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law of the iterated logarithms for weakly

multiplicative systems
D edicated to Prof. N . Ikeda on h is 60th birthday
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O. Introduction and Results

The notion of m ultiplicative system s w as first introduced by A le x its  [1 ] , [2 ] . A
sequence { e„ } o f random variables is called a  uniformly bounded multiplicative system
if  th e re  e x is ts  a  c o n s ta n t  K  s u c h  th a t  e„1_<K fo r a ll  n and  E(e„,-- $n„.)=0 fo r  all
r E N  and • < n r . O f c o u rse  sequences o f  independent random  variables and
martingale difference sequences a re  exam ples of th is  notion w hen  they  a re  uniformly
bounded . B ut there  a re  o ther important exam ples. T hose  a re  lacunary trigonometric
sequences with Hadamard's gaps i. e . {cos 27rnk }  o n  ([0, 1], d x ) w h e n  t h e  sequence
{ n k  } o f integers satisfies  for all k .  Kolmogorov [10] proved that lacunary
trigonom etric  series having 1 2 -coefficients converge alm ost everywhere, and  the  con-
verse theorem  w as proved by Z ygm und [23]. T h e  central lim it theorem  fo r lacunary
trigonom etric  sequences w ith  Hadamard's gaps w as hard ly  studied  a s  K ac [9] sum-
marizes and was completely proved by Salem-Zygmund [20]. These works revealed the
weak dependence property o f  these sequences, and th is property  w as also  realized for
multiplicative sy s te m s b y  th e  fo llow ing  stud ies. Alexits-Sharma [3] proved th e  law
of large  numbers for uniformly bounded multiplicative systems (Cf. Preston [1 6 ]) . The
central lim it theorem  w as proved by Révész [17] and the law  o f th e  iterated logarithm
b y  Gaposkin [8], Takahashi [22] a n d  R évész [18 ], [19 ] u n d e r  so m e  restric tive  con-
dition.

Recently, M 6ricz  [14 ], [15 ] extended the notion of m ultiplicative system s to that
o f  weakly multiplicative system s. Sequence o f random  variables is called weakly
multiplicative system  w hen E(e n„ -- en d  is nearly  0  in  so m e  sense. M ainly w e con-
s id e r  w eak ly  m ultiplicative system s satisfying (0.3). F o r  a  sequence fen } o f random
variables, w e define a n  infinite dimensional vector  f o r  r N  by
b„,....i r = E (e i,. . .e i r )  and II BrIl a indicates its 15-norm, i •e. II B rIla=( E

• •

M6ricz [14] proved the  following law o f th e  iterated logarithm.

Theorem A .  L et {en }  be a sequence o f  random variables satisfying

(0.1) I en1 .5-K f or all n,
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(0.2) 11Br112<00 for a ll r and limsup 11Brillir=B<00

Then,

Sn _limsoup .‘/2(K 2 +B
2 )24;, log log A4 

L___<1 a. s.

where Sn=a1$1-f- ••• -Fanen and A 7
2,=a1+ ••• +4 w ith A  1. 0 0  as  n---*00.

Berkes [4] also proved Strassen's law  of the iterated logarithm s fo r weakly multi-
0 0

r=i

where B ; is  a  vector defined in  th e  sa m e  w a y  as B r  u s i n g  {E.1-1 } instead of {e i },
j. e. B r  where b,,...,i r = E((eL - - - -  1) • • • ($i r 1  T h e r e  are very important
exam ples o f  w eak ly  m ultiplicative system s w hich do not satisfy  Berkes's conditions.
For instance, nonharmonic trigonometric sequences with Hadamard's gaps, i. e. {cos x  }
on ([0, 1], dx) w hen th e  sequence 120 o f real num bers satisfies il k  t  0 0  a s  k--->co and
2k+1/2k 2 f o r  a l l  k , a r e  w eakly  multiplicative system s sa tisfy ing  (0.3) a s  sta ted  in
Section 3.

W e prove the  following functional central lim it theorem  and  Strassen's law  of the
itera ted  logarithm s. Kôno [ l l ]  a n d  Fukuyam a [7 ]  proved  these  theorem s f o r  some
type of multiplicative system s. W e extend these theorem s to the  case of weakly muti-
plicative systems satisfying (0.3).

F irs t w e  d e fin e  CTO, 11-valued random variables X 7, b y  Xn(AVA):=S i /An  a n d  is
linear in  [ll.j/A4, Aj + 1 /114] w here Sn , ---- alei+  ••• -1- anen•

Theorem 1 . L et {$,} be a sequence of random variables satisfying (0.1),

(0.3) sup II B < °° for some 3GE1, 2)

and either

(0.4) lim E((V - 1X9 - 1))=0
i * i

Or
CO

(0.5) E((V-1)(ej —1)) :5. p for some sequence {P i } w ith E  Pin< °C)

n=i

Let {a n } satisfy

(0.6) ••• -Fa ii a n d  an =o(A n ) as  n—>00

Then the distributions of  {X n } converges weakly on C[O, 1] to the W iener measure.

Under the condition on  B , can w eaken th e  co nd ition  th a t  {e n }  is uniform ly
bounded.

Theorem 2. Let {$n } satisfy (0.3).

(0.7) s u p  W a r  <0.0 for some 3 'e [1 , 2 ).

plicative system s satisfy ing m uch stronger conditions E 11-13,111<00 a n d
 EllB;•111<cor=i

E N
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Let and {an } satisfy

(0.8) A na n d  an lien ilc..=o(A n ) as n--00

Then the distributions of iS n / An } converges weakly to the standard normal distribution.
And moreover, i f  we suppose

(0.9) E K fo r  a ll nEN ,

then the distributions of {X „} converges weakly on C[0, 1] to the Wiener measure.

Theorem 3 .  (i) Let ien} satisfy (0.1) and (0.3), and {an } satisfy

(0.10) - - >00 .A 4  c
o  

a n d  a 4 = o (

logAlog as n

Then

PC{ XJ.V2log log M I is relatively compact in  C[0, 1])=1 .

(ii) Let {e„} satisfy (0.1), (0.3) and

(0.11) 11Ba2<0.0

Let {a n } satisfy
; (

(1og Agy-.) ---(0.12) A,2, 0 o a n d  
a =0

k as n oo fo r  some s >0.

Then

P({The cluster o f {X /V 2 - log log A4} in C[O, l]IcK)= .

(iii) Let len} satisfy (0.1), (0.3) and

(0.13) sup 'Mar <co fo r  some 6'E [1 , 2] .
r E N

Let {a n } satisfy

(0.14) A ; I 00 and  (1 .-==o (
( l

o
g  l o g

 A1 
i:14 )5 1 ( 2 - 5 ) )

as n--*00 .

Then

P({The cluster of {X/-V'2 log log A4 } i n  C[O, 1]IcK)=1 .

( i v )  Moreover i f  we suppose

(0.15) A?, 0 0  a n d  an,----0(At- ') as n-400 fo r  some >0 ,

then we have

P({The c luste r o f IX/../2 log log A41 in  C[0, 1 ]}=K )=1 ,

where K=ixeC[0, 1] : x(0)=0, x is absolutely continuous and •X dd x
t ) 2 dt<= 11.

Most im portant part of proof o f these theorems is to prove an estimate in lemma 1.
It is very meaningful to prove these theorems in functional form , because th e  usual

c e n tra l limit theorem a n d  th e  law o f the iterated logarithms follow from these and
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moreover, other lim it theorems can be derived o u t .  ( C f .  Billingsley [5 ]  a n d  Strassen
[2 1 ].)

T h e  author w ould  like  to  express h is heartily  thanks to  P rof. N . Kono and  Prof.
S . Watanabe fo r their advice and encouragement.

1. Proof of Theorem 1  and 2

W e use the following lemma due to  N16ricz [14].

Lemma B .  Under the conditions (0.1) and (0.2), f o r all r> 0  and {a„}
y 2

P( I S n  I 3)5_ CT exP (— 2(K2+B2-1-71A0 •

Using this lemma, we can prove

(1.1) exP( ,YA2

under the conditions (0.1) and (0.3) for a ll  { a n  } fo r  some constants C  an d  C ',  because
sup 1113,1r  <  co implies sup 11/3 »Jr <  c o . W e  s a y  th a t  s e q u e n c e  o f  random  variables
rE N rE N

satisfying (1.1) is  sub-gaussian. Discussion here asserts that uniformly bounded weakly
multiplicative systems a re  sub-gaussian.

U sing  (1 .1), tigh tness o f  sequence {X,  } is  e a s ily  p ro v e d . (Cf. Fukuyam a [7].)
Thus w e only have to  prove th e  weak convergence of finite dim ensional distributions
of {Xn }• W e prove 1-dimensional case using next theorem due to M cLeish [13]. After
that, m ultidim ensional c a se  be' comes tr iv ia l because o f  th e  well known Cramér-Wold
theorem (Cf. Billingsley [5]).

Theorem C .  Let {Cn .; :l_ j___<_k„} be a giv en triangular array  o f  random  variables
and put T= ITT (1± itC n ,1 ). Suppose f o r all real t,

J k

( a )  E(T ( b )  IT n } is uniformly integrable,

(c)
'
 -----> 1 an d  ( d )  max Cy, —> 0 as n--00.

j5k 15k „

Then the distribution o f  E C7,../ converges weakly to the standard normal distribution.
„

Now we put kn
,  n and Cn,i=(ail A n )e i .  T hen  w e have

T n e t 2 /<. 2 1 2  a n d  max I C,z -1 -< —A m a x  ai  I ---+0 .is . — isn -

W e prove (a ) in  the  following generalized form fo r the  convenience o f th e  la te r use.

Lemma 1. Let } satisfy  (0.3) and {a n }  satisfy  (0.6). Then

E ( 1 +  2...ia1ei\<   A n T e'/e ,, 1 \
i=1\ GW2-11'23-1)

f o r large enough n , where {G,} is a  real sequence satisfying

1/3
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G n max a;_<_. A.g and G oo
J s n

as n--+00 ,

s is  the dual of ô  i .e .  1/6+1/6=1 (in case 6=1, 1/6=0.), T=2 sup  li B r ilr ,  {An } is a
r E N

real sequence satisfy ing i l n = o(G 2 - 1  1 ' )  as n-->00 and {2n, is a triangular array  of
numbers satisfying 1271 ,i 1.. ,.

For the proof of (a), 2 = i t  for a l l  n , j  and A n = t  fo r  a l l  n .  Now we prove
Lemma 1. In case 6=1,

;in j a j iE l l ( 1 +  ' ) - 1
A„

•• • a i rE 2n
a;

••• An j  1

r = 1  ji<"<fr,-,n r A4*

Since T A / G  2 -4  as

7 1
<  - 4 ;  E Ir=1 G ;;" ii< " < irS n

TA n  \r(11.134iir
r=A G;i2 T  \ T

for large enough n , T A n IG ; i" - < 1 .  Thus we have

TA<  n
=  G ;, "

TA,, 
GW2

In case 5E(1, 2).

E  ( 1 +  À n 'fi
A ) - 1

E T r 2n, 2 n ,ir
r=1 ii.<"<irn

aj i .•• a j r  1  b

AT„ Tr r

E
r i i < - < i r

2 n , i i 2 . . i r T r ai i .•• a i r
)

n 1
A;; lb.52 — 15)1/'

r =1 •j1 K  < f r• z n  T a r  -11-4  r

E  ( A n T ) r E
r=i rsn

••• ai r  '..-2(a i 1 )2 (a i r )2)111(n, (liB r lirvy/5
AT, \An/ \An / r=1 T

A„Tyr E ( a i i  \ 2
 •  ( _a i r \ 2 \ l / y  1   )1 / 5

i i<.<./7 4 7 , \ A n \An ) )  \25 - 1

Since (TA n /GW2-1 /E)—+0 as n --co , for large enough n,

AnT
Iek k

\2 (a
r=1 Ji<.<i r Sn A n ) kAi r

n ) 2) 1/% 4 1 1 ) 1"

A n T (  1   \1 1 3 (  fit ( 1+  ,a1 W .

GW2 -1 /s k26— 1) k A 71 ) )

a 2i n a ,Making use of 1-1-x ,< e  H (1+ E = e .  Thus we have,— .J=1 A72, — j= 1  1 4 4

2 _,

r=1.
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A T 1  y l a
e l l s

T his completes the proof o f Lemma 1. Next we prove (c). We prove

1 L2
- - a .1$2

1=1

when either (0.4) o r (0.5) is assum ed. From  (0.4),

1E (—  a - - -  1 )
2

 = A >1.1 aiE((1-1)2)+ —

2  

E  aiaIE((V-1)( .1-1))
J--1

=-E1+E2
(1 2 +1) 2  7

‘ 1,i. ( K2+1)22 (K 2 -1-1)2

G #itzi G„ a s  n.-00

By (0.4), fo r a l l  E >0, there exists N su ch  th a t i-1-1 N  implies I E ( -1 ) ( - 1 ) I  < E
and

E  aa jE ((V --1 )( .1-1))
it4.1 tvn

Thus we have limsupi 1-.12 1 Since s is arbitrary , w e h a v e  proved (1.2) from (0.4).n_.0.
From (0.5)

(

 n a?E2 - 1 ) 22 n - r  9  2
A72, — „ o  r

•
2 n-1 n—r

A, EGn .11 r=o

2 E  r 0 a s  n--÷00
r=0

T his completes th e  proof o f theorem 1.

N ext w e prove theorem  2. F irs t w e  check  the  cond itions o f Theorem C . (a )
and (c) are  triv ia l because (0.11) implies (0.4). To prove (b), it is  su ffic ien t to  show
that sup E IT „12 <co.

IT nr= ili(1+ (Alei)

= IT l + A2 )  f i  a  4 _ 2n. j aj(e5-1)
247

2, Dn I

where D= a1+a l ,  and  2„, ) =D„./(22 a,H - Ail). Since 127,../12 --D71/Arl-1/G„, we can
apply Lemma 1 a n d  p ro v e  th a t Ei T n I2 is  b o u n d e d . (d )  is a  d irec t consequence of
(0.8). Tightness is proved by E (S )C  A L  b u t  i t  i s  a  consequence of (0 .7) and (0.9)
using the  Theorem 1 o f M6ricz [14].

(1.2) 1 as
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2 .  Proof o f  Theorem 3

T he  proof o f  (i) is  th e  sam e a s  th a t o f  Theorem 7 (1) in  F u k u yam a  [7 ], because
i t  u se s  o n ly  t h e  sub-gaussian property (1.1) o f  1 7,1. F o r th e  proofs of (ii), (iii) and
(iv), w e use the following theorem due to  Kuelbs [12].

Theorem D. Assume that

X„/V2 log log A 7
20  is relatively com pact in C [O, 1]})=1

and for all signed m easure v  with bounded variation on [0, 1],

X n (t)dv
P  —msup 

V2 log log A.7, •:---- R-1'1 
= 1

1 

holds. T h e n  w e  have

P({The cluster o f  41: 1 /V2 log log AU in  C [O, 1]}OEK)----= .

Further more suppose that

X n (t)dv
P  limsup V2 log lo  A 2g  n

then we have

PC{ The c luste r o f { X/V2 log log A }  in C [O, 1] } =-K)=1
where

2 1 5'

KF,, 0 = E [ 0 1 W(t A 0 ' )d -=v( t ) ) (2)[x , 1] )
2 d x .

0 0

( W (t) denotes the standard Brownian motion.)

First w e prepare som e notations.
P u t N-=1v1([0,1 ]),

0

0„,;(0=/ A?,A 1

A ? fo r  tE[O,

fo r  t [A-- -1-1--1 A l  and

1 otherwise

c,,,;=-- :On../(t)dv(t) and A , (ajc„..0 2

J= 1

W e have
1Ç n

X (t ) -= A E  aiO n Mei  a n d x„(t)dv(t):=  12, a i cn •
i l  j=1 o A n  i= 1

T h e  order of At,„ is calculated a s  follows.
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(2.1) A2 7urn ,— K2 1

71-wœ

This form ula is easily proved as an application of the functional central limit theorem
for the Rademacher sequence f r „ } .  L e t Y „ be a  C[0, 1]-valued random  variable de-
fined  in  t h e  sa m e  w a y  a s  X „ u s in g  {7-7, } instead o f  { e d . F u n c tio n a l central limit
theorem and uniform integrability imply

1 2
(2.2) l i m  E [ (  X, i (tA 0  ')dv(t)) 2 ]-  E [ (  B(t .A .0')d v (t ))].

0

Putting 0=1 and calculating the  expectations, we have (2.1). N ow  w e take 0 >1 and
take  p(r) satisfying .11 ( ,)<O r<A ( ,)+1 . We derive the conclusion of (ii) and (iii) from
(0.1),

(2.3) 1 P (r )
( a j C p ( r ) . .4 .0 2 K2v,

A /) ( r )  i = 1
a. s. as

and

(2.4) (. c je ;E 11 I+ ,V2 log log A )  L fo r a ll  12 N ,  fo r  some', >O.

Thus w e first prove (2.3) and (2.4) under the condition of (ii) o r  ( i i i ) .  F irs t w e  asume
the condition of (2 ). Since N , (0.12) and (2.1) implies

A
2
„,,(a  ic7

"
)2 = o (

(log AD”' )
Using this estimate,

E ( A 2
1 P ( r ) ( C 1 : 7 C P ( r ) . .0 2 ( e l - - lr ) 2E

1, ( r )  :7= 1

1 P(r)
 E (aicp(r),;) 4 E ((V -1 ) 2 )

A t.p ( r ) j= 1

a s  n-->00

2+ A dE (a i c p(r), 02 (a .ic p ( ,) ,.0 2 N,

max (a ic p ( ,) , 02=°((10g
<  (U( 2 ±1) 2 +2143Z112) 1

A 2v, p(r) isp(r) Al,(,))1+E)=-0(r-i-s).

Since this is a  term  of a convergent series, by the Beppo-Levi theorem, (2.3) is proved.
N ext w e prove (2.3) under the conditions of ( i i i ) .  Since I c. N , (0.14) and (2.1)

implies

AZ. (ajcn,;)2=o(
( l o g  l o g  A g ) 3 / ( 2 - 3 ) )

as

Since {E2 - 1 }  is  sub-gaussian, putting

II ,,=  T
(mj ,anx I 2) log log Al,

n -3 0 0

we have
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p
1 p ( r )

 E  (a j cp(r), j ) 2(ej-1)112

2,p(r) i=1

4AL „

l i p ( r ) 24 p ( r ) ( max (a j cp ( r ) , i )2)i‘p(r)

exp  (-4  log log OT) .

Since this is a  term of a convergent series, by the Borel-Canteil lemma, we have

1 p(r)
E  (a j cp ( r ) ,; ) 2(e.1- 1 )

A 2v,p(r) j=1
V2C'/H p (  7 . )f .  e .  a. s.

Thus (2.3) is proved.
Next we derive (2.4) from (0.3) and (0.14). Put

exp

log log i t g = 2 „, ,  an d  A  = N-V2 log log A , .

By (0.14), we can take 1/G,-=o((log log A )-3 /0 - 3 ) ) and this implies (TA„/G;1 2 - - 1 1 )=o(1).
Thus we can apply Lemma 1 and prove (2.4).

Now we derive the final conclusion from (0.1), (2.3) and (2 .4 ), usin g  the method
due to S. Takahashi. (Takahashi [ 2 2 ] )  Put 272 = K W 21o g  log A L  Making use of ex

(1+x) exp (x 2 /2+ x 13 )  (  I x (2.3), (2.4) and uniform boundedness and taking large
enough r ,  we can prove that

EEexp ( 2
A
P

 (  
r

 )  
P - ) Cp( r  ), ja j$j"- -  2 1 ) ( r )  P i i-j) { Cp( r ), ja j j} 2 - (1+26) K j-2-'-'4 ) ( r )  )1

A p ( r )  f = i 2 , 4 ( r  )  . 1 = 1 2

EP1T(1+  c " r " a l e i  N/2 log log Al,(r)).v=1 A ( )

XeXP( 213
,e4 )

(
i
r
C:  Pg ! Cp( r ), ja j I 3- (1+2s) *1‘ ))1

2
1/1)(r) )

L exp (2 ; ) ( r ) K 3  N 3 max I ai l (1-1-2E) 1 ° ) ' 1 2 1 )(r ) )
Ylp(r) j5p(r) - 2

L exp (log log Al, ( 7 .) o(1)—(1 +2E) log log Al,(r))

Since this is a  term of convergent series, by Beppo-Levi's theorem, we have

to conclude

1 m 2 ( r )

1 1Xp ( r ) c/i)—(1d-s)K,2,,,)= — co
Ap(T)  0

1A,1.-p( r ) clv
limsup °   I f ,  i a. s. .

-V2 log log 24 ( T )

For given n , take r  a s  p (r-1 )<  ir_. p ( r) .  Then
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A/2 n(lo

t )

 g  M
v(dt) —)‘ X P (r )(t)21 V(dt)0 N/2 log log (,)

r X n(t)— X p (r)(t)
 v ( d t ) d -   1

1
A / 2  lo g  lo g A ,

X
P

(r)v(dt).
,V2 log log 24?)( A / 2  log log itg

=11 +12 .

as 1/ 0 0  is  trivial.

1/11-5- APsr" { X  ( r ) (  X p ( r ) ( t ) } 1 ) ( d t )
/  2 log log A. ( 7 ._, )A  „ 0 P II) r  )

1 „  1

+ ( A lli
(
n

r )  1 )1 YoXp ( r )v(dt)

The first part tends to  0 a. s. as 1 by equi-continuity and the second part is trivial.
Thus w e have proved

„dv
limsup 0 

K t ) . a. s.
7,— N/2 log log A7

2,

Flere w e end the proof of (2).
The proof of

limsupV2 ° a. s.
n-oe • log log A7

2, '

is  the same as that in Fukuyama [7], because it use o n ly  the sub-gaussian property
of

3 . Examples

We consider on the sequence e7,--=-V- 2- cos 27, x  on the probability space ([0, dx)
when the sequence {Ak } of real numbers satisfies Rk --400 as k---000 an d  2 k -1 -1 /2 k  2  for
all k. {e } i s  a uniformly bounded weakly multiplicative system such that (0.1), (0.3)
and (0.7) hold with S i n c e

1/2 r  

I E(e.,••• 7)1 2 r _, ±.]. cos(2,2.7.-± ••• -±2 1)xdx 2 r(Rn — 2 7 ' 1 )  •

-2] I E(En i ••• n r ) I -5- 1-21 1/2-7.(2nr—  • • • — 2 4 1)' ,

r ogni<—<nr

co
▪ 1 / 2 r  E (2nr— ••• —2n2----1) - 1

1 5 71 2<"<nr

A/2.1' (2n r— --2 n 2 ) -1
0 7 2 <••<n r

▪ •••

Thus w e have l'r f_<--V 2 for all r. Similarly, we have 11B n l i i r 2  .

Current Address
DEPARTMENT OF MATHEMATICS INSTITUTE OF MATHEMATICS

KYOTO UNIVERSITY UNIVERSITY OF TSUKUBA



Functional central limit theorem 635

References

[ 1 ] G. A le x its , Convergence problem of orthogonal series, Académiai Kiad6/Pergamon Press,
1961.

[ 2 ] G. A le x its , S ur la  sommabilité des séries orthogonales, Acta M ath. Acad. Sci. H ungar., 4
(1953), 181-188.

[ 3 ] G. Alexits-A . Sharm a, On the convergence of multiplicatively orthogonal series, Acta Math.
Acad. Sci. Hungar., 22 (1971), 257-266.

[ 4 ] I. B erk e s , On Strassen 's version of the  log log  law  for m ultiplicative systems, Studia Sci.
Math. Hungar., 8 (1973), 425-431.

[ 5 ] P . B illingsley, Convergence of probability measures, J. Wiley, 1968.
6  ]  E. Dudley and P . H a ll, T h e  gaussian  la w  a n d  lacun ary  s e t s  o f  ch arac te rs , J . Austral.

M ath. Soc., 27 (1979), 91-107.
[  7  1 K . F ukuyam a, Some limit theorem of almost periodic function systems under the relative

measure, J. Math. Kyoto Univ., 28 (1988), 557-577.
[ 8 ] V. F. G aposkin, On the law  of and  iterated logarithms fo r  strongly multiplicative systems,

Theory Prob. Appl., 6 (1969), 493-496.
[ 9 ] M . K a c , Probability methods in  some problems of analysis and number theory, Bull. Amer.

M ath. Soc., 55 (1949), 641-665.
[10] A. Kolmogorov, Une contribution  à  l'é tu d e  de la convergence des séries de Fourier, Fund.

M ath., 5 ( 1924), 26-27.
[11] N . K ô n o , Functional central limit theorem and log log law for multiplicative systems, Acta

Math. Hungar., 52 (1988), 233-288.
[12] J . K u elb s , A  strong convergence theorem for Banach space valued random variables, Ann.

Probab., 4 (1976), 744-771.
[13] D .L . M cLeish , Dependent central limit theorem and invariance principles, Ann. Probab., 2

(1974), 620-628.
[14] F . M 6 ricz , O n the  law  o f  th e  iterated logarithms and  related results fo r weakly multipli-

cative systems, Analysis Math., 2 ( 1976), 211-229.
[15] F . M6ricz, On the convergence properties of weakly multiplcative systems, Acta Sci. Math.

Szeged, 38 (1976), 127-144.
[16] C. J. Preston, O n the convergence of m ultiylicatively orthogonal series, Proc. Amer. Math.

Soc., 28 ( 1971), 453-455.
[17] P .  Révész, Some remarks o n  strongly m ultiplicative system s, A c ta  M a th . A c a d . Sci.

Hungar., 16 (1965), 441-446.
[18] P . R év ész , T he  law  o f  th e  iterated logarithm fo r m ultip lica tive  system s, Indiana Univ.

M ath. J., 21 (1972), 557-564.
[19] P . R év ész , A  n ew  law  o f  t h e  iterated logarithm fo r m ultip lica tive  systems, A cta  Sci.

M ath. Szeged, 34 (1973), 349-358.
[20] R . Salem-A. Z ygm und, O n  lacunary  trigonometric series, P ro c . N at. Acad. Sci. USA 33

(1947), 333-338.
[21] V . S tra ssen , A n  invariace principle f o r  t h e  la w  o f  t h e  iterated logarithm , Z. Wahrsh.

Verw. Geb., 3 (1964), 211-226.
[ 2 2 ]  S . T akahash i, N otes on the law  o f th e  iterated logarithm , S tu d ia  S c i. M ath . H ungar., 7

(1972), 21-24.
F 2 3 ] A . Z ygm und, On the convergence of lacunary trigonometric series, Fund. M ath., 16 (1930),

90-97, Correction, ibid., 18 (1932), 312.


