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On a multiplicative structure of BP-cohomology

operation algebra

By

Kouichi INOUE

§0. Introduction

The BP-theory is obtained as a factor of the p-localized complex cobordism
theory, and has a close relation to the theory of p-typical formal group laws. For
example, (BP,, BP,BP) has a particular algeraic structure, named Hopf-algebroid
[10], and we can formulate its left unit, right unit, coproduct and canonical
antipodal isomorphism in terms of the formal group law obtained from the
complex orientation of the BP-theory. Since the E,-term of the Adams-Novikov
spectral sequence is a cohomology of the Hopf-algebroid (BP,, BP,BP), we can
obtain many useful information from these formulae.

BP*BP, which is a dual of BP,BP, is a cohomology operation algera of the
BP-theory, and can be regarded as a kind of (non-commutative) Hopf-algebra. D.
Quillen [9] studied its Hopf-algebraic structure, and asserted that
BP*BP ~ Homg, ( BP,BP, BP,) =~ Hom,(Z[t,, t,,---], BP,) =~ BP* ® R, where R
={rg: E= (e, e;,---)} is a dual basis of {t¥! =1{t$*---}, the BP,-free basis of
BP ,BP (see also [1]). We call these rp the Quillen elements. But its
multiplicative structure has been expressed as a dual of the comultiplicative
structure of BP,BP, so that the complicatedness of this coproduct formula seems
to prevent our intimate studying of the multiplicative structure of
BP*BP. Exceptionally, R. Kane [5], [6] demonstrated some interesting results
about BP-operations and Steenrod operations from their behavior under the
rationalization and the product formula modulo (v, vy,-).

The purposes of this paper are to describe the complete formula for the
product of BP-operations and to study the algebraic structure of BP* BP by means
of this formula.

§1. Product formula

BP*BP is a stable cohomology operation algebra of the BP-theory. This is a
dual algebra of BP,BP =~ BP,[t,, t,,---] (deg t; = 2(p' — 1)) because BP,BP is a
free left module over the coefficient ring BP, = Z, [v,, v,,---] (deg v; = 2(p" — 1)).
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So we can describe BP*BP as stated in the introduction. Notice that we
understand BP* = BP_,, so that rpeBP"BP with n=) 2e(p'—1) and
v;e BP217P) Ag also stated in the introduction, BP* BP has not only a ring
structure but a BP*-Hopf-algebraic structure. Its multiplicative structure depends
on the composition of operations, and its comultiplicative structure depends on the
action on the product of two elements of BP*X, where X is a CW-complex. In
the sequel, #, ¢, ¥ and pu denote unit, counit (augmentation), coproduct and
product, respectively.

n: BP* — BP*BP tn(@)=a-1.
1:E=0
. * * : =
¢: BP*BP — BP elre) {0: otherwise.

Y: BP*BP — BP*BP ® BP*BP  :y(rp)= Y ry®rs.
BP* FYG=E
The above infinite tensor product over BP* is a tensor product of left BP*-
modules.

u: BP*BP ® BP*BP — BP*BP: Theorem 1.2.

Notation 1.1. Throughout this paper, xf denotes a monomial x§'x%---,
where x;s are some specified elements, and we call E = (e, e,,---) an exponential
sequence.

Theorem 1.2. Let rg, rp be two Quillen elements. Then the product of them is
described as follows:

Feorp = Z (= 1y'B(Xo) - B(Xn)mM(x°)+"'+M(x")"V(x..)~

n20
E(Xo)=E
F(Xo)=F
E(X1)=V(Xo0)

MESE0, Mix S %0
In the above formula, X, is a three-dimensional tensor, and X |, ..., X, are two-
dimensional matrices, i.e., X = (x;j), where non-negative integers x;;, are defined for
i,j,k >0 except (j, k) =(0,0), and X,, = (X;;), where non-negative integers x;; are
defined for i >0, j > 1.

i

T X110 X120 X130

X101 X111 X _
101 X111 X121 X131 *  *x  x % !
X102 X112 X122 X132
Xz X ¥ Xo1 X11 X231 X33
010 X020 X030 . =(X,) =
X =(x;3) = (Xy) X02 X12 X33 X3,

X001 Xo11 X021 X031
X002 X012 X022 Xo32

k J

Xo3 X13 X23 X33
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m;s are the polynomial generators of H,BP =~

= Z(p)[mla m,, "'] (deg m; = 2
(p' — 1)), which contains n,BP = BP, —Z“,)[vl, vy,-+] as a subring. And the
Sfunctions V, M, E, F and § are deﬁned as follows:

V(X) = (a,, ay,-), An = Z Xijk (=. Z xij)’
M(X) = (by, by, -

) by = mejk (= mej)’
ik 7

E(X) = (Cl’ Cas )» Cn = ;piximk (= Zpixim)’

F(X) (dl’ d27' ')’ dm = Zpi+jxijm’

BX) = [T an!/TT %! (= [T am /] %),

The right expression of the product formula is summed over all n > 0 and X,
Xi,..., X, satisfying the conditions written below Y

Proof. The coproduct map of BP,BP is defined recursively by the following
equations (see [1], [2], [9]):

Y mr)” Y mt @', forn=1,2,-
i+j=n

t+j+k=n

We now follow the same way as J. Milnor [8] obtained the product formula
for the Steenrod algebra. We apply the formula

= X iy

i1 +..+ip=e

i+ + )

y to the left and right expressions of the above
equations. Then we obtain:

(% mryy

i+j=n,j21
n-1
= (en!/xn—i.l' xOn )(mn ltptp x" BEEE (Wt )XOn
Xn-1,1t-+x0,n=en
= e”!/x"_l,lV xonl)mxl" teoom x,, lllptl’" Yxp-1,1,, ‘Wt:o'"
Xn-11+-+Xon=en
and
i it j
( mit? @ tf )
i+j+k=n,(j,k)#(0,0)
— Z (e,l !/l_[xijk !)milixijk m'z'{nl— 1,jk t};p‘xnk . t:OnO ® t}l:pi+.ixijl tioo.‘ .
IXijk = en
i+ j+k=n,(jk)#(0,0)

Multiplying the corresponding expressions for n =1, 2,..., we obtain:

(13) z B(x)mM(X)th(X) — Z ﬂ(X)mM(X)tE(X) ® IF(X),
Vix)y=v ViX)=v
where V= (e, €5,

) is a fixed exponential sequence. The left expression is
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summed over all matrices X = (x;;: i >0, i > 1) satisfying V(X) =V, and the right
expression is summed over all tesors X = (x;;: i, j, k >0, (j, k) # (0, 0)) satisfying
V(X)=V.

Here we regard the collection of all equations (1.3) corresponding to every
exponential sequence as simultaneous equations of tE. That is, if we define a

sequence-indexed matrix 4 =(4}) by Af = Y PX)mM®, then the above

VX)=V
. . . E(X)=E
equation is described as follows:

AWtE) = (uy), where u, = Y BX)mMPED @ FX),
ViX)=Vv
Obviously, yt” has the highest degree in the left expression of (1.3). This fact
suggests that A4 is indeed a lower triangular matrix whose diagonal entries are

I's. Hence A™'= ) (—1)"(4 —I". Therefore we obtain the formula of y¥ as
follows: "0

(1.4) yt¥ = Z (= 1YB(Xo) - BX YmM(Xo) + -+ MXn) (E(Xo) @) F(X0)
. n
V(;i)o-:l/
V(Xn-1)=E(X0)
V(Xo)=E(Xy)
M(X1)#0,..., M(X,)#0
Theorem follows from (1.4) and (rgorp, x) =Y {rg, xng<re, X,»), where

x€BP,BP, yx =Y x; ® X,. Q.E.D.

The formula of this theorem seems to be quite complicated, but has a
remarkbable resemblance to the product formula of the Steenrod operations under
some conditions.

Corollary 1.5. If E = (ey,...,e,-,) and F = (fy, f5.+-), fi = 0 unless nl|i, then

where X = (x;;: i, j =0 and (i, j) # (0, 0)).

Proof. These conditions imply:

Y BXmMP =% K BZ)mM®,

V(X)=V MY)=0 V(Z)=V
E(X)=E E(Y)=E E(Z)=V(Y)
F(X)=F F(Y)=F

where X, Y are tensors and Z is a matrix stated in Theoem 1.2. Then the
corollary easily follows. Q.E.D.

Remark. This corollary holds when the conditions for E and F are inverted.

Corollary 1.6. rperp= Y P(X)ryy mod (v, vy,---), where X = (x;), i,
M(X)=E
E(X)=F
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j =0 and (i, j) # (0.0).

Proof. The ideal (v, v,,---) equals to (m,, m,,---)NnBP,. The terms of n > 1
or M(X,) # 0 vanish modulo (m,, m,, ). Q.E.D.

Remark. This corollary is first stated by R. Kane[6].

We must consider the action of r; on the coefficient ring for the purpose of the
complete description of the product of BP-operations since (x-rg)o(y-rg)
= Y x-rg,(y)-rg,ory where x and y are some elements of the coefficient ring.

E,+E=E

Lemma 1.7. rgm")= Y BX)m™®, where X =(x;;:j >0, (i, j) # (0, 0)).

vx)=V

E(X)=E
mn—i: E = (0, ey 0, e"), e" = p"_i
Proof.ry(m,) = {0 : otherwise (See [90).
Then the coproduct formula of rp easily certifies this lemma Q.E.D.

We close this section by the mention of two little lemmas about converting v;’s
and my’s.

Lemma 1.8. Let v; be Hazewinkel’s generator [3] and I = (i}, i,, ..., i,) be a
finite (possibly empty) sequence of positive integers. Let |I|=m and |I|
=Yi,. We define v, recursively by v, =1, and v; = v; (v,), where a = p"* and I'
= (iy, i3,*-+). Then the following equation holds:

Uy

=T
Wi =n Pl !

m, =

This lemma is stated by D. C. Ravenel [10] rather for the case of Araki’s
generator [2].

Lemma 1.9.
v = (pm)” + ) (= 1Y BX ) -+ B(X MO0+ MK (ppy)ECE),
nx1

ViX)=V

V(Xp)=E(Xp-1)
M(X)#0,..., M(Xn)#0

Proof. v,’s are recursively defined by pm, = Y mp,_ 7. Then we obtain
O<i<n

the following equation:

pm) = Y BX)mME pE®,
| 4

X)y=v

Hence the lemma follows in the same way as Theorem 1.2. Q.E.D.
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§2. BP*-algebraic generators of FS*

FS* = BP* ® R is a dense BP*-subcoalgebra of BP*BP. But FS* also has a
BP*-subalgebraic structure of BP*BP, so that the (Hopf-) algebraic structure of
BP*BP is a completion of that of FS*. BP*BP is a quite large object whose
cardinality is ™. On the other hand, FS* is so small that BP,BP can be
reconstructed as BP, BP =~ Homgp.(FS*, BP*). This means that FS* is accessible
as well as essential.

Lemma 2.1. FS* is a BP*-subHopf-algebra of BP*BP.
Proof. The formula of Theorem 1.2 is a finite summation. Q.E.D.

Remark. The target of the coproduct map ¢ of FS* is a finite tensor product
FS* ® FS*.

FS* has a close resemblance to the Steenrod algebra. First we observe the
following commutative diagram of spectra constitutes a ring homomorphism (#(E)
means Sq(2E) for p = 2).

BP —*  BP

| l

HZ/p 22% HZ/p

Lemma 2.2. Define p: BP*BP - HZ/p*HZ/[p = o . the Steenrod algebra by
the correspondence of the above diagram. Then p is a ring homomorphism.

Proof. This is obvious from Corollary 1.6 and the fact that (p, vy, v,,---) is
invariant under the action of the BP-operations (see [4], [7]). Q.E.D.

It is well-known that 27" for n > 0 generate .//(f) (in case of p = 2, Sq*" for
n > 1 generate //(Sq')). FS* also resembles the Steenrod algebra in that the
following theorem holds.

Theorem 2.3. r(p") for n > 0 generate FS* as a BP*-algebra.

Remark Since the cardinality of BP*BP is N, the cardinality of its algebraic
generators is also N.
2) Any proper subset of {r(p")} cannot generate r(p") which is not contained in
this subset.

Proof. The necessity is immediate. If we can write down r(p") from other
elements which are not projected to y(£”") under the map p mentioned in lemma
2.2, then this equation remains valid after applying p. But this contradicts the fact
that y(£*") is indecomposable.

On the other hand, an inductive argument is required to prove its
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sufficiency. To begin with, we give the following definitions.

Definition 24. 1) F(n) = BP*® {r(e,, e,,+): ;< p"*'7}.
2) Ri=r0,..., p), where p’ occurs at the k-th entry.
3) For an exponential sequence E (or for rg), we define its excess by ex(E) = Y e;.

Suppose all elements of F(n — 1) are generated from r(p")’s. We will now
argue by an inner induction on excess that any element in F(n) — F(n — 1) can be
decomposed in terms of r(p")’s. The element of minimal excess is RJ. For this
element we have the following lemma.

Lemma 2.5. R?., =[RY R, for all n> 1.
Proof. For n=1,
RY-RI =R+ (p+ Drip+1)—v,r(1, 1),
RI‘RY=(p+ Dr(p+ 1) —v,r(1, 1).
For n > 1, we obtain from Corollary 1.5:
RC-R"=R2, , +r(p", 0,..., 1),
RT-R =r(p", 0,..., 1).
Hence the lemma follows. Q.E.D.

So consider rpe F(n) — F(n — 1) assuming that elements of lower excess can be
generated from r(p")s. If E =(e,,..., ) has one or more non-empty entries in
addition to e, then Corollary 1.5 implies r(e,,..., e,_)r(0, ..., e) =r(e;,..., €)
+ lower excess terms in F(n). In case of E =(0,..., 0, ¢) but rp # Rl "% ¢, has a

. . i o e
p-adic expansion of the form e, = Y a;p', where a,_, # 0. This implies <pnfk> #0
mod p, ie. (pfi"> is invertible in Z,. We have:

26) r(0,...,0, e, — p" Rk = <pf,:"> r0,..., 0, ) + lower excess terms.

To see that the lower excess terms in this expression are actually contained in
F(n), we need the following lemma.

Lemma 2.7. Define the weight of an exponential sequence E (or of rg) by w(E)
=Y e;p', then the weight of ry which appears in the right hand of the formula of
Theorem 1.2 dose not exceed w(E) + w(F).

Proof. We also define w(X)=7) x;;p'*/** for X:tensor () x;p'*/ for
matrices). Then w(V (X)) = w(X) < w(E(X)) + w(F(X)) for X : tensor, and w(V (X))
= w(X) = w(E(X)) for X: matrix. Hence the lemma follows. Q.E.D.

Therefore if r(c,,..., c,) appears in the right expression of the formula (2.6),
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"*1 Hence «¢;<p"*!” This implies

then ¢;p' < w(r(cy,.... ¢y) < @p* <p
r(cy,..., ¢y € F(n).
R;~¥ now remains to be considered. In case of k > 2, Corollary 1.5 implies:
pn~k_1
[RiZ5, RYT'I=RIT + Y r(p" ' = Sp*710,...,p" ¥ =5, S)

s=1

pll—k“l

- > ' =10, p" = pt, 1)
=1

where s and ¢ occur at the k-th entry. Every term except R! ¥ in the right
expression is contained in F(n — 1). Hence we obtain the decomposition of R} ¥
for k > 2.

R%~2 needs more deliberation. Here we consider [R"~2, R"~!] as the case of
k > 2, but Corollary 1.5 is not available any longer. First we observe the product
formula of n Quillen operations is described in the same way as Theorem 1.2 by
means of (n + 1)-dimensional tensor.

(2.8) g ocorg = ;0 (— D*B(Xo) -+ B(X ymMEI T4 ME e
E1(Xo) = Es
E,.(X(;)=E,.
BRI S E e 1o YA
X, is an (n + 1)-dimensional tensor, ie., X, =(x;, ;), where non-negative
integers  x;, ;  are  defined for iy ..., >0 except (i;,....1,)
=(,...,0. X,,..., X, are two-dimensional matrices as stated in Theorem
1.2. The vector-valued functions ¥, M, E, ..., E, and the integer-valued function
p are similarly defined as follows:

V(X) = (als a2’ ), am = . Z xi0'~~in*

M(X) = (bl‘ bz,"')s bm

I
o™
sx

EdX)=(cy, Coo)s Cu= % PO i

10y (ik)eensin

where the k-th index of x is replaced with m, and the sum extends over all non-

negative integers iy, ..., ix— 1, ftqseens by

B(X) = l_l A '/l_[ Xig.oiip -

Definition 2.9. Let X, Y be (n + 1)-dimensional tensors.

1) X will be called simple if and only if M(X)=0.

2) X will be called trivial if and only if x; = 0 unless the positive-valued index
i, 1s unique.

3) X will be called a reduction of Y (Y will be called an expansion of X) if and
only if X is simple and

0---in
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Xotyoin = 2P Vigiy  for all iy, ., iy
o

4) We also define the weight and the excess of X by
w(X) = Zpi0+m+i"xio...i,.’ ex(X) =Y xi -

The formula (2.8) is too troublesome to write repeatedly, so we will use the
following notation.

Notation 2.10. For X: simple tensor of any dimension, we use the notation
P(X) for the following expression:

> (— D*B(X o) -+ BX JmMEO+ o MK e

k20
Xo:expansion of X
E(X1)=V(Xo)

E(Xi)=V(Xx- 1)
M(X,)#0,..., M(Xk)#0

Using this notation, we can concisely describe the product formula (2.8) as
follows:

rE‘ Oeee 0 rE" — ZP(X)’

where the sum extends over all (n + 1)-dimensional simple tensors X satisfying
E(X)=E, for k =1,2,..., n. Notice that the trivial tensor has the highest excess

among these simple tensors.

Lemma 2.11. If Y is an (n + 1)-dimensinal simple tensor, then there exists a
trivial tensor Z of some dimension and satisfies P(Y) = P(Z).

Proof. Suitably order the positive-valued entries of Y. If yy) = yo,;,...i, is the
k-th term in this order, let E, = (0, ..., yu), Where y, occurs at the [-th entry with

I= i i; Then can define Z so as to satisfy E,(Z) = E, and to be trivial. It is
i=1

evident that Z is what we need. Q.E.D.
Remark. Y w(E,) = w(Y), and w(E,) < max w(E;(Y)).
j

Here we consider the simple tensors which appear in the right expression of
the equation [R} "2, R '] = Y + P(X). Observe that P(X) corresponding to the
trivial tensor is already canceled. By Lemma 2.11, we can cancel these P(X)’s by
adding or subtracting rg ©---org °---, so that the remainder is a summation of
+ P(Y)'s, where Y’s are of lower excess than that of X’s. This process can be
continued until the remainder amounts to zero because the maximal excess of the
tensor which appears in the remainder certainly decreases as the canceling
proceeds. The weight of r;, which appears in the resulting equation is equal to or
lower than p". This means rg eF(n—1) or rgp, = R)™™ But R: ™ for m>2
cannot appear because its degree is higher than that of R3"2. And R%~? appears
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in this equation once and only once because of the degree reason of the same
kind. Therefore R%™? can be decomposed in terms of r(p")s. Q.ED.

Theorem 2.3 asserts the resemblance between FS* and the Steenrod
algebra. But there should be many differences between them. The next
proposition is one of such differences.

Proposition 2.12. There is no zero-divisor in FS*.

Proof. Given x, ye FS*, x # 0. y # 0, we have only to show xy(m") # 0 for
some W. To begin with, consider the case of x =r; and y =r;. From lemma
1.7, we have rporg(m” *E*F) = [W, E][W + E, F1m" + higher excess terms, where
[A, B] =[](a;, b)) is a product of binomial coefficients, and the excess means the
excess of W. This equation implies rgorg # 0.

Next consider the general case: x =) ¢;mMirg, y =73 d;m“irp, where ¢
die Z,. 1f W has sufficiently large entries, we have:

(cimMirE,') °© (dijerj)(mw)
= ¢;d,[W+ N;— F;— E,, E]J[W— F,, F]Jm" *Mi=E+N;=F;
+ higher excess terms.

Then the lowest excess term of xy(m") is of the form:
{Xed,[W+Nj, = F; —E,, EJ[W—F;, F,1jm"*T*10),
S,t

where T(x) (resp. T(y)) is the exponential sequence (with possibly negative entries)
of the lowest excess of M; — E; (resp. N; — F)), and i (resp. j,) are such indices that
M; —E, =T(x) (resp. N, — F; = T(y)). Notice that the coefficient b(W)
= b(w,, w,, ---) of the above term is indeed a non-trivial polynomial expression for
finitely many variables w;, w,,---. Hence there exist non-negative integers w;
satisfying b(W) # 0. This fact implies xy # 0. Q.E.D.
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