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On 2-Buchsbaum complexes
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Mitsuhiro MIYAZAKI

O. Introduction

Let K  be a field, fixed throughout this p a p e r . By using the Stanley-Reisner
ring over K  the concept of commutative algebra such as Cohen-Macaulay or
B uchsbaum  a r e  im m e d ia te ly  t ra n s fe r re d  to  th e  c o n c e p t o f  s im p lic ia l
com plexes. Som e o f  them  such  as C ohen-M acaulay or Buchsbaum a re  well
behaving c o n c e p t a n d  it i s  k n o w n  f o r  example Cohen-Macaulayness and
Buchsbaumness are topological properties. (i.e. i f  A ,  a n d  4 2  are sim plicial
complexes whose geometric realizations are homeomorphic, then  A , is Cohen-
Macaulay (or Buchsbaum) if and only if A2 is Cohen-Macaulay (or Buchsbaum
resp.)) and  characterized by the  reduced oriented homology groups of A .  (See
[10], [11] and [12].) And by the result of Reisner [11] (see Theorem 3.2 of this
paper) we know that if a simplicial complex A  is Cohen-Macaulay of dim d  >  1
then A  is connected . So  one can consider the Cohen-Macaulay property as a
specialization o f  t h e  c o n n e c te d n e ss . B a c la w sk i [1 ] c a lle d  t h e  Cohen-
Macaulayness as C ohen-M acaulay  connectivity a n d  defined  the k-Cohen-
Macaulayness b y  the  sim ilar way as the k-connectivity. (See § 1 for definition.)
Then the 2-Cohen-Macaulayness is a well behaving concept and the following facts
are known.

(i) 2-Cohen-Macaulayness is  a  topological property. ([17])
(ii) If A  is a Cohen-Macaulay complex of dimension r then (r — 1)-skeleton of

A  is 2-Cohen-Macaulay. ([6])
It is natural to ask if the similar results are valid for Buchsbaumness. Since a

simplicial complex A  is Buchsbaum if and only if A  is pure and every non-trivial
link of A  is Cohen-Macaulay (see Theorem 4.1 of this paper), it is also natural to
ask if the results similar to (i) and (ii) above are valid for pureness. The purpose
of this paper is to give affirmative answers to these questions. i.e.

(i) 2-Buchsbaumness (or 2-pureness) is a topological property. (See Theorems
4.3 and 5.3.)

(ii) If A  is a  Buchsbaum (or pure) complex of dimension r  then the (r —  1)-

skeleton of A  is 2-Buchsbaum (or 2-pure resp.). (See Theorems 7.4 and 7.3.)
The author would like to express his hearty thanks to his advisor Jun-ichi
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1. Preliminaries

We denote the number of elements of a finite set X by # X  and for two sets X

and Y we denote by X — Y the set Ix e X Ix (t Y1.
W e make a convention in th is paper that a ll the simplicial complexes are

finite. A simplicial complex A  with vertex set V is a set of subsets of V such that
(i) Oe A  and (ii) if ce A  and r g_ a then  t e  A . Note that we do  not require that
{x} e A  for any  x  e  V  An element of A  is called a face of A  and a maximal (with
respect to the inclusion relation) face is called a facet of A .  For A  and a face a- of
A , we define the dimension of a written dim a by dim a - = #a —  1 and dimension
of A  written dim A  by dim A  = max dim u. In  particular dim { =  —  1 .  If all
the facets of A  has the  same diaénsion we say A  is pure.

Now we define two subcomplexes star A (a) and link(a) of A  decided by a by

starA(u)= {Ted Ituo - eA}

link A (a )=  I te A ltu u e A , m a  =  4fil•

N o t e  dim starA (a) = max dim t a n d  dim link(a) = dim star(a) — # a.
r:facetof1,r2 a

Moreover if A  is pure then dim star(a) = dim A  and dim link(a) = dim A — # a.
We also define a subcomplex A \o - o f  A  for (ye A — I C  b y

A \o - =- IT e Alt

Let W be a subset of the vertex set V of A .  We define a subcomplex A , of A
by

A n , = lue W}.

N ote that if x c V then A v  _{x} =  A \x .
Let A 1 a n d  A 2  be  sim plic ia l complexes w ith  vertex set a n d  V2

respectively. If V, n then we define a complex A l * A2 with vertex set VI U V2

by

A1 *A 2  = {au-clue/1 i , TeA 2 }.

One immediately verifies that dim(A, * A 2 ) = dim A , + dim A 2  +  1 and  a  facet of
A 1 * A 2  i s  a  un ion  o f a  facet of A  and  a  facet of 42.

Next we recall some general facts about commutative algebras. G e n e ra l
references a r e  [8 ] ,  [ 1 6 ]  a n d  [4 ] .  L e t  K  b e  a  f ie ld  a n d  w e fix  the fie ld  K
throughout this paper. L e t  A  = K E .x ,,...,x j b e  a  polynom ial ring  over K.
Then A  is  a  Z "-graded ring in  the  natural w ay a n d  if  M  a n d  N  are  finitely
generated A-modules then we can define the Z"-graded structure to Hom A (M, N)
by [H om ,(M , I f e H o m ,(M , N)If(M f i ) g_ Ara, , f l f o r  any ,6 e Z"} a n d  to
M C) N  b y  ( M  N)„--= (The submodule o f  M  N  generated by the elements

24
a b  such that

A

ae M p ,  b e N  and 13 + y = a.). 
A

So we can also define the Zn-
graded structure of Ext À (M, N ) and  T o r(M , N ) for any i. Moreover if I  is a
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homogeneous ideal (in this grading) of A then we can also define the Zn-graded
structure to  the local cohomology modules  H ( M ) .  S e e  [2 ] and  [3 ] fo r the
details.

We define the dimension (Krull dimension) of M written by dim M to be the
m axim al leng th  o f  p r im e  id ea l ch a in s  in  th e  r in g  A /a n n (M )  i.e. d im  M
= max Id There e x i s t  prime ideals P0, ,  P d  in A  such t h a t
a n n ( M )  P 0 g  ••• P d l .  And the depth of M  written by depth M is defined by
the following three identical numbers

( i ) The length of a maximal M-regular sequence in m.
( ii ) min E x t  (K , M ) 0 }
(iii) m in  { ill(M ) 0  0}

where m = (x 1 , ...,x„)A. (All maximal M-regular sequences in  m  a re  known to
have the same length.)

It is known that depth M < dim M for arbitrary M  0  and  we say M  is  a
Cohen-Macaulay module if depth M  = dim  M . And w e say M  is a  Buchsbaum
module if the canonical map

E x t(K , M) Him(M)

is surjective for any i <  dim  M . It is clear from  the definition that every Cohen-
M acaulay m odule is  B uchsbaum . A  residue class r in g  A l l ,  w here I  i s  a
homogeneous ideal, is called a Cohen-Macaulay (or Buchsbaum) ring if Al I is a
Cohen-Macaulay (or Buchsbaum resp.) A -m odule . M oreover we say A l I is  a
Gorenstein ring if

K if i =  dim A 1 I
Ext i

A (K, Al I) ^d- { 0
if i < dim Al I.

So if A ll  is a Gorenstein ring then A ll  is Cohen-Macaulay.
Next we define the shift of g rad in g . For Œ  Z' and a Zn-graded module M,

w e define the  m odu le  M (a) w ith  sh ifted  g rade  by  [M(a)] fl = M OE, fi f o r  any
e  Z " .  F o r example the  element o f A(— — 1) corresponding to 1 E A  has

degree (1, ..., 1). S o  if  w e w rite th e  fact Vj; a i f l i  b y  a fl o r fl oc fo r  a
= (a 1 , ,  a n ), =  ( f i  , ,  fin ) e Z" we see

A(— — 1),,=
K if oc > (1,...,1)

10 if a

Now we define the Stanley-Reisner ring (or face ring) K [A ] of A (over K ) for a
simplicial complex A  w ith vertex set V = {x i , x„} . T a k e  a polynomial ring
over K  whose indeterminates are in one to  one correspondence with the elements
o f  V  We denote this polynomial ring by K [x i ,...,x„ ](=  A) for simplicity. Then

K [A ] = A I I,

where IA  i s  the ideal generated by lx i i  • • • xi t ll < • • • <
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It is easily verified that K [A ] is a K-free module (without assuming that K  is a
field) and the set of all the monomials whose support is in  A  is K-free basis of
K P G  (The support of a monomial M is Ix e VjM is divisible by x} .) We can
also verify that

.14= n
a: facet of

where P 7 =(x i lx i 0 a) , is  the primary decomposition of 14 . S o  w e  s e e  1 4  i s  a
radical ideal of A  and K [A ] is a  reduced ring. Moreover we see

dim K [A ] = coht1 4

=  max coht P,
a: facet of

----- m a x  #
o:: facet of

= dim A  +1

where coht / = dim A ll  for an ideal / of A.
If K[L1] is  a Cohen-Macaulay (Buchsbaum or Gorenstein) ring we say that A

is a Cohen-Macaulay (Buchsbaum or Gorenstein resp.) complex (over K ) .  Since
it is known that all the minimal prime ideals of ann(M) has the same coheight for
a Buchsbaum A-module M, we see by the above argument that if A is Buchsbaum
then A  is pure.

It is easy to prove that if {x} e A then

K[A ] x  = K  [link A (x)] Ex, x

link A (T u a) = link 
l i n k j ( r )  ( a )  i f  Î uo- EA  and T n a  =  (/).

So 

K [link A (cr)] [x, x e a] = KEA ],-, x

for any Gre A. Since it is known that if M is a  Buchsbaum A-module then M x  is
Cohen-Macaulay for any x E V, we see if A  is Buchsbaum then link A (a) is Cohen-
Macaulay for any a E A such that a 0 0. Since

K [star A (a)] = K pink A (a)] Ex x E a]

we can also see that every non-trivial star of a Buchsbaum complex is Cohen-
Macaulay.

For a positive integer k, we define the k-Cohen-Macaulay (k-Buchsbaum and
k-pure) complexes as follow s. A simplicial complex A  with vertex set V is  k-
Cohen-Macaulay (k-Buchsbaum or k-pure)(over K )  of dimension r  if for any
subset W  o f  V  (including 0) such that # W < k , A v _w  i s  Cohen-Macaulay
(Buchsbaum or pure resp.) of dimension r  an d  A  is k-Cohen-Macaulay (k-

and
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Buchsbaum or k-pure) if A  is k-Cohen-Macaulay (k-Buchsbaum or k-pure resp.) of
some dimension r.

Now we recall the notation of oriented and singular (co)chain complexes and
(co)homology g ro u p s . If A  is a simplicial complex we denote by 0.(A)(or 0 . (A))
the augmented oriented chain (or cochain resp.) complex with coefficients in K  and
by F-1.(A)(or 17 . (A)) the homology (or cohomology resp.) groups of 0.(4)(or C - (4)
resp.). I f  A , is a subcomplex of A  then we denote the relative oriented chain (or
cochain) c o m p le x  b y  C .(A ,A ,)(or C . (4 ,4 1 ) re sp .)  a n d  its h o m o lo g y  (or
cohomology resp.) groups by H.(4, A 1)(or A ,) resp.). If X  is a  topological
space then w e denote  by C1'.(X )  (o r  0 . (X ))  th e  augmented singular chain (or
cochain resp.) com plex w ith coefficients in K  a n d  b y  17.(X)(or fr(x)) the
homology (or cohomology resp.) groups o f  0.(X ) (o r  0 . (X )  resp.). If  Y  is  a
subspace of X  then we denote the relative singular chain (or cochain) complex by
C.(X, Y)(or C . (X , Y) resp.) and its homology (or cohomology resp.) groups by
H.(X , Y)(or 1-1 . (X , Y ) resp .) . See, for example, [13] for the details.

F o r  a  chain (or cochain) complex D .  (or D . resp.) w e define the complex
D.[t] (or D. [t ] resp.) with shift of dimension by (D.[t]), = D i + , (or(D . [t]) i =  D '
resp.).

Finally we make a  conven tion . When considering a simplicial complex A
w ith  vertex  se t V  w e define th e  su p p o rt o f  a e Z # v  t o  b e  a  subset o f  V as
fo llow s. T ake  a n d  f ix  a  b ijec tive  m a p  o f  s e ts  cp : V }  a n d  if  a
=  (a, a# v ) th e n  s u p p  a  =  Ix  e  a v ( x )  0  0 1 . S o  e v e ry  t im e  w e  c o n s id e r  a
sim plicial com plex, w e  a ssum e  t h a t  a  m a p  c p  a s  a b o v e  is  g iv e n  and
fixed. E sp ec ia lly  if  w e w rite  that A  is  a simplicial complex with vertex set V
= Ix ,, ,  x  „I  then we assume ço is the map such that go (x1) = i for any i = 1, . . . , n,
so  suppa =  {xŒ  0 01 for a e Zn.

2. Key lemmas

In  this section we state some useful lemmas in  the  following sections.

L em m a  2.1. L e t  A  b e  a  s im p lic ia l  c o m p le x  w ith  v e rte x  s e t  V
—  lx ,,. . . ,x l ,[x i ,,...,x i s ] an  oriented face in A  and a = Ix i i ,...,x i s l. T hen  there
is an  isomorphism of  chain complexes

(p.
A dxii- - -xisl: 0 .(link 4 (a))[ —  s] --- C .(4, A \o -).

Moreover i f  1 < t  < s  then w e have the following commutative diagram.

0.(link A (r))[ —  t] -- C .(link A (T), link(x)\(a —  T)) [ —  t]

iw
i n k , ( r ) , ( x j , ,  ' xi s _ i 1) — 1

C. (link „(a)) [ — s]

i
v .

1 ' [ x l  l '  ' x i s i

C.(A, A\T) ---- C .(4 , A\o-)
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where T  =  { x i s _ „  ,  xi s }  and the horizontal maps are the canonical ones.

P roo f. Since Cu (d, A \o-) is  the cokernel of the inclusion map( z 1  \ a )  Œ-4
e u (A) we see Cu (z1, A \o-)  is  a free module over K  with basis

IFezlIFOA\a, # F  =  u l = {F e z lIF u}

for any u. By associating F with F — a = G we may assume that Cu (A, 4 \a) is a
free module with basis

{ G e A lG n a =  G u a eA , #G = u — s}

= 1G e link A (o- )1# G = u — sl.

So we can construct a n  isomorphism of K-free modules as follows.

( P u _ (link A ( ) ) Cu (A, A \a)

..., xi .  _s ] [xi, , , xi .  _ s , x i , ,..., x is] mod Ou (A \a )

N e x t  w e  h a v e  to s h o w  that 9 .

41 xii , . . - xis] i s  a c h a in  m a p .  Take
[x 1..... xi . _ s ] e Cu  „ (link A (o-)). Then

Ou çOu EXil xi"
= au ax i i  ,..., s , x i , , x is ] mod 0„(A \a))

— Eui=si ( —  0
, ,  [x i , , • • • , •k11, • • • , xi. x i i  , ... , xis] mod C„_ , (A \a )

+  E s,-- 1 ( — 1 )
 —s + 1 — 1 

[ x i i  , ... , xit, _s, xi, , ... , )ACii , ..., xi s ] mod -Cu _ , (A \a )

=  E u,:,s ( — lc  1 [xi i  , ... , )zi „ ... , xi . _ s , xi , , ... , x i s ] mod _ i(A  \a )

because , ,  xi .  _ x i i  , ..., x is } e A \a where ^ means the omission of the
fac to r. O n  the  other hand

Au ' [ xii i — x i s ]  au - s (  [x ji

= (p Aud x '" '" x i sJ ( E t; : i
s  ( — -  1 

— Eul = is ( -- , • • • 5 )AC it, • • • X  i n  s  X i,  5 • • • Xi s ]  IT I CId 1 ( 4  \  a ).

So we see is  a  chain map and  we get the first conclusion.
Next consider the following map

: C.(link A (T), link (t)\(a — t))[— t] C.(A, A \o-)

where

[xi, , xi . _ t] mod 0„ „Oink A(T) (0" —

= [x i i ,... , , x is ] mod (A \o- ).

Then w e can show th a t 0 .
4 'dxis - i s  a  chain  m ap by the  same way as

above. Also we can easily see the commutativity of the following diagram
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A (t))[ — t] C.(link A (T), link(t)\(a —  t))[—  t ]

I(p i ,  f x i s _ , + i ,..., x i s )
t ' 6 ' [ x is - t + 1 ' — ' x is i

C.(4, A\T) — 4  C .(4 , 4 \a)

where the horizontal maps are the canonical ones.
On the other hand the commutativity of the following diagram

C. (link „(T), link(t)\(a  —  t))[— t ]

\
(p lin k  ,4( r ) ,  Ex i i  ,  . . .  ,  x i s  _ t ]

C.(link 4 (a))[ — s]
e 7 7

X is j

C.(A , A \a)

can be easily verified. So we see the following diagram

4 (T))[ — t] C. (link A (T), link A ( T ) \ ( 0 -  —  2 ) ) [ —

\
( (p l in k d . c ), [ x i ,  ,  • • • ,  x i s  _  , 1 )  -  1

(p i' ['c is  — t  + cr, [x i s + x i s ]
C.(link A (a))[ —  s]

y a,[xi i ,..., X i s ]

C .( 4 , \T ) C.(4, A\ a)

is commutative and we get the second conclusion. Q. E. D.

In later sections we use not only the statement of the following lemma but
also the notation in the proof of it.

Lemma 2 .2 .  Let A  be a simplicial complex with vertex set V and X  = IA I . If
pe  X  is an interior point of  t e 4 then Y  =IA \T I is a strong deformation retract of
X — p.

P ro o f .  W e may consider V = {x 1 , . . . ,x n }  a s  a  se t  o f  affinely independent
points of n-dimensional euclidean space. Then X  is a subset of the convex hull of
{x 1 ,...,x „ }  and any point q e  X  can be written as

= + ••• + Iinxn, where 0,..., pin >_ 0, + • • • + ,u, =  I

uniquely.
Let p = A i x 1 + •-• + A n x n . Changing the suffix if necessary, we may assume

that =  { x 1 , . . . , x , }  and Al > At > 0, 2, 4_1 = • •• = An =  O. N o w  assume that
a point g = u 1 x 1 + • • • + pi n x n  in  X  —  p  is given. Since p g, there is a number i
such that p i < Ai . So if we put

e(q) = 1 —  min {
1< i < r  Ai
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then E(q) is a  continuous map from X  — p to  R and 0 < e(q) 1. Therefore we
can define a  continuous map r: (X  — p) afflx,,..., x n} by

r(q) = 
e (

1

q )
(q — (1 — E(q))p).

Figure 1

If we write r(q) = y 1 x 1 + ••• + y n x„ then

(2.1)
1

1)  • =   >  0J EM J

for any j > t. O n the  other hand if j  < t  then

(2.2) v. = E (
1
q ) (p i  —

>   1   ( u 2 )
e(q) j

=  O.

So r(q) e cony {x i , xn} . Moreover if pi  = 0 then vi  = 0 by (2.1) or (2.2). So we

see {xi l vi 0 }I x i l,ui  0 01 and  {xi i v.; 0 0} e A .  And if
1<i<t

=  m in {  }  then

1 1y • = =  01-tj jJ 6 (0

SO { Xi I Ili 0  0} '1 ' i.e . Ixi l vi  0 1  e 4 V r. Therefore we may assume r  is  a  map
from X — p t o  Y

N o w  let F(q, a) = (1 — a)q + ar(q) f o r  qe X  —  p a n d  a e l ,  w h e re  I
=  lb e R IO  b <  1 1 . Then by the argument above

{xi  (1 —  a)tt;  + ay .; 0 0} g pi  0 0} e A.

O n the  other hand if pi  < Ai  then

v  = (  1  
1 ) (P; — <J J E(q)



11(K [A ])„

{ 17 i-#suppa -  1  
( l in k  A(supp a ) ) if  a < 0  and supp e

otherwise.=  o
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SO

(1 — a) p av  <

and we see F(q, a )  0  p .  So we may consider F as a continuous map from (X — p)
X  I to X  —  p.

N ow  if q e Y, then  {x i l pi  0 0} t  and we see e (q ) = 1 . So r (q) = q and

F(q, a) = q for any q e Y and any a e I.

O n the  other hand

F (q, 1) = r (q) e Y for any qEX  — p.

These facts mean that F is a  strong deformation retraction of X  — p to  Y  So Y is
a  strong deformation retract of X — p. Q. E. D.

The final remark of this section is the following lemma whose proof is easy.

Lemma 2.3. Let A  be a simplicial complex with vertex set V , a a face in A  and
W  a subset o f  V  I f  W n  r = t h e n  link Av  „ (a ) =  link A(a)v  _ w .

3. A  topological characterization of 2-Cohen-Macaulay complexes

In  this section we give a  characterization of 2-Cohen-Macaulay complexes in
te rm s  o f  singu lar hom ology  groups o f  t h e  geom etric realizations o f  th e
com plexes. Although the fact that the 2-Cohen-Macaulay property depends only
o n  th e  topological properties o f  th e  geometric realizations o f  th e  simplicial
complexes is proved by Walker [17], we state the following Theorem 3.3 and its
proof because we need them in  the  following section.

First we state the following important theorems as references.

Theorem 3.1 (Hochster, see  [15] Theorem 11.4.1). L e t A  b e  a simplicial
complex w i t h  v e r t e x  set V  = f x ,,.. . ,x ,}  , A  = K [x i ,..., xn] and m
= (x 1 ,...,x„)A . Then f o r any  aeZ " ,

Theorem 3.2 (Reisner [11], see also [15] Corollary 11.4.2). L e t A  b e  as
abov e. T hen the following conditions are equivalent.

(i) A  is  Cohen-Macaulay.
(ii) For any a e A  and any  i < dim(link A (a)), A(a)) =  O.

Now we state the following

Theorem 3.3. L et A  be a Cohen-Macaulay complex of dimension (d — 1) with
v ertex  set V  = { x i ,...,x n } a n d  X  =  AI. T h e n  th e  f ollow ing conditions are
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equivalent.
(i) A  is 2-Cohen-Macaulay.
(ii) For any  ae A — { ,  the canonical map

' 1d- 1(M Hd_1(4, 4\a)

is surjective.

(iii) For any  ae4 fid_2(4\a) = O.

(iv) For any  peX, Fi d _ 2 (X — p)= O.

Proof. (ii) : We may assume a = {x 1 , ,  x t } . P u t ai  = {x, , , for
any je  {0, ..., .  Taking the long exact sequence of the homology groups of the
following short exact sequence of chain complexes

0 C. (link j a i _ ,)\x j ) 0. (link _ ,))

- 4  C. (link A(0- i_ 1 ),  link ja i _ „A xi ) 0

we get the following exact sequence

rid _ j (link A (a j _ ,)) Hd_i(link A(ai_ i ),  link j a i _ 1 )\x j )

f i d  j _ 1 (link A (a i _ ,)\ xi )

for any je  {1, , t} . On the other hand, since link jai _ ,) is a 2-Cohen-Macaulay
complex by Lemma 2.3 and dim link ,,(a j _ i ) = d — j, we see

j _ 1 (link la;  _ ,) \x) = 0

by Theorem 3.2. So the canonical map

(Pi  : rid _j (link A(ai_ Hd_i(link A (o- j _ d  link ,,(a j _ ,) \ x j )

is surjective for any j e  {1, , t} .
By Lemma 2. 1 we see that the canonical map

(1);: Hd-i(A , A\ai-i) 4\a)

is surjective for any je  {1, , t} , where H.(4, 4\o - 0 ) = 11.(4). Since the canonical
map

9: Fi d _ 1 (4 ) - -  H d _,(4,A\a)

is the composition of all the  91s, we see 9  is surjective.
(ii) (i) : Take arbitrary x e V  and t  e A  x. I f  TU {x} Et A  then link \ x (t-)

= link A (T) is a Cohen-Macaulay complex of dimension d — #t —  1. So

(3.1) A\x(r)) = 0 if i < d — #t — 1.

O n  th e  other hand if  a  = r U {x} e 4, then we have the following commutative
diagram of canonical maps.
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d- i(A)

I
Hd _ 1 (A, A\-c)-Tp, H d _ 1 (A, A\o- )

(I) is surjective by the assumption so we see that ço is surjective. So by Lemma
2. 1 we know that the canonical map

" d — # t—  1 
(lin k  A ( T ) ) "d - #r - A(c), link A (r) \ x)

is  surjective.
Now consider the following long exact sequence of homology groups.

• • • 17/ (link A (r)) H i (link A (T), link A (T) \ x)

F/ i _  (link 4 (t) x) Fi  _  (link A (T)) • • •

Since link A (r) and link %,(a) are Cohen-Macaulay complexes of dimension d —  t it
—  1 and d —  # t —  2  respectively, we see by Theorem 3. 2 and Lemma 2. 1

fl i (link A (t)) = 0

and

Hi(link A (r), link 4 (T) \ x) td Fl i _  (link zi(a)) = 0

if i <  d —  # t —  1. So by the surjectivity of a n d  Lemma 2.3 we see

(3.2) A\x(T)) = A(T) \ x) = 0 if  i < d —  #2 — 1.

S in c e  z  is  a n  arbitrary fa ce  in  A \x , w e see  form  (3 .1) and  (3.2) that
depth(K [A \ x]) >  d  by Theorem 3. 1. S o  w e  see  A \ x  i s  a Cohen-Macaulay
complex of dimension (d —  1).

(ii)<=> (iii) : For any a e A  —  I C  w e  g e t  the following exact sequence

_ 1 (A) Hd_1(4, 17d — 2 (A \u) — * d - 2 (A)•

Since A  is Cohen-Macaulay of dimension (d —  1), we see

1
' d -2 (A )

by Theorem 3.2. T h e  equivalence of (ii) and (iii) easily follows from these facts.
(iii) •4=> (iv) : Immediately follows from Lemma 2.2. Q. E. D.

4. Topological characterizations of 2-Buchsbaum complexes

I n  th is  section we give topological characterizations o f  2-Buchsbaum
complexes and prove the fact that the 2-Buchsbaum property is a  topological
property i.e. depends only o n  th e  geometric realization. First we recall the
following
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Theorem 4.1 (Schenzel [12] Theorem 3.2, see also [9] Theorem 2). Let A  be
a sim plicial com plex  o f  dimension (d —  1) an d  X  = IA I . T hen the following
conditions are equivalent.

(i) A  is Buchsbaum.
(ii) A  is pure and for any 1- e A — I C ,  link A(T) is a Cohen-Macaulay complex.
(iii) For any p E X, H i ( X, X — p) = 0 f  i <  d — 1

Next we remark the following

Lem m a 4.2. L et A  be a pure complex of dimension (d —  1) w ith vertex set
V  Then f o r any positive integer k  the following conditions are equivalent.

(i) A  is k-Buchsbaum.
(ii) For any  T E zl — link A (T) is a k-Cohen-Macaulay complex.

Proof. (i) (ii): Follows from Theorem 4.1 and Lemma 2.3.
(ii) ( i ) :  By Theorem 4.1 and Lemma 2.3, we have only to show that 4 , _ w  is

pure of dimension (d —  1) for any subset W of V such that # W< k. Take such W
and let T  be an  arbitrary facet in  A v _ w . Since link A (T) is a  k-Cohen-Macaulay
complex by assumption, we see

dim(link 4 (x), _ w ) = dim(link A (r)) = d — #t -  1.

O n the  other hand

dim (link Aer)v  _ w ) = dim (link A , ,(T )) =  dim( { 0}) —  1

by Lemma 2.3. So we see dim T  =  d — 1. Q. E. D.

Now we state the m ain result of this paper.

Theorem 4.3. L et A  be a  Buchsbaum complex of dimension (d —  1) and X
= Then the following conditions are equivalent.

(i) A  is 2-Buchsbaum.
(ii) For any non empty face T in A  and a face a containing T, the canonical map

H d _ i (A, A\o-)
is surjective.
(iii) For any  non empty f ace T  in A  and a face o- containing T,

Hd _2 (A\o - , A\T- ) = O.

(iv ) For any  pe X  there ex ists an open neighborhood U o f  p  satisfy ing the
following condition.
If  V  is an open set satisfying (a) and (b) below then V  satisfies (c) also.
(a) p e V g  U.
(b) The homomorphisms of the homology groups

— V) 1-71,(X — p)
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induced by the inclusion m ap are isomorphisms.
(c) For any  qe V, Hd _2 (X — q, X — V) = O.

( NO For any  p E X  and any  open neighborhood U of  p, there exists an open set
V such that
(a) p e V g  U.
(b) The homomorphisms of  the homology groups

FI,(X — V) 171,(X — p)

induced by the inclusion m ap are isomorphisms.
(c) For any  qe V, Hd_ 2(X — q, X — V) = O.

(vi) For any  pe X , there ex ists an open neighborhood V of  p such that
(b) The homomorphisms of  the homology groups

171,(X — V) 17,(X — p)

induced by the inclusion m ap are isomorphisms.
(c) For any  q E V, H d _ 2(X — q, X — V) = O.

P ro o f . (i)<=>(ii): Follows from Theorem 3.3, Lemmas 2.1 and 4.2.
(ii).4.)-(iii): From the following short exact sequence of chain complexes

0 C.(4\o-, A\T) C.(A, A\T) C.(A , A  \a) 0

we get the following exact sequence of homology groups.

H d _ i (A, A\T) Hd_ i (A, A\o-)

Hd_ 2(4\o- , A\T) Hd_2(A, A\T)

Since H d _ 2 (4, A \T) = 0 by Theorems 3.2, 4.1 and Lemma 2.1, we see (ii)<=>(iii).
Next we note that the condition (iii) is equivalent to the following condition.
(vii) For any non empty face T  in  A  and a face a containing T,

Hd-2(Z5 Y) =

where Z  =1.4\o - 1 and Y= Id\TI.
(vii) (iv): Let T be a face in A  scuh that p is an interior point of T. We put

Y= IA \I- 1 and U = X — Y, then U is an open neighborhood of p. Assume V is an
open subset of X  satisfying the conditions (a) and (b) and q a  p o in t in  V  Since
q0Y, q is an interior point of a face a such that a 2  T.

Now let Z  =  id \ a l .  Then the inclusion maps of topological spaces induce
the following commutative diagram of chain complexes, where each horizontal line
is an exact sequence.

0 0.(X — V) 0.(X — q) C.(X — q, X — V) 0

C.(Z, Y) 0

I.
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Since Z  i s  a  deform ation retract o f  X  — q  by Lem m a 2.2, tp. induces
isomorphisms o f  hom ology groups. O n  th e  o the r hand  the re  is  a  following
commutative diagram  o f  cha in  complexes induced  by  the inclusion maps of
topological spaces.

C. Y  --L% . ( X - V )

.(X — p)

cp" induces isomorphisms of homology groups by the assumption and so does cp 1

by L em m a 2 .2 . So  cp. induces isomorphisms of homology groups.
Taking the long exact sequence of the horizontal sequences of the diagram

(4.1) and using " five lemma ", we see

H i (Z , Y) H i (X  — q, X  — V) for any i.

Therefore we see (vii) (iv).
(iv) ( v ) :  L e t p  b e  a n  arbitrary p o in t  in  X  a n d  U  a n  arbitrary open

neighborhood of p. Take an open neighborhood U 1 o f p satisfying the condition
of U in (iv). L e t  T be a face in 4 such that p is an interior point in T. We use the
same notation as in the proof of Lemma 2.2.

F or any 6  such that 0 < ô  <  1, let

=  e  X  — plE(q) < (51 U {p}

Since E(q) = 1 — m i n  '1-,1 ,  V6 is an open neighborhood of p  and we can take{ 6
1 < i< t  Ai

small enough so that

V6g

Take such a  6 and put V = Vb . Then we claim that V satisfies the conditions (a),
(b) and (c) of (v).

(a): Clear.
(b): W e  put 1 (q) = min { E ( q )   , 1 }  a n d  r i  (q)

E1(q)(
(1 1 (q ) )P )  for

1

qe X  — p.

Figure 2
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Then X — V= { q EXX  -  Pig 1(q) = 1}  = We X — pir,(q) = q l .  If  we write

r1(9) = vi x i  + ••• + v,ixn
then

1 1
Vg  1 ( 0  11i +  ( 1 g  1 ( 0  r

for any je  11, ,  .  S o  if =  m i n  It± i, and  qe V then
1 < i< t A.i

• + 1
A. CA ) el(q)

6
= 

E ( q )
(1 E(q)) + 1

E(q)

= 1 — 6.
Therefore

e(r i (q)) > 1
Ai

i.e. r 1 (q)EX —V
So we can consider r 1 a s  a  continuous map from X — p to  X — V and if we

p u t F, (q, a) (1 — a)q+ar,(q ) for qeX —p and ael, we can show that F , is a
strong deformation retraction of X — p to X — V by the same way as in the proof
of Lemma 2.2. Therefore X — V is  a  strong deformation retract of X — p.

(c): By the choice of U i , (b) above and the fact p e V g U ,  we see

H d - 2 (X  q , X  —  V) = 0 for any q e V.

Since U  is  a n  arbitrary neighborhood of p we see (v).
(vi): Clear.

(vi) ( v i i ) :  L e t  U = X — Y  T ake  a n  interior po in t p  o f  T. a n d  a n  o p e n
neighborhood V of p satisfying the conditions (b) and (c) of (vi). By the proof of
(iv) ( v ) ,  we see that we can take an open neighborhood VI o f  p such that X —
is a  strong deformation retract of X — p and V, g Vn U .  Since vi  is  an open set,
we can take an interior point q of o- such that qe K. Then we have the following
commutative diagram  o f  chain  complexes induced  by  the inclusion m aps of
topological spaces, where each horizontal line is an exact sequence.

0 .( Y)0 . ( Z ) C.(Z, Y) 0

0 0.(X — VI ) 0.(X — q) C.(X  — q, X  — VI ) •--* 0

0 C.(X  —  V) ---÷ 0.(X — q) C.(X  — q, X  — V) 0

1 pi
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By the same way as in  the  proof of (vii) (iv), we see

Hi (Z, Y) Hi (X — q, X — V,) H i (X — q, X — V) for any i.

From  the condition (c) of (vi) we see (vii). Q. E. D.

Since the conditions (iv), (v) and (vi) of the above theorem  and (iii) of
Theorem 4.1 are topological ones (i.e. depends only on I A), we see the following

Corollary 4 .4 .  2- Buchsbaum property is a  topological property.

On the other hand, the conditions (iii) of Theorem 4.1 and (v) of Theorem 4.3
are satisfied if X = 1/11 is  a  topological manifold without boundary. So we see
that if A is a triangulation of a topological manifold without boundary, then A  is
2-Buchsbaum. B ut in fact we can prove the following

Proposition 4 .5 .  If  A  is a triangulation of  a homology manifold, then A  is 2-

Buchsbaum.

P ro o f .  From the assumption we see the validity of (iii) of Theorem 4.1, so we
see that A  is Buchsbaum (and therefore p u re ) . Now let r be  a n  arbitrary non
empty face in A .  Then by the assumption and Lemmas 2.1 and 2.2 we see that

n i (link linkj(r).- = fl 1(link A (a u r)) 0
K

if i =  dim (link 4(a U  r))

otherwise

for any a e link A (r). So by [14] Theorem 7 (see also [15] Theorem II. 5.1) we see
that link 4 (r) is a Gorenstein complex such that

f1dim(link4(s))
( l i n k  A ( r ) )  0  O.

Therefore link zi ( r )  is 2-Cohen-Macaulay by Lemma 4.6 below and we see that A  is
2-Buchsbaum by Lemma 4.2. Q. E. D.

Lemma 4 .6 .  L et A  be a  Gorenstein complex of dimension (d — 1) such that
Fld _ 1 (A) 0 O. Then A  is 2-Cohen-Macaulay.

P ro o f . Since ri d _ 1 (4) 0 0, we see that

Ext d
A (K, K [4 ]) ( 0 ,...,0 ) F d _ 1 (4) 0 0

where A = K [x ix eV ] a n d  V is the vertex set of A .  (See [7] Theorem 5.2. See
also [9] Theorem 1.) O n  the  other hand

Ext d
A (K ,  K [ 4 ] )  K

since K [A ] is Gorenstein. So we see that

Ext d
A (K, K[A]) = Ext d

A (K , K [4]) ( 0 ,...0 )

and from Theorem 6.1 and  Lemma 6.2 below, we get the conclusion. Q.E.D.

Next we make a re m a rk . One might think that the condition V g  U in (iv) of
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Theorem 4.3 is superfluous. But we see the condition is essential by the following

Example 4 .7 .  Let D2  b e  a  2-dimensional disc and a a point in OD2 . Let X
be a  subspace of D2 x D 2 such that

X  = (0D2  x  8D 2 )u({a}  x D 2 )u(D 2  x  {a}).

Figure 3

Then for any pe X , p has an open neighborhood U such that U is homeomorphic
to  one of the following spaces.

R2 ,  {(x, y, z)e11. 3 1z = 0  o r  (y = 0, z 01,

{(x, y, z) e It 3 z  = 0  o r (y = 0, z 0) o r  (x = 0, z 0 ) 1 .

So the conditions (iii) of Theorem 4.1 and (v) of Theorem 4.3 are satisfied. On the
other hand, let p  be  a  po in t in  (aD2 x  3D 2 ) — ({a}  x D 2 ) — (D2  x  f al) , q , q , be
different po in ts  in  ( {a} x D 2 ) — (0D2 x OD2 )  and V = X  — q l . T h en  {q 1 }  = X
— V  i s  a  strong deform ation retract o f  X  — p. O n  th e  o th e r  h a n d  b y  the
following exact sequence

!Î (X  —  V) ---+ i (X  — q) H i (X  — q, X  — V) -  V)

we see

Hi(X  — q, X  —  V) — q) for any i.

So

H i (X  — q, X  — V )  =  K  O.

Since dim X  = 2 and d = 3 in this case, we see that the condition (c) of (iv) is not
satisfied.

5. A  topological characterization of 2 - pure complexes

In  this section we prove that the 2-pureness is a  topological property. First
we state the following

Theorem  5.1. L e t A  b e  a sim plicial complex of  dimension (d —  1) and X
= IA 1 . Then the following conditions are equivalent.

( i)  A  is pure.
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(ii) For any  open set U  in  X , there ex ists a point p  in  U  such that

Hd_ i (X , X  —  p) O.

Proof. (ii): Assume that an open set U in X is  g iven . Let q  be a point
in  U and t  a face in A  such that q  is an interior point of T. Take a  facet a in A
such that a D T. Since U is an open set, we can take an interior point p of a such
that p e U

Since # a  = d  by assumption we see by Lemmas 2.1 and  2.2

H d _1(X , X  —  p) H d _ , ( 4 ,  \o- )

Fld _„._, (link A(a)) = Fi_ 1 (101)= K  O.

(ii) ( i ) :  Assume th a t A  is  n o t p u r e .  Take a  facet a  in  A  such  that # a
< d. Let Y = IA\o- I and  U = X — Y  Then U is an open set in X  and for any
point p  in  U , we see by Lemmas 2.1 and 2.2

Hd_ X  — p) H d _1(X , Y) Hd _1(A , A\o- )

(link (o)) = "d -#a-1({0})—

because d — #a — 1 > O. S o  the condition (ii) does not hold. Q.E.D.

Since the condition (ii) of Theorem 5.1 is independent of a triangulation of X,
we see that the pureness is a  topological condition.

Before examining the topological property of 2-pure complexes, we state the
following lemma which is a  generalization of [1] Theorem 2.1 (a).

Lemma 5.2. L et A  be a pure complex of dimension (d — 1) with vertex  set
V .  Then f o r any positive integer k  the following conditions are equivalent.

(i) A  is k-pure.

(ii) For any  (d — 2) face î  in A , link A(r) consists of  at least k points.

Proof. (ii): L e t  T  b e  a n  a rb itra ry  (d — 2 )  f a c e  i n  A  a n d  W
= tx e VI {x} e link A(r)} . Then by Lemma 2.3

link Av  , ( T )  =  link A (T)v  _ w

and we see that T  is  a  facet in  A v _ w . By the condition (i) we see # W> k.
(ii) ( i ) :  Take a minimal subset W of V such that either A v _ w  is  no t a pure

complex or dim A v _ w  < d — 1 and let T  be a  facet in A v _ w  such that #t < d. If
Xe W AV ___ W  x ) is a  pure complex of dimension (d — 1), so  TU N  is a  facet in
A v _ ( w _{x}) . So we see T  is a (d — 2) face in A, and by the assumption link A(T) has
at least k  p o in ts . O n  th e  other hand we see by Lemma 2.3

link A(T)v _ w = link w ( t )  =

Therefore # W> k  and we see that A  is k-pure. Q.E.D.

Now we state the following
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Theorem 5.3. L e t A  b e  a pure com plex  of dimension (d —  1) and X
=1 /1 1 . Then the following conditions are equivalent.

(i) A  is 2-pure.
(ii) I f  Y = {p e (X  ,  X  -  p) = 0}  then dim Y < d — 3.

P ro o f . Let A , be a subset (not necessarily a subcomplex) of A  such that

A l  = (link A (T)) = 01.

Then by Lemmas 2.1 and 2.2

Y = U  (interior points of T).
TEA'

(1) (ii): I f  T  is a  (d — 2 )  fa c e  in  A  th e n  b y  L e m m a  5 .2  w e  s e e
dim K  A ( T ) )  >  1. On the other hand if T  is a facet in A  then 171_ ,(link pr))
= K .  So we see if TeA l  then dim T < d — 3. Therefore dim Y< d — 3.

(ii) ( i ) :  Let T  b e  a face in A  such that dim  t  =  d — 2. T h e n  f r o m  the
assumption and the fact stated above, T A 1 . So o (link A (T )) 0  0 and we see that
link A (T) consist of at least 2  points. By Lemma 5.2 we see (i). Q .  E .  D.

Since  the condition (ii) o f th e  above  theorem  is independen t of the
triangulation of X , we see the following

Corollary 5.4. 2-pure is a topological property.

A t th is  point one m ay  be  tem p ted  to  be lieve  tha t the k-pureness i s  a
topological property for any positive integer k. But if k >  3 then k-pure is not a
topological property, see Example 7.7.

6. A  characterization of 2-Buchsbaum complexes with Tor

The next topic of th is paper is the correspondence between 2-Buchsbaum
property of a simplicial complex with vertex set V = Ix ,, ...,x „}  and the structures
of T or'. (A /m ,, K [A ]) where A = k [x lx  E V ], m, = A and 1 is an integer
greater than 1.

First we recall the 2-Cohen-Macaulay case.

Theorem 6.1 (Baclawski [1] ). Let A  b e  a  Cohen-Macaulay com plex  of
dimension (d — 1) with vertex set V= {x 1 ,...,x„}. Then A  is 2-Cohen-Macaulay if
and only  if Tor,/_,(K, K [A ])=T or_,(K , K [A ])(1,...,1)•

Next we state the following

Lemma 6.2. Let A be a simplicial complex with vertex set V= {x 1 ,...,x„}, A
-= K Ex1 ,..., x i  and m ,= (x i

i , . . . ,4 )A  w here 1 is a positive integer. Then

TorNA/rn i , KEADŒ E x trA lA  m 1 ,
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f o r any ŒEZ n an d  any iEZ.

Proof (see the proof of [7] Theorem  5.2). Let K. = K .( .4 ,...,4 ; A ) be the
K oszul com plex with respect to T h e n  t h e r e  a re  isomorphisms of
modules

K, -t.Ld Hom A (K n _ i , A)(( — — 1))

f o r  a n y  i E  Z  a n d  these isom orphism s are  com patib le  w ith  boundary  and
coboundary m aps. S ince K . is  an A-free resolution of A lm , we see

TorNA/m,, KEADŒ = -I,(K. K E A R ,
A

Hn -
i (Hom A (K., A) ®

Hn -
i (Hom A (K ., K[4])) a - ( 1 . . . 3 ) =ExtnA lA lm i ,

for any a e Zn. Q. E. D.

By the above lemma and our former results we see the following Theorems
(see [9]).

Theorem 6 .3 .  L e t  A  b e  a  sim plicial com plex w ith  vertex set V
= {x 1 ,...,x n }, A  — K[x i ,...,x n ] a n d  m1 = (x l

i ,...,x n
1 ). T h en  for any a

= (a i ,...,a n )eZn

TorNA/m,, K[A ]) 0,

FrE
-

i
-

1 (link 4 (supp a — E)E ){

where E = {x i la;  = 1 } .

Theorem 6 .4 .  L et A be a simplicial complex of dimension (d — 1) with vertex
s e t  V= { x 1 ,...,x n }, A  = K [x 1 ,...,x n ]  an d  m1 = x i n )  A .  I f  1> 2  then the
following conditions are equivalent.

(i) A is Buchsbaum.
(ii) For any i > n — d, TorNA lm,, K[A ]) Œ =  0  if aft {0, l } .

Next we state the following

Lemma 6 .5 .  Let A  be a simplicial complex with vertex  set V= {x 1 ,...,x n }, A
= K [x i ,...,x n ] a n d  m1 = (x 1

1 ,..., 4 ) .  I f  1 2  a n d  f o r  a n y  i > n — d,
TorNA/m,, K [4]) 0, = 0  whenever a0 fo, On then f o r any facet a in A , dim a >  d

o
i f  a e {0,...,1}n and supp a — Ee A
otherwise

P roo f. Let a be an  arbitrary facet in A and a = (a i ,..., an ) be an element of
Zn such that
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1 if xi ca

Then by Theorem 6.3 we see

Tot-14 (A 1 mi , K[A]),,^=i 171# E
-

j
-

1 (link 4 (a)E ) = ({0} )

for any i  where E = V — a. O n the  other hand we know by assumption

Tor(A/m /, K[A ]),, = 0 if  i > n — d

since a Et {0, /}n. S o

_) 0 if i > n — d

and we see #E < n —  d. This means dim a > d — 1.

Now we state the following

Q.E.D.

Theorem 6 .6 .  Let A  be a Buchsbaum complex of dimension (d — 1) with vertex
s e t  V= { x ,,...,x n } , A  = K [.x, , ,  x n ]  and  m1 = (x 1,,...,x n

1) A .  I f  1> 2  then the
following conditions are equivalent.

(i) A  is 2-Buchsbaum.
(ii) I f  ocit {0, /}" u {1, ..., On then Tor 4_d (Alm i , K[A ]),( = O.

P ro o f . Let

(6.1) • •• F2 F lF oK  [A ] —> 0

be the (Zn-graded) minimal free resolution of K [A ] as an A -m odule and x  an
arbitrary element in  V .  F or a  Zn-graded A-module M, let us call M O E

aeZn,suppotOx

as the degree zero part of M  with respect x. Then K [ \ x ]  is  the degree zero
part of K [A ] with respect to  x.

So considering the degree zero part of the exact sequence (6.1) with respect to
X we get the following exact sequence.

(6.2) •• • G 2 G, Go — 4 K[A \x] — 4 0

Since G. is  the degree zero part of F i w ith respect to x, it is a free module over B
= K [y ly e V , y  x i  So if we pu t ni = m i nB  then

Tor(B/n,, K [A \x ])= H i (Bln, G.).

O n the other hand we see from the minimality of (6.1), (F) 2  = 0 if a O  for any
i. So B ln,O G . is the degree zero part of A/m, F. with respect to x and we see

A

th a t  Torr(B/n,, K [A \x ])  i s  th e  degree z e ro  p a r t  o f  TorNA/m t , K [A ]) with
respect to  x.

(i) Assume that (ii) does not hold and a  be an element of Zn — 10, On
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— {1, , /}" such that Tor n/1_ d (A 1 m,, K[A])„ 0 O. S in c e  a it 11, ..., /1", we can take
x e V such that x supp a by Theorem 6.3. Let )8 be the element in Z' 1 such that
supp fl = supp a then we see by the above argument

Tor l:_ d (B/n,, K[A\x]) f l = d(A m i , K[A ]) Œ 0 0

Since dim B = n — 1 and dim(A \x) = d — 1 we see from Theorem 6.4 and the
assumption that fie 10, lln — 1. This means a e 10, l }.  Contradiction.

(ii) ( i ) :  By the above argument and the assumption, we see

Tor d (B/ni , K[A\x]) f l = 0 if flit {0, 1}'

for any x e V Moreover since A  is Buchsbaum we see for any x e V

Tor(B/n / , K [A \x]) 1, = 0 if 13 {0 , /} '  and i > n — d

by Theorem 6.4. Thanks to Theorem 6.4 and Lemma 6.5, w e see A\x is  a
Buchsbaum complex of dimension (d — 1). Q. E. D.

By the same way as above, we can prove the following theorem which is a
slight generalization of Theorem 6.1.

Theorem 6.7. Let A  be a Cohen-Macaulay complex of dimension (d — 1) with
v ertex  set V = { x 1 ,...,x n } , A  = K[x l ,..., x i  and m1 = (x l, , . . . ,x )A  where 1 is  a
positiv e integer. T hen the following conditions are equivalent.

(i) A  is 2-Cohen-Macaulay.
(ii) I f  aft {1,..., /}" then Tor,l_ d (A/m,, KEADŒ = O.

7. Higher Buchsbaumness and pureness of skeletons

The final topic of this paper is a  consideration of k-Buchsbaumness and k-
pureness of skeletons and skeleton-like subcomplexes. First we recall the Cohen-
Macaulay case.

Theorem 7.1 (Hibi [6]). L et A  be a Cohen-Macaulay complex, a be
f aces of  A  such that

(i) ai uo-
i O4 if  i j .

(ii) I f  A  = IT e A1V i  t  a }  t h e n  dim A  < dim A.

T hen i f  link lad is 2-Cohen-M acaulay  f o r an y  j ,  A ,  is  2-Cohen-Macaulay of
dimension (dim A — 1).

Especially by taking a o-, to be all facets of A , we see that the (dim A — 1)-
skeleton of a Cohen-Macaulay complex A  is 2-Cohen-Macaulay.

The purpose of this section is to prove the similar results for Buchsbaumness
and pureness. First we note the following

Lemma 7.2. L et A  be a pure complex and a„,...,a, be faces of  A  satisfying
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the conditions (i) and (ii) of  Theorem 7.1. Then A , is a pure complex of dimension
(dim A — 1).

P ro o f .  Let T  be an  arbitrary facet of A  and a  a  facet of A  such that a  D T
Since A  is  pure  and dim A , < dim A , w e can find ai su c h  th a t ai g  a. B y the
definition o f A ,, w e can find X  E  a i such  that x  T. T h e n  a  — {x} T  a n d  a
—{x} a i . O n the  other hand, by  the condition (i) of Theorem 7.1 we see a
—{x} ai  for any j  i. So we see a  — {x} e A , .  Since T is a facet of A , we see
a — {x} = T  and d im  =  dim A — 1. Q. E. D.

Now we state the pure version of Theorem 7.1.

Theorem 7.3. L et A  be a pure complex of dimension (d — 1) with vertex  set V
and o- 1 ,...,a, be faces of  A  satisfying the conditions (i) and (ii) o f  Theorem 7.1. If
link A (a i)  is  2-pure for any  i, then A , is a 2-pure complex of dimension (d — 2).

P ro o f . Let x be an  arbitrary element of V and T  a  facet of A i \ x .  Assume
d im  <  d — 2. Then by Lemma 7.2 T U {X }  is a  facet in A 1 a n d  we can take y eV
such that T U {X} U {y} is a  facet of A .  Since T is a facet of A ,\x we see T U {y }  A ,
and we can take ai su ch  th a t T u {y} P_ ai .

Let F = lin k  la d . T h e n  F is 2-pure by assumption and (T U {y} —  a i is not a
facet of F\x since ai x .  Therefore we can take ze V such that zOTu {y} u {x} and
(T u {y} U IzI) —  1 i s  a  facet of r .

Now since T a i  we see y e ai s o  T U {z} a i . O n  th e  o ther hand  by  the
assumption (i) of Theorem 7.1 we see T U {Z} U {y} a i  for any j  i. Therefore
T U {Z} e A , .  This contradicts to the fact T  U  {Z }  X  and T  is  a  facet of A, \x .

Q. E. D.

Unfortunately, for the  Buchsbaum case we can only prove the following

Theorem 7.4. L et A  be  a  Buchsbaum complex and a 1 ,...,o -  b e  f aces o f  A
satisfy ing the conditions ( i )  an d  (ii) of  T heorem  7.1. I f  link ,,(ai) is 2-Cohen-
Macaulay f o r any  i, then A , is a  2-Buchsbaum complex of dimension (dim A — 1).

P ro o f . Let T be a  non-empty face of A , and changing the suffix if necessary,
we assume a iU T E A  if and  only if i < s. Then

link 1 (t) = 10- e A IOW T e A  0 - n  =

■•■

= to - eAlaUteA, 0 -n t = 0-ut i

= {aeAlauTeA, a n t  = 4), a  T1(1 i s ) }

where T i =  a i  — t f o r  1 < i < s. So if we pu t F = link A (T) then

link 1 (t) = {a e Fla T1(1 i s)}.

O n the  other hand

link ,-(Ti) = link A (T U Ti) = link 
l i n k A ( a . i ) ( r a i )



390 Mitsuhiro Miyazaki

is 2-Cohen-Macaulay for any i s .  So by Theorem 7.1 we see that link AJT) is a
2-Cohen-Macaulay complex. Since T is an arbitrary non-empty face of Al  we see
by Lemmas 4.2 and 7.2 that A , is a  2-Buchsbaum complex of dimension (dim A

1). Q. E. D.

In  [5] Hibi examined the following exact sequence of A-modules

(7.1) 0 --÷ (j) K [star A(0 " MOO K [A] k[A 1 ] 0
i=1

where A  = K[xix e V ], V  is the vertex set of A, a i th e  element of 10, — 11" such
that supp a i = o-

i a n d  n  = #  V  Using this exact sequence and Theorems 6.6 and
6.7, we can prove Theorem 7.4 in  another way.

Second proof  o f  Theorem 7.4. L et dim A  = d — 1. Taking the long exact
sequence of Tor of (7.1) we get

Tor); (A 1 m2 , K [A ]) Tori(A/m 2 , K[A  1 ])

—+ Tori_ i (A/m2 , K [star (a  i)]) (Œ)
i=

for any j  where m2  = (x 2 ix e V ) A . If j  > n — (d — 1) Tori_ l  (A I m2 , K [star (o - i )])
= 0 for any i and if moreover aft {0, 2}" then Torl(A/m 2 , K [A ]) Œ = 0 by Theorem
6.4. S o  Tori(A/m 2 , K[A  i ] ) Œ =  0  i f  of,t {0, 2}" a n d  j  >  n — (d — 1). S o  b y
Lemma 7.2 and Theorem 6.4, we see A is a  Buchsbaum complex of dimension (d
—  2). O n the other hand since K[star A (a i

)] K  [link A (a i )] Ex lx Gad we see by
Theorem 6.7 and by  the assumption

(Tor_ d (A /m2 , K [star (o - i )])(a i )),, = 0 if a  {1, 2}".

S o  w e  k n o w  th a t  Torl,!_d + 1  (A lm 2 , K[A  1 ]) OE = 0  if a  {0, 2}'1 u {1, 2}" since
Tor;!_ d + ,(A/m 2 , K [A ]) Œ = 0 if aft {0, 2}". By Theorem 6.6 we see that A , is 2-
Buchsbaum. Q .  E .  D.

Now we state a n  example which shows tha t the statement of Theorem 7.1
replaced "Cohen-Macaulay" by "Buchsbaum" is wrong.

Example 7.5. Let

  

Y

A i = 42 =

    

(dim A i  =  1) and A  = A ,* A 2 . Then A  is a Cohen-Macaulay complex. If we put
a l  =  {x, ,  t  =  1 then link (a 1 ) = A , is a 2-Buchsbaum complex and A\o -1 = A ,*
(2 points x  a n d  y ) .  So link A v i i (x) = A 1 i s  n o t  2-Cohen-Macaulay and we see
A \a . ,  is not 2-Buchsbaum by Lemma 4.2.
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Finally we note the following corollary of Theorems 7.1, 7.4 and 7.3.

C o ro lla ry  7.6. L e t  A  b e  a k -Cohen-M acaulay  (k -B uchsbaum  or k -pure)
complex of dimension (d — 1) . If  A ' is the (d — 1 — 1)-skeleton of A  and 1 < d then
A ' is (k + 1)-Cohen-Macaulay ((k + 0-Buchsbaum or (k + 1)-pure resp.).

P ro o f .  We may assume 1 = 1. L e t  V be the vertex set of A  and W a subset
o f V su c h  th a t  0  <  W <  k  + 1. If  we take x e W and put W ' = W —  {x}, then
Ay _ i s  Cohen-Macaulay (Buchsbaum or pure resp.) of dim ension (d — 1) by
assum ption. O n  the  other hand since

(S ) v _w , = {o- eAldimo - <  d —1, an  W ' = 0}

=  (the (d — 2)-skeleton of

we see by Theorem 7.1 (7.4 or 7.3 resp.) tha t (S ) v _w ,  is 2-Cohen-Macaulay (2-
Buchsbaum or 2-pure resp.) of dimension (d — 2). So lA f ,v - -  =  (S )v -w  is a
Cohen-Macaulay (Buchsbaum or pure resp.) complex of dimension (d — 2).

Q. E. D.

By the  above corollary we can make a k-Cohen-Macaulay complex whose
barycentric subdivision is  no t 3-pure for any k  > 1.

E xam ple 7.7 (see  [1 ] ) .  Let F be a Cohen-Macaulay complex (e.g. a simplex)
of dimension (k + 1) and A the 2-skeleton of F  Then by Corollary 7.6 we see A  is
k-Cohen-Macaulay. O n  t h e  o th e r  h a n d , if  {x, y , z }  i s  a  face t o f  A  then

y}, {x, y , z}}  is a  face t of sd(A) v i  _ { x ,y ) w h e re  s d (A )  is  the barycentric
subdivision of A  and V, is the vertex set of sd(A). So sd(4) is not 3-pure and we
see that k-Cohen-M acaulayness, k-Buchsbaumness a n d  k -p u re n e ss  a re  not
topological conditions if k  > 3.
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