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Moduli of stable pairs

By

Ko6ji YOKOGAWA

Introduction

Let S be a scheme of finite type over a universally Japanese ring = and let
f: X - S be a smooth, projective, geometrically integral morphism. We shall fix
an f-very ample invertible sheaf Ox(1) and a locally free Ox-module E of finite
rank. An E-pair is a pair (F, ¢) of a coherent sheaf F on a geometric fiber of f
and an Oy-homomorphism ¢ of F to F ®,,E such that ¢ induces a canonical
structure of S*(E")-module on F. An E-pair (F, ¢) is said to be stable (or, semi-
stable) if F is torsion free and if it satisfies the stability (or, semi-stability, resp.)
inequality for all ¢-invariant subsheaves of F (see §1). Stable pairs were first
introduced by N. J. Hitchin [3] in the case where S = Spec(k) with k an
algebraically closed field and where X is a curve and E is a line bundle. In this
case, the moduli spaces of stable E-pairs were constructed by N. Nitsure [10], and
W. M. Oxbury studied some properties of the moduli spaces [11]. In higher
dimensional cases, C. T. Simpson constructed the moduli spaces of semi-stable E-
pairs over an algebraically closed field of characteristic zero [13]. In the method
of C. T. Simpson, an E-pair (F, ¢) were considered as a sheaf on Y
= Proj (S*(EY) ® 0) and the problem was reduced to the study of stable points
on Q = Quoty, _yemys for large integers N, where O (1) is a very ample
invertible sheaf on Y and H is the Hilbert polynomial of F with respect to
Oy(1). To handle this problem he embedded Q into the Grassmann variety Grass
(H°(Oy(I — N)®™), H(l)) with | a sufficiently large integer. His proof depends, in
essential way, on the boundedness theorem of M. Maruyama (Theorem 4.6 of [8])
which fails to hold in positive characteristic cases. The aim of this article is to
construct a moduli scheme of semi-stable E-pairs along the method by D. Gieseker
[2], M. Maruyama [6] and [7] and then our results hold good without assuming
characteristic zero. The main idea is to find a space which seems as the “Gieseker

r—1
space” in [2], [6] and [7]. It is the projective space P(Hom, (V ® (@D SYE")),
i=0

L)V), where Lis a line bundle on X and r is the rank of F. On the other hand, to
parametrize E-pairs we have to use a scheme I” constructed in §4 instead of Quot-
scheme in the case of usual stable sheaves and to study stable points of I we have
to introduce a morphism of I” to a projective bundle on Picy,; whose fibers are
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new Gieseker spaces.

§1 is devoted to several definitions, a boundedness theorem and its
corollaries. The moduli functor fg,x,s is defined in §2. In §3, we shall extend
the results of D. Gieseker on semi-stable points of Gieseker spaces to our new
Gieseker spaces. In §4, we shall construct the scheme I" and a morphism to a
projective bundle on Picy,s whose fibers are new Gieseker spaces. And in §5, we
shall construct the coarse moduli scheme of the functor L.

M. Maruyama suggested trying this problem to me. W. M. Oxbury informed
me the results of N. Nitsure and C. T. Simpson. [ wish to thank Professors M.
Maruyama, W. M. Oxbury and T. Sugie for their encoragement and valuable
suggestions.

Notation and Convention

For an Oy-module E on a scheme X, we denote by S(E) the i-th symmetric

product, by S*(E) the symmetric (¢y-algebra and by S}(E) the Ox-module r(—Bl S(E)
for each positive integer r. e

Let f: X - S be a smooth, projective, geometrically integral morphism of
locally noetherian schemes and let Oy(1) be an f-very ample invertivle ©y-
module. If s is a geometric point of S, then X, means the geometric fibre of X
over s. For a coherent Oy -module F, the degree of F with respect to 0,(1) is that
of the first Chern class of F with respect to Oy (1) = Ox(1) ® Oy, and it is denoted
by degy,;)F or simply deg F. Moreover the rank of F is denoted by rk(F) and
we denote by u(F) (or, Pg(m)) the number deg(F)/rk(F) (or, the polynomial
X(F ® Ox(m))/rk (F), resp.) when rk(F) #0. When X and Y are S-schemes and E
(or, F) is an Ox-module (or, ¢y-module, resp.), E @ F denotes the sheaf
PX(E) @ oy, PY(F), where py (or, py) is the projection of X xgY to X (or, Y,
resp.). For an Og-module E and a morphism f: X — S, we shall use the notation
Ey instead of f*(E). In particular, if E and F are Ox-modules, the E Q) y F means

E ®o,F.

§1. Boundedness of the family of semi-stable pairs

Let f: X -» S be a smooth, projective, geometrically integral morphism of
noetherian schemes and let Oy(1) be an f-very ample invertible sheaf. Fix a
locally free Oy-module E of finite rank.

Definition 1.1. Let F be a coherent sheaf on X and ¢ be an 0y-
homomorphism of F to F @ yE. ¢ induces a natural homomorphism ¢’ of E¥ to
Endq (F). A pair (F, ¢) is said to be an E-pair if ¢’ can be extended to the
natural homomorphism of S*(EV) to é»d,,(F) as Oy-algebras. For an E-pair
(F, @), a subsheaf F' of F is said to be ¢-invariant when ¢(F’) is contained in
F' ®x E and a quotient sheaf F” of F is said to be ¢-invariant when the kernel of
the quotient map of F to F” is ¢-invariant. The numerical polynomial y(F(m)) is
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called the Hilbert polynomial of the E-pair (F, ¢).
For an E-pair (F, ¢), we obtain the following @y-homomorphism:
(1.1.1) ¢: FQyS*¥(EY)—> F.

For a coherent subsheaf F' of F, we put

(1.1.2) F' = G(F ® 4 S*EY)).

It is easy to see that the sheaf F' is the minimal ¢-invariant subsheaf of F
containing F'. Now let (F, ¢) be an E-pair on a geometric fiber X, of f and let r
be the rank of F as an Ox -module. For a coherent subsheaf F' of F, we put

(1.1.3) Fo = ¢(F @xSHE™)).

Lemma 1.2. Under the above situation, suppose that F is torsion free on
X,. Then the degree of F' equals that of F),.

Proof. Let U be the maximal open subscheme of X, where F is locally free
then we have codim (X, X, — U) > 2. It is sufficient to prove that F’ is equal to
Fj, on each open subset V = Spec(A) of U where EV is a free A-module with a
basis x,,..., x,,. Then F' (or, Fp) is generated by the set

(@' (x )"+ @ (X (NNfEF, 0 < iy, ..., i}
(or, {@'(x))" - @' (x)"(NfeF', 0 < iy, ..., in <r— 1}, resp.),

where ¢’ is the induced homomorphism of S*(EY) to &xd,,(F) by ¢. On the
other hand, by Hamilton-Caylay’s Theorem, each ¢’'(x;) satisfies a monic
polynomial of degree r. Thus we see that F' = Fj,. Q.E.D.

Definition 1.3. An E-pair (F, ¢) on a geometric fiber X, of f is said to be
semi-stable (or, stable) (with respect to Ox(1)) if F is torsion free and for all non-
trivial ¢-invariant coherent subsheaves F’ of F, we have

Pp.(m) < Pg(m) (or, Pp(m) < Pg(m), resp.)
for all large integers m.

Definition 1.4. An E-pair (F, ¢) on a geometric fiber X of f is said to be pu-
semi-stable (or, p-stable) if F is torsion free and for all non-trivial ¢-invariant
coherent subsheaves F’' of F,

WF) < w(F) (or, u(F') < u(F), resp.).
As in the case of torsion free sheaves, we have the following relations:

u-stable = stable

U ﬂ

u-semi-stable <= semi-stable
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Definition 1.5. Let o be a rational number. An E-pair (F, ¢) (or, a coherent
sheaf F) on a geometric fiber X of f'is said to be of type «, if F is torsion free and
for all non-trivial ¢-invariant coherent subsheaves (or, for all non-trivial coherent
subsheaves, resp.) F' of F, the following holds

M(F) < u(F) + a.

Now let us consider on the boundedness of the family of classes of E-pairs of
type o with a fixed Hilbert polynomial.

Proposition 1.6. Let o be a rational number. There is a rational number f3
which depends only on o, r and E such that if an E-pair (F, ¢) is of type a, then F is

of type B.

Proof. Let F' be a u-semi-stable subsheaf of F such that u(F’) is maximal
among all coherent subsheaves of F. We can take a positive integer [ so that
S*(EY) ®yx 0x(]) is generated by global sections. Then for some positive integer
m. Fy is a quotient sheaf of F' ® y Ox(— 1)®™. Since F' ® x Ox(— )®™ is u-semi-
stable, we have p(F' @y Ox(— N®™) = u(F') — I-d < u(Fy), where d is the degree of
X with respect to Ox(1). By Lemma 1.2 and our hypothesis, we have u(Fj)
= u(F') < max(u(F), u(F) + «). Hence F is of type max(0, &) + I-d. Q.E.D.

By the result of M. Maruyama [8], we have

Corollary 1.7. Suppose that one of the following conditions is satisfied:

(@) S is a noetherian scheme over a field of characteristic zero.

(b) The rank is not greater than 3.

(¢) The dimension of X over S is not greater than 2.
Then the family of classes of E-pairs of type a with a fixed Hilbert polynomial is
bounded. In particular, the family of u-semi-stable pairs with a fixed Hilbert
polynomial is bounded.

Definition 1.8. Let e be a non-negative integer and let (F, ¢) be an E-pair on
a geometric fiber X, of X over S.

1) (F, o) is said to be e-semi-stable (or, e-stable) (with respect to Ox(1)) if it is
semi-stable (or, stable) (with respect to x(1)) and if for general non-singular curves
C=D;+ D, i, Dy,..., D,_1€|Ox ()], (Flc. @lc) is of type e, where n is the
dimension of X,.

2) (F, o) is said to be strictly e-semi-stable if it is e-semi-stable and if for
every ¢-invariant coherent quotient sheaf F’ of F with Pp.(m) = P(m), the E-pair
(F’, ¢’) induced by (F, ¢) is e-semi-stable.

Let &gy s(e, H) be the family of classes of E-pairs on the fibers of X over S
such that (F, @) is contained in S x/s(e, H) if and only if (F, ¢) is e-semi-stable and
its Hilbert polynomial is H.

By Lemma 3.3 of [6] and Proposition 1.6, we have

Corollary 1.9. For each e, H, Sy x/s(e, H) is bounded.
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By virtue of the fundamental lemma 2.2 in [6], Proposition 1.6 and the similar
proof as in Proposition 3.6 in [6], we have

Proposition 1.10. For each Sy s(e, H), there exists an integer N such that

1) for all (F, p)e Sgxs(e, H), m > N and i > 0, F(m) is generated by its global
sections and h'(F(m)) = 0,

2) if (F, @) is contained in Sgy,s(e, H) and if it is stable, then for all m > N
and all @-invariant coherent subsheaves F' of F with 0 # F' & F,

hO(F'(m))/tk(F") < h°(F(m))/rk(F)

3) if (F, ) is contained in Sy xs(e, H) and if it is not stable, then for all
m > N and all @-invariant coherent subsheaves F' of F with 0 # F' ¢ F,

hO(F'(m))/rk(F') < h°(F(m))/rk(F)

and, moreover, there exists a non-trivial @-invariant coherent subsheaf F, of F such
that h°(F o(m))/tk(F o) = h°(F(m))/rk(F) for all m > N.

For the openness of the property “strictly e-semi-stability”, we have

Proposition 1.11. Let g: Y— T be a smooth, projective, geometrically integral
morphism of locally noetherian schemes, Oy(1) be a g-very ample invertible sheaf on
Y, E be a locally free Oy-module and (F, @) be an E-pair such that F is T-flat. If
H(Y,, Oy(1) ® k(t)) = O for all i > 0 and te T, then there exists an open set U of T
such that for all algebraically closed field k, U(k) = {te T(k)|(F, ¢) ® k(t) is strictly
e-semi-stable with respect to 0y(1)}.

Proof. Let Quotg,,yr be the subfunctor of Quoty,y,; defined in the
following (1.11.1):

(L1L1)  Quot ,)yr(S) = {xeQuotgy,(S)| the quotient sheaf F' of Fyg
corresponding to x is ¢-invariant}.

Quotr 4 x/s is represented by a closed subscheme of Quotyys (see Lemma
4.3). We omit the rest of the proof, since it is same as the proof of Proposition 3.6
in [7] if we use the scheme Quot x5 instead of Quotyy/s. O

§2. Definition of moduli functors

Let X be a non-singular projective variety over an algebraically closed field k,
with a very ample invertible sheaf Oy(1) and let E be a locally free sheaf of finite
rank on X.

Definition 2.1. Let (F, ¢) be a semi-stable E-pair. A filtration 0 = F, < F,
c .- c F,=F by e¢-invariant coherent subsheaves is called a Jordan-Holder
filtration if (F;/F,_,, ¢;) is stable and Pp(m)= Pp(m) (1 <i<t), where ¢, is a
homomorphism induced by ¢. For a Jordan-Hélder filtration 0 = Fy < F, < ---
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« F,=F, define gr(F, ¢) to be (P F;/F;—,, ® ¢).
i=0 i=0

By the same argument as in Proposition 1.2 of [7], we have the following.

Proposition 2.2. Fvery semi-stable E-pair (F, ) has a Jordan-Holder
filtration. If 0=FycF,c---cF,=Fand 0=Fy,cF|c...cF;=F are two
Jordan-Hélder filtrations for (F, @), then t = s and there exists a permutation ¢ of
{1,2,..., t} such that (F,/F,_,, @;) is isomorphic to (Fy;/F -1y, ©uu)-

Now we define the moduli functor of semi-stable E-pairs. Let f: X — S be a
smooth, projective, geometrically integral morphism of noetherian schemes with an
f-very ample invertible sheaf 0,(1). We denote by (Sch/S) the category of locally
noetherian schemes over S. Let E be a locally free Ox-module of finite rank and
H(m) be a numerical polynomial. The functor £¥ s of (Sch/S) to the category of
sets is defined as follows.

For an object T of (Sch/S),

28 xs(T)={(F, @)|F is a T-flat, coherent Oy, r-module and ¢ is an
Oxxsr-homomorphism of F to F®yE with the property
(23.1)}/ ~, where ~ is the equivalence relation defined in (2.3.2).

(2.3.1) For every geometric point t of T, (F @ k(t), ¢ ®k(t)) is a semi-
stable E ®gk(t)-pair and the Hilbert polynomlal of F & rk(t) is H(m).

(2.3.2) (F, @)~ (F', ¢') is and only if (1) (F, ¢) ~(F' @ rL, ¢ ®rid.) or (2)
there exist filtrations 0 = Fpc F,c - cF,=Fand 0=Fyc F,c.-cF,=F
by ¢ (or, ¢') invariant coherent Oy, -modules such that for every geometric point
t of T, their restrictions to X x ySpec k(t) provide us with Jordan-Hoélder filtrations

of (F ®rk(t), @ @ rk(t)) and (F' Q rk(t), ¢’ & rk(t)), respectively, ‘(-B F,JF,_{is T-

flat and that ( @ F;/F;_, .@¢)~(((—B Fi/F:_)) ® L, .(—B ¢:® id,), for some
invertible sheaf L on T. The equivalence class of (F, ¢) is denoted by [(F, @)].

For a morphism g: T'— T in (Sch/S), g* defines a map of Xy (T) to
ZHys(T). It is obvious that ZF s is a contravariant functor of (Sch/S) to (Sets).

Moreover, we need to define a subfunctor of 2}, ,s. Let e be a non-negative
integer. For an object T of (Sch/S),

e s(T) = {[(F, @) 1e Z8xs(TI(F, @) satisﬁes the property (2.4)°}.

(2.4)¢ For every geometric point t of T, (F & 1k(t), ¢ @ rk(t)) is strictly e-
semi-stable.

If (F, ) ~ (F’, ¢') and (F, @) satisfies the property (2.4)%, then (F’, ¢') has the same
property (see §3 of [7]). Hence the above definition is well-defined. By virtue of
Proposition 1.11, if H{(X,, Ox(1)® 0x) =0 for all i >0, se€S, then 2Hi%s is an
open subfunctor of Z¥y/s.
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§3. Semi-stable points of extended Gieseker spaces

Let X be a smooth, projective variety over a field k and Ox(1) be a very ample
invertible sheaf. Take an N-dimensional vector space V over k. Let E and F be
locally free @y-modules of rank | and m, respectively. Fix a non-negative integer
r. The algebraic group G = GL(V) ~ GL (k, N) acts naturally on the vector space
W= Homa,x(/’\(V®kE), F). Hence we have an action of G on the projective
space P(W") and a G-linearized invertible sheaf O(1) on P(W"). If E = Oy, then

W = Hom,(A V, H%(X, F)) and P(W") is the Giescker space P(V,r, H(X, F))
which has been exploited to construct a moduli of semi-stable sheaves (see
[2], [6], [7]). We denote P(WY) with the action of G and the G-linearized
invertible sheaf @(1) defined as above by Pg(V, r, F). Tt is called also a Gieseker
space. From now on, we assume that F is an invertible sheaf.

For a field K containing k, a non-zero element T of Homwx(/'\(V®kE),

F)®.K = HomoxK(/r\ (Vi ®kEx), Fg) gives rise to a K-rational point of
P.(V, r, F), which is denoted by T, too. For vector subspaces V;, ..., V, of V&K,
the image of (V, ®xEx)® - ®(V, ®xEx) by the canonical homomorphism
(Ve ®xEQ)® = A(Vix ®gEx) is denoted by [V,,...,¥] and if V, is a one-

dimensional subspace generated by x;, we use the notation [Vi,..., Vo, X,
Vistr..., V] for [V4,..., V]
We shall extend the notion “T-independence” to our new Gieseker spaces.

Definition 3.1. Let K be an algebraically closed field containing k and let T

be a non zero element of HomaxK(/r\(V,( @k Eg), Fy) or a K-rational point of
Pg(V, r, F). Vectors x,..., x,.in Vg are said to be T-independent if the restriction
of T to the subspace [x,,..., x4, V,..., V] is not zero. A vector x is said to be T-
dependent on x;,...,x, if the restricion of T to the subspace

[x4,..., x4, %, V, ..., V] is zero. For a vector subspace V' of Vj, vectors x, ..., X,
in V' is called a T-base of V' if x,, ..., x, are T-independent and if all vectors in V'
are T-dependent on x,,..., x,. For a T-base x,, ..., x;, the number d is called its

length and the maximal (or, minimal) length among all T-bases of V' is called the
maximal (or, minimal) T-dimension of V' and denoted by dim V' (or, dim V",
resp.).

By a similar proof as in Proposition 2.2 and Proposition 2.3 of [2], we hae

Proposition 3.2. Let K be an algebraically closed field containing k.

1) A point T in Pg(V, r, F)(K) is properly stable (or, semi-stable) with respect
to the action ¢ of PGL(V) if for all vector subspaces V' of Vi, the following
inequalities hold
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dimg V' < (N/r)- dim V'

(or, dimg V' < (N/r)- dim 1 V', resp).

2) If a point T in Pg(V,r, F)(K) stable (or, semi-stable), then for all vector
subspaces V' of Vy, the following inequalities hold

dimg V' < (N/r)- dim V'

(or, dimg V' < (N/r)- dim V', resp).

Corollary 33. Let T be a K-valued geometric point of Pg(V, r, F) with the
following property (3.3.1).

(3.3.1) For all vector subspaces V' of Vi, dim V' = dim V.
Then T is semi-stable (or, stable) if and only if for all vector subspaces V' of Vi(or,
for all vector ubspaces V' of Vi such that 0 < dim;V' <r),
dimg V' < (N/r)-dim;V’
(or, dimg V' < (N/r)-dim, V', resp).
Next we must analyze orbit spaces of Pg(V, r, F).

Definition 3.4. Let T, T' and T” be K-valued geometric points of Pg(V, r, F),
Pe(V'.r', F') and Pgz(V", r", F"), respectively. Let ¢: F'® F” — F be an injective
homomorphism. T is said to be a ¢-extention or, simply an extention of T” by T
if the following conditions are satisfied;

) r=r+r",

2) there exists an exact sequence

0— VKL VRK V' ®K—0
such that the following diagram is commutative:

/r\’ (Vk @« Ex) ®0xK ;\,’(Vx Xk Ex) — ;\(VK ®«kEx)

T'®( A (g®idu))l Tl

F’K®0xKFIII< P — Fg.
K

In this case T’ (or, T”) is said to be a subpoint (or, quotient point, resp.) of T.

Definition 3.5. Let T be a K-valued geometric point of Pg(V, r, F). Tis said
to be excellent if it has the property (3.3.1) and the following (3.5.1).

(3.5.1) For every subpoint T' of T, if x,,..., x, is a T'-base of a subspace V|
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of V', then f(x,),..., f(x,) is a T-base of V.

(3.5.1) implies the following (3.5.1).
(3.5.1 For every subpoint T" of T and every subspace Vi of Vi,

dim V5 < dim ;.Vj < dim . Vp < dim 7 V5.

Definition 3.6. Let T, T' and T” be K-valued geometric points of Pg(V, r, F),
P.(V', ¥, F'yand Pg(V", r", F"), respectively and let ¢: F' ® F" — F be an injective
homomorphism. Assume T is a ¢-extention of T” by T' and let

0— V' @K L VRK 5 V' ®,K — 0

be the underlying exact sequence of the extention. Tis said to be a ¢-direct sum
of T" and T” if there exists a linear map i: V" @K — V&K such that goi
=idy.gx and Tl ivawss 1wy = 0 for all y,, ..., yoin V" ®,K and for all
Wiits..., W, in V®,K whenever s >r".

If T, and T, are two ¢-direct sums of T" and T”, then T; ~ T, (see Lemma
216 of [7]). Thus a direct sum of T' and T” can be denoted by
T'"®T". Moreover let T; be a K-valued geometric point of Pg(Vi [, F)
(1<i<t)and put r,=1,+--+1l;, and V=V ®---®V; Let ¢;: F,_,QF;
— F; be a sequence of injective homomorphisms (1 <i<t, F,= 04). We can
define ¢;-direct sum of T;,_, and T; inductively. Each T, is a K-valued geometric
point of Pg(V,, r;, F;) and it is denoted by (- (T /' @ T D T3)® - )P T). Bya
similar argument as in Lemma 2.19 and corollary 2.19.1 of [7] we can denote T; by
& &T;

Now the main result in §2 of [7] can be extended to our case. Since the
proof is similar to that of Theorem 2.13 and 2.22 of [7] and it is not difficult to
rewrite so as to suit our case, we omit the proof.

Theorem 3.7. Let ¢;: F;,_, ® F;— F; be injective homomorphisms (1 <i<t,
Fo=04),0<r, <:-<r,=r be a sequence of integers and let D; be a GL (V})-
invariant closed set of Pg(V,, r;, F) (1 <i<t). Assume that for every algebraically
closed field K containing k, all the points of D(K) are excellent and that dim,V,/r,
= ... =dim,V,/r,. Let S; be a stable, excellent point in Pg(V;, I, F)(k) which is k-
rational, where I; = r, — r,_ | and k is the algebraic closure of k. Then there exists a
GL(V))-invariant closed set Z, = Z(S,, ..., S,) of D} = D{*(0(1) ® Op,) such that for
every algebraically closed field K containing k,

Z(K) = {TeD(K)|T has the following property (x),}.

(*),:  There exists a K-valued geometric point T; in each D = DF(0(1) ® Op,)
such that T, = S,, T; is a ¢-extention of S; by T,_,2<i<t)and T=T,.

Moreover if Z(S,,...,S,) is not empty, then GL(V)-orbit o(S,...,S) of
S$,®--®S, is a unique closed orbit in Z(S,, - S,).
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§4. Morphism to Gieseker spaces

To construct a moduli scheme of semi-stable sheaves, D. Gieseker [2] and M.
Maruyama [6], [7] constructed a morphism p of a Quot-scheme to a projective
bundle in the étale topology on a finite union of connected components of
Picy;s. Our aim in this section is to construct a scheme which is an analogy of
Quot-schemes for our problem and which plays the same role as the above p.

From now on, we shall fix the following situation:

(4.1) Let S be a scheme of finite type over a universally Japanese ring = and
let f: X — S be a smooth, projective, geometrically integral morphism such that the
dimension of each fiber of X over S is n. Let Ox(1) be an f-very ample invertible
sheaf such that for all points s in S and for all positive integers i,
H'(X,, Ox(1)® Ox) =0 and let E be a locally free Ox-module of finite rank.

Let V be a free Z-module of rank N and let G be the Z-group scheme
GL (V). Fix a numerical polynomial H(m) which is the Hilbert polynomial of a
coherent sheaf of rank r on a geometric fiber of f. Take § a union of some of
connected components of Quot}g_s:evyx;s and the universal quotient sheaf
é: V®5S:"(EV)X6—>F on Xy We denote by @' the restriction of @ to
V®geS(EY)ys Let 0 be the subset of Q such that a point x of § is contained in
0 if and only if ¢° ®gk(x) is surjective. By the properness of the projection of X 5
to 0, 0° is an open set of Q and clearly it is G-stable. Since the restriction of $°
to Xgo is surjective, it defines a morphism of 0 to Quotfg oy xs- Clearly it is a
G-morphism. Let Q be a union of connected components with a non-empty
intersection with the image of 0°. Then we obtain a G-morphism of 0° to Q.

We shall need the following proposition (cf. EGA TII (7.7.8), (7.7.9) or [1]).

Proposition 4.2. Let f: X - S be a proper morphism of noetherian schemes,
and let I and F be two coherent Oy-modules with F flat over S. Then there exist a
coherent Og-module H(I, F) and an element h(I, F) of Homy(I, F Qs H(I, F)) which
represents the functor

M +—— Homy(I, F QM)
defined on the category of quasi-coherent Og-modules M, and the formation of the
pair commutes with base change; in other words, the Yoneda map defined by h(I, F)
@.2.1) y: Homy (H(I, F)7, M) — Homy_ (I, F ® M)

is an isomorphism for every S-scheme T and every quasi-coherent (@ p-module
M. Moreover if 1 is flat over S and if Exty (I ® k(s), F ® k(s)) = 0 for all points s
of S, then H(I, F) is locally free.

Let ¢: V®z0x, — F be the universal quotient sheaf on X, Now let us
apply Proposition 4.2 to the case X = X, S=Q, [ = F and F = F @xE. Then
we obtain a coherent ¢y-module H(F, F ®xE). By virtue of Proposition 4.2, we
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know that the scheme I'" = V(H(F, F @ E)) represents the functor,
T — Homy (Fx,, Fx, @xE)

defined on the category of Q-schemes, moreover we have the universal
homomorphism &: Fy,, — Fy,, QyE.

Lemma 4.3. Let f: X — S be a proper morphism of noetherian schemes and let
@: I > F be an Oy-homomorphism of coherent Ox-modules with F flat over S. Then
there exists a unique closed subscheme Z of S such that for all morphism g: T — S,
g*(@) =0 if and only if g factors through Z.

Proof. By the isomorphism (4.2.1), ¢ corresponds to an ¢s-homomorphism
V: H(, F)> 05. The closed subscheme Z of S defined by the ideal sheaf
Image () is the desired one. O

By virtue of Lemma 4.3, there exists a closed subscheme I" of I'"" such that for
all morphism g: T—>1I", g*(®) can be extended to the homomorphism
Fyx, ®xS*(EY)—> Fy, defined as in (1.1.1) if and only if g factors through I. We
have also the universal homomorphism &: F xr XxS¥(EV)>Fx,. Letn:I'>Q
be the structure morphism. The surjective homomorphism d~5°(idxq
X T)*(@ @ idgugv)): V&QS*(EV)x,. = Fy,. defines a Q-morphism 4 of I to 0° and
clearly 4 is a G-morphism. It is easy to see that A is a closed immersion if we use
Lemma 4.3 repeatedly.

r—0°—20

N
Q

From now on, we assume
(44) if an invertible sheaf L on a geometric fiber X, of X5 has the same
Hilbert polynomial as (det F)@Qk(s), then
Exth,, (A (V @=SHEY)) ®sk(s), L) =0

for all positive integers j.

Remark 4.5. det F is the sheaf defined in Lemma 4.2 of [6] which is a G-

linearized sheaf and we have a natural G-homomorphism y of A F to det F.

By (4.2.1), the homomorphism yo(/r\ ?): A (V®ES;"(EV)XQ)—>det F defines
the Oz-homomorphism ¢ of H(/'\ (V@=SHEY)yxs), det F) to Op. o is surjective
since for all points x of 0, § ® k(x) corresponds to the non-zero homomorphism
@°(A ) ®k(x) by (42.1). Hence & defines a section o: 0 — P(H(A (V ®2S*
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(E¥)xg) det F)). I~f f has a section, there existi a unique Poincaré sheaf L on
X xgPicys. det F defines a G-morphism v of Q to Picy,s with the trivial action
of G on Picys (see Lemma 4.5 of [6]). Let P be a union of a finite number
of connected components of Picy,s having non-empty intersection with v(0).
By virtue of Proposition 4.2 and the assumption (4.4) the @p-module

H(A (V®=SHE)xg) L) is locally free. Set Z = P(H(A (V ®=SHE “)xg), L)).

By the universality of L, we see that (1y x v)*(L) ~ (det F)@QM for some
invertible sheaf M on (. By the universality of H(—, —), we see that

VXH(A @V ®=SHE )y, L) = H(A (VQ=SHE")xo): (det F) @ M)
~ H(A (V@®=SHE")y,), det F)@gM"~.

Therefore we have Z x ,Q ~ P(H(;\(V®ES;"(EV)XQ), det F) and the section ¢
defines a P-morphism u of Q to Z which is also a G-morphism.

r+0°— Q%2

& IR

Q—7P

Let R be the open set of Q such that for every algebraically closed field K,
R(K) = {xe O(K)|F ® k(x) is torsion free} (see [5]). Q has a natural G-action and
clearly R is a G-stable open set of 0. By the similar argument as in [6], we have

Proposition 4.7. Assume (4.4) holds for Q and F. Then there exist an open
and closed subscheme P of Picys of finite type over S and a P™-bundle p: Z — P in
the étale topology on P such that

1) G acts on Z and there exists a p-ample G-linearized invertible sheaf H on Z,

2) there exists a G-morphism u: Q — Z with ulg an immersion.

3) if u:S' > S is an étale, surjective morphism such that f' = f x5S’ has a
section, then Z x ¢S and p x¢S' are the same defined in (4.6).

Consequently we obtain the following commutative diagram of G-morphism:

I'nR — Rnd° — R
4.8) Il“ :go é\Z
\£ |~

— 3 P

§5. Construction of moduli spaces

Let f: X > S, Ox(1) and E be as in (4.1). We may assume that S is
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connected. Set H®(m) = i- H(m)/r for 1 <i <r, where r = rk(F) for an (F, ¢) with
[(F, p)]eZ Bx;s (Spec k(s)). By an argument similar to Lemma 4.2 of [7] and
Proposition 1.10, we have

Lemma 5.1. For each non-nagative integer e, there exists an integer m, such
that if m > m,, then for all geometric points s of S and for all strictly e-semi-stable
pairs (F, @) on X, with tk(F) = i and yx(F(m)) = H?(m),

(5.1.1) F(m) is generated by its global sections and hi(X,, F(m)) =0 if j >0,
(5.1.2) for all o-invariant coherent subsheaves F' of F with F' # 0

hO(F'(m)) < tk(F’)-h°(F(m))/i and moreover, the equaltty holds if and only if Pp.(m
= Pg(m) = H(m)/r,

(5.1.3) if an invertible sheaf L on X, has the same Hilbert polynomial as
det (F(m)), then Ext{yxs( A (V@=SHEY), L) = 0 for all positive integers j, where V is

a free E-module of rank r.

Remark 5.1.4. If (5.1.3) holds, then for all invertible sheaf L on X, with the
same Hilbert polynomial as det(F(m)) and for all free Z-module V,

Extl,, (A (V@=SHE"). L) = 0 (j > 0).

We may assume that m, > m,. if e > ¢. Set H"9(m) = H®(m + m,) and N©9
= H®9(0) = HP(m,). Let V;, be a free Z-module of rank N“® and let G; be the
Z-group scheme GL(V;,). Let us consider the scheme

5 Htie)
Q: = Quoty, g_sxevyxs

and its subscheme I; constructed in §4. Let ¢7: V,, ®z0x,. — F{ be the universal
quotient and ¢@f: F{ - F{ @ xE be the universal homomorphism on X . By
virtue of Proposition 1.11 and (5.1,1), there exists an open set R¢*¢ in I'; such that a
geometric point y of I is contained in R%¢ if and only if

(5:2.1) I'(¢f @ k(y): Vi, ®=k(y) ) > H°(X,, F{ ®rk(y)) is bijective and
(5.2.2) (F;{ Qrk(y), of @rk(y)) is strictly e'-semi-stable.

By virtue of (5.1.1) and the universality of I';, for every geometric point s of S,
we have the surjective map;

£ (8): Ry (k(s)) — Zixis (m,) (Spec k(s))
= {[(F(my), @ ® lom)1I(F, @)e THYS (Spec k(s)},

where £2¢ (s) maps k(s)-valued point y of R&¢ to the pair (F¢ ® nk(y), of rk(y).
Moreover, R¢¢ is G;-invariant and K-valued geometric points y, and y, of R®¢
are in the same orbit of Gy(K) if and only if (Ff ®pk(y,), ¢f®rk(y,)
~ (Ff @r.«k()’z), @7 @rk(y,)) (see §5 of [6]).

Let R be the scheme theoretic closure of R¢* in §J,, Now we replace 0, by a
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union of connected components of (; having a non-empty intersection with
R&¢. Let v; be the morphism of J; to Picy,s defined in §4 and let P; be the union
of connected components which intersect with v,(J,). Then by the condition (5.1.3)
we obtain a G;-morphism y; of §; to Z; defined in Proposition 4.7. Let 4; be the
scheme theoretic image of Rf® by y;. Then y; induces an open immersion of R
to 4;. Consequently, we obtain the following commutative diagram of G;-
morphisms :

Ry — Ree — Q,

NS

Ai ‘Z" ‘.Pi.

For all K-valued geometric points x of P;, (Z,), is isomorphic to the Gieseker
space Pgiv,(Vi. ®=K, i, L,), where L, is an invertible sheaf on Xy corresponding
to x. By an argument similar to Lemma 4.4 of [7], we know that if Tis a K'-
valued geometric point of (4),, then T is excellent in (Z),
= Pgev,(Vi. ®=K, i, L,) and for every vector subspace V of V;, ®:zK',

(5.3.1) dim ;V = dim .V =k (®¢(V Q@ x S*(EY)).

Let L; be a G-linearized p;-ample invertible sheaf on Z;. Then there exist G;-
invariant open subshemes 4{ and 45 of 4; such that for all algebraically closed
field K, 45(K) = {xe 4(K)|x is a properly stable point of (4;), with respect to the
pull back of L; to (4;),, where y = p(K)(x)} and 43*(K) = {xe4,(K)|x is a semi-
stable point of (4;), with respect to the pull back of L; to (4;),, where y
= p(K)(x)}. By virtue of Corollary 3.3, (5.1.2) and (5.3.1), the same argument as
in Lemma 4.15 of [6] provides us with the following.

Lemma 54. p; induces an open immersion of R to A¥. Moreover, for a
geometric point x of R®®, if (Ff® k(x), ¢¢ ® k(x)) is stable, then p(x) is in 4.

By virtue of Theorem 4 of [12], there exists a good quotient m: A4;°
— Y. Since S is of finite type over a universally Japanese ring, Y is projective over
S. 4% — u(R&¢) is G,-invariant closed set of 4. Set M,, =Y — n(45
— 1,(R&€)). M, is an open subscheme of Y. Hence M, is quasi-projective
over S.

Let x be a k-valued geometric point of R&¢. Since (F, )= (F¢® k(x),
@f ® k(x)) is strictly e’-semi-stable, we can find a Jordan-Hdolder filtration 0 = F,
cF,c--cF,=F. Setr,=rk(F)and l,=r;,—r;,_,. Then (F,_,, ¢,-;) and
(F,_,, @.-,) and (F,, @,) are strictly ¢’-semi-stable (see lemma 3.5 of [7]) where F,
= F/F,_,. By virtue of (5.1.1), we get the following commutative diagrom;

0— HO(Xx’ Fu—l) — Ho(Xx’ F) i HO(Xx’ F/Fa—l) —0

ﬂa-sz 'ch’—’ n;I'z

Vr—l,e ®Ek I re ®Sk - V;,.e ®5k
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where 5, = I'(¢f ® k(x)). An isomorphism He—1 (O, ng defines a k-rational point
X,-1 (O %,, resp) of RE<, (or, R, resp). I T, = p,(k)(x), Toey = ptr,_, ()X, )
and T, = p, (k)(X,), then T,€ Pgypv\(V, . Qzk, 1, det F), T, € Psypv(V,,_, . D=k,
ry—1, det F,_;) and T,€Pgiv (V.. Rzk, [, det F,). Let y,:detF,_, ®det F,
— det F, be the canonical isomorphism. Then T, is a ,-extention of T,_, (see §4
of [7]). Let F F;/F;_, and y;: det F;,_, ® det F; - det F;. Repeating the
similar argument to the above, we get T; in Ps,,_(Ev,(VJ . ® k,r;, det Fl<j<o
and T~ in Pggv,(V,. Rk, 1 detF)(l < j < a) such that

(54.1) T;= p, (k)(x;) for some x; in Rff'(k) and 7_"1 = w,(k)(x;) for some X in

R{:¢(k). Moreover, T; is in 43,(k).

J

(5.4.2) T;is a yj-extention of T by T,_, and T, ~ T,.
By a proof similar to lemma 4.7 of [7], we have
Lemma 55. T,>~T,_, ® T, if and only if (Fj, ¢) ~(F;_y, ¢;—,) ®(F}, @)

Since gr(F, ¢) is strictly e’-semi-stable (see Corollary 3.5.1 of [7]), gr(F, ¢)
corresponds to a point y in R&¢(k).

Corollary 55.1. k() =T, ®-- @ T,.
By virtue of Theorem 3.7 and a proof similar to Proposition 4.8, we obtain

Proposition 5.6. Let y be a k-valued geometric point of P, and let s be the
image of y by the structure morphism P, —S. Let (F,, ¢,),..., (F, ¢,) be e'-stable
E-pairs on X, such that I, = rk(F,), y(Fi(m)) = H®(m) and |, + --- + 1, =r. Then
there exists a G,-invariant closed subset Z((F,, @,),..., (F,, 9,) of (R&),
=) 'WNREE such that

(5.6.1) u(Z((Fy, @y), ..., (F, 9,) is closed in (45),,

(5.6.2) for every algebraically closed field K containing k, Z((F,,
@1y (Fay @))(K) = {x€(R7)gr((F}, ¢f) @ k(X)) = (D F;, @ 0)}

(5.5.6) the G,-orbit of x, corresponding to (@ F;, ® @,) is the unique closed
orbit in Z((F_la (pl)’--- > (F_a’ (pa))'

By Theorem 4 of [12], Proposition 5.6 and a proof similar to that of
Proposition 4.9 and 4.10 of [7], we have

Proposition 5.7. M, . has the following properties:
(57 1) For each geometric point s of S, there exists a natural bijection
b;: E/X/S (Spec (k(s))) » M e.er(k(5))-

(5.7.2) For Te(Sch/S) and a pair (F, @) of a T-flat coherent Oy, .-module F
and an COXXST-homomorphism of F to FQxE with the property (2 3.1) and (2. 4) '
there exists a morphism f(p w of T to M, such that fae G0 () = 0([(F ® rk(

@ @ rk(t)]) for all points t in T(k(s)). Moreover, for a morphzsm g:T'->T in
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(Sch/S),
[0 = fiorro-
(5.7.3) If M'e(Sch/S) and maps 0.: ZE,X,S(Spec(k(s))) — M'(k(s)) have the
above property (5.7.2), then there exists a unique S-morphism ¥ of M, to M’ such

that lI_/(k(s))oe_5 =0, and P &5, = fir.p for all geometric points s of S and for all
(F, @), where fg,, is the morphism given by the property (5.7.2) for M’ and 0..

The construction of a moduli scheme of the functor L x5 is completely same
as in §4 of [7], that is, ME,X,S(H) = limM,..

Theorem 5.8. In the situation of (4.1), there exists an S-scheme M grxys(H) with
the following properties:

1) Ms/x/s(H) is locally of finite type and separated over S.

2) There exists a coarse moduli scheme Mg ;xs(H) of stable E-pairs with
Hilbert polynimial H and it is contained in M gxs(H) as an open subscheme.

3) For each geometric point s of S, there exists a natural bijection
0: ZE/X/S (Spec(k(s))) — ME/X/S(H)(k(S))~

4) For Te(Sch/S) and a pair (F, ¢) of a T-flat coherent Oy, -module F and
an Ox,  r-homomorphism of F to FQxE with the property (2.3.1), there exists a

morphism f(pv,p) of Tto ME/X/S( H) such that f(F ot) = O([(F @ rk(t), ¢ @ rk(t))]) for
all points t in T(k(s)). Moreover, for a morphism g T — T in (Sch/S),

S0 °9 = JuxxorE.or

5) If M'e(Sch/S) and maps 0,: ZE,X,S(Spec(k( 5))) = M'(k(s)) have the above
property 4), then there exists a unique S-morphism ¥ of M gx;s(H) to M’ such that
P(k(s)) 0, = 0, and P f(F o= f(F o Jor all geometric points s of S and for all
(F, @), where f(m,) is the morphism given by the property 4) for M' and 0..

Corollary 58.1. If Sy s(H) is bounded, then Mgy,s(H) is quasi-projective
over S.
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