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On the mean curvature of surface with boundary
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Keiichi SHIBATA

O. Introduction

The present study is concerned with th e  mean curvature o f su rfaces located in
th e  Euclidean space R 3 . A  great deal o f  interests has long been focussed upon the
question in the scope of global analysis, under what condition such surfaces can possess
an everywhere constant mean curvature at all.

The case of compact surface, namely, of the surface without boundary was treated
mainly from the standpoint of isoperimetric problem, and the satisfactory results seem
to  have been achieved about in the last decade (cf. Barbosa-do Carmo [1], Osserman
[5 ]) . A s  fo r  the case of surface with boundary, on the other hand, the theory remains
still in  its infancy and has much room to be investigated.

Our contribution in this paper will be, above a ll, (a ) completion o f  a  criterion for
constancy o f mean curvature with respect to volume and surface-area in the conditioned
variation arguments up to its dual ; and (b) presentation o f  a  new convexity theorem
valid for every surface with boundary that has a constant mean curvature.

To be precise, § 1 explains our situation, se ttin g  th e  problem a n d  prepares the
too ls u sed . In § 2 we derive the first variations of volume- and area-functionals in our
o w n  te r m s . W e  s ta te  a n d  p ro v e , in  §  3 , our main theorems in  this paper, among
which are included a  duality theorem for a conditioned critical point problem in calculus
of variations, as w ell as the convexity theorem, which answers a question raised by
Mrs. M. Koiso (cf. Koiso [4 ]). Partial reason for our restriction of the ambient space
t o  R 3 ,  n o t  t o  Rn (n lies in  an attempt to adopt a  few ideas together with their
wordings from classical physics, relevant to  the soap bubble experiment by blowing the
tu b e . We expose such point of v iew  in § 4, by virtue o f  w hich w e have been able to
obtain somewhat exacter information for the convexity than in § 3.

1 .  Preliminaries

Let Q= {(u, v)E R 2 u 2 + v2 <1 } denote the unit open disk in the w= u +.‘/-1 v-plane.
Given a Jordan curve r embedded in  R 3 w e can define the differential-geometric orien-
table C 2 -smooth surface X  =x(w ) of disk type which spans r, as the mapping, subject
to  the three requirements :

10 x ( w ) C ° ( , ( j ,  R 3 )n C 2 (f2, R ');
2 °  x ( w )  is  an immersion of Q into R 3 ;
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30 x (w )IQ  is  a  homeomorphism aQ r.
Under these assumptions the surface x(u, v) in  question carries a t every  point its

Gaussian frame consisting of the  tangent vectors x u , x, and  the  un it no rm al vector e
to  it  in  the  right-handed system in  this order, which allows us to define the positively
oriented unit exterior normal n  to  be identical w ith e.

In  the  following we shall commit ourselves to m ean som etim es th e  above defined
surface  x(u, y )  u n d e r a  b r ie f e r  nam ing surf ace  i v i th  boundary  r without particular
reference to its smoothness in  regard  t o  th e  p a ram e triza tio n . T h e  locus « x (w )> =
{x(w)lw  }  is  com prised , o f  c o u rse , in  some open ball centred at the  origin X = 0
with sufficiently large radius, sa y  R .  A  significant theorem  is know n to u s  in  terms
of th is quantity  R

EXISTENCE TH E O R E M  (Hildebrandt [3 ] ) .  For any  real num ber H satisfy ing IHIR <1
there exists at least one surface with boundary r, w hich has the constant mean curvature H.

Beside this central proposition there is another useful lem m a w hich lends itself to
production of many surfaces admissible to comparison a s  its  f it neighbourhood.

DISTORTION THEOREM (Böhme-Tomi E l l .  A ny sufficiently smooth interior distortion
of the surface x (w ) w ith boundary  r is expressed uniquely  in the form

(1) x(w  ; t)= x(w )d-t2(w )n(x (w ))

in terms of  a real-valued function 2(w) with a support on a closed disk D-- ---={wI I w— w 0 J a }
com prised in  Q , w here t  i s  a real Param eter ranging ov er som e open interv al ( -6 , 6 )
w ith the origin in its interior.

Henceforth we take 2(w) in  the  c lass Cg(D, R ) w ith  variab le  closed subdomain D
o f D and will call

(1') x(w  ; Z lt)- x(w )+ Ja(w )n(x(w )) , (I zit f <1)

especially, to be a  sm all distortion o f  x (w ) .  O f c o u rse , x(w  ; 0) is  iden tica l w ith
x(w) itself.

L e t w be any value of D. T a k in g  a n  arbitrary  poin t Q o n  th e  r a y  X = --tn(x(w))
(0< I t I <-1-00), w e in tro d u ce  a  spa tia l po la r coordinates (r, ç5 ,  0) w ith  the pole  a t  Q.
Then there exists a  neighbourhood U=U(w ) o f  w, s u c h  th a t  t h e  r a y  Q, x (w ) meets
the locus (x (w  ; t ) »  ju s t  a t  a  single point, so  fa r  a s  co belongs to U(w ). The pole Q
may alter with the choice o f  w .  L etting w vary  a ll over D, w e  have a  neighbourhood
system  {U(w)} weD, f ro m  w h ic h  w e  c a n  e x tra c t  a  f in ite  sub-collection
convering D.

Proposition 1. Suppose a single-valued continuous function  f i ( p )  is assigned to every
Point p of Iti =x(u i ) (j=1, 2, ••• , ni), so that the surface integral

i(P)r 2 s in 0 d0 d0
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over 11;  m ay  be w ell def ined. I f  du denotes the area elem ent of the surface x(w), then
there exists a continuous function f(x (w )) defined on the whole closed disk B satisfying

f(x(w))I weu i = f J (p )

(j=1, 2, ••• , in)
2° u . i f (x(w))da(x(w))= f ; (p)r 2 sin0 dy6d0 .

11

P ro o f . With th e  aid of the technique of Partition  o f Unity  w e read ily  see the
conclusion to hold.

2 .  Variational formulae for volume and area functionals

This section is devoted to derive th e  first variations corresponding to the distortion
(1 ') i n  terms o f  2(w), whose counterparts in surfaces without boudary a re  just the
variations of volum e and area respectively. According to t h e  author's opinion it is
quite unnatural to assign anyway a  reaosnable volume functional V [x ]  to the surface
with boundary, unlike fo r a  com p ac t su rface . O n  th e  other hand o n e  will be free  to
measure, however, the variation of volume for a small distortion of the original surface.
A s fo r the  area functional  A [ x ] ,  lack of th e  boundary rectifiability causes the unmea-
surability o f A [x ]  itself, b u t th e  areal increment J A  i n  t h e  small is defined a s  we
show  in  what follows.

Definition 1. (Increment of area functional)

IA=1 51 x t i (w ; At)x x v (w ; 401 du A dv 51x„(w ; 0)x x v (w ; 0)IdU A dV

Definition 2 .  (Increment of volume functional)
The volum e increment A V  shall be th e  signed sum of volumes for each component,

into which th e  s p a t ia l  o p e n  s e t  bounded by the  loci of x(w  ; 0) an d  o f x(w ; A t) is
decomposed. Here th e  sign to be attached to th e  volume o f  each component is de-
termined according a s  that o f  2(w) on  the  component in question.

Proposition 2. T he f irst variation of volume w ith respect to the distortion (1') is

(2) 31/ =(3t 0 2(w)da(x(w))

at t=-0.

P ro o f . Letting wi E D  be arbitrary, we write P i =x(w , ; 0 ) f o r  brevity. T ake a
pole Q, on the norm al X =tit(P i ) (0< t  I <  0 0 )  to se t  up a  p o la r  condinate system in
th e  sm all. T here  is  a  neighbourhood U, of w1, such that fo r  every point P on 111=
x(Cli ; 0) the  radius vector Qi , P meets the small distortion x( w ; A t) only at one point

P. To th e  increment Jr=P, P=Q i, P—Q1, P  of radius vector r  there corresponds a
unique continuous function ;1(w), such that ;1(w)4r=2(w)4t I n(x(w))1.

In  reference to t h e  above p o la r  coordinate system we consider a n  appropriate
curvilinear quadrangular cone with vertex Q, bounded by a pair of contiguous azimuthal
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p la n e s  a n d  a  p a ir  o f  contiguous zenithal cones, which intersects a pair of spheres
{P I Qi, P=p}  and {P I Qi, (r, r + J r [ p ,  p-i-ZIp]), i n  order to produce a
curvilinear hexahedron . I f  t h e  cone is taken, so that the  ray Qi, Pi may be its
central axis and that the base surface-portion of az on the smaller circumference may
have the area p2 sin0 400 , then the volume of 21 is  ipp 2 sin° J040. Therefore the
contribution of the subdomain bounded by <x(w ; 0)» a n d  <(x ; JO> to JV  within
2 ' m ust be equal to ;i(w)Jr r 2 sin0 4 0 0 .  So we can calculate the full contribution
on 111 to  the volume change at

Lir r sinû d0d0=-1 1,1(w)1t da(x(w)),

from which follows

JV  =4t5 0 2(w)da(x(w))

by Proposition 1. q. e. d.

Concerning the sign of the principal curvature 1/R ;  ( j= 1 , 2 ) a t  one point o f a
surface (1), let us agree as follows :

Definition 3 . (s ign  of principal curvatures)
When the centre of curvature for R 1 l ie s  o n  th e  interior normal X=rn(x(w ; t)

(r<0), th en  R; >0 : otherw ise, R i <0 (j=1, 2).' )

Proposition 3. The f irst variation o f  the surface-area with respect to the distortion
(1) is equal to

1321=c3t
Q

2 (w )
(R ,(x(w))

--1- 
R 2(x

1

(w)) ) d a ( x ( w ) )

at t=0.

Pro o f . Letting w o ED be at will, we se t Po=x(w o ; 40, at w hich w e draw  the
no rm al gi: x=rit(P 0 ) (— co < r < c o )  t o  th e  su rfa c e  <x(w ; Lit)». L e t  g l  meet
< x (w  ; 0 )»  a t a  p o in t  Po a n d  le t  a  p la n e  17 contain ing g i  cut the two surfaces
<x(w ; 4 0 » and < x(w  ; 0)» along the curves and C respectively, the form er of
which is a  what we call "normal section" of this surface through Po.

W e a re  now interested in  th e  c a s e , in  which th e  cutting plane 17 produces a
specific intersection with <x(w ; zit)» , namely, where accords w ith  th e  lines of
principal curvature. I n  th is  case 1 7  and C  are denoted by /71 a n d  e i  respectively :
correspondingly the intersection of I I ,  with <x(w ; 0)» is written a s  Ci , which may
not necessarily coincide with the  lines of principal curvature on  <x(w ; 0)» : here
and 0 2 can be taken for the parametric u -  a n d  v-curve of the  su rface  respectively,
this circumstance being easily realized at request v ia  appropriate parameter trans-
formation.

To the given 2(w) there corresponds a C2 -function A.(w), such that Po, P0=--(w 0)4t.

1) On account of the immersedness assumption, the radii of principal curvature nowhere vanish.
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Denote by Q. the centre of curvature f o r  le i , w h ich  finds itself, of course, on the
normal : i i .  A t  a n  adequate choice of 2(w) we may assume from the  outset that the
radii of principal curvature fo r  <x(w ; z it» a t w=w 0 a re  both finite, i. e.,
Pi(A)<-1-00, without loss of generality. Then the  point Po (resp. Po) stands at the
distance I P i I (resp. I — ;i4t I) from Qi .

Let us work as fo llow s: P 1 is  a point on ej  sufficiently near A, such that the
parameter values (u, y ) for them may fall on D. L e t  th e  straight line Q1, Pi  meet C;

a t  th e  p o in t P j . I n  this way we have a pair of narrow sectors on each H j ,  one of

which has the radii Q1 , Pi , Q1 , Pi  and  the  arc  Po , P1, the  other the radii Qi, Po, Q1, P1

and the arc Po , Pj . If the central angle JO is sufficiently small, the ratio Po , Pj : Po, P
is approximately equal to the ratio Q,, Po : Qi , Po u p  to  th e  infinitesimals o f  higher
order than J O . Hence we have

I x .(w  0; 0)4u I x .(w  0; Jt)JullP1(w  0) — (w 0)4tI / I 1(w 0)1)-ko(4u) ,

x v (w o ; 0)Jv x(u) o ; Jt)4y1 I 2(w 0)— (w 0)4t I / I P2(tv 0)1)- o(Jv)

So the area element of x(w ; 0) at reads

I x.(wo: 0)Xxv(w0, 0)IduA dv

=11 - 0(w0)4t/Pi(wo))1 11 - 0(w0)4t/P2(w0))1 I x.(wo ; 4t)Xxv(w0; 401 du A dv

=1 P1(7, vo) — (ivo)4t1 I P 2 ( W 0 )
-11- ( W0)4 t lè' u (W 0 )X .i0 (W 0 )1  du A dv ,

where é stands for the exterior unit normal vector of x(w ; Zit). Therefore

i l [ x ] = U ( I  u (w  ; Jt)x  x i,(w  ; Jt)I —  x u .(w ; 0)x .r.„(w ; 0)1)duAdv

= U I  1(w)P1 2(w)I — I 1(w) ;i(w)4t I I 2(w)- .1- (04t 1)1 u vl du A dy

, ± 4 t U I  'CO +  2(w)).1- 001 uxé v l du A dv +o(40 2 )

9 (1 .1 ))( 
1c1(w)

-1-p 2
1
0 , 0 )ix,,(w )xx v(w)1 duA dvd-o(z1t).

But fi" j (w) I? Ax(w)), )2(w) (j=1, 2) as Jt—÷0, so we conclude

1 1 
ô A =ô t(  R i(x (w )) - T -  R 2 ( X ( W ) )  

)2(w(do-(x(w)).

q. e. d.

3. Main theorems

Suppose, there exists a surface x(w ; 0) with boundary, whose mean curvatures
satisfy
2) Note that P 1 k 2 h as a  defin ite sign by virtue of 1). T he signs ±  tak e  p lace according as

P 1R2 is  positive or negative respectively.
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1
da(x(w))=0

(  i (x(w)) R 2 (x

l

(3) 2(w) (w))

)

under all distortions o f type  (1') such that

(4) .(2,1(w)do.(x(w))=0.

T hen , if  (1/R1(x(w))) - 1- - (1/R2(x(w))) const. on  Q, i t  is  possible to  choose  som e 2*(w)
w ith  th e  normalization (4) satisfying

1 1
.Q

2 * ( w )
( R  i(x (w ))

-1 - 
R2(x(w)) ) d a ( x ( w ) ) > °

which contradicts th e  assumption.
Conversely, the condition (1/R 1(x(w)))+(1/R2(x(w)))--_---- const. everyw here o n  Q ob-

viously im plies (3) f o r  a ll 2(w) satisfying (4). T h u s, in  v iew  of Propositions 2 and  3
w e have proved

Theorem 1 . The surface of class C°(b , l 3)nC 2(Q, R') with boundary has a constant
mean curvature if and only if its surface-area is critical among all surfaces of this class
that bears no change of  volume with respect to the original one.

Remark 1 . Apart from  som e kinds o f  know n proofs lead ing  to  t h e  similar con-
clusion a s  above theorem (cf. Hildebrandt [ 3 ] ,  Barbosa-do Carmo [1], Koiso [5]), the
presen t line  of argum ent just exposed m akes it possible to complement th e  statement
to  its  dua l in  the  conditioned variational problem as

Theorem 2. The surface x(w ; 0) with boundary r has a. constant mean curvature
if  and only i f  its volume is critical compared w ith all surfaces w ith the same area.

Pro o f . O n  c lose r inspection in to  th e  argum ents so  fa r one  w ill notice th a t  the
reasoning that has derived Theorem  1 has only to be repeated almost verbatim .

Theorem 3 . I f  the surface w ith boundary  lias a constant m ean curv ature H *0
everywhere, it is convex.

P ro o f . Under the condition that such  a  surface x(i.e ;  0 )  h a s  th e  c o n s ta n t mean
curvature H, w e shall show  (1/R 1)(1/R2 )>0 everywhere on it.

( a )  S u p p o se  o n  th e  c o n t r a r y  th a t  <x(iv ;  0 ) »  c o n ta in s  a  p o i n t  x o , where
R 1(x 0)R 2(x 0) < 0 .  T h e n  x o i s  a  hyperbolic p o in t  o f  t h is  su rface , nam ely , x(w ; 0)
behaves in  a  neighbourhood o f  x o a p p ro x im a te ly  lik e  n e a r  t h e  sadd le  p o in t o f  th e
hyperbolic paraboloid. B ecause w e have only  to  ro ta te  th e  x-space R 3 ={(x', x 2 , x")}
if  necessary, we m ay assume from  th e  ou tse t tha t th e  o u te r  normal e a t  x o p o in ts  to
the positive x 3 - a x is . T h e n  <x(iv ; 0 )»  contains a  closed subdomain B, which enjoys
the  followinf properties :

10 aB is  a  smooth Jordan curve enclosing the  poin t x o i n  its  in te rio r, su ch  th a t
both Max x3 a n d  M inx' o n  B a re  taken on aB:
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2 °  fo r any given s >0, Osc x 3 =Max x 3 —Min x 3 o n  B  is bounded above by s ;
30 there ex ists a  p a ir  o f  cylinders K and  K , both o f which intersect <x(w ; 0)»

along aB ;
4 °  K (resp. K ) is higher (resp. lower) than B  to th e  effiect that f o r  any points

P E K  (resp. K ), P' B ,  t h e  third component x 3 o f  P  is not less (resp. greater) than
that of P' ; further the  form er is actually greater (resp. le ss)  th an  the la t te r  except
on dB ;

( b )  Note that

(5) area K <area B, area K <area B.

L et B denote th e  parameter subdomain of (2, such that B={wfx(w ; 0 ) = B } .  Then it
is possible to find a  nice parametrization ij( w ; 0) o f K  on B , such  th at th e  mapping
is continuous on B , smooth (of class C o e )  in  the interior to B. D efine the modification

w)=Z(w ; 0) o f x(w ; 0) a s  follows :

x(w  ; 0) o n  Q \B  ,
(6) w ; 0)-=

fi(w ; 0) on B .

Taking a compact subdomain A  o f  Q, such that CloBcIntAcCloAcQ, we introduce
a  function TIME-, C°(S 2 , R+) supported by A  to define a distortion of i(w ; 0) of type (1) :

(7) i(w ; 72)=z( w ; nii(w)ii(i(w)) ,

where 7) is  a positive real number.
(c )  In  view of (5), (6) and  (7) there is a suitable choice of n fo r any p(w), such that

(8) A[i(Q ; n)]= A[x(f2 ; O)].

(d) With (8) in our eyes we combine (6), (7) with 4° o f  ( a ) .  We see that fo r any
p an d  72, - -i (w ; 7) )  is an  adm issib le  surface  in  the  variational problem i n  Theorem 2,
while < -7.- (w  77 )» is located higher than the  orig inal one  <x(w ; 0)».

(e) We might work on  K  in entirely the same way as done earlier with K , namely,
t h e  parametrization y(w ; 0) o f  K , the m odification z(w ; 0 ), a  real-valued smooth
function ,u(w) of class Co(Q, R - )  with support A (B cA cQ ) and the distortion z(w ; n)
with a  similar real positive parameter 7) e n te r  into consideration in  p lace  o f  Ti(w ; 0),
7i(w ; 0), p(w) and , i (w  n )  aimed at finds itself in  its tu rn , at the position lower than
<x(w ; 0)».

( f )  We conclude from (d), (e) a n d  2° o f  ( a )  th at the  adm issib le  su rfaces, both
higher a n d  lower, can be found as close to x(w  ; 0) as one  pleases. In  other words,
the volume V[x(w ; 0)] cannot be critical among all the adm issible surfaces satisfying
(3), which is a contradiction on account o f Theorem 2. q .  e .  d.

4 .  Principle o f  Virtual Work

T he  present author now wishes to propose a plan associating the purely mathema-
tical situation as well a s  th e  results so f a r  investigated with a  physical interpretation
by regarding th e  parameter t ( - E ,  )  a s  a  time v a r ia b le . Such circle o f ideas seems
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neither dogm atic nor novel, b u t  c a n  o fte n  b e  fo u n d  i n  significant mathematical
works, especially in  th e  ones on global an a lysis . For example, in  EelIs-Sampson [2]
the parameter t  of time enters th e  energy functional a n d  th e  harmonic maps have
successfully been dealt with in connexion w ith the heat equation.

Nevertheless our intention cannot surpass further the mere adoption of physical
terminology : so , w hat w e call surface here shall be o f vanishing thickness, an every-
where constant density and a constant surface-tension coefficient as well. In addition,
w e commit ourselves to take no influence of gravity into consideration.

To any point x o o n  the surface S= fx(w ; 0)1 w } there corresponds an open ball
neighbourhood T(x0), such that the surface-portion So =SnT(x o) decomposes the open
set T(x0)\S0 into the union of just two connected components 0 + and 0 - . We agree
to  regard a point pES, as two different boundary points p+ and p- , which are acces-
sible from the interior of the spatial domains 0+ and 0 -  resp ective ly . If w e  se t Si3=
{P±I PESO , w e m ay assume without losing the generality that the correspondence SI;

p+ into Q is orientation-preserving a n d  S-6-_-)p -  i n t o  Q  orientation-reversing. The
com pact set x(w ; 0)1 w ED} can be covered by some finite sub-collection
of the neighbourhood system  U 8 (x )  :  each pair of boundaries S .1  o f  th e  tw o  spatial

xeD

domains corresponding to Tj ,  which are originated from a portion of S , are connected

with one another with running index 1 j_< in. W e  m a y  c a ll 5 += 76' 4 i -  and S - =  S -;i=i i=1
the top and the bottom of the surface-portion S =C x (1 ) , 0 )»  respectively."

W e want here to quote some physical facts a n d  la w s, w h ich  w e  expose  in  our
o w n  locu tio n . T h e  first o f  them is the postulate that the atmospheric pressure is  a.
3-vector acting perpendicularly on the w all, which depends only o n  th e  space coord-
mates. S o ,  i f  p i ( x )  denote th e  atmospheric pressures acting on the sides 5±  res-
pectively, then p+(x ) (resp. p - (x )) is  an inward- (resp. outward-) pointing normal vector
at the point x  with the absolute value I p(x) 1 (resP. ) .

Secondly we refer to a  physical law known a s  'Principle o f  Virtual Work', which
is c la s s ic a l  i n  mechanics. N a m e ly ,  w e  c o n s id e r  t h e  infinitesimal displacement
(&)n(x(w))2(w) of one point x(w) on the surface x(w ; 0) has been caused by th e  ex-
ternal fo rce  — p+(x(w))+p - (x (w )) acting a t th is  p o in t. In  analogy with the case of
the particle-system in the elementary mechanics, the inner product

<-11+(x(w))+P(x(w)), (at)n(x(w ))2(w )>
(9)

=(&X - 1P+ (x (w ))1+1P(x(w ))1)2(w )

of these two vectors, parallel to each other, is the work for the infinitesimal displace-
ment o f this p o in t . If  we recall the fact that the product o f  th e  area element with
th e  small displacement (9) t o  the norm al direction m akes up  the volum e element
(Proposition 2), w e are able to calculate the work to change the volum e against the
external force as follows :

Proposition 4. The total work W (6V ) to be done for the infinitesimal volume change

3 ) The index n i  does not necessarily indicate the  sam e at each occurrence.
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is equal to

II7(617)=3ti2( —  Ip+ (x(w))1 ± I P - (x(w))I )2(w)do- (x(w )).

Legitimacy of the fo llow ing defin ition , too , w ill readily  be approved in  v ie w  of
(9) and of the classical `Priciple of V irtual W ork' for the particle system.

Definition 4 .  The surface x(iii ; 0) is said to  be stable under the distortion (1'), if
the condition

(10) p + (x (w ))I  lp - (x(w))1 )2(w)da(x(w))=0
D

is satisfied for every 2(w)E_C 2(5 , R), (DcQ).

Remark 2. In accordance with the above Proposition 4, i t  i s  k n o w n  to  us that
the w ork 1-17 (3A) to  be done for the infinitesimal change of surface area A  is  g iven  in
the form  117 (6A)=a5./1 by m eans of an absolute constant a , th e  coefficient of surface-
tension, w hich is proper for the material constituting the surface.

Theorem 4. If  a  stable surface x(w ; 0) with boundary r  provides a  critical value
of  the surface-area among all surfaces x(w  t)(— e<t<s) of class c o (b. R 3) n c 2( -2, R 3)

w ith the sanie boundary, then x(w ; 0) fulf ills Laplace-Thomson's formula

1 1 
— 11)+ 4)1+ IP-(x)I

/
 R 1(x) +  R 2 (x) i •

Pro o f . W e m ay assume that
r ,1  1 (11) )2(tv)cla(x(w))=0JrA R i (x(w)) --r- R jx (w ))

is valid  for a ll 2(tv)EC 2 (Q, R ) satisfying

(12) IP+(x(w))1 P - (x(w))1 Rw )da(x(w ))=0.

T hen  w e notice that

g(w)= — p+(x(w))I p - (x (w ))1  at 1 1 
Ri(x(w )) R2Cr(w ))/

has a constant sign all over Q .
In fact, suppose on the con trary  tha t Q contains non-void subsets G±, for which

(13) g(w)>O, ( wEG+),

(14) g(w)<O, (wE-G - ).

W e can choose a 2(w) such as to  sa tisfy  (12) and to  b e  positive and nega tive  on G+
an d  G -  respectively. M ultiplying this ,l(w) on both sides of (13), (14) and adding them
together, w e see  tha t the left-hand side in (11) must be negative, which is a contradic-
tion . H ence  w e  m ay  assume w ithout loss of generality  that g (w )0  on Q.

In order to  show that g (w )=O  throughout (2, we suppose, contrary to the assertion
th a t  Q contains a  p o in t /en such g (w )> O  i n  a  neighbourhood of wo . It is possible to
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take a 2(w) adm itted to the consideration at hand, such  tha t 2(w0 )>O,

f2 g(w )2(w )da(x(w ))>0

b f2 (  —  p+(x (w ))i ±  p -  • (x(w))1)2(w)d cr(x(w)) , ---0

It contradicts the assum ption at the beginning of this proof. q. e. d.

Proposition 5. For any  distortion of  sur face w ith boundary  w ith vanishing volume
variation, the work done to change the volume must trivially be zero.

Hence combination of Theorems 1,3,4 w ith  Proposition 5 yields the

Corollary. The difference of the atomospheric pressures working on the two sides
of a stable surface with boundary is constant at every point on it. The surface is convex
towards the side, on which the storonger pressure is acting.

Remark 3 .  The Laplace-Thomson fo rm u la  h as h ith e rto  b een  d e rived  u n d er the
assum ption that the surface is  in the sta te  of thermodynamic equilibrium, i. e., W(3V)
+W(3A)=0 for a l l  d is to r tio n s . Our result (Theorem  4) is proved under the weaker
assumption of stability (10).
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