,(= pq - 1 (t)) and X , are smooth rational curves.2)r 1 pq 1 (0 I) Y ) is isomorphic to P 1 x  P 1 an d  two restricted maps pl y , ql y

coincide with two canonical projections f rom  P 1 x  P 1 t o  P 1 respectively.
3) For every point s in  C ,, X s = C .

P ro o f .  Since pl y : Y -+ C, a n d  q : Y—> X ,  a r e  P 1 -bundles, w e see  tha t
Sing( Y) = P - 1 (Sing(C,)) = q -  1  (Sing(X,)) where Sing *  denotes the  singular locus
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o f  a  schem e *. H ence, Proposition 2.1 yields th e  smoothness o f  C . X ,  and
Y  Next le t us p ro v e  2 ) . For the  purpose we need

Sublem m a 2.2.1. L et 4): F„ P '  b e  a  rational ru led  surf ace w ith F„
P(&1 C I (9 1(n)). A ssu m e  that C  is  an  irreducible reduced curve of F„, 4): C

—> P i  is f inite and the self-intersection number C 2 o f  C  is non-positive. Then, we
have two cases:
1) if  n = 0 , then C  is a triv ial section of  4).
2) if  n  is positive, then C  is the minimal section in F„.

P ro o f . Let Co the minimal section of F„ (in case of n = 0, Co means a trivial
section) and f  a  fiber o f  4 ) .  Then C  is linearly equivalent to aC o + b f  with
integers a, b. The surjectivity of 4): C 13 '  implies that a  is positive . Thus, by
C 2 <  0, w e have 2b < a n .  Now, assuming that C  Co , namely (C, Co) > 0, we
get b > an and therefore n = b = O. T h u s  w e  are done. q .  e .  d .

3) is obvious by virtue of 2). q. e. d.

Before stating a  sufficient condition for S and T to be ruled, we recall

L em m a 2.3 . L e t  Z  b e  a  sm ooth com plete surface. A ssum e th at Z  h as
uncountably  infinitely  many smooth rational curves. Then Z  is ruled.

P ro o f . B y th e  assumption, we can choose a n  infinite subset o f  rational
curves o n  Z : W =  v  P 1 } w hose H ilbert polynom ial (w ith  respect t o  a
hyperplane section) is independent of a choice of an element i n  W  Letting C be a
smooth curve in  VV, we see that the self-intersection number of C( = C 2 ) is non-
negative and, therefore, C•K z  is negative by the  adjunction fo rm ula . Thus we
infer tha t H

°
(Z, Kr) vanishes fo r every positive integer m, which yields the

desired result. q .  e .  d .

Therefore we obtain

Proposition 2.4. Under the same conditions and notations as in Proposition
2.1, assume that f o r every po in t t in  T, X , is a  curve with X  = q p - pl

Then S  and T  are ruled.

P ro o f . First, no te  th a t  X , = X „ fo r each po in t t ' in  X , b y  Proposition
2.2. T hus, T  i s  a  d is jo in t u n io n  o f  smooth rational curves {C a icie Al and,
therefore, so is S (= u {130,1be13}). Moreover, A  and B  have the same cardinal
num ber by 2) in  P roposition  2 .2 . N ow , le t us consider the case tha t A  is  an
uncountably infinite set. T h e n ,  by  L em m a 2 .3 , w e  see  tha t T  is  ru led  and,
therefore  so  is  S. N ext, le t  u s  consider a  general case. Letting K  b e  an
algebraically closed field containing k  such that trans deg k K = c i, ta k e  the base
extension of X  = (S , T ; p, q) by Spec K:

X
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Then, we see that the morphisms fi and -4 induced by p  and q  are /3 1 -bundles and
T; p, 4) has the same assumption as in Proposition 2.4. Hence, it follows from

th e  above  argum ent t h a t  T h a s  a n  uncountably infinitely smooth rational
c u r v e s .  T h u s  T  is r u l e d .  S i n c e  HYt, K r )  = K  x  k H°

(T, K r ) ,  T  is
ruled. Sim ilarly S  is ruled. q. e. d.

From now on  we shall study another sufficient condition for S  and  T  to be
ruled.

First w e prepare the  follow ing. L e t X  be  a  smooth 3-fold with two P'-
bundle structures (S , T ; p , q ) . Then, the two /3 1 -bundle structures of X  yield the
following

(2.5)' 0 --> p* --+ Q i Q p 0

0 —+ q* ‘2 ‘21 Qg —> 0

where Qp  a n d  (2,1 are the relative cotangent bundles of p  and  q.
The above yields the  following

(2.5) 0 --> p* K /21 Qi p* Q p
2

0 - 4  q* K AT Qi —+ q* f2 0

O n the  other hand w e have a well-known
Proposition 2.6. L e t u s  consider th e  following exact sequence o f  vector

bundles : 0 E, E  - - 0  E2 O. Then, Sm(E)(= F m + , )  h a s  a  sequence of
subbundles :

0 = F0  c  F, c  • • • c  Fm  Œ Fm + ,

where Fi I  Fi = Sr" -  (E ,) (E 2 )(1 < i
Thus, applying Proposition 2.6 to  the exact sequences 2.5,

Corollary 2.6.1. L e t X  b e  a  sm ooth 3-fold w ith tw o P'-bundle  structures
(S, T; p, q). Then, there are canonical isomorphisms:

HO (X , p* Kr) (  H o(s ,  Kr . )) H o(x , s . (1 „ x)) H o(x , * K  r

P ro o f . By restricting the vector bundle p* K r ' S i (p* Qk Q )  =  Gi) to
a  fiber o f  p ,  w e  s e e  th a t  fo r  each  in teger i  (1 i 5i(0—  2)

(9(— 2)) on p - 1 (s)(= 131 ), therefore, H° (X, G i) vanishes, and it follows that the
2

quotient of Sm (A Q ,) by p *  K ri has only a zero section by Proposition 2.6. The
2

quotient of Sm (A  2 x ) by q
* K m  has only a zero section in the same way as above.

Thus we complete our proof. q.e.d.

Thus, we have an important criterion about the ruledness of S  an d  T

Proposition 2.7. L e t X  be  a  sm ooth 3-fold w ith tw o 13 1 -bundle structures.
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Assume H ° (X , Sm(ilf2x )) = 0 for every positive integer m . T hen, S  and T  are ruled.

§3. Ruledness of S  and T

L e t  u s  m ain ta in  a  sm oo th  3 -fo ld  X  w ith  tw o  P '-b u n d le  structures
(S, T; p, q). In the present section, we shall show that S and T are ruled by using
the results in § 2.

First, taking into account of Proposition 2.4 and Proposition 2.7, we consider
the following two conditions :

(3.1.1) T here  is  a  p o in t  s  i n  S  such  tha t p q  q p '( s )  =  S. N o te  th a t  S  is
unirational, since q ' q p -  ( s )  is a  rational surface.

Thus, in  order to prove that S  an d  T are ruled, we have only to  show

Proposition 3.2. L e t  X  be  a  sm ooth 3-fold w ith tw o P 1-bundle structures
(S, T; p, q). T hen, there ex ists n o  such X  enjoy ing tw o conditions (3.1.1) and
(3. 1.2).

For the  purpose, we make several preparations.
First, le t us start w ith an  easy

Proposition 3.3. A ssum e th at  the condition 3 .1 .2  holds. T h e n  w e  have
p*Krin — q *K7)m

I t  is  trivial by Corollary 2.6.1.
In the next place, we show that Proposition 3.3 yields the fact that K s  and K T

are numerically equivalent to zero . For the  purpose, let me state a proposition by
Kleiman [K ].

L et V be a  complete algebraic scheme over k  and  M  an  invertible sheaf on
V  We call M numerically trivial and w r i t e  M  0  if (M. C ), =  0  for all closed
integral curves C  in  V  Then he shows that

Proposition 3.4. (§4. Corollary 1 [K ])
L e t f : V' V  be a m orphism  betw een algebraic com plete schem es, M  an

invertible sheaf on V  and M ' = f* M . T hen w e hav e

( i ) M  0  implies M' 0, and conversely,
(ii) M' 0  implies M _= 0 , i f  f  i s  surjective.

Now, we have an important

Proposition 3.5. Under the condition in Proposition 3.2, let us assum e the
condition 3.1.1 and p* Krm = q* 11 . Then K s  and K T  are numerically equivalent
to  zero.

Moreover, K(S) = K(T) = O.

2
(3.1.2) There is a positive integer m  such that H °  (X , Sm (A Q x )) has a non-zero
section.
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P ro o f . T a k e  a  p o i n t  s in S  s u c h  t h t  pq 1 qp 1 (s‘ =) S  b y  o u r
assum ption. Then, letting f  = p -

1 (s), we see that  q * K ® 1  is  trivial, which implies
th a t K n f )  0  b y  Proposition 3.4. Now, consider p*Kri ;,7,1 =  q * lq ,7,2 w i t h  W
= q -

1 ( q ( f ) ) .  N oting  that 1/1/.- S  is  surjective, w e infer that K s  is numerically
equivalent to zero and so  is  K T  thanks to  Proposition 3.4.

The latter part is obvious. q. e. d.

By Fact I and  II in  1.1, 1) of Proposition 1.3 and the above Proposition 3.5,
we easily get

(3.6) #2(S, 1) = 2.

(See also the table of possible invariants for surfaces with K  = 0 in the Introduction
in [Bo + Mu])

Moreover, the following stated after theorem 6  in the Introduction in [Bo
+ M u] takes an  essential part of the  proof of Proposition 3.2.

Proposition 3.7. I f  X  is  a surf ace w ith K  = 0, (3 2 =  2 , then f l i  =  2, hence
Alb(X) is an elliptic curve and the f ibers of  the canon ical m ap  n : X  Alb(X) are
either alm ost all non-singular elliptic curves o r alm ost all rational curv es w ith
ordinary cusps.

T he latter is only  possible if  char k  = 2  o r 3.

Proof  of  Proposition 3.2. B y virtue  o f  (3.6), condition 3.1.1 contradicts
Proposition 3.7. Thus we complete our proof. q. e. d.

Combining Proposition 2.4 and Proposition 3.2, we get

Theorem 3 .8 .  L e t  X  b e  a  sm ooth 3-fold w ith tw o P l -bundle structures
(S, T; p, q). T h e n , S  an d  T  are  geometrically ruled surfaces or they  are P 2 .

§ 4. Proof of Theorem

In  this section we shall give a  proof of Thereom.
The argument in §3 [Sa] by which our Theorem is proved in  characteristic

zero, is still valid almost everywhere in positive characteristic. But, since we used
th e  fa c t th a t a  morphism in  characteristic zero  is separable in  th e  proof of
Propsition 3.8 [Sa], we shall make a  slight modification as for the proposition.

N ow , let us begin a  proof of theorem.
By the  result in  Theorem 3.8, we divide into two cases :

a) S  an d  T are  geometrically ruled surfaces.
b) S  an d  T  are P 2 .

L et us start w ith case a).
Let 4: C be the P 1 -bundle over a  non-singular curve C .  Put 4.

-
1 (c) =

for a  point c  in  C.

Remark 4 .1 .  Under the above notation, let us assume that there is a point c
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of C such that p: q - 1 (le)--4 S is surjective. Then for every point c in C, p: q - 1 (1,)
S  is surjective.

Therefore we shall consider the structure of X  in tw o cases as follows.

(4.2) For every point c  in C, dim pq - 1 (1,) = 1.

(4.3) For every point c  in C, dim pq - 1 (1,) = 2.

First let us treat the case 4.2. Then we have

Proposition 4 .4 . (Proposition 3.7 in [Sa]), In the case 4.2, X  is isomorphic to
S  x  T , w here both S  and T  are P 1 -bundles over a  non-singular curve C.

The proof in Proposition 3.7 in [Sa] is available even in the case of positive
characteristic.

In the next place, we observe the case (4.3).
Let fi: S B  be the P'-bundle over a non-singular curve B.
Then, it is easily seen that if there is a point to in T such that fipq - 1 (t0 ) is one

point in B , then for every point t  in T, fipq - 1 (t) is  one point.
Thus we divide into two cases. Namely, the image of every fiber of q  via

fip: X —> B is
oc) a point ,or
13) B.

Let us study the case a.
By the condition, there is a point b  in B  such that a rational ruled surface

(f ipr
1

 (b) contains infinitely many fibers of q: X —> T  Thus we see that the image
of the rational ruled surface via q  is  a curve. Hence, by Remark 4.1, we can
reduce to the first case 4.2.

Next we shall deal with case )8).
Since q - 1 (le) is a rational ruled surface and for each point b in B, (iip) - 1 (b) n

q — i ( l e ) h a s  an irreducible component whose self-intersection num ber is non-
positive, we see that q - 1 (1c ) = 13 1  x  13 1  by sublemma 2.2.1. Since p: q - 1 (1c )--+ S is
surjective, we infer that S  is 13 1  x  P 1 . Let p': S  ( =  B ' )  be another canonical
projection besides /5. Noting that each fiber of q - 1 (1g)-÷ lc goes to a point via p'p,
we can reduce fi) to the case a). H ence, w e finish the observation of the case (4.3).

Thus, summarizing the above argument, we obtain

Proposition 4 .5 .  In  the case a), X  is isomorphic to S x  c T where S and T  are
geometrically ruled surfaces over a non-singular curve C.

Finally, let us consider the case b). Then we see that p and q are P'-bundles
in the Zariski topology by Lemma 1.3, and Corollary 1.4 in [ S a ] .  Hence we
complete a proof of the case b) by virtue of 2) in Theorem A in [Sa].

Thus we finish our proof of Theorem.
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