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A  characterization of extended Schottky type groups

with a remark to Ahlfors' conjecture

By

Katsuhiko MATSUZAKI

Introduction

The class of Schottky groups can be extended to a  larger class of Kleinian
groups which may contain parabolic elementary subgroups. These were defined
by Chuckrow [4] and called extended Schottky type (E.S.T.) groups (Definition 2—
1). In  §  2  of th is paper, after summarizing certain known results about E.S.T.
groups, w e g ive  a n  algebraic characterization to  them  (Theorem  2-1). For
Schottky groups, this was done by M askit [6]. He proved that a Kleinian group
is a Schottky group if and only if it is purely loxodromic an d  free . Theorem 2-1
is a generalization of this result and we call our characterization condition perfectly
decomposable (Definition 2-2). W e note that Gusevskii and Zindinova showed
first our theorem in  their paper [5] by considering 3-dimensional manifolds, but
our proof is carried o u t without any argument on them.

N e x t w e  th in k  a b o u t  th e  m easure o f  t h e  lim i t  s e t  o f  some Kleinian
group. Ahlfors conjectured that 2-dimensional Lebesgue measure of the lim it set
of a finitely generated Kleinian group is equal to z e ro  [1 ] . Recently Bonahon [3]
proved that this is true for K leinian groups w hich satisfy a certain condition
(P ro p o s itio n  3 -2 ) . In  th is  p a p e r  a s  a n  a p p lic a t io n  o f  T h e o re m  2 -1  and
Proposition 3-2, we remark that Ahlfors' conjecture is valid for doubly generated
torsion-free Kleinian groups (Theorem 3-1).

And this paper contains the author's gratitude to Prof. Kusunoki.

1. Preliminaries

We denote all the Möbius transformations b y  M o b . In this paper a  Kleinian
group is  a  f initely  generated torsion-free discrete subgroup o f  Mob which acts
discontinuously at some point of e  =  e u {0 9 } .  (To make sure, abbreviations f. g.
and t. f. are  used at appropriate places.)

The set of points at which a Kleinian group G acts discontinuously is denoted
by 0  = S2(G), and its complement A  = A(G) is the limit set. A n  elementary group
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is a Kleinian group whose limit set has a  finite number o f po in ts . In  our case an
elementary group is either trivial, loxodromic cyclic, parabolic cyclic group, or
parabolic abelian group of rank 2.

A connected component of Q(G) is briefly said to be a  component of G .  A
component A  of G is invariant if g(A )= A  for all g e G .  A (f .g.) Kleinian group
which has an invariant component is called function g ro u p . If  G  is  a  function
group and A  is an invariant component of G, then components of G other than A
are all simply connected. Moreover a  function group whose invariant component
is simply connected is called B -group. We always exclude elementary groups from
B-groups. It is known that a B-group has simply connected invariant components
a t m ost tw o . If there are two, we call that quasi-Fuchsian. A  totally degenerate
group is  a B-group which has only one component.

For a component A  of G, we define stab(A) fg e G ; g(A) = A } and call it the
component subgroup for A .  From Ahlfors' Finiteness Theorem we can see that a
Riemann surface A/stab (A) is of finite type . T he  following proposition is almost
a  corollary to this theorem.

Proposition 1-1  (A hlfo rs [2 ]). L e t  G  b e  a  non-elementary (f .g.) K leinian
g ro u p . Then the component subgroup f o r each A  is non-elementary (f. g.) Kleinian
group and has A  as its component.

It is easily seen that every component subgroup of a function group for non-
invariant component is quasi-Fuchsian.

Mob is uniquely extended from on to  the group of orientation preserving
isometries o f hyperbolic 3-space 113 . A  discrete subgroup G  o f Mob is called
geometrically finite if it  h a s  a  finite-sided Dirichlet polyhedron in  FP.

A  (f .g.) Kleinian group is constructed from certain basic groups by using
Combination Theorems I and II of M askit [7]. Particularly for a function group,
the next proposition is known.

Proposition 1 - 2  (M ask it [8 ] [10]). A  function group is constructed from
elementary, quasi-Fuchsian, and  totally  degenerate groups by  a f inite num ber of
applications of Combination Theorems I and II. Further it is geom etrically  f inite if
and only  if  it is constructed from  elem entary  and quasi-Fuchsian groups.

2. A  characterization of E.S.T. groups

Definition 2 - 1 .  A Kleinian group G is called E.S.T. (extended Schottky type)
group of type (r,s,p) if G has generators f 1 , ,  a 1 , ,  a 5 , u 1 , v 1 , ,  v p  and
defining curves C 1 , C'1 , ,  C " , . ,  B 1 , B'1 ,..., 13 5 ,  B ,  L 1 ,..., L ,,, where L i i s  a
topological rectangle w ith  sides I t ,  I ,  J i ,  J ,  a n d  they satisfy th e  following
conditions :
(1) The curves are disjoint Jordan curves, except B i , f ri  having a  common point
zj ,  w hich  bound  a  2r + p + s-p ly  connected dom ain D  su ch  th a t f i (D)nD
= a i (D)nD = u k (D )n D  v k (D)nD = 0.
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(2) f ( C )  = C ,  a i ( B ) =  f ri , 14(10 = I ,  v k (f k ) =
(3) <uk , v k > is  a  parabolic abelian group.
(4) a;  is parabolic with fixed point

Definition 2 - 2. W e  sa y  th a t a  finitely generated subgroup G  o f  M ob is
perfectly decomposable if G  has a free product decomposition such that

G = F ,* • • •* F r * A ,* •••* A s * T ,* •• •* Tp

where F. is loxodromic cyclic, A. is parabolic cyclic, Ti  is parabolic abelian of rank
2, and every parabolic transformation of G is in  a  conjugate subgroup of some A.
or 7 . M o re o v e r  if  G  is  free, we call it perfectly free.

We can see that every E.S.T. group is constructed from elementary groups by
Combination Theorems. Thus it is geometrically finite and  perfectly decompo-
sa b le . In this section we will prove conversely that if a Kleinian group is perfectly
decomposable, then it is an E.S.T. group.

Proposition 2-1. If  G  is a (f .g.& t.f .) K leinian group, then the following three
conditions are equivalent:
(a) G  is an  E .S .T . group.
(b) The lim it set A (G) is totally disconnected.
(c) G is a function group constructed from elementary groups by a finite number of
applications of  Combination Theorems.

P ro o f . (a) ( b ) :  T h i s  was remarked in  C h u c k r o w  [4 ] .  ( b )  ( c ) :  Since
.12(G) is only one component, G is a  function g ro u p . If  G has a quasi-Fuchsian or
totally degenerate group a s  a  subgroup, A (G) h a s  a  con tin iuum . T hus G  is
constructed from elementary groups.

(c) —> (a): In  order to prove this, we need the signature of a function group
(M askit [9] [10]). It is w ell defined  fo r each function group. The signature
consists of both  a  geometric object K  called the marked 2-complex, and a non-
negative integer t ,  called the Schottky number.

T h e  K  contains a  marked finite (disconnected) Riemann surface X  and
connectors. The connected components of X  are called parts of K , and each part
corresponds to the structure subgroup, from which a function group is constructed
by Combination Theorems. The end points of each connector are special points
of X  and have the same ramification number.

We consider two signatures (K , t) and (K *, t*) to  b e  the same if there is a
homeomorphism from K  onto K * which preserves distinguished points with their
order, and  t =

L et G  be  a  function group which satisfies Prop. 2-1(c) with the signature
(K, t). Each part P in K  is a  finite Riemann surface of type (0, 2; oo, co) or (1, 0),
and respectively corresponds to  a  parabolic cyclic group o r  a  parabolic abelian
group of rank 2 as the structure subgroup. Further K  has no connector because a
part of the signature (0, 2; oo, oo) cannot have an endpoint of a connector (Maskit
[10]X.D.15).
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Lemma 2-1 (M ask it [9 ]) . Two geometrically finite function groups G and G*
have the same signature if  and only if  G* is a quasiconformal deformation (i.e. there
is a global quasiconformal homeomorphism yo so  that G* = cp. G. co- 1 ).

Proof of (c) (a): Let G be a function group which satisfies Prop. 2-1(c) with
the signature (K, t). Then there  exists an  E .S .T . g roup  G *  whose signature
(K *, t*) i s  th e  sam e a s  (K, t). F ro m  L e m m a  2 -1 . G  i s  a quasiconformal
deformation of G * . Thus G  is an E.S.T. group.

Corollay 2-1 (C huckrow  [4]). A  f initely  generated subgroup o f  an  E.S.T.
group is also an  E.S.T. group.

Proposition 2-2. L e t  G  b e  a  .f initely  generated perfectly  decomposable
subgroup o f  M 5 b . Then a f initely  generated subgroup H  o f  G  is also perfectly
decomposable.

P ro o f .  Let G = F,*•••*F r * A , * • • • * A ,* T,* • • • * Ti; b e  a  perfect decompo-
sition o f  G .  W e can m ake an E .S .T . group C =  i * • • • * r  *  *  •  •  •  *  ;I s *
•  •  •  *  T , so that there exists a  type-preserving isomeophism : G -› C . f i  =  cp(H) is
a  finitely generated subgroup o f  6 ,  so  from  C oro lla ry  2 -1 , 17  is  an E.S.T.
g ro u p . Hence 17 is perfectly decomposable a n d  H  =  - 1 (17) is also perfectly
decomposable, for cp is type-preserving.

Proposition 2-3. I f  G  is  a  perfectly decomposable Klein ian group, then G
cannot have a  (non-elementary) B-group as  a subgroup.

P ro o f .  W e  assum e G  h a s  a  B -g ro u p  H  a s  a  subgroup. Then from
Proposition 2-2, H  is perfectly decomposable. Because a B-group cannot have a
parabolic abelian subgroup of rank 2, H  is a  perfectly free B-group.

L e t  A  b e  a  s im p ly  c o n n e c te d  in v a r ia n t  c o m p o n e n t o f  H .  By
Ahlfors' Finiteness Theorem we see that S = A IH  is a finite Riemann surface, i.e.
S  = -  { p , , . . . ,  N } , w h e re  is  a  closed Reimann surface and p i is  a  puncture on
it. Since A  is a  universal covering surface of S, we can identify H  to  n 1 (S) by the
canonical isomorphism.

For each puncture pi ,  there exists the conjugacy class of primitive prarbolic
elements [w i] such that the corresponding loop of n i (S) is freely homotopic to the
simple loop round pi .

Let f l , f ,  a, be perfectly free generators of H  and X  be the set of
these. Since every primitive paraboric element of H  is conjugate to a, or ai

- 1 , for
each w i there exists ak , such that [w 1] is  equa l to  [ak ,]. Hence the fundamental
group of S u {p1} is presented by the generators X  and a relation ak , = id. But
since a .  in X , n i (Su {pi l) =  <X ; a k ,> = <X  - ta k ,1> is a  free  group. Filling up
a l l  t h e  punc tu res, w e  can  see  n  1 ( S )  i s  a  f r e e  g roup  w ith  genera to rs X
-  fa,,, , ak n I. If S.  is  n o t a  sphere this cannot occur, because the fundamental
group o f  a  non-trivial closed surface doesn 't have a non-trivial free product
decomposition (Shenitzer [11]).
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Therefore we know that g  is  a  sphere, S is an n-punctured sphere, and  X
— Iak  ,  =  0 .  This means Tt 1 (S) = <X > = <a,,,..., a k n > is  a free group of
rank n, which contradicts the fact that the fundamental group of an n-punctured
sphere is a free group of rank n — I. Hence our first assumption is false and we
have proved the proposition. 0

Proposition 2-4. I f  G  is  a  perfectly decomposable Klein  ian group, then it
satisfies Prop.2-1(c); especially it is geometrically finite.

P ro o f .  L e t  A  b e  a  com ponent o f  S2(G). W e  assume Q(G) R  A .  The
stabilizer of A  is  a  function group H , and by Propositin 1-1, A  is  an invariant
component o f  Q (H ). Since Q (H ) D  f2 (G ) A , f2 (H ) has a  component other than
A .  Let it be A , .  It is simply connected. Further we consider the stabilizer of A,
in H .  This is a quasi-Fuchsian group with an invariant component A , .  But from
Proposition 2-3, G  cannot have a  B -group as a  subgroup . This contradiction
asserts that A  = S2(G), i.e. G has only one component Q ( G ) .  Hence G is a function
g roup  a n d  does no t con ta in  B -g roups. T h is  m eans G  is constructed from
elementary groups, and  especially it is geometrically finite.

From  Proposition 2-1 and 2-4, w e obtain the  follow ing theorem . It is a
characterization of an E.S.T. group.

Theorem 2-1. A  Kleinian group is an E.S.T. group if and only if  it is perfectly
decomposable.

3. A hlfors' conjecture for doubly generated Kleinian groups

Ahlfors conjectured  that f o r  a  finitely  generated K leinian group G  2-
dimensional Lebesgue measure of its limit set A(G) is equal to zero, and he proved
that in the case G is geometrically finite it is true [I]. Later Thurston defined a
class of finitely generated torsion-free discrete subgroup of Mob which is called
geometrically tame, a n d  proved that f o r  a  geometrically tame Kleinian group,
Ahlfors' conjecture is valid  [12]. The next theorem is due to Bonahon who gave a
certain condition of geometric tameness [3]. Before the  theorem we state this
condition, namely,

Definition 3 - 1. F o r  a  finitely generated torsion-free discrete subgroup G  of
Mob, the following (*) is called Bonahon's condition.

(*) For each non-trivial free product decomposition G = A * B, there exists a
parabolic element j e G such that j  does not belong to any conjugate subgroup of
either A  o r B.

Especially if G is indecomposable, then G  satisfies (*).

Proposition 3-1 (B onahon  [3 ]). I f  a f initely  generated torsion-free discrete
subgroup G  o f  M ob satisf ies Bonahon's condition, then G  is geometrically tame.

Applying Thurston's result, Bonahon noted the next proposition, which is now
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needed for us to prove that Ahlfors' conjecuture is valid for doubly generated (t. f.)
Kleinian groups.

Proposition 3-2. I f  a  (f.g.&t.f.) K lein  ian group  G  satisf ies Bonahon's
condition, then the 2-dimensional Lebesgue measure of  A(G) is equal to zero.

Theorem 3-1. L et G  be a doubly generated (t. f.) Kleinian group, then the 2 -

dim ensional Lebesgue measure of  A(G) is equal to zero.

P ro o f . I f  G  is indecomposable, then it satisfies Bonahon's condition, and
from Proposition 3-2, meas A(G)= O. H ence  w e m ay  assume that G has a  non-
trivial free product decomposition. Since G is doubly generated, each factor of the
free product is a  cyclic group.

It s u f f ic e s  to  c o n s id e r  th e  c a s e  t h a t  G  does not sa tisfy  B onahon 's
cond ition . In  other words, there exist g, and g 2  such  tha t G = <g 1 > * 0 2 > and
every parabolic element of G is in a conjugate of either <g1 > or <g2 >. This means
G is perfectly decomposable, and by Proposition 2-4, we can see G is geometrically
finite. T hus m eas A(G) is equal to zero.
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