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Complements on the Hilbert transform and the
fractional derivative of Brownian local times

By

Jean BERTOIN

I. Introduction

Hilbert transform and fractional derivative of order a&(0; 1/2) of Brownian local
times have been already studied by various authors (Yamada [14], [15], Yor [16],
Biane et Yor [2]). It is easy to show that these processes have a bounded quadratic
variation with regard to the dyadic subdivisions, but they have not a bounded varia-
tion. So, we cannot directly use the theory of stochastic integration for semimartin-
gales to study them.

We first prove that they have almost surely a finite p-variation, for some suitable
p; and the integration defined in [1] for such processes allows us to avoid the former
difficulty. In particular, we obtain an [t6’s formula and prove that they admit occupa-
tion densities (which are represented by a Tanaka’s formula). The main results of
this paper are two Ray-Knight’s type theorems which describe these occupation densities
taken at some first hitting times. Eventually, we translate these results to Bessel
processes of dimension d<1, and give in Appendix some general consequences of this
study.

In the present paper, we consider (2, &, P), a complete probability space, endowed
with a right continuous increasing family (4,:¢=0) of o-field. Let B=(B,:t=0) be a
real (F,)-Brownian motion, and {L{: a=R, t=0} a jointly continuous version of its
local times. Using the Holder property of a—L{, we can define, for any a<(0, 1/2)

C(t):v.p.S:—dB%=l£i{I.}S:1.B,,>E%—i—=SR fa'da

and

H(—1=a, =p.£.| B “1aseds=lim | Bi'“15,5.ds
[ €i0 Jo

=|, (Lt —Lta~"da

C(t) and H(—1—a, t) are represented by the following generalizations of It6’s formula
(Yamada [14], [15], Yor [16])

(L1): C(t):Z(B,long,l—B,—S:log!B.ldB,)
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and

: —_ ,_2A,, +\1-a -1t —a
(1.2): H—l—a. == " (BD)'""+2a [ B,

C(t) and H(—1—a, t) are additive functionals locally of zero energy in Fukushima’s
sense (see Fukushima [6], Yamada [15]), and therefore have almost surely a bounded
quadratic variation with respect to the dyadic subdivisions of any compact interval of
R, ; but are not of bounded variation (see Wang [13]).

Eventually, let us notice the following scaling invariance properties for C(-) and
H—1—a, -):

d
(L.3): For any A>0, (C(4t): t=0)=(A'"*C(t): t=0)

d
and (H(—1—a, At): t20)=(A""*2?H(—1—a, t): t120)

which are easy consequences of the scaling invariance property for B and of the de-
finition of C(:) and H(-—1—a, -).

II. Processes locally of bounded p-variation

Let p be a positive real number, f: R,—R a cadlag function, and ¢=(s,==0<s,<
-+ <sp=t) a finite subdivision of [0;¢]. Then we denote by V2(f)=|f(0)|?+

:é“;lf(sm)—f(si)l” the p-variation of f with regard to ¢; and we say that f has a

bounded p-variation on [0;¢] if {V2Z(f): ¢ finite subdivision of [0;¢]} is bounded, and
that f has an infinite p-variation on [0;t] otherwise. Note that f has a bounded p’-
variation on [0;¢’] whenever f has a bounded p-variation on [0;t] with p<p’, t'<t.
We have

Theorem I1.1. P a.s., for every positive t,
i) H(—1—a, +) has a bounded p-variation on [0, t] if and only if p>(1—a) .
ii) C has a bounded p-variation on [0;t] if and only if p>1.

Proof. Let us denote by r the right-continuous inverse of L° (i.e. 7,=inf{s: LI>t}).
Then H(--1—a, 7.) is a stable process of index (l—a)™* (indeed, the strong Markov
property implies that H(—1—a, 7.) has stationary independent increments, and it re-
mains to apply the scaling invariance property (I.3), see Biane and Yor [2]). Accord-
ing to Bretagnolle’s Theorem IIl.b in [3], P a.s., for all positive ¢ and all p>(1—a)},
H(—1—a, r.) has bounded p-variation on [0;¢]. Let us denote by Z={¢: B,=0} and
by &, the right-ends of the excursion intervales of B. Then, P a.s., for all positive
t and p>(1—a)!, {VP(H(—1--a, -)):v finite subdivision of [0;7,] and vC2Z,} is
bounded ; and since H(--1—a, ) is continuous and Z is the closure of Z,, we have

(I1.1): Sup{VP(H(—1—a, -)): v finite subdivision of [0; z,] and vyUZ} <o

Let us prove by induction that for every non negative integer n,
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Dy, : For P a.e. w8, if o is a finite subdivision of [0;v,] with
Card{sso: s¢&Z}<n, then there exists v, a jinite subdivision
of [0;t.] included in % such that, for all p=1,

VIH(—1—a, -Xo)=VIH(-1-a, - X)).

Indeed, (I), is obvious, so we suppose that (I), holds. Consider ¢ =(0=s,< - <sp,=t,)
a finite subdivision of [0;7,] with Card(e\Z)=n+1. Let us denote by 7=
inf{k:s,&%2}. Then 7=1, and

a) If inf{H(—1—a, s): s=s;,} SH(—1--a, s))ZSup{H(—1—a, s): s=s;.1}, then
take o¢’=0\{s;}. For p=1, VPH(--1—a, Yw)SVPH(—1—a, -)w)), and it remains
to apply (I),.

b) If H(—1—a, s;)<inf{H(—1—a, s): s=$;.,}, then denote by g(s;)=inf{s<s;:
Bs=0}. Since according to its definition, H(—1--a, -) increases on every interval on
which B is never 0, g(s;)>s;.; and H(—1—a, g(s))<H(--1—a, s;). So take ¢’'=
(Soy =+ 5 Siz1, (S4). Sis1, =+, Sm) and apply (1),.

¢) If H(—1—a, s;)>Sup{H(—1—a, s): s=$,4,}, then denote by d(s;)=Sup{s>s;:
B,=0}. The same arguments as above imply that d(s;)<<s;;; and H(—1--a, d(s;))>
H(—1—a, s;). So take a’'=(sq, '+, Si+1, d(Sy), Si+1, =+, Sm) and apply (I),.

Hence (I), is proven by induction, and according to (II.1), the sufficient condition of i)
is established.

Since Theorem IIl.b of Bretagnolle [3] implies that P a.s., for all positive ¢ and
p=(1+4+a)!, H(—1—a, 7.) has an infinite p-variation on [0;¢], the same property ob-
viously holds for H(—1-—a, -); so i) is proved.

ii) is easily obtained by the same arguments as for i).

The definifion of p-variation for processes is slightly different: a continuous adapted
process Z has a bounded p-variation if

Sup{E(VP(Z)): ceS}< o,

where S denotes the set of random subdivisions ¢ =(0=S,<5,< -+ £8,) of optional
times (such subdivisions are called “optional subdivisions”). We say that Z has a locally
bounded p-variation if there exists an increasing sequence of optional times (T,: nEN),
T.1 4o Pa.s., such that, for all n, Z'» has a bounded p-variation. It is easy to
prove that if ¥ is an adapted continuous process, such that for P a.s. w2 and for
all positive ¢, the function Y(w) has a bounded p-variation on [0;¢], then the process
Y has a locally bounded p-variation; but the converse is not true (since a Brownian
motion has a bounded 2-variation in our sense, but its paths have a.s. an infinite 2-
variation on [0; 1]).

Let us now recall some results established in [1]. When X (respectively Y) is a
continuous adapted process locally of bounded p-variation (respectively g¢-variation),

where p<q verify 1/p+1/¢>1, then we can define Z.=S;Y,a'X8 which generalizes

the usual integral when X or Y are semimartingales. Z has a locally bounded p-
variation, and we have



654 Jean Bertoin

Theorem 11.2. (associativity). Let Y’ be an adapted continuous process which has a
locally bounded gq-variation. Then Y .Y’ has a locally bounded gq-variation too, and

S;Y;-stX,zg;Y;dZ,.

Suppose now that p<2, and that Yi=M'+ X' (G{l; --; d}), where M’ is a con-
tinuous local martingale and X* has a locally bounded p-variation. Then we may
take ¢=2 and we have (see also Follmer [5])

Theorem I11.3. (It6’s formula). Let f: R*>R be a function of class C®. Then
of

ax—(Y.) has a locally bounded 2-variation, and
i

soro-s0r0= 3 (L orami+ | 2L axs)

Lot &
+§§,S,,3;;ia;j<> A<M, M7y, .

II1. Stochastic calculus and occupation measures

Using the integral defined in [1] for processes of locally bounded p-variation, we
are now able to develop a stochastic calculus for C and H(—1—a, ).

III.1. Study for C. The main tool for the stochastic calculus for C is the fol-
lowing

Proposition III.1. [f f is a function with continuous derivative, then we have the
following Ito’s formula:

t t
B f(C@)=\ fCNdBA| f(Cls)ds .
Proof. Formula (I.1) implies
t Y
B, C()=2(Btlog | B.| — Bi—B.{ log| B,|dB.),
and from the usual Ité’s formula, we deduce
t
B,-C(t)zSOC(s)dB,-H .

Since C is a continuous process locally of bounded p-variation for all p>1, the com-
parison with Theorem I1.3 gives

g:Bst(s):t .

Then, Theorem I.2 implies that for any Z locally of bounded B-variation (8>1).
we have
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[ z)Budce={ zss.
Applying again Theoreh 11.3, we deduce that for any f of i;lass C?,
Be f(Cn={ fC(sNdB.+ | f1Cis)ds .
and by density, this formula holds for f of class C'.

Let us now define the family of processes {Af: a€ R, t=0} by the following Tanaka’s
formula

t
(111.1) Bc'1(0(:)>a1=S01(C(a>>a)d3a+2? .

Then we have

Theorem II1.2. P a.s., for any bounded Borelian function f,
t
[irccnas={ saneda.
0 R

Proof. Let ¢: R—R be a function of class C' with compact support. Definition
(II1.1) implies

t
[ Brewsaot@da=| dep(a)| Lowsmd Bt | plaritda.

If we denote by @ the primitive of ¢ with lim @ =0, then we have

[ Blicwsapla)da=B.oCH),

and the stochastic Fubini’s theorem (see Lemma 4.1, p. 116 in [keda and Watanabe [8])
implies

[ dav@| 1ewsndBi={ dB. dep@tewsa = OC(s)dB..
Hence we have
B,.(D(C(t))=S:(D(C(s))d3,+gn¢(a)2?da .
The comparison with Proposition IIl.1 finishes the proof.
Remark. A# can also be described by the following formulas

t
Bilcir<ar =Sol(c<a><ud3.x—2? , and

B.sgn(C(H—a)={ san(C(s)—a)d B,+22¢ ,

where sgn=1g,—1z_.
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Let us now study the regularity of (a, t)—A4%:
Proposition II1.3. There is a version of (a, t)—2¢ such that, P a.s.,
1) for all ae R, t—2} admits left and right limits at all t.

ii) for all t=0, a—A¢ admits left and right limits at all a.
iii) for all a€R and t=0,

At AR =22, Ab—A=|B|liccr=ay
APt AF—=24¢, ft—"=Bdcw=a) -

Proof. From the Burkholder, Davis, Gundy inequalities and the Kolmogorov cri-
terium, we easily obtain that there is a continuous version of

t
(a, t) —> Sol((!(:)>a)st .

Therefore (a, t)—A} is continuous at every point (a, t) verifying B,=0 or C(t)#a. If
B,#0 and C(t)=a, then, Tanaka’s formula (II[.1) implies

AP+ =24¢ and At —2¢-=B8,.

If we suppose furthermore that B,>0, it is clear that lin} C(s)=a" and lim C(s)=a*;
st sit
hence we get
?+—1?_=Bg and 1?++2?_:22? .

The proof is the same when B,<0.

We will now always consider such a version of (a, {)—4?; and we are able to give
an other description of A?:

Proposition II1.4. P a.s., for every positive t,

1
= | B,l licwamn+ 5 | B, [Liccrmo -
<t

Proof. Let us first establish the following

Lemma IIL5. P a.s., {s€R,: C(s)=0} s a closed countable set, and all ils points,
except 0, are isolated.

Proof of the lemma III.5. On the one hand, if r,=inf{v=0: L{>u}, then {s: B,=
C(s)=0}={s=7y: C(r,)=0}U{s=7,-: C(r,-)=0}, and since C(r.) is a Cauchy process
(see Biane and Yor [2]), P a.s., {u=0: C(r,)=0 or C(r,.)=0}={0}, and hence P a.s.,
{s=0: B;=C(s)=0}={0}.

On the other hand, if we pick s=R, such that B;#0 and C(s)=0, then there

exists a positive ¢ such that for every ue(s—e, s+¢), | By| >¢; and since C(u)——"Sudv/B,.,
s

s is an isolated zero of C. In particular, {s: C(s)=0} is finite or countable. Usual
scaling arguments and the 0—1 law imply that {s: C(s)=0} is countable.
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Proof of proposition I11.4. (end) Theorem IIl.2 and Proposition 1II.3 imply that P
a.s., on any interval [s, ¢t] on which C is never zero,

0= lim e-1S’1m,.,(c<v))dv= lim e"Sll[o,g(C(v))dv:X? )
§40 0 €40 0

Since t—4} increase only on {s: C(s)=0} which is a closed set whose the only accu-
mulation point is 0, Proposition III.4 is a direct consequence of Proposition III.3.

Another easy consequence of Proposition III.3 is

Proposition II11.6. If f is a continuous function with compact support, then the
nt
sequence of processes «{n“/zso f(C(s))ds: 1.20} converges in the sense of the finite dimen-

stonal distributions as n 1 4o to

{(Sf(a)da)l?: t20}.

Proof.
at ¢ (d) :
n“/”go f(C(s))ds:n’”gof(C(ns))ds = n’/zgof(n‘/’C(s))ds .

Since

el frcsnds=nr| franeda={ f@a " da

and since, according to Proposition IIL.3, ’lll?rn M=y uniformly on any compact

neighbourhood of 0, except when C(t)=0, we obtain

lim SRf(a)XZ"m“da =(Skf(a)da)1? .

n too

I11.2. Study for H(—1--a, ). Henceforth, let us make the convention 06=0 for
all real number B (even the negative ones). Let us introduce

Notation. S,=Sup{H(--1—a, s): s<t}, [,=Inf{H(—1—a, s): st}
T(x)=inf{t=0: H(—1—a, )=x} (x€R), and A,:S:(B;‘)‘z"ds.
An important and direct consequence of the definition of H(—1—a, t) is the fol-
lowing

Lemma IIL.7. P a.s., for every xR, T(x) is finite; and if x<O0, then B#y=0.

Proof. With help from the scaling invariance property for H(—1-—a, -), we just
have to show that T(—1) and T(1) are finite P a.s..
If PUT(—1)=+4o})=0>0, then, applying (I.3), for any £>0,
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P{{Vt<e, H(—1—a, t)=20})=46.
So
P( Q{Vt<s, H(—~1—a, )20})=

and Blumenthal’s 0-1 law implies that d=1. Therefore H(—1—e, +) would be a posi-
tive additive functional of B; and we know it is not true. The proof is the same for
T(1).

Eventually, if B#, were positive for a negative x then H(—1—a, ) would in-
crease on a neighbourhood of T(x); so T(x) would not be the first hitting time of x
by H(—1—a, -).

As in §I1II.1, let us prove

Proposition II1.8. [f f is a function with continuous derivative, and if F is a primi-
tive of f, then we have the following Ité’s formula:

(Bt)y-*f(H(—=1—a, t))=(l—a)S:f(H(—1—a, SXBF) “dB,

a(l a(l—a)

+{ e —1-a oxBH e ds— [F(H(—1-a, D)~ FO)].

Proof. With no loss of generality, we may assume that f is C* with compact
support. We first notice that

(1IL.2): (B1Y=*H(~1-a, D=(1-a)| H(~1-a, sXB1)“dB,

+S:(B:)-="ds—‘%"“)11=(—1—a, .

Indeed, Formula (I.2) implies

[H(-1-a, 0+ C;UZTa)(Bt)‘-"]z

=4a‘2S:(B;‘)‘2“ds+4a“S [H( l—a, s)+ ——2—(BH)- "](B*)‘"dB

( a)

therefore

4

T B H(—1=a, )= 4a"§ [H( l—a, s)+

s : = B “|Birean,
e (Bt ds—Kall— ) (B~ HY~1=a, 1),
On the other hand,
(Bt =220 (B2 *d Bo(1—aX1 200 (B *ds,

and hence



The Hilbert transform and the fractional derivative 659
ALal— )] (B H (—1—a, H=da{ H(~1-a, 5By "dB,

—4la(l-a)]"{ (B ds— HY(~1-a, 1),

and (II.2) is proved. :

According to Theorem II.1, there exists p<2 such that H(—1—a, -) is a process
locally of bounded p-variation. The comparison of (III.2) with Theorem 1.3 for
(Bf)!"*H(—1—a, t) gives

S:(Bf)l'“dH(—l —a, 3)=S:(B§')"°‘ds ]
The application of Theorem 1.2 and 11.3 to (Bf)'-*f(H(—1—a, t)) imply the proposition.

Using the same arguments as for C, we obtain

Theorem II1.9. For every a€R and t€R,, let A¥a) be the process defined by
Tanaka’s formula:

t
(B~ Liscer-a,050r=(1= @) Lircr-a05a(B) “d B,

_a(l-a)

2

[(H(=1=a, )—a) —a*]+i(a).
Then, P a.s., for every bounded Borelian function ¢ and t>0, we have
S:go(H(—-l—a, s))(Bt)'“ds=SR¢(a)2?(a)da .

Remark. At first sight, the choice of the definition of the occupation measure,
and consequently of A#(a), may look strange, and we could think. it would be more
natural to consider i¥(a) defined by

L -
(BO* L s-a050= | Lircor-a.05ad(BD'*+38(a),
and to prove with the same arguments as the former ones that
S:<p(H(—l-a, s))ds=SR¢(a)ig(a)da .

The justification of our choice is that the extension of It6’s formula that we gave in
Proposition III.8 is better adapted to the stochastic calculus than the one we would
have obtained if we had considered (B?#)'** instead. of (B¢)'"*: indeed, the bracket of

the martingale part of (B)' *f(H(—l—a,t)), (l—a)’S:f’(H(_l-—a, $)XB¥)**ds is of
the same type as its part of bounded variation, S:f’(H(—l—a, $)XBF)**ds. §IV is a

direct consequence of this fact. Furthermore, this choice will allow us to translate
our results to Bessel processes of dimension 0<d<1 (see § V).
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As in §III.1, we have

Corollary II1.10. i) There exists a jointly continuons version of
(a, ) —> A a)—(BH)' “Linc-1-a.00>a -

Henceforth, {A%: a= R, t=0} will always denote such a version.
ii) P a.s., for every teR,,

A(a)= E‘(B:)l-alll{(-l—a.t)>0)+1/2(B?-)1-a1lli(—l-a.t)>0) .

Proof. 1) can be proven by the same methods as Proposition III.3.
ii) Let us set

-
V(@)= 5 (BDLircr-a050 =, Linsod 2.

It is easy to see that P a.s., for every bounded Borelian function ¢ and every ¢=0,

[ o@ieda={'ptH(~1-a. B *ds=| glantda
and hence we have
(I1.7): P a.s., for every t=0, da a.s., Ag=v{;

and we want to prove that this equality holds for a=0. So, let us suppose that there
exists ¢>0 so that P(Ap»y-—vicn>e)>e. For every as(—1;0), we set H(—1—a, t)
=—a+H(—1—a, t+T(—2—a)), B.=Biirc-2-o; and 2 and # the corresponding ver-
sions of the occupation densities for H(—1—a, -). We have

Afcepy=2RY

@ o~
T(-2-a)’ Vre-»=V

0
T(-2-a) "’
and, according to Lemma IIL7,
P23 —vFc-0y>8)=P(Af-2-a>—Vh(-2-0) >€)
2P(Afc-n—vi-n>e)>e .
0
Hence S_ldaP(Z%(c-zy—v%(_z)>e)_ze, which leads to a contradiction with (III.7). Hence

Atcp=vicp» P a.s., and by scaling invariance, A3 .y=v2., for all neN*. To finish
the proof, we just have to notice that P a.s., VT €R,, if Ap=v{ and H(—1—a, T)#0,
then Vi<T, A?=y!, provided that H(—1—a, t) is not 0; and to apply i).

Eventually, our main tool for § IV will be the following
Proposition II1.11. If f is a C' function, and F a primitive of f, then

&l = exp{aL— @B - f(H(—1—a, H)+a(l—a) F(H(~1—a, D)~ F(0)]

_za.-a)-zS:( '+ FXH(=1—a, $)XB)**ds
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s a continuous local martingale.

Proof. We deduce from Proposition III.8 that

ef=expl21—ar'( fH1—a, (B “dB.i~A1-a)*| FH(~1-a, (B *ds},

so &/ is a continuous local martingale.

IV. Ray-Knight’s type results

Let us fix a=(0. 1/2) and henceforth, we will omit & in A#(a) and denote it by A%.

IV.1. A Ray-Knight’s theorem for if#._,,. The main result of this paragraph is
the following

Theorem IV.1. i) {4(1—a) A% : 0=<a =1} is the square of a Bessel process start-
ing from 0 and of dimension 2a/(1—a).
i) {4(l—a)?A%c.1y: 0=<a} is the square of a Bessel process of dimension 0.

Proof. Let g:[—1, +o)—>R,, be a continuous function with compact support,
and @,:[—1, +o)—R,, the non-increasing solution of the Sturm-Liouville equation
Q" =g®, with ¢(—1)=1. Then we have

T
0

(IV.1): E[exp{—Z(l——a)‘ZS g H(—1—a, s))(B*)‘“dsH:[(D,(O)]""““’.

Indeed, if we take f=@,/®,, F=log ®, and f'+ f*=g in Proposition IIL.11, then &/
is a continuous bounded martingale on {t<T(—1)}, and the optional sampling theorem
implies that .

E [eXD {2(1—a)‘z(B;“(_,))““f(—1)+a(1—a)[(F(—1)—F(O)]
T(-1
—2(1—a)-2So g(H(~1—a, s)xB:)-wds}]zL
Since B#.,y=0 and F(--1)=0, we have
(-1
E[exp{—Z(l—a)"So g(H(—1—a, s))(B;‘)'"ds}]=exp(aF(0)/(l—a))
=[O0/
On the other hand, it is well known (see Durrett [4], §8.7 for example) that

E[exp{— %S:(-l)g(BS)ds}]:¢g(0) where o(—1)=inf{t: B,=—1}.

Using (IV.1), we obtain

al(1-a)

E [exp{—%gt:"g(a)«l —a)? %(-l)da}]zE[exp{——:la—StTg(a)L?ﬂ-,)d a}]
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A famous due to Ray [11] and Knight [8] claims that {LgZh,: 0=<a =<1} is the square
of a Bessel process of dimension 2 and starting from 0. The additive property of the
squares of Bessel processes (Shiga and Watanabe [12]) implies that {4(1—a) 223y :
0<ax1} is the square of a Bessel process of dimension 2a/(1—a) and starting from 0.

On the other hand, {L%_.,»: 0<a} is the square of a Bessel process of zero dimen-
sion, and the same arguments imply that {4(1—a)?Af.,: 0=a} is the square of a
Bessel process of dimension 0.

Proposition 111.11 also allows us to compute the law of (Src-a>, Arc-a>) for every
positive a:

Proposition IV.2. For every 6, b>0,

sh b )al(l-—a)

E [exp{—zﬁz(l——a)'zAT(-a)}I(Sr(—a><b’] =<;}1—0(a+b)

In particular, P(Src.oy<b)=(b/(a+b))*/¢~.

Proof. Let us take f(x)=46 coth §(x-—b) and F(x)=log|sh #(x--b)|. Then &l isa
bounded martingale on {t<T(—a)AT(b)}; and since
lim f(H(—l—a—t))= lim F(H(—1—a, t))=—o0,

LT b t1T b

the optional sampling theorem gives
a . 2 -2
E[CXP{E‘EF(—G)—F(O)]-ZG (l—a) AT(-—a)}'IT(-a)(T(b)]:l )

this proves the first part of the proposition. The second follows by taking the limit
as 610.

Remark. In particular Ar( o has the same distribution as ¢(a/2)=inf{t: B,=a/2}.
This can also be seen directly noticing that, according to Lemma II.7 and Formula

(1.2), 1,=inf{2a"S:(B:)'“dB,: s<th.
We are now going to study by the same methods A%), but the results shall be
quite different, because this time, B#,#0.

IV.2. Results for T(1). Let g:[—1, +)—R, be a continuous function with
compact support, and ¢, and ¢, the system of fundamental solutions of the Sturm-
Liouville equation @”=g®, with ¢ (—1)=1, ¢(—1)=0, ¢, (—1)=0 and ¢x(—1)=1. ¢,
and ¢, are both non-decreasing functions, and positive on (—1, +o0). If @, is the
unique non-negative, non-increasing solution with @,(—1)=1, then there exists #(g) so
@, =¢,—r(g)p,. Since li@ ¢,=+0c0, we have 11?3 D,/¢,=0; and lifE 0/, =7(g).

Theorem 1V.3. 1With the former notations, for every 0=0, we have
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E [exp{—~20(1— @) *(Bfeo) " —2(1-a)y*| g(—a)ipwds} |
=[0e(0)+ 0 (0]~ —[((g)+0)p, (0]~ .
Proof. According to Proposition IIl.11, if f is C' and F is a primitive of f, then

éf= exp{—Z(l—a)"(B?)"“f(—H(—l—a, H+a(l—a)[F(—H(—1—a, t)—F(0)]

~21 =) | (4 (—H(=1=a, B *ds

is a local martingale on {t<T(1)}. On the one hand, if we take f=¢,/¢, and F=log ¢,,

then lim &{=0 (because lim ¢,==0), and hence, for every 6>0, &/ is a bounded mart-
t+T ) -1+

ingale on {t<T(1)AT(—b)}. The optional sampling theorem applied to T(L)AT(—b)
gives

TC

0

av.2:  Eexp{—21-a* (" g(-H(—1-a, 9XBIY ds [Lircweran |

30 altl-a
=(zzg§b;) /¢ ).

On the other hand, if we set ¢=¢,+0¢,, f=¢'/¢ and F=log ¢ and if we apply the
optional sampling theorem to T(1)AT(—b), then

T
E[exp{—20(1-a) (B 21 —ay*| " g(—H(-1-a, (BN *ds}

X(%%l a/(l-a)ltrmac-m]
+E[exp{—2(l—a)'ZS:(_b)g(—.H(—l-—a, S))(B:')‘“ds}(%%%)am~a)1(r(1>>rc—b>1]=1 .

We deduce from (IV.2) that
) T
E [exp{~2001- ) "By~ 21—y, g(—H(—1—a, (B **dsPiraerco |
=(L— L) (OXFO)P5 (b)) 121 )[GO]/
and since ¢(—1)=1, we finally obtain
)
E[exp{~2601—a) (Bt~ A1—ay*{| g~ H(=1—a, /B *ds [Lawcrcm |
0 (B)+04,(b)
Q)

and the theorem is proved by taking the limit as b1 +co.

: all-ad
=[pa(0)+ 0 (0)] 1| 60"

Remark. According to Tanaka’s formula A}+)=(B%»)' ", and we could think that,
as in §IV.l., conditionally on (B#F))' *=x, the process {4(l—a) *AF ity :0=a=<l} is
the square of a Bessel process starting from x and of dimension 2a/(1—a). This is
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not true, because if it were, we would have
T
0

E[exp{—Z(l—a)‘zg C g —H(—1—a, B ds}

=K [exp{—(BFm)‘—ar(g)/Z}]((pg(o))a/u_a> )

and the right side of this equality, which can be computed using Proposition IV.5, is
not the same as the one we have found in Theorem IV.3. However, we have the fol-
lowing

Theorem IV.4. i) The law of A%« is given by: for every positive k,
1 - : -
E[exp{-—74<1—a) 2/22?(1)}]=l—(k/(k+1))"/<‘ @

ii) Conditionally on 41—a) *Afy=x (x>0), {4l—a)?Ar%:0=a} is the square of
a Bessel process of dimension 0 and starting from x.

Proof. 1) is an easy consequence of Theorem IV.3.
ii) If g=0 on [—1; 0], then ¢,(0)=¢,(0)=1, so

E [exP{_%S:wg(aMU '_a)_z'zf“(zl)da}] =1—[r(g)Ja/¢-o>.

Notice that if @,=¢,—r(g), is the non-increasing, nongative solution of @”=g@® with
O(—1)=1. then ©4(0)/® ,(0)=—r(g)/(1—r(g)), and hence

1+ 1
E[exp{ | g1 —ay atoda} | = B exp(— 5 41-a)* 040007 Ot} |,
According to Pitman and Yor [10], this proves our assertion.

As in §IV.1, we are also able to obtain the distribution of (Bry, Aray, Irw):

Proposition 1V.5. If a, 7, § are three positive real numbers, and if we set 0=
l—a)/2, and b=1+61—a)* log|(y(1—a)+d)a(l—a)—38)|, then

52
E[exp(~1(Bfa)~*— 5 Aro Wit rgpo-ar | =

( shdb _)A'/O-w_( sh @(a+b)sh @
sh@(b—1) sh (b-—1)sh 8(a+1)
(» chéb nl(l-aﬁ_( ch@(a+b)sh @
chf(b—1) ch 8(b—1)sh 8(a+1)

al(l-a)
) when Y(1—a)>d

al(l-a)
) when 7(1—a)<é .

In particular, for every b>1,
E[exp{—2(1—a)"(b - 1) (Bfw)"*Hirpay-a]

b \ala-a +b al(1-a)
(b_~T) ’ _((a+al)(b<—1) .
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Proof. The arguments are the same as in the proof of Theorem IV.3, with firstly
f(x)=0 coth §(x—b) and F(x)=Ilog|sh 8(x—>)| and secondly f(x)=6th §(x—b) and
F(x)=log ch 8(x—b).

V. Applications to the Bessel process of dimension d (0<d<1)

According to a result of Biane and Yor (Lemma 3.1 in [2], with a slight modi-
fication), if we set ¢(¢t)=inf{s: A;>t}, then X,=(1-—a) (Bfy,)' "« is a Bessel process
of dimension d=(1—2a)/(1—a), with an instantaneous reflecting barrier at 0. Hence,
the canonic decomposition of X as a sum of a martingale and a zero quadratic varia-
tion process is

(V.1): Xi=Bi— 5 H(=1=a, s@)=B+(d—DHQ).

. . . 1 t - .
where B is a Brownian motion and H(#)= 5 v.p. SO—C)%S I'he previous results for
8

H(—1—a, -) can be translated to H by easy change-of-time arguments:
If f is a function with continuous! derivative, and if F is a primitive of f, then
we have

V2 X SUH@=] SH B~ DIFH@) - PO+ 3 | s
In particular
V.3 exp{XfHOIHA-OLFH D)~ FO)1~ 5[+ XHsNds)

is a continuous local martingale.
The family of random variable {47 : a€ R, t=0} defined by Tanaka’s formula

t 1
(V.4): th(H(t>>a):Solm(s»mdﬂs +Hd--D(H@E)—a) —a*]+ —2»1?
is a version of the occupation densities of H:

for every Borelian bounded function ¢, S:go(H (s))ds—-:gkgo(a)/'l?d a.

If we set T(x)=inf{t: H(t)=x}, I,=inf{H(s): s<i{} and S,=Sup{H(s): s<t}, then the
main results are

Theorem V.1. i) {2$»:0Za<l} is the square of a Bessel process starting from
0 and of dimension 2—2d.
ii) {A%.1y:0=Za} is the square of a Bessel process of dimension 0.

Theorem V.2, For every 6 =0,

B exp{~ 0 Xrr— 5 {8~ )it al | =00+ 0,00 ~(r(@)+ 02072

where g, ¢,, ¢,, and r(g) are defined in §1V.2.
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Theorem V.3. i) The law of Apqy s given by: for every positive k,
1 .
E[eXp{—EkA;(,)}]=1~(k/(k+1>)"d.

ii) Conditionally on 22.>=x (x>0), {78 :0=a} is the square of a Bessel process
of dimension 0 and starting from x.

Proposition V.4, i) For every positive 8, a and b,

E[exp(-—%fT(—a))l(ST(-a)<b)]:(£}fj’_—b))l_d

ii) For every positive a, ¥ and 6, we have

D)

I

-

:exp{—er)— g’r(l)}lur(,p-ul]

sh@b \t1-¢ sh 8(a+b)sh @ 1-d
_ (m ——(Sh 6(b—1)sh (a-+1) when >0
1/ chop e ch6(a+b)sh§ \i-e
<m> —<ch 6(b—1)sh 6(a+1) when 1<8.,

where b is defined by =80 coth §(b—1) if v>80, and y=06th 0(b—1) if r<0.

Appendix

A.1. Applications to the measure B,P. This part is inspirated by the Appendix
A of Biane and Yor [2]. Our purpose is to propose simplified proofs and generaliza-
tions of these authors’ results.

Let Z be an adapted continuous and locally of bounded B-variation process (8>1).

According to Theorem II.1 and to the results of [1], we are able to define S;Z,d C(s)

which is a conlinuous process, locally of bounded (14 7)-variation for every positive 7.
We have

Proposition A.1. The process Y.:S;Z,dB,—S;stC(s) is orthogonal to B i.e. B.Y

is a local martingale.
Proof. According to Theorems 1I.2 and 1.3, we have
t t t t
BY=| Y,dB,+S Z.Bud B~ Z.B.dCs)+ Zids .
0 0 L] 0
On the other and, we saw in §l1Il.1 that
t
SGZ,.B,dC(s):S:Z,ds ,
and this prove the proposition.

Let % be the signed measure #=05,P. We will say that a process V is a 2-



The Hilbert transform and the fractional derivative 667
martingale. If B.Y is a P-local martingale. A translation of Proposition A.l is the

following analogous of Girsanov’s theorem:

Corollary A.2. If M denote the P-local martingale M,=g:Z,dB,, then
M,:M,—S:Z,dC(s) is @ P-martingale.

If we set B=B—C, then B is a #-martingale, and more precisely we have

Corollary A.3. (Biane and Yor) If h: RXR,—R is solution of the heat equation:
(1/2X0*h /0 x2)+(0h/0y)=0, then h(B,, t) is a P-martingale.

Proof. According to Theorem IL.3,

h(B,, t)=h(0, 0)+S:%(B,—C(s), s)st—S:%(B,—C(s), $)dC(s),

Corollary A.3 is then a consequence of Corollary A.2 for

toh
M,—So»ﬁ(ff,. s$)dB, .

Eventually, we have the following generalization of the second part of Theorem
Al in [2]:
Corollary A.4. The process 8?=exp{iS:Z,dB,—iS:Z,dC(s)——;—StZﬁds} is a P-mar-
o

tingale.
Proof. Theorems 1.2 and 1.3 imply

3
st=1+i| zietan,~ | z.et4C(s),
and Corollary A.4 is once again a consequence of Corollary A.2 for

M,:iS:Z,e,Zd B, .

A.2, Existence of decreasing times for H(—1-a, -). Since 2a/(l1—a)<2, an
interesting consequence of Theorem IV.l is that, contrary to what happens for the
Brownian motion, P a.s. there exist points x&(--1, 0) with Af..,,=0. We will see
that it implies the existence of decreasing times for H(—1—a, -).

Definition. Let / be an open interval, f: [—R a function, and ¢ a point of /. We
will say that ¢ is a non-increasing time for f on [ if

Y(u, v)EIXI, ustSv = fW)S )< f(u).
We will say that ¢ is a decreasing time for f on [ if

Y(u, v)eIxI, u<t<v = f)<fO<f(u).
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We have

Proposition A.5. P a.s., there exist non-increasing times for H(—1—a, -) on
0, T(—=1)).

Proof. Let us prove first that P a.s., for every rational number ¢ in (—1; 0), and
every y in (¢;0),
(A.1): br=0= Sup{H(—1—a. t): T(Q)St<T(-1)}<y.

Indeed, if 1§:=BHT(,,) and H(—1—a, )=H(—1—a, t+T(g))—q, since B#@=0, and
since H(—1—a, -) is an additive functional, we have

H(—1-a, t):p.f.S:(E:)-l—ads.

If ?(—l—q):inf{t:ﬁ(—l—a, t)y=—-1—gq} and if we denote by {i¢:a<€R, t=0} the
family of the local times of H(~-1—a, ), then, according to the scaling invariance
property,

(A.2): {4(l—a)'22;(_l_q) :0<a} is the square of a Bessel process of dimension 0:

and we obviously have A}t%,=24g+2% ,.p- Particularly,
(A.3): ' A8y =06= #3=0 and i _ _ =0.
On the other hand, for every y=0,

(A.4): i =0 VT (—1—q), H(—l—a, )<y.

v
T(-1-@)
Indeed, according to (A.2), if ﬁ;(_x_q) =0, then, for every z>y, 2}(_1_0 =0, hence
Te-1-¢

S“ ' q1(;,(_1_,,,,,,>,,,(B;”)""ds=0, and (A.4) is proved. (A.l) is then a consequence of
0

(A.3) and (A.4). Now take x&(--1;0) so that AF,=0; T(x—)=inf{¢t: H(—1—a, t)
<x}, and (x,:n€N) an increasing sequence of rational numbers converging to x.
Then T(x,) | T(x-—), H(—1—a, t)=x, if 0=5t<T(x,)and H(-—1—a, t)<x if T(x,)<t<

T(—1). Hence, taking the limit as n 1 +oo, we obtain H(—1—a, t)2x if t<T(x—)
and H(—1—a, t)Sx if T(x—)Zt=T(—1); and Proposition A.5 is proved.

Remark. This result may look surprising, because H(—1—a, -) increases on every
positive excursion of B, and is constant on the negative ones.

The structure of the set of the zero of a Bessel process allows us to claim.

Theorem A.6. I’ a.s., there exist points x&(—1; 0) that H(-—1—a,-) hits only once
before T(—1). Particularly, the hitting times of such x are decreasing times for
H(—1—a, +) on [0, T(—1)].

Proof. Let us denote by Z,={x&[—1;0]: Af..»=0}. According to Theorem
IV.2, P a.s., Z, is a non-empty perfect set. Let x be a left-and-right accumulation
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point (i.e. Ve>0, there exist y and z in Z, so that x —e<y<x<z<x+¢). According
to (A.2), if x,, x,€Z, and —1<x,<x<x,<0, then

x<H(—1l—a,t) when 05t T(x,),
nSH(—l—a, t)<x, when T(x,)St<T(x,), and

SH(—=1—a,t) when T(x,)St<T(—1).

We deduce that H(--1—a, t)>x on [0; T(x)), H(—1—a, t)=x on [T(x); T(x—)] and
H(—1—a, t)<x on (T(x—); T(—1)]. Hence, for all x left-and-right accumulation point
of Z,, N(x)={t=T(—1): H(—1—a, t)=x} is aclosed interval. So, there exist at most
countable many points in Z, for which N(x) is not a single point. Since the set of
the left-and-right accumulation points of Z, is not countable, there exist points in Z,
that H(—1—a, -) hits once and only once on [0; T(—1)].
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