J. Math. Kyoto Univ. JMKYAZ)
30-3 (1990) 367-392

On 2-Buchsbaum complexes

By

Mitsuhiro MIYAZAKI

0. Introduction

Let K be a field, fixed throughout this paper. By using the Stanley-Reisner
ring over K the concept of commutative algebra such as Cohen-Macaulay or
Buchsbaum are immediately transferred to the concept of simplicial
complexes. Some of them such as Cohen-Macaulay or Buchsbaum are well
behaving concept and it is known for example Cohen-Macaulayness and
Buchsbaumness are topological properties. (i.e. if 4, and 4, are simplicial
complexes whose geometric realizations are homeomorphic, then 4, is Cohen-
Macaulay (or Buchsbaum) if and only if 4, is Cohen-Macaulay (or Buchsbaum
resp.)) and characterized by the reduced oriented homology groups of 4. (See
[10], [11] and [12].) And by the result of Reisner [11] (see Theorem 3.2 of this
paper) we know that if a simplicial complex 4 is Cohen-Macaulay of dim4 > 1
then 4 is connected. So one can consider the Cohen-Macaulay property as a
specialization of the connectedness. Baclawski [1] called the Cohen-
Macaulayness as Cohen-Macaulay connectivity and defined the k-Cohen-
Macaulayness by the similar way as the k-connectivity. (See §1 for definition.)
Then the 2-Cohen-Macaulayness is a well behaving concept and the following facts
are known.

(i) 2-Cohen-Macaulayness is a topological property. ([17])

(ii) If 4 is a Cohen-Macaulay complex of dimension r then (r — 1)-skeleton of
A4 is 2-Cohen-Macaulay. ([6])

It is natural to ask if the similar results are valid for Buchsbaumness. Since a
simplicial complex 4 is Buchsbaum if and only if 4 is pure and every non-trivial
link of 4 is Cohen-Macaulay (see Theorem 4.1 of this paper), it is also natural to
ask if the results similar to (i) and (ii) above are valid for pureness. The purpose
of this paper is to give affirmative answers to these questions. i.e.

(i) 2-Buchsbaumness (or 2-pureness) is a topological property. (See Theorems
4.3 and 5.3.)

(i) If 4 is a Buchsbaum (or pure) complex of dimension r then the (r — 1)-
skeleton of 4 is 2-Buchsbaum (or 2-pure resp.). (See Theorems 7.4 and 7.3.)

The author would like to express his hearty thanks to his advisor Jun-ichi
Nishimura for intimate and useful conversations.
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1. Preliminaries

We denote the number of elements of a finite set X by # X and for two sets X
and Y we denote by X — Y the set {xe X |x¢Y}.

We make a convention in this paper that all the simplicial complexes are
finite. A simplicial complex 4 with vertex set Vis a set of subsets of V' such that
(i) pe4 and (ii) if €4 and © = o then te4. Note that we do not require that
{x}e4 for any xe V. An element of 4 is called a face of 4 and a maximal (with
respect to the inclusion relation) face is called a facet of 4. For 4 and a face ¢ of
A, we define the dimension of ¢ written dimo by dimo = #0 — | and dimension
of 4 written dim4 by dim4 = maxdimg. In particular dim{¢} = — 1. If all
the facets of 4 has the same dimension we say 4 is pure.

Now we define two subcomplexes star (o) and link,(s) of 4 decided by o by

stary(0) = {red|tUoe d}
link,(0) = {ted|tUc €4, TnNo = ¢}.

Note dimstar,(o) = max dimt and dimlink,(o) = dimstar,(c) — #o.

t:facetof 4,120
Moreover if 4 is pure then dimstar,(o) = dim4 and dimlink,(o) = dim4 — #o.
We also define a subcomplex 4\o of 4 for ced — {¢} by

A\o = {ted|t 27}.

Let Wbe a subset of the vertex set Vof 4. We define a subcomplex 4, of 4
by

Ay = {oed|lo = W}.

Note that if xeV then 4, _, = 4\x.
Let 4, and 4, be simplicial complexes with vertex set V| and W,

respectively. If ¥, nV, = ¢ then we define a complex 4, * 4, with vertex set UV,
by

A,x4, ={oUtloed,, ted,}.

One immediately verifies that dim(4, * 4,) = dim4, + dim4, + 1 and a facet of
A4,%4, is a union of a facet of 4, and a facet of 4,.

Next we recall some general facts about commutative algebras. General
references are [8], [16] and [4]. Let K be a field and we fix the field K
throughout this paper. Let A = K[x,,...,x,] be a polynomial ring over K.
Then A is a Z"-graded ring in the natural way and if M and N are finitely
generated A-modules then we can define the Z"-graded structure to Hom ,(M, N)
by [Hom 4(M, N)], = { feHom ,(M, N)|f(My) = N,,, for any feZ"} and to
M@ N by (M N),=(The submodule of M @ N generated by the elements
a@‘b such thatAaeM,,, beN, and f+y=a). “So we can also define the Z."-
graded structure of Exti, (M, N) and Tor#(M, N) for any i. Moreover if I is a
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homogeneous ideal (in this grading) of A4 then we can also define the Z"-graded
structure to the local cohomology modules Hi(M). See [2] and [3] for the
details.

We define the dimension (Krull dimension) of M written by dim M to be the
maximal length of prime ideal chains in the ring A/ann(M) ie. dimM
= max{d|There exist prime ideals P,,...,P;, in A such that
ann(M) € Py & - & P,}. And the depth of M written by depth M is defined by
the following three identical numbers

(1) The length of a maximal M-regular sequence in m.
(ii) min {i|Ext’(K, M) # 0}
(iii) min {i|H},(M) # 0}

where m = (x,,...,x,)A. (All maximal M-regular sequences in m are known to
have the same length.)

It is known that depth M < dim M for arbitrary M # 0 and we say M is a
Cohen-Macaulay module if depthM =dim M. And we say M is a Buchsbaum
module if the canonical map

Ext!,(K, M) — H\ (M)

is surjective for any i < dim M. It is clear from the definition that every Cohen-
Macaulay module is Buchsbaum. A residue class ring A/I, where I is a
homogeneous ideal, is called a Cohen-Macaulay (or Buchsbaum) ring if A/I is a
Cohen-Macaulay (or Buchsbaum resp.) A-module. Moreover we say A/ is a
Gorenstein ring if

K ifi=dimA/l

Ext,(K, A/I) =
alK. A7) {0 if i<dimA/I

So if A/I is a Gorenstein ring then A/l is Cohen-Macaulay.

Next we define the shift of grading. For aeZ" and a Z"-graded module M,
we define the module M(x) with shifted grade by [M(x)]; = M,,, for any
peZ". For example the element of A(— 1,..., — 1) corresponding to 1€ A has
degree (1,...,1). So if we write the fact Vj;a; < B; by a <f or f>a for «
= (0tg,...2 %), B=(By,....B)EZL" We see

K if «>(1,....1)

A(—1,.... — 1)a={ ‘
0 ifaR(l,...,1).

Now we define the Stanley-Reisner ring (or face ring) K[4] of 4(over K) for a
simplicial complex 4 with vertex set V= {x,,...,x,}. Take a polynomial ring
over K whose indeterminates are in one to one correspondence with the elements
of V. We denote this polynomial ring by K[x,,...,x,](= A) for simplicity. Then

K[4] = A/l,

where I, is the ideal generated by {x; ---x;[1<j, < <j,<n, {x;.....x; }¢4}.
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It is easily verified that K[4] is a K-free module (without assuming that K is a
field) and the set of all the monomials whose support is in 4 is K-free basis of
K[4]. (The support of a monomial M is {xe V|M is divisible by x}.) We can
also verify that
IA = ﬂ Pa
o:facetof A

where P, = (x;|x;¢0), is the primary decomposition of I,. So we see [, is a
radical ideal of 4 and K[4] is a reduced ring. Moreover we see

dim K[4] = cohtI,

= max cohtP,
o:facetof A

max #o
o:facetof A

=dim4 + 1

where cohtl = dim A/I for an ideal I of A.

If K[4] is a Cohen-Macaulay (Buchsbaum or Gorenstein) ring we say that 4
is a Cohen-Macaulay (Buchsbaum or Gorenstein resp.) complex (over K). Since
it is known that all the minimal prime ideals of ann(M) has the same coheight for
a Buchsbaum A4-module M, we see by the above argument that if 4 is Buchsbaum
then 4 is pure.

It is easy to prove that if {x}e4 then

K[4], = K[link 4(x)][x, x~']
and

link 4(t U o) = link j;y ;y(0) if TUGEA and tno = @.
So

K [link 4(0)][x, x " !|xec] = K[A],!}.,"

for any ced. Since it is known that if M is a Buchsbaum A4-module then M, is
Cohen-Macaulay for any xeV, we see if 4 is Buchsbaum then link 4(¢) is Cohen-
Macaulay for any g€ 4 such that ¢ # ¢. Since

K [star 4(6)] = K[link 4(0)][x|x€ o]

we can also see that every non-trivial star of a Buchsbaum complex is Cohen-
Macaulay.

For a positive integer k, we define the k-Cohen-Macaulay (k-Buchsbaum and
k-pure) complexes as follows. A simplicial complex 4 with vertex set V is k-
Cohen-Macaulay (k-Buchsbaum or k-pure)(over K) of dimension r if for any
subset W of V (including ¢) such that #W<k, 4,_, is Cohen-Macaulay
(Buchsbaum or pure resp.) of dimension r and 4 is k-Cohen-Macaulay (k-
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Buchsbaum or k-pure) if 4 is k-Cohen-Macaulay (k-Buchsbaum or k-pure resp.) of
some dimension r.

Now we recall the notation of oriented and singular (co)chain complexes and
(co)homology groups. If 4 is a simplicial complex we denote by C.(4)(or C'(4))
the augmented oriented chain (or cochain resp.) complex with coefficients in K and
by H.(4)(or H (4)) the homology (or cohomology resp.) groups of C.(4)(or C (4)
resp.). If 4, is a subcomplex of 4 then we denote the relative oriented chain (or
cochain) complex by C.(4, 4,)(or C’'(4, 4,) resp.) and its homology (or
cohomology resp.) groups by H.(4, 4,)(or H'(4, 4,) resp.). If X is a topological
space then we denote by C.(X) (or C'(X)) the augmented singular chain (or
cochain resp.) complex with coefficients in K and by H.(X)(or H'(X)) the
homology (or cohomology resp.) groups of C.(X)(or C'(X) resp.). If Yis a
subspace of X then we denote the relative singular chain (or cochain) complex by
C.(X, Y)(or C'(X, Y) resp.) and its homology (or cohomology resp.) groups by
H.(X, Y)(or H'(X, Y) resp.). See, for example, [13] for the details.

For a chain (or cochain) complex D. (or D' resp.) we define the complex
D.[t](or D'[t] resp.) with shift of dimension by (D.[t]); = D;,,(or(D[t])} = D'**
resp.).

Finally we make a convention. When considering a simplicial complex 4
with vertex set V we define the support of aeZ* to be a subset of V as
follows. Take and fix a bijective map of sets ¢: V- {l,....#V} and if «
= (oty,...,0ny) then suppa = {xeV]a,, #0}. So every time we consider a
simplicial complex, we assume that a map ¢ as above is given and
fixed. Especially if we write that 4 is a simplicial complex with vertex set V
= {xy,...,x,} then we assume ¢ is the map such that ¢(x;) =i for any i = 1,...,n,
so suppa = {x;|a; # 0} for aeZ".

2. Key lemmas
In this section we state some useful lemmas in the following sections.

Lemma 2.1. Let A be a simplicial complex with vertex set V
= {X1s.... %}, [Xi,s....,x; ] an oriented face in 4 and o = {x;,...,x; }. Then there
is an isomorphism of chain complexes

@ MWl € (link 4(0))[— 5] — C.(4, 4\o).
Moreover if 1 <t <s then we have the following commutative diagram.

C.(link ,(1))[ — 1] — C.(link 41), link (7)\(c — 7)) [ — ¢]

1w)link_‘(r),[x“.-v-vxis_,])“ 1

@ IXis - gy xis] C(lmk A(O')) [_ S]

lw.l.lxilw»,x;s]

C.(4, 4\1) — C.(4, 4\0)
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where T = {x;

fs~t+17°

..,X; } and the horizontal maps are the canonical ones.

Proof. Since C,(4, 4\o) is the cokernel of the inclusion map C,(4\o) =
C,(4) we see C,(4, 4\0) is a free module over K with basis

(Fed|F¢A\o, #F =u} = {Fed|F 2 0, # F = u}

for any u. By associating F with F — ¢ = G we may assume that C,(4, 4\0) is a

free module with basis

{Ged|Gno =@, GUoed, #G =u — s}
= {Gelink 40)|#G = u — s}.

So we can construct an isomorphism of K-free modules as follows.

g A €, (link 40)) — C,(4, 4\0)

[le" Xj - s]'_") [x_“9 s X0 x,-,,...,x;s]modCu(A\a)

Next we have to show that ¢ 4 v-+%sl s a chain map. Take
[xj,....X;,_ € C,_,(link 4(0)). Then

0,0, Alxipe xis}([xj,a--o»xju_s])

- a ([le’ ]u s? xil"*"xis] mOd Cll(A\a))

=2i-1(— )' JETRERE VRS

3 Xjugr Xipreeor Xi ] mod C,_,(4\0)

u-s

+Zf-1<— VT DG X X Ky X ] mOd €y (4N 0)
_Z - ’ l[xll’ le""’xju—s’ [T > X ]mOdCu I(A\U
because {x;,,....X;,_., X;,...,X;.....X; } €4\ ¢ where * means the omission of the

factor. On the other hand

(pfﬂxl“ .... XIS]au s([x“’ j,,_s])
= @l "s‘().}‘_f(— D e Ry X5, )

= ;‘=:( l 1[x.ll’ x

So we see @ Alxiv-

ireees Xjuo g Xigae x]modCu 14\ o).

sl is a chain map and we get the first conclusion.

Next consider the following map

Y Ao is-conenXish C (link (1), link 4(1)\ (6 — 1))[— t] — C.(4, 4\0)

where
Yroem v m (DL xg - Jmod G, (link 4(0)\ (0 — 1))
= X e X s Xiy s eeens x,-s]modC,,(A\a).
Then we can show that y #7is-c ¥l js a chain map by the same way as

above. Also we can easily see the commutativity of the following diagram
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C.(link AT [— t] — C.(link 4(7), link 4(z)\ (6 — 7))[— t]
l‘pf'lx-‘s-u 1 Xigl l.;,;'»ﬂ»lx-‘s—ux ----- xigl
C.(4, 4\1) — C.(4, 4\0)

where the horizontal maps are the canonical ones.
On the other hand the commutativity of the following diagram

C.(link 4(1), link 4(1)\(6 — 7))[— ]

(p?ink AT), [xigy oy Xig ]

e ik (o) o]

C.(4, 4\ o)
can be easily verified. So we see the following diagram

C.(link (t))[ — t] — C.(link 4(1), link (t)\ (6 — 7))[ — 1]

(wlinkd(t).[xil ..... x.'s_,l)— 1
(P.J’[x“s—wrl """ Xigl lﬁ:"o'[xis-l+l"""‘is] C(link A(O_))[_ S]
wa.[x,-l ..... xigl
C.(4, 4\7) — C.(4, 4\ 0)
is commutative and we get the second conclusion. Q.E.D.

In later sections we use not only the statement of the following lemma but
also the notation in the proof of it.

Lemma 2.2. Let 4 be a simplicial complex with vertex set Vand X = |4|. If
pe X is an interior point of 1€ A then Y =|4\1| is a strong deformation retract of
X —p.

Proof. We may consider V= {x,,....x,} as a set of affinely independent
points of n-dimensional euclidean space. Then X is a subset of the convex hull of
{x,,...,x,} and any point g€ X can be written as

g =pxy+ o+ pyX,, Where puy > 0,0, >0,y + - + p, = 1

uniquely.
Let p=A;x, + --- + 4,x,. Changing the suffix if necessary, we may assume
that 7 = {x;,....x,} and 4, >0,...,4,>0,4,,, =--=14,=0. Now assume that

a point ¢ = y;x, + --- + p,x, in X — p is given. Since p # g, there is a number i
such that u; < 4;. So if we put

. Hi
= 1 —_ —_
e) 25 { ) }
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then &(q) is a continuous map from X —p to R and 0 <e(g) < 1. Therefore we
can define a continuous map r: (X — p) - aff{x,,...,x,} by

1
r(gq) = @(q — (1 — &(q@)p).
r(q)
q
D
Figure 1

If we write r(q) = v{x; + -+ + v,X, then

1

(2.1) vj=Eq—)uj20

for any j>t. On the other hand if j <t then

1 . :
-l 21
1 I >
>— (-t
>e(q)("' 7,0
=0.

So r(g)econv{x,...,x,}. Moreover if u; =0 then v; =0 by (2.1) or (2.2). So we
see {x;|v; # 0} < {x;|u; # 0} and {x;|v;#0}ed. And if = min {&} then

vj—g()<uj jlj>—0

so {x;|v;#0} 27 i.e. {x;|v;# 0}ed\tr. Therefore we may assume r is a map
from X —p to Y.
Now let F(qg,a)=(1 —a)q+ar(q) for qeX —p and ael, where I
={beR|0 < b < 1}. Then by the argument above
{x;|(1 —a)u; + av; # 0} < {x;|u; # 0} e 4.
On the other hand if u; < 4; then

1
Vj=#j+<@—1>(#i—ij)<ﬂf
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SO
(1 —a@)u; + av; < 4;

and we see F(q, a) # p. So we may consider F as a continuous map from (X — p)
xIto X —p.
Now if geY, then {x;|u; # 0} 27 and we see &(qg) = 1. So r(q) =g and

F(q, a) = q for any qe Y and any ael.
On the other hand

F(gq, 1) =r(q)e Y for any qge X — p.

These facts mean that F is a strong deformation retraction of X — pto Y. So Yis
a strong deformation retract of X — p. Q.E.D.

The final remark of this section is the following lemma whose proof is easy.

Lemma 2.3. Let 4 be a simplicial complex with vertex set V, ¢ a face in A and
W a subset of V. If Wnao = ¢ then link ,, , (0) = link 5(a), _p.

3. A topological characterization of 2-Cohen-Macaulay complexes

In this section we give a characterization of 2-Cohen-Macaulay complexes in
terms of singular homology groups of the geometric realizations of the
complexes. Although the fact that the 2-Cohen-Macaulay property depends only
on the topological properties of the geometric realizations of the simplicial
complexes is proved by Walker [17], we state the following Theorem 3.3 and its
proof because we need them in the following section.

First we state the following important theorems as references.

Theorem 3.1 (Hochster, see [15] Theorem 11.4.1). Let A4 be a simplicial
complex — with vertex set V={xy,...,x,},4=K[x{,....,x,] and m
= (Xy,...,x,)A. Then for any aeZ",

H,.(K[4]),
N {H,._#suppa_ 1 (link 4(supp a)) if « <0 and suppaed
~ o otherwise.

Theorem 3.2 (Reisner [11], see also [15] Corollary 11.4.2). Let A be as
above. Then the following conditions are equivalent.

(i) 4 is Cohen-Macaulay.
(i) For any oed and any i < dim(link (o)), H,(link ,(o)) = 0.

Now we state the following

Theorem 3.3. Let A be a Cohen-Macaulay complex of dimension (d — 1) with
vertex set V={x,...,x,} and X =|4|. Then the following conditions are
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equivalent.
(i) 4 is 2-Cohen-Macaulay.
(ii) For any ced — { ¢}, the canonical map

Hy-1(4) — Hy- 1 (4, 4\0)
is surjective.
(iii) For any oed — {¢}, H;_,(4\o) = 0.
(iv) For any pe X, Hd_Z(X —-p=0.

Proof. (i) = (ii): We may assume ¢ = {x;,...,x,}. Put g;={x,,...,x;} for
any je{0,...,t}. Taking the long exact sequence of the homology groups of the
following short exact sequence of chain complexes

0 — C.(link 4(0;-1)\x;) — C.(link 4(0;_;))
— C.(link 4(0;_ ), link 4(0;_)\x;) — 0
we get the following exact sequence
Hd_j(link Ao 1)) — H,_j(link 4(0;_,), link 4(0;_;)\x;)
— Hy_ ;- (link 40;_,)\x))

for any je{l,....t}. On the other hand, since link 4(c;_,) is a 2-Cohen-Macaulay
complex by Lemma 2.3 and dimlink 4(0;_,) = d — j, we see

ﬁd—j—l(]ink Ao;-)\x;) =0
by Theorem 3.2. So the canonical map
2% Ha—j(link Ao;-1)) — H,_j(link 4(g;_,). link 4(0;_ )\ X))

is surjective for any je{l,...,t}.
By Lemma 2.1 we see that the canonical map

@i Hy_y(4, A\o;_y) — H,_,(4, 4\0))

is surjective for any je{l,...,t}, where H.(4, 4\0g,) = H.(4). Since the canonical
map

@:Hy_ (1) — Hy_ (4, A\o)

is the composition of all the ¢;’s, we see ¢ is surjective.

(if) = (i): Take arbitrary xeV and ted\x. If tU{x}¢4 then link 4,(7)
= link 4(1) is a Cohen-Macaulay complex of dimension d — #t — 1. So
(3.1) Hi(link 4,(1)) =0 ifi<d—#7— 1

On the other hand if o0 = tU{x}e4, then we have the following commutative
diagram of canonical maps.
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H, (2

Hy- (4, 4\7) — H,- (4, 4\0)

@ is surjective by the assumption so we see that ¢, is surjective. So by Lemma
2.1 we know that the canonical map

Y Hyy s (link 41) — H,yye—  (link 4(7), link 4(c)\x)

is surjective.
Now consider the following long exact sequence of homology groups.

.« — H(link (1)) — H;(link 4(t), link 4(t)\x)
— H,_,(link 4r)\x) — H,_(link (1)) — ---

Since link 4(t) and link (o) are Cohen-Macaulay complexes of dimension d — #1
— 1 and d — #1t — 2 respectively, we see by Theorem 3.2 and Lemma 2.1

H,(link 1)) =0
and
H;(link 4(7), link 4(t)\x) = H,_,(link ,(6)) = 0
ifi<d—#t—1. So by the surjectivity of y and Lemma 2.3 we see
(3.2) H(link 4, (1)) = H(link (0\x) =0  if i<d—#1—1.

Since 7 is an arbitrary face in 4\x, we see form (3.1) and (3.2) that
depth(K[4\x])>d by Theorem 3.1. So we see 4\x is a Cohen-Macaulay
complex of dimension (d — 1).

(i) <> (iii): For any oed — {¢} we get the following exact sequence

Hy1(4) — H,-1(4, A\o) — H, ,(4\o) — H,_,(4).
Since 4 is Cohen-Macaulay of dimension (d — 1), we see
Hy 5(4)=0

by Theorem 3.2. The equivalence of (ii) and (iii) easily follows from these facts.
(iii) <> (iv): Immediately follows from Lemma 2.2. Q.E.D.

4. Topological characterizations of 2-Buchsbaum complexes

In this section we give topological characterizations of 2-Buchsbaum
complexes and prove the fact that the 2-Buchsbaum property is a topological
property i.e. depends only on the geometric realization. First we recall the
following
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Theorem 4.1 (Schenzel [12] Theorem 3.2, see also [9] Theorem 2). Let 4 be
a simplicial complex of dimension (d— 1) and X =|4|. Then the following
conditions are equivalent.

(i) 4 is Buchsbaum.

(ii) 4 is pure and for any te 4 — { ¢}, link (1) is a Cohen-Macaulay complex.
(ili) For any peX, H(X, X —p=0ifi<d—1

Next we remark the following

Lemma 4.2. Let 4 be a pure complex of dimension (d — 1) with vertex set
V. Then for any positive integer k the following conditions are equivalent.

(1) 4 is k-Buchsbaum.
(ii) For any 1€ d — { @}, link 4(t) is a k-Cohen-Macaulay complex.

Proof. (i)=>(ii): Follows from Theorem 4.1 and Lemma 2.3.

(ii) = (i): By Theorem 4.1 and Lemma 2.3, we have only to show that 4, _, is
pure of dimension (d — 1) for any subset Wof Vsuch that # W< k. Take such W
and let t be an arbitrary facet in 4, _y. Since link 4(t) is a k-Cohen-Macaulay
complex by assumption, we see

dim(link 4(t)y _ ) = dim(link 4(1)) =d — #71 — 1.
On the other hand
dim(link 4(t)y —y) = dim(link 4, (1)) = dim({¢}) = — 1
by Lemma 2.3. So we see dimt=d — 1. Q.E.D.

Now we state the main result of this paper.

Theorem 4.3. Let A be a Buchsbaum complex of dimension (d — 1) and X
=|4|. Then the following conditions are equivalent.

(i) 4 is 2-Buchsbaum.
(ii) For any non empty face t in 4 and a face ¢ containing 1, the canonical map

H, (4, 4\1) — H,_,(4, 4\0)
is surjective.
(iii) For any non empty face © in A and a face o containing t,

H,_,(4\o, 4\17) = 0.

(iv) For any pe X there exists an open neighborhood U of p satisfying the
following condition.
If Vis an open set satisfying (a) and (b) below then V satisfies (c) also.
(a) peVc U.
(b) The homomorphisms of the homology groups

HX -V)— HJ(X —p)
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induced by the inclusion map are isomorphisms.
(c) For any qeV, H; ,(X —q¢, X —V)=0.

(v) For any pe X and any open neighborhood U of p, there exists an open set
V such that
(a) peVc U.
(b) The homomorphisms of the homology groups

Hy(X —V)— H,(X - p)
induced by the inclusion map are isomorphisms.
(c) For any qeV, Hy_,(X — ¢, X —V)=0.
(vi) For any pe X, there exists an open neighborhood V of p such that
(b) The homomorphisms of the homology groups
Hy(X = V) — Hy(X —p)

induced by the inclusion map are isomorphisms.
(c) For any qeV,H, ,(X — ¢, X —V)=0.

Proof. (i)<>(ii): Follows from Theorem 3.3, Lemmas 2.1 and 4.2.
(ii) <> (iii): From the following short exact sequence of chain complexes

0 — C.(d\ o, 4\1) — C.(4, 4\1) — C.(4, 4\o) — O
we get the following exact sequence of homology groups.

H,_ (4, 4\71) — H,_ (4, 4\0)
— H,_,(4\o, 4\1) — H,_,(4, 4\7)

Since H,_,(4, 4\1) = 0 by Theorems 3.2, 4.1 and Lemma 2.1, we see (ii) <> (iii).
Next we note that the condition (iii) is equivalent to the following condition.
(vii) For any non empty face 7 in 4 and a face ¢ containing T,

Hd_z(z, Y) = 0

where Z = |4\ 0| and Y= |4\1|.

(vii)= (iv): Let 7 be a face in 4 scuh that p is an interior point of . We put
Y=|4\t|and U = X — Y, then U is an open neighborhood of p. Assume Vis an
open subset of X satisfying the conditions (a) and (b) and g a point in V. Since
g¢Y, q is an interior point of a face o such that ¢ 2 1.

Now let Z =|4\o|. Then the inclusion maps of topological spaces induce
the following commutative diagram of chain complexes, where each horizontal line
is an exact sequence.

0— C(Y)y — C(Z) — C(Z,Y) — 0

@.1) l“" lw. l

0—>CX-V)>CX-—9q9—CX—-¢X-V)—>0
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Since Z is a deformation retract of X —q by Lemma 2.2, . induces
isomorphisms of homology groups. On the other hand there is a following
commutative diagram of chain complexes induced by the inclusion maps of
topological spaces.

C(V) S Cx—v
' [

C.(X —p)

¢" induces isomorphisms of homology groups by the assumption and so does ¢’
by Lemma 2.2. So ¢. induces isomorphisms of homology groups.

Taking the long exact sequence of the horizontal sequences of the diagram
(4.1) and using “five lemma”, we see

H,(Z, Y)~H{(X —q, X — V) for any i

Therefore we see (vii) = (iv).

(iv)=(v): Let p be an arbitrary point in X and U an arbitrary open
neighborhood of p. Take an open neighborhood U, of p satisfying the condition
of U in (iv). Let t be a face in 4 such that p is an interior point in t. We use the
same notation as in the proof of Lemma 2.2.

For any ¢ such that 0 < < 1, let

Vs ={qeX — ple(g) < o} u{p}.

Since ¢(g) = 1 — min {&} J; is an open neighborhood of p and we can take 6

1<i<t

small enough so that
,eunU,.

Take such a 6 and put V= 1;. Then we claim that V satisfies the conditions (a),
(b) and (c) of (v).
(a): Clear.
(b): We put ¢&(q) = min{s(é—q), 1} and r,(q) =
qgeX —p.

1
0@ (@ —(1 —&,(q)p) for

Figure 2
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Then X — V={qeX —ple;(q) =1} = {ge X — plr,(q) = q}. If we write

ri(@) =vix; + - +vx,

then
1 1
Vi=——u.+( 1 — A,
! 81(‘1)HJ < 31(‘1)) !
. .o Hj . Hi
for any je{l,...,n}. So if =2 = min {—} and geV then
A asisi 4
vj 1 1
— = L4 1 —
j e1(q) /lj €,(q)
é o
=— (l—el@)+1——
ol DG
=1-4.
Therefore
v
@)= 1=

ie ri(geX — V.

So we can consider r, as a continuous map from X — p to X — Vand if we
put F, (¢: @ = (1 —a)q + ar,(q) for ge X — p and ael, we can show that F, is a
strong deformation retraction of X — p to X — V by the same way as in the proof
of Lemma 2.2. Therefore X — Vis a strong deformation retract of X — p.

(c): By the choice of U,, (b) above and the fact pe V< U, we see

Hy ,(X—¢q,X—-V)=0 for any geV.

Since U is an arbitrary neighborhood of p we see (v).

(v) = (vi): Clear.

(vi)=(vii): Let U= X — Y. Take an interior point p of t and an open
neighborhood V of p satisfying the conditions (b) and (c) of (vi). By the proof of
(iv) = (v), we see that we can take an open neighborhood ¥, of p such that X — W
is a strong deformation retract of X — p and ¥; = VnU. Since ¥ is an open set,
we can take an interior point g of ¢ such that ge ¥;. Then we have the following
commutative diagram of chain complexes induced by the inclusion maps of
topological spaces, where each horizontal line is an exact sequence.

0— C((v)y — C@z) — C(Z,7) 0

l 1 l

0—-CX-V)—»CX-—q—>CX—-qgX—-V)—0

T | T

0-CX-V)>»CX-q@—CX—-qX-V)—>0
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By the same way as in the proof of (vii)=>(iv), we see
H((Z, Y)=H(X —¢ X —WV)=H(X —q, X - V) for any i.
From the condition (c) of (vi) we see (vii). Q.E.D.

Since the conditions (iv), (v) and (vi) of the above theorem and (iii) of
Theorem 4.1 are topological ones (i.e. depends only on |4]|), we see the following

Corollary 4.4. 2-Buchsbaum property is a topological property.

On the other hand, the conditions (iii) of Theorem 4.1 and (v) of Theorem 4.3
are satisfied if X =|4| is a topological manifold without boundary. So we see
that if 4 is a triangulation of a topological manifold without boundary, then 4 is
2-Buchsbaum. But in fact we can prove the following

Proposition 4.5. If A is a triangulation of a homology manifold, then 4 is 2-
Buchsbaum.

Proof. From the assumption we see the validity of (iii) of Theorem 4.1, so we
see that 4 is Buchsbaum (and therefore pure). Now let 7 be an arbitrary non
empty face in 4. Then by the assumption and Lemmas 2.1 and 2.2 we see that

K if i = dim (link 4,(o U 7))

H;(link j;n,5(0)) = H;(link 4(o U 7)) = {0 otherwise

for any gelink ,(t). So by [14] Theorem 7 (see also [15] Theorem II. 5.1) we see
that link 4(t) is a Gorenstein complex such that
Hdim(linkd(t))(link A7) #0.

Therefore link 4(t) is 2-Cohen-Macaulay by Lemma 4.6 below and we see that 4 is
2-Buchsbaum by Lemma 4.2. Q.E.D.

Lemma 4.6. Let A be a Gorenstein complex of dimension (d — 1) such that
H,_,(4) #0. Then A4 is 2-Cohen-Macaulay.

Proof. Since H,_,(4) #0, we see that

.....

where 4 = K[x|xe V] and Vis the vertex set of 4. (See [7] Theorem 5.2. See
also [9] Theorem 1.) On the other hand

Ext4(K, K[4]) = K
since K[4] is Gorenstein. So we see that
Ext4 (K, K[4]) = Ext4(K, K[4])o. .o
and from Theorem 6.1 and Lemma 6.2 below, we get the conclusion. Q.E.D.

Next we make a remark. One might think that the condition V< U in (iv) of
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Theorem 4.3 is superfluous. But we see the condition is essential by the following

Example 4.7. Let D? be a 2-dimensional disc and a a point in dD?. Let X
be a subspace of D? x D? such that

X = (8D* x dD*)u({a} x D) U(D? x {a}).

Figure 3

Then for any pe X, p has an open neighborhood U such that U is homeomorphic
to one of the following spaces.

R2, {(x, y,2)eR*[z=0 or (y =0,z > 0},
{(x,y,2)eR3}|z=0o0r (y=0,z>0) or (x =0, z<0)}.

So the conditions (iii) of Theorem 4.1 and (v) of Theorem 4.3 are satisfied. On the
other hand, let p be a point in (8D? x 0D?) — ({a} x D*) — (D? x {a}), g, q, be
different points in ({a} x D?) — (0D* x dD?) and V=X —gq,. Then {q,} = X
— V is a strong deformation retract of X —p. On the other hand by the
following exact sequence

BX-V)> HX-g—>HX-¢X-V)— H_,(X-V)
weE S€€
H(X —q¢, X —V)~H(X —q) for any i.
So
H/(X—q X —V)=K#0.

Since dim X = 2 and d = 3 in this case, we see that the condition (c) of (iv) is not
satisfied.

5. A topological characterization of 2-pure complexes

In this section we prove that the 2-pureness is a topological property. First
we state the following

Theorem 5.1. Let A be a simplicial complex of dimension (d — 1) and X
= |4|. Then the following conditions are equivalent.

(1) 4 is pure.
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(i) For any open set U in X, there exists a point p in U such that
Hy (X, X —p) #0.
Proof. (i) = (ii): Assume that an open set U in X is given. Let g be a point
in U and t a face in 4 such that g is an interior point of . Take a facet ¢ in 4
such that ¢ 2 7. Since U is an open set, we can take an interior point p of ¢ such

that peU.
Since #06 = d by assumption we see by Lemmas 2.1 and 2.2

Hyo (X, X = p)= H,_,(X,|4\c|) = H,_,(4, 4\0)
> A, 4y, (link 40)) = A_,({¢}) = K #0.

(ii) = (i): Assume that 4 is not pure. Take a facet ¢ in 4 such that #o
<d. Let Y=|4\o| and U =X — Y. Then U is an open set in X and for any
point p in U, we see by Lemmas 2.1 and 2.2

Hy (X, X —p)=H,_(X.Y)= H,_,(4, 4\0)
= Hd—#a—l(linkA(U)) = Hd—#a—l({d’}) =0
because d —#o — 1 > 0. So the condition (ii) does not hold. Q.E.D.

Since the condition (ii) of Theorem 5.1 is independent of a triangulation of X,
we see that the pureness is a topological condition.

Before examining the topological property of 2-pure complexes, we state the
following lemma which is a generalization of [1] Theorem 2.1 (a).

Lemma 5.2. Let A4 be a pure complex of dimension (d — 1) with vertex set
V. Then for any positive integer k the following conditions are equivalent.

(i) 4 is k-pure.
(i) For any (d — 2) face 1 in 4, link 4(1) consists of at least k points.

Proof. ()= (ii): Let t be an arbitrary (d —2) face in 4 and W
= {xe V|{x}€elink ,(r)}. Then by Lemma 2.3

link 4, _, (1) = link 4(1)y _y = { P}

and we see that t is a facet in 4,_y,. By the condition (i) we see # W > k.

(i) = (i): Take a minimal subset W of V such that either 4, _, is not a pure
complex or dim4, _, <d — 1 and let T be a facet in 4, _y, such that #7 <d. If
x€W, Ay _ w4y is @ pure complex of dimension (d — 1), so tU{x} is a facet in
Ay _w-(xy- So wesee Tisa(d— 2)face in 4, and by the assumption link 4(t) has
at least k points. On the other hand we see by Lemma 2.3

link 4(t)y —w = link 4, (1) = {$}.
Therefore # W> k and we see that 4 is k-pure. Q.E.D.

Now we state the following
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Theorem 5.3. Let A be a pure complex of dimension (d —1) and X
= |d4|. Then the following conditions are equivalent.

(i) 4 is 2-pure.
(i) If Y={peX|H,_ (X, X — p) =0} then dimY<d — 3.

Proof. Let A4, be a subset (not necessarily a subcomplex) of 4 such that
A, = {ted|H;_,_ (link ,(7)) = 0}.
Then by Lemmas 2.1 and 2.2

Y= |J (interior points of 7).
€l

()=@i):If = is a (d—2) face in 4 then by Lemma 5.2 we see
dimKHO(Iink A1) = 1. On the other hand if 7 is a facet in 4 then I-I_1(link A7)
=K. So we see if ted, then dimt <d — 3. Therefore dim Y<d — 3.

(i))=>(i): Let = be a face in 4 such that dimt=d — 2. Then from the
assumption and the fact stated above, t¢4,. So Flo(link (1)) # 0 and we see that
link 4(t) consist of at least 2 points. By Lemma 5.2 we see (i). Q.E.D.

Since the condition (ii) of the above theorem is independent of the
triangulation of X, we see the following

Corollary 5.4. 2-pure is a topological property.

At this point one may be tempted to believe that the k-pureness is a
topological property for any positive integer k. But if k > 3 then k-pure is not a
topological property, see Example 7.7.

6. A characterization of 2-Buchsbaum complexes with Tor

The next topic of this paper is the correspondence between 2-Buchsbaum
property of a simplicial complex with vertex set V= {x,,...,x,} and the structures
of Tor#(A/m;, K[4]) where A = k[x|xe V], m; = (x!,....,x))4 and | is an integer
greater than 1.

First we recall the 2-Cohen-Macaulay case.

Theorem 6.1 (Baclawski [1]). Ler 4 be a Cohen-Macaulay complex of
dimension (d — 1) with vertex set V= {x,,...,x,}. Then 4 is 2-Cohen-Macaulay if
and only if Tor{_ (K, K[4]) = Tor;’_4(K, K[4])q.....1)-

Next we state the following
Lemma 6.2. Let A be a simplicial complex with vertex set V= {x,...,x,}, A

= K[x;,....x,] and m; = (x\,....x}) A where | is a positive integer. Then

Tor?(A/ml’ K[A])a = EXt',‘d_i(A/mls K[A])a—(l ..... 1)
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for any a€Z" and any ieZ.

Proof (see the proof of [7] Theorem 5.2). Let K. = K.(x},...,x.; A) be the
Koszul complex with respect to x},...,x,. Then there are isomorphisms of
modules

K;~Hom ,(K,_;, A)((— L...,— 1))

for any ieZ and these isomorphisms are compatible with boundary and
coboundary maps. Since K. is an A-free resolution of 4/m,, we see

Tor{(4/m,, K[4]), = H{(K. Q:) K[4]),

.....

..... 1)

for any aeZ". Q.E.D.

By the above lemma and our former results we see the following Theorems

(see [9]).

Theorem 6.3. Let A4 be a simplicial complex with vertex set V
={xXy,s X}, A=K[xy,....x,] and m=(x},...,x)). Then for any «o
= (0ys...,0,)EZL"

Tor(A/m;, K[4]),
{H”E‘f-l(linkA(suppa ~E))  if «e{0.....1}" and suppa — Ee4

0 otherwise
where E = {x;la; = l}.

Theorem 6.4. Let A be a simplicial complex of dimension (d — 1) with vertex
set V=1{xi,....x,}, A=K[xy,...,x,] and my=(x\,....x})A. If 1>2 then the
following conditions are equivalent.

(i) 4 is Buchsbaum.

(ii) For any i >n—d, Torf(A/m;,, K[4]), =0 if a¢ {0, [}".

Next we state the following

Lemma 6.5. Let 4 be a simplicial complex with vertex set V= {x,,...,x,}, 4
=K[x,...,x,] and my=(x\,...x}). If 1>2 and for any i>n-—d,

Tor#(A/my, K[4]), = 0 whenever a ¢ {0, I}" then for any facet ¢ in 4, dimo > d
-1

Proof. Let o be an arbitrary facet in 4 and « = (a4,...,a,) be an element of
Z" such that
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1 if x;eo
%= {1 if x;¢o.
Then by Theorem 6.3 we see
Torf(A/my, K[4]), = H* '~ (link 40)y) = A*:~"~1({ ¢})
for any i where E =V — 0. On the other hand we know by assumption
Tord(A/m;, K[4]),=0 ifi>n—d
since a¢{0,1}". So
HEi71({¢})=0 ifi>n—d
and we see #E <n —d. This means dime >d — 1. Q.E.D.
Now we state the following

Theorem 6.6. Let A be a Buchsbaum complex of dimension (d — 1) with vertex
set V={xy,...,x,}, A=K[xy,....,x,] and my=(x',....x)A. If 1>2 then the
following conditions are equivalent.

(i) 4 is 2-Buchsbaum.
(i) If a¢{0, 1}"U{L,....1}" then Tori_,(A/m,, K[4]), = 0.

Proof. Let
6.1) vo—> Fy— F, — Fy— K[4] — 0

be the (Z"-graded) minimal free resolution of K[4] as an A-module and x an
arbitrary element in V. For a Z"-graded A-module M, let us call &) M,

aeZ",suppaix

as the degree zero part of M with respect x. Then K[4\x] is the degree zero
part of K[4] with respect to x.

So considering the degree zero part of the exact sequence (6.1) with respect to
x we get the following exact sequence.

(6.2) i — G, — G, — Gy — K[4\x] — 0

Since G; is the degree zero part of F; with respect to x, it is a free module over B
=K[ylyeV,y # x]. So if we put n,=m;nB then

Tor8(B/n,, K[4\x]) = H,(B/n, (? G).

On the other hand we see from the minimality of (6.1), (F;), = 0 if « 20 for any
i. So B/n; ®G. is the degree zero part of 4/m, @ F. with respect to x and we see
B A
that Tor?(B/n;, K[4\x]) is the degree zero part of Tor#(A/m,, K[4]) with
respect to x.
(i) = (ii): Assume that (ii) does not hold and o be an element of Z" — {0, [}"
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— {1,....1}" such that Tor;_,(A/m, K[4]), #0. Since a¢{1,...,]}", we can take
x € Vsuch that x¢suppa by Theorem 6.3. Let 8 be the element in Z"~ ! such that
supp f = suppa then we see by the above argument

Tory_4(B/ny, K[4\x]), = Tor; 4(4/m,, K[4]), #0

Since dimB=n—1 and dim(4\x)=d — 1 we see from Theorem 6.4 and the
assumption that fe{0, /}"~!. This means ae{0, [}". Contradiction.
(ii) = (i): By the above argument and the assumption, we see

Tory_4(B/n;, K[4\x]); =0 if p¢{0,1}"!
for any xe V. Moreover since 4 is Buchsbaum we see for any xeV
Tor}(B/n;, K[4\x]); =0 if p¢{0,1}"" ' and i>n—d

by Theorem 6.4. Thanks to Theorem 6.4 and Lemma 6.5, we see A\x is a
Buchsbaum complex of dimension (d — 1). Q.E.D.

By the same way as above, we can prove the following theorem which is a
slight generalization of Theorem 6.1.

Theorem 6.7. Let 4 be a Cohen-Macaulay complex of dimension (d — 1) with
vertex set V= {x{,....,x,}, A= K[xy,....,x,] and m; = (x,....x}) A where | is a
positive integer. Then the following conditions are equivalent.

(1) 4 is 2-Cohen-Macaulay.
(i) If a¢{1,...,1}" then Tory_,(A/m,, K[4]),=0.

7. Higher Buchsbaumness and pureness of skeletons

The final topic of this paper is a consideration of k-Buchsbaumness and k-
pureness of skeletons and skeleton-like subcomplexes. First we recall the Cohen-
Macaulay case.

Theorem 7.1 (Hibi [6]). Let 4 be a Cohen-Macaulay complex, a,,...,0, be
faces of A such that

(i) o;Ua;¢4 if i #].
(i) If 4, ={red|Vi;t 20} then dim4, < dim 4.
Then if link 4(0;) is 2-Cohen-Macaulay for any i, A, is 2-Cohen-Macaulay of

dimension (dim4 — 1).

Especially by taking o¢,,...,0, to be all facets of 4, we see that the (dim4 — 1)-
skeleton of a Cohen-Macaulay complex 4 is 2-Cohen-Macaulay.

The purpose of this section is to prove the similar results for Buchsbaumness
and pureness. First we note the following

Lemma 7.2. Let A be a pure complex and o,...,0, be faces of A satisfying
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the conditions (i) and (ii) of Theorem 1.1. Then A, is a pure complex of dimension
(dim4 — 1).

Proof. Let t be an arbitrary facet of 4, and ¢ a facet of 4 such that 6 2 7
Since 4 is pure and dim4; < dim4, we can find o, such that ¢; = 0. By the
definition of 4, we can find xeo; such that x¢t. Then ¢ — {x} 27 and ¢
— {x} 20;. On the other hand, by the condition (i) of Theorem 7.1 we see ¢
— {x} 2o, forany j#i. So wesee o — {x}ed,. Since 7 is a facet of 4, we see
6 — {x} =1 and dim7 =dim4 — 1. Q.E.D.

Now we state the pure version of Theorem 7.1.

Theorem 7.3. Let A be a pure complex of dimension (d — 1) with vertex set V
and ¢4,...,0, be faces of A satisfying the conditions (i) and (ii) of Theorem 7.1. If
link 4(0;) is 2-pure for any i, then A, is a 2-pure complex of dimension (d — 2).

Proof. Let x be an arbitrary element of V and 7 a facet of 4,\x. Assume
dimt <d — 2. Then by Lemma 7.2 tU{x} is a facet in 4, and we can take yeV
such that Tu{x} U {y} is a facet of 4. Since 7 is a facet of 4, \x we see TU{y}¢ 4,
and we can take o; such that tU{y} 2 ;.

Let I" = link 4(6;). Then I"is 2-pure by assumption and (tU{y}) — g;is not a
facet of I'\ x since g;3 x. Therefore we can take ze Vsuch that z¢ tu{y}U{x} and
(tu{ytu{z}) —o; is a facet of I.

Now since t 20; we see yea; so tU{z} 20;. On the other hand by the
assumption (i) of Theorem 7.1 we see tU{z}U{y} 20; for any j #i Therefore
tU{z}ed,. This contradicts to the fact tU{z}#x and 7 is a facet of 4,\x.

Q.E.D.

Unfortunately, for the Buchsbaum case we can only prove the following

Theorem 7.4. Let A be a Buchsbaum complex and o,,...,0, be faces of 4
satisfying the conditions (i) and (ii) of Theorem 7.1. If link 4(o;) is 2-Cohen-
Macaulay for any i, then 4, is a 2-Buchsbaum complex of dimension (dim4 — 1).

Proof. Let 1 be a non-empty face of 4, and changing the suffix if necessary,
we assume o;Ute4 if and only if i <s. Then

link 4 (t) = {o€d|oUted,,ont = ¢}
={ogedloUted, ont=¢, oUt 2oyl <i<t)}
={oedlouted,ont=¢, 0 27(l <i<s)}

where 1, =0, — 7 for 1 <i<s. So if we put I' = link 4(r) then
link 4 (1) = {oelo 21,(1 <i<s)}.
On the other hand

link ;) = link 4(tUt;) = link j;py (5 (T — 7))
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is 2-Cohen-Macaulay for any i <s. So by Theorem 7.1 we see that link , (1) is a
2-Cohen-Macaulay complex. Since 7 is an arbitrary non-empty face of 4; we see
by Lemmas 4.2 and 7.2 that 4, is a 2-Buchsbaum complex of dimension (dim 4
—1). Q.E.D.

In [5] Hibi examined the following exact sequence of A-modules
t
(7.1) 0 — @ K(star s0)1(@) — K[4] — k[4,] — 0
i=1

where A = K[x|xe V], Vis the vertex set of 4, a; the element of {0, — 1}" such
that suppoa; = 0; and n = #V. Using this exact sequence and Theorems 6.6 and
6.7, we can prove Theorem 7.4 in another way.

Second proof of Theorem 7.4. Let dimd4 =d — 1. Taking the long exact
sequence of Tor of (7.1) we get

Torf (4/my, K[4]) — Torf(A/m,, K[4,])
- é Torf—l(A/mz’ K [star 4(0;)]) ()
i=1

for any j where m, = (x*|xeV)A. fj>n—(d-1) Torf ,(A/m,, K[star 4(0})])
= 0 for any i and if moreover a¢ {0, 2}" then Tor{(4/m,, K[4]), = 0 by Theorem
64. So Torf(A/m,, K[4,1),=0 if «¢{0,2}" and j>n—(d—1). So by
Lemma 7.2 and Theorem 6.4, we see 4, is a Buchsbaum complex of dimension (d
—2). On the other hand since K[star 4(o;)] = K[link 4,(0,)][x|x€0c;] we see by
Theorem 6.7 and by the assumption

(TorA_ J(A/m,, K[star 4(a;)])(2)), = 0 if ¢ {1, 2}".

So we know that Torj_,. (4/m,, K[4,]),=0 if oa¢{0,2}"U{l,2}" since
Tord ;. 1(A/m,, K[4]), =0 if a¢{0, 2}". By Theorem 6.6 we see that 4, is 2-
Buchsbaum. Q.E.D.

Now we state an example which shows that the statement of Theorem 7.1
replaced “Cohen-Macaulay” by “Buchsbaum™ is wrong.

Example 7.5. Let

y

X

(dim4, =1)and 4 = 4,+4,. Then 4 is a Cohen-Macaulay complex. If we put
o, = {x, y}, t = 1 then link 4(o,) = 4, is a 2-Buchsbaum complex and 4\ g, = 4, *
(2 points x and y). So link 4, (x) = 4, is not 2-Cohen-Macaulay and we see
A\ o, is not 2-Buchsbaum by Lemma 4.2.
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Finally we note the following corollary of Theorems 7.1, 7.4 and 7.3.

Corollary 7.6. Let A4 be a k-Cohen-Macaulay (k-Buchsbaum or k-pure)
complex of dimension (d — 1). If A" is the (d — | — 1)-skeleton of A and | < d then
4" is (k 4+ I)-Cohen-Macaulay ((k + 1)-Buchsbaum or (k + l)-pure resp.).

Proof. We may assume | = 1. Let V be the vertex set of 4 and W a subset
of Vsuch that 0 <# W<k + 1. If we take xe W and put W' = W— {x}, then
Ay _w. is Cohen-Macaulay (Buchsbaum or pure resp.) of dimension (d — 1) by
assumption. On the other hand since

(A)y-w ={oed|dimeo <d—1, onW' = ¢}
= (the (d — 2)-skeleton of 4, _y)

we see by Theorem 7.1 (7.4 or 7.3 resp.) that (4'), _y. is 2-Cohen-Macaulay (2-

Buchsbaum or 2-pure resp.) of dimension (d —2). So (4)y_y/_ (g =(4)y_w is a

Cohen-Macaulay (Buchsbaum or pure resp.) complex of dimension (d — 2).
Q.E.D.

By the above corollary we can make a k-Cohen-Macaulay complex whose
barycentric subdivision is not 3-pure for any k > 1.

Example 7.7 (see [1]). Let I be a Cohen-Macaulay complex (e.g. a simplex)
of dimension (k + 1) and 4 the 2-skeleton of I Then by Corollary 7.6 we see 4 is
k-Cohen-Macaulay. On the other hand, if {x,y, z} is a facet of 4 then
{{x,y},{x,y.2z}} is a facet of sd(4),,_, where sd(4) is the barycentric
subdivision of 4 and V] is the vertex set of sd(4). So sd(4) is not 3-pure and we
see that k-Cohen-Macaulayness, k-Buchsbaumness and k-pureness are not
topological conditions if k > 3.
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