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On the mean curvature of surface with boundary

By

Keiichi SHIBATA

0. Introduction

The present study is concerned with the mean curvature of surfaces located in
the Euclidean space R®. A great deal of interests has long been focussed upon the
question in the scope of global analysis, under what condition such surfaces can possess
an everywhere constant mean curvature at all.

The case of compact surface, namely, of the surface without boundary was treated
mainly from the standpoint of isoperimetric problem, and the satisfactory results seem
to have been achieved about in the last decade (cf. Barbosa-do Carmo [1], Osserman
[5]). As for the case of surface with boundary, on the other hand, the theory remains
still in its infancy and has much room to be investigated.

Our contribution in this paper will be, above all, (a) completion of a criterion for
constancy of mean curvature with respect to volume and surface-area in the conditioned
variation arguments up to its dual; and (b) presentation of a new convexity theorem
valid for every surface with boundary that has a constant mean curvature.

To be precise, §1 explains our situation, setting the problem and prepares the
tools used. In §2 we derive the first variations of volume- and area-functionals in our
own terms. We state and prove, in §3, our main theorems in this paper, among
which are included a duality theorem for a conditioned critical point problem in calculus
of variations, as well as the convexity theorem, which answers a question raised by
Mrs. M. Koiso (cf. Koiso [4]). Partial reason for our restriction of the ambient space
to R® not to R™ (n=3) lies in an attempt to adopt a few ideas together with their
wordings from classical physics, relevant to the soap bubble experiment by blowing the
tube. We expose such point of view in §4, by virtue of which we have been able to
obtain somewhat exacter information for the convexity than in §3.

1. Preliminaries

Let @={(u, v)€ R*|u*+1*<1} denote the unit open disk in the w=u++/—1 v-plane.
Given a Jordan curve 7 embedded in R® we can define the differential-geometric orien-
table C%smooth surface X =x(w) of disk type which spans 7, as the mapping, subject
to the three requirements:

1° x(w)eC%2, RNCXL2, R%);

2° x(w) is an immersion of 2 into R®;
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3° x(w)|se is a homeomorphism 92 — 7.

Under these assumptions the surface x(u, v) in question carries at every point its
Gaussian frame consisting of the tangent vectors x,, x, and the unit normal vector e
to it in the right-handed system in this order, which allows us to define the positively
oriented unit exterior normal n to be identical with e.

In the following we shall commit ourselves to mean sometimes the above defined
surface x(u, v) under a briefer naming surface with boundary 7y without particular
reference to its smoothness in regard to the parametrization. The locus <x(w)> =
{x(w)|lwe R} is comprised, of course, in some open ball centred at the origin X =0
with sufficiently large radius, say R. A significant theorem is known to us in terms
of this quantity R:

EXISTENCE THEOREM (Hildebrandt [3]). For any real number H satisfying |H|R<1
there exists at least one surface with boundary v, which has the constant mean curvature H.

Beside this central proposition there is another useful lemma which lends itself to
production of many surfaces admissible to comparison as its fit neighbourhood.

DISTORTION THEOREM (Bohme-Tomi [1]). Any sufficiently smooth interior distortion
of the surface x(w) with boundary 7 is expressed uniquely in the form

1) x(w; H=x(w)+tA(w)n(x(w))

in terms of a real-valued function Aw) with a support on a closed disk D={w||w—w,| <a}
comprised in 2, where t is a real parameter ranging over some open interval (—e, €)
with the origin in its interior.

Henceforth we take A(w) in the class CXD, R) with variable closed subdomain D
of £ and will call

(1) x(w; Ad)=x(w)+dtAw)n(x(w)), (14t «1)

especially, to be a small distortion of x(w). Of course, x(w; 0) is identical with
x(w) itself.

Let w be any value of D. Taking an arbitrary point @ on the ray X =tn(x(w))
(0<|t|<+0), we introduce a spatial polar coordinates (r, ¢, ) with the pole at Q.
Then there exists a neighbourhood U=U(w) of w, such that the ray mw) meets
the locus «x(w; t)>» just at a single point, so far as w belongs to U(w). The pole @
may alter with the choice of w. Letting w vary all over D, we have a neighbourhood
system {U(w)}yep, from which we can extract a finite sub-collection {U;};_1.2...m
convering D.

Proposition 1. Suppose a single-valued continuous function f;(p)is assigned to every
point p of W;=x(U;) (=1, 2, ---, m), so that the surface integral

SS FAp)rsinfddo
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over W; may be well dejined. If do denotes the area element of the surface x(w), then
there exists a continuous function f(x(w)) defined on the whole closed disk D satisfying

1* f(x(w)lwev;=f(p)
|, feundoten=| (£ pr*sinodgdo.
J

Iy

(7=1,2, -, m)

Proof. With the .aid of the technique of Partition of Unity we readily see the
conclusion to hold.

2. Variational formulae for volume and area functionals

This section is devoted to derive the first variations corresponding to the distortion
(I") in terms of A(w), whose counterparts in surfaces without boudary are just the
variations of volume and area respectively. According to the author’s opinion it is
quite unnatural to assign anyway a reaosnable volume functional V[x] to the surface
with boundary, unlike for a compact surface. On the other hand one will be free to
measure, however, the variation of volume for a small distortion of the original surface.
As for the area functional A[x], lack of the boundary rectifiability causes the unmea-
surability of A[x] itself, but the areal increment 4A in the small is defined as we
show in what follows.

Definition 1. (Increment of area functional)

AA:SESm(w; Myxxw; At)ldu/\dv—gl_)glxu(w; 0)Xxo(w: 0)| duAdy

Definition 2. (Increment of volume functional)

The volume increment 4V shall be the signed sum of volumes for each component,
into which the spatial open set bounded by the loci of x(w; 0) and of x(w; 4t) is
decomposed. Here the sign to be attached to the volume of each component is de-
termined according as that of A(w) on the component in question.

Proposition 2. The jirst variation of volume with respect to the distortion (1') is

@) 5V=5t§92(w)da(x(w))
at t=0.

Proof. Letting w,eD be arbitrary, we write P,.=x(w,; 0) for brevity. Take a
pole @, on the normal X=tn(P,) (0<|t|<+ o) to set up a polar condinate system in
the small. There is a neighbourhood U, of w,, such that for every point P on Il;=

x(U,; 0) the radius vector @Q,, P meets the small distortion x(w ; 4t) only at one point

_ — —>

P To the increment Adr=P, P=0q,, P—Q,, P of radius vector r there corresponds a
unique continuous function A(w), such that A(w)dr=2Aw)dt|n(x(w))|.

In reference to the above polar coordinate system we consider an appropriate
curvilinear quadrangular cone with vertex Q; bounded by a pair of contiguous azimuthal
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planes and a pair of contiguous zenithal cones, which intersects a pair of spheres
{P|Q,, P=p} and {P|Q,, P=p+4dp} (r, r+dr<[p, p+4p]), in order to produce a
curvilinear hexahedron 2. If the cone is taken, so that the ray Qj-_lsl may be its
central axis and that the base surface-portion of 2 on the smaller circumference may
have the area p®sind 4446, then the volume of X is dpp?sind 4¢40. Therefore the
contribution of the subdomain bounded by «x(w; 0)» and <(x; 4{)>» to 4V within
S must be equal to A(w)dr r*sinf 4¢46. So we can calculate the full contribution
on I, to the volume change at

g Sidrrsinﬁ d¢d0=§ Aw)dt do(x(w)),
Uy Uy
from which follows
AV=44J0wddxwm
by Proposition 1. q.e.d.

Concerning the sign of the principal curvature 1/R; (j=1, 2) at one point of a
surface (1), let us agree as follows:

Definition 3. (sign of principal curvatures)
When the centre of curvature for R; lies on the interior normal X=zn(x(w; t)
(r<C0), then R;>0: otherwise, R;<0 (=1, 2).”

Proposition 3. The first variation of the surface-area with respect to the distortion
(1) is equal to

1 N 1
Ryt Ry )47

6A=5tggl(w)(
at t=0.

Proof. Letting w,=D be at will, we set Py=x(w,; 4t), at which we draw the
normal J1: x=tn(P,) (—o<rt<+o) to the surface <Kx(w; 4t)». Let T meet
Lx(w; 0)> at a point P, and let a plane I/ containing 91 cut the two surfaces
Lx(w; 48> and <x(w; 0)> along the curves C and C respectively, the former of
which is a what we call “normal section” of this surface through P.

We are now interested in the case, in which the cutting plane IT produces a
specific intersection with «x(w; 4¢)», namely, where C accords with the lines of
principal curvature. In this case I and C are denoted by II; and C, respectively :
correspondingly the intersection of II; with «x(w; 0)» is written as C,;, which may
not necessarily coincide with the lines of principal curvature on <x(w; 0)> : here C,
and 52 can be taken for the parametric u- and wv-curve of the surface respectively,
this circumstance being easily realized at request via appropriate parameter trans-

formation.
—

To the given A(w) there corresponds a C-function i(w), such that B,, Py=— i(w.)4t.

1) On account of the immersedness assumption, the radii of principal curvature nowhere vanish.
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Denote by @, the centre of curvature for 5,, which finds itself, of course, on the
normal Jl. At an adequate choice of A(w) we may assume from the outset that the
radii of principal curvature for € x(w; 4t» at w=w, are both finite, i.e., —oo<ﬁ,=
ﬁj(ﬁo)<+oo, without loss of generality. Then the point B, (resp. P,) stands at the
distance | R,| (resp. |R;—4t|) from Q,.

Let us work as follows: ﬁj is a point on ¢ ; sufficiently near 130, % that the
parameter values (u, v) for them may fall on D. Let the straight line Qy, 13, meet C;
at the point P;. In this way we have a pair of narrow sectors on each II;, one of

— c— N
which has the radii Q,, P;, Q;, P; and the arc P, P;, the other the radii Q;, P, Q;, P;
—~ / <z

and the arc P,, P;. If the central angle 46 is sufficiently small, the ratio P, P;: P, fN’,
is approximately equal to the ratio Q;, Po: @;, Po up to the infinitesimals of higher
order than 4. Hence we have

|xu(wo; Odu|=(|xu(wo; 4)Au|| R \(wo)—Awo)dt|/| Bi(ws))+o(du),

|xwo; 0v|=(Ix we; 4)Av|| Rowo)—Xwo)dt|/| Ro(wao)l)+o(4v).
So the area element of x(w; 0) at w=w, reads
[xu(wo; 0)Xx(wo; 0)dundy
= 1wt/ Ry(wo)! 11— (A(wa)dt/ Ro(wa)| | xu(wa s 46X xwa; ) duAdv
=1 Ry(wo)—Awodt| | Rowo)—Awo)dt| 18 (we)XEwo) duAdv,

where & stands for the exterior unit normal vector of x(w; 4t). Therefore

Aare)= [(1xuws axxw; 401=xuws Oxaxws ODdundy

i

SJ( | Bo(0) Ro(w)] — | Bi(w)— Hw)dt | Bow)— Aw)dt)) |8, X8, duAdv

iAthS(I B (0)+ Bow)i(w) | 8 X3, | duAdv+ o4t

. 1 1 '
tdthSl(w)(—ka—)+—ﬁm)l X (W)X x(w)| du Adv+o(dt).

But R,(w)ZR(x(w)), A(w)ZA(w) (j=1, 2) as 4t—0, so we conclude

Il

1 1
o( Ri(x(w)) + Ry(x(w))

6A:51S YAw(dotx(w).

q.e.d.

3. Main theorems

Suppose, there exists a surface x(w; 0) with boundary, whose mean curvatures
satisfy

2) Note that R,R, has a definite sign by virtue of 1). The signs * take place according as
R.R, is positive or negative respectively.
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1 1 ~
& o ety Ry ) o =0

under all distortions of type (1’) such that
(4) Sgl(w)da(x(w))———o .

Then, if (1/R(x(w))+(1/R(x(w)))zconst. on £, it is possible to choose some A*(w)
with the normalization (4) satisfying

1 1
Lot N ety Ry 47N >0,

which contradicts the assumption.

Conversely, the condition (1/R,(x(w)))+(1/R,(x(w)))=const. everywhere on £ ob-
viously implies (3) for all A(w) satisfying (4). Thus, in view of Propositions 2 and 3
we have proved

Theorem 1. The surface of class C(2, RONCHKL, R®) with boundary has a constant
mean curvature if and only if its surface-area is critical among all surfaces of this class
that bears no change of volume with respect to the original one.

Remark 1. Apart from some kinds of known proofs leading to the similar con-
clusion as above theorem (cf. Hildebrandt [3], Barbosa-do Carmo [1], Koiso [5]), the
present line of argument just exposed makes it possible to complement the statement
to its dual in the conditioned variational problem as

Theorem 2. The surface x(w; 0) with boundary y has a. constant mean curvaiure
if and only if its volume is critical compared with all surfaces with the same area.

Proof. On closer inspection into the arguments so far one will notice that the
reasoning that has derived Theorem 1 has only to be repeated almost verbatim.

Theorem 3. If the surface with boundary has a constant mean curvature H+#0
everywhere, it is convex.

Proof. Under the condition that such a surface x(w; 0) has the constant mean
curvature H, we shall show (1/R,)X1/R,)>0 everywhere on it.

(a) Suppose on the contrarv that <« x(w; 0)>» contains a point x, where
Ri(x0)Ry(x,)<<0. Then x, is a hyperbolic point of this surface, namely, x(w: 0)
behaves in a neighbourhood of x, approximately like near the saddle point of the
hyperbolic paraboloid. Because we have only to rotate the x-space R’={(x', x?, x")}
if necessary, we may assume from the outset that the outer normal e at x, points to
the positive x%-axis. Then «x(w; 0)» contains a closed subdomain B, which enjoys
the followinf properties:

1° 0B is a smooth Jordan curve enclosing the point x, in its interior, such that
both Max x* and Minx® on B are taken on 0B
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2° for any given >0, Osc x*=Max x*~Min x® on B is bounded above by ¢;

3° there exists a pair of cylinders K and K, both of which intersect <x(w; 0)>
along 0B

4° K (resp. K) is higher (resp. lower) than B to the effiect that for any points
PeK (resp. K), P’ B, the third component x® of P is not less (resp. greater) than
that of P’; further the former is actually greater (resp. less) than the latter except
on 0B;

(b) Note that

5) area K <area B, area K <area B.

Let B denote the parameter subdomain of £, such that B={w|x(w; 0)=DB}. Then it
is possible to find a nice parametrization g(w; 0) of K on B, such that the mapping
is continuous on B, smooth (of class C*) in the interior to B. Define the modification
z(w)=z(w; 0) of x(w; 0) as follows:
B x(w; 0) on £\B,
(6) z(w; 0)=
y(w; 0) on B.

Taking a compact subdomain A of £, such that CloBCIntACCloAC 2, we introduce
a function a(w)eCH(2, R*) supported by A to define a distortion of z(w ; 0) of type (1):

) z(w; P)=z(w; 0)+pa(w)n(z(w)),

where 7 is a positive real number.
(¢) In view of (5), (6) and (7) there is a suitable choice of 5 for any f(w), such that

® A[z(2; ]=A[x(2; 0)].

(d) With (8) in our eyes we combine (6), (7) with 4° of (a). We see that for any
£ and 7, z(w; %) is an admissible surface in the variational problem in Theorem 2,
while «Zz(w: 7)> is located higher than the original one <x(w; 0)».

(e) We might work on K in entirely the same way as done earlier with K, namely,
the parametrization y(w; 0) of K, the modification z(w; 0), a real-valued smooth
function pu(w) of class C(£2, R~) with support A(BCAC®) and the distortion z(w; )
with a similar real positive parameter x enter into consideration in place of y(w; 0),
z(w; 0), #(w) and z(w; ) aimed at finds itself in its turn, at the position lower than
Lx(w; 0)>.

(f) We conclude from (d), (e) and 2° of (a) that the admissible surfaces, both
higher and lower, can be found as close to x(w; 0) as one pleases. In other words,
the volume V[x(w; 0)] cannot be critical among all the admissible surfaces satisfying
(3), which is a contradiction on account of Theorem 2. q.e.d.

4. Principle of Virtual Work

The present author now wishes to propose a plan associating the purely mathema-
tical situation as well as the results so far investigated with a physical interpretation
by regarding the parameter t=(—e, ¢) as a time variable. Such circle of ideas seems
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neither dogmatic nor novel, but can often be found in significant mathematical
works, especially in the ones on global analysis. For example, in Eells-Sampson [2]
the parameter ¢ of time enters the energy functional and the harmonic maps have
successfully been dealt with in connexion with the heat equation.

Nevertheless our intention cannot surpass further the mere adoption of physical
terminology : so, what we call surface here shall be of vanishing thickness, an every-
where constant density and a constant surface-tension coefficient as well. In addition,
we commit ourselves to take no influence of gravity into consideration.

To any point x, on the surface S={x(w; 0)|we 2} there corresponds an open ball
neighbourhood B(x,), such that the surface-portion S,=SNB(x,) decomposes the open
set B(x,)\S, into the union of just two connected components O+ and O-. We agree
to regard a point p=S, as two different boundary points p* and p-, which are acces-
sible from the interior of the spatial domains O* and O- respectively. If we set Sj=
{p*1p=S,}, we may assume without losing the generality that the correspondence S}
Sp* into 2 is orientation-preserving and S;=p- into £ orientation-reversing. The
compact set {x(w; 0)]weD} can be covered by some finite sub-collection {®B,};-1.2...m
of the neighbourhood system \ejﬁ%(x): each pair of boundaries S of the two spatial

domains corresponding to B;, which are originated from a portion of S, are connected
. - . . . m m

with one another with running index 1<j<m. We may call S“*:jU S¥ and S-= _U15;
2 =

the top and the bottom of the surface-portion S=<x(D; 0)> respectively.®

We want here to quote some physical facts and laws, which we expose in our
own locution. The first of them is the postulate that the atmospheric pressure is a
3-vector acting perpendicularly on the wall, which depends only on the space coord-
inates. So, if p*(x) denote the atmospheric pressures acting on the sides S* res-
pectively, then p*(x) (resp. p~(x)) is an inward- (resp. outward-) pointing normal vector
at the point x with the absolute value |p*(x)| (resp. |p~(x)|).

Secondly we refer to a physical law known as ‘Principle of Virtual Work’, which
is classical in mechanics. Namely, we consider the infinitesimal displacement
(0t)n(x(w))A(w) of one point x(w) on the surface x(w: 0) has been caused by the ex-
ternal force —p*(x(w))+p-(x(w)) acting at this point. In analogy with the case of
the particle-system in the elementary mechanics, the inner product

{=p*(x(w)+p-(x(w)), (@ )n(x(wW)HAw)>
=(0tX— I p*(x(w)| + | p~(x(w)) | DAw)

of these two vectors, parallel to each other, is the work for the infinitesimal displace-
ment of this point. If we recall the fact that the product of the area element with
the small displacement (9) to the normal direction makes up the volume element
(Proposition 2), we are able to calculate the work to change the volume against the
external force as follows: ' '

()

Proposition 4. The total work W(0V) to be done for the infinitesimal volume change

3) The index m does not necessarily indicate the same at each occurrence.
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is equal to
IV(BV):&SQ(—— [p*(x(w) |+ p~(x(w) DA w)da(x(w)).

Legitimacy of the following definition, too, will readily be approved in view of
(9) and of the classical ‘Priciple of Virtual Work’ for the particle system.

Definition 4. The surface x(w; 0) is said to be stable under the distortion (1), if
the condition

(10) Sﬁ(— [p(x(w)| + | p (x()NA(w)do(x(w))=0
is satisfied for every A(w)=C%D, R), (DC Q).

Remark 2, In accordance with the above Proposition 4, it is known to us that
the work 1¥(dA) to be done for the infinitesimal change of surface area A is given in
the form W(@A)=adA by means of an absoliute constant a, the coefficient of surface-
tension, which is proper for the material constituting the surface.

Theorem 4. [If a stable surface x(w; 0) with boundary vy provides a critical value
of the surface-area among all surfaces x(w; t)(—e<t<e) of class CY3, RHYNCHR, R
with the same boundary, then x(w; 0) fulfills Laplace-Thomson’s formula

1 1
—[p*(x)| + | p(x)] :“(_R. TR Teo) ).
Proof. We may assume that

1 1
S(’( Rix(w)) Ry(x(w))

is valid for all Aw)eC¥f, R) satisfying

(11

+ )z(w)da(x(w))zo

(12) Sa(— [pH( x|+ p~(x(w)NAw)da(x(w))=0.

Then we notice that

()= |p* (o)) + 5N =G F i)

has a constant sign all over 2.
In fact, suppose on the contrary that £ contains non-void subsets G*, for which

(13) gw)>0.  (weGH),
14) gw)<0,  (weGH).

We can choose a A(w) such as to satisfy (12) and to be positive and negative on G*
and G- respectively. Multiplying this A(w) on both sides of (13), (14) and adding them
together, we see that the left-hand side in (11) must be negative, which is a contradic-
tion. Hence we may assume without loss of generality that g(w)=0 on Q.

In order to show that g(w)=0 throughout £, we suppose, contrary to the assertion
that 2 contains a point w, such g(w)>0 in a neighbourhood of w, It is possible to
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take a A(w) admitted to the consideration at hand, such that A(w,)>0,

[ gwacuydatew>0

Sg(~ [ p*(x(w) |+ p~(x(w) A w)da(x(w))=0.
It contradicts the assumption at the beginning of this proof. q.e.d.

Proposition 5. For any distortion of surface with boundary with vanishing volume
variation, the work done to change the volume must trivially be zero.

Hence combination of Theorems 1,3,4 with Proposition 5 yields the

Corollary. The difference of the atomospheric pressures working on the two sides
of a stable sur face with boundary is consltant at every point on it. The surface is convex
towards the side, on which the storonger pressure is acting.

Remark 3. The Laplace-Thomson formula has hitherto been derived under the
assumption that the surface is in the state of thermodynamic equilibrium, i.e., W(V)
+W(@A)=0 for all distortions. Our result (Theorem 4) is proved under the weaker
assumption of stability (10).
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