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The Hopf rings for connective Morava K-theory

and connective complex K-theory
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§0. Introduction

Let E,( ) be a multiplicative homology theory and F, = {F,}iz be a
multiplicative ~ Q-spectrum. If the Kiinneth formulas hold: E (F, x Fy)
~E,(F)®E,F,) for all k, E,F,={E,F,}xz is a “Hopf ring” (see [R-
W,]). That is, each E,F, is a Hopf algebra with product * and there is another
product o called pairing;

ot EyFp, @ E,F, — E Fpip,
which is induced by the pairing of Q-spectrum
piEpNEy — Fpyy.
In recent years, Hopf rings have been computed for various (E,, F,).

(BP,( ), BP,) in [R-W,},

(K, ( ), K(Z/p', ), in [R-W],

(Hy(; Z/p), K(Z]p, *)), in [W,],

(E.( ). K(n),), for a wide class of E,( ), in [W,].

In these cases, E,F, is generatd by the elements of E,F, with k < 2. But for

F, = k(n), and bu,, these aren’t generated by E,F, with finitely many k’s where
k(n) and bu are the connective Morava K-theory and the connective complex K-
theory respectively. In this paper we compute the Hopf rings for E,( )

=H,( ;Z/p), F, =k(n), and bu, for an odd prime p. Hence H, stands for
H,( ;Z/p) and p is an odd prime throughout this paper.

In first three sections we compute H, k(n),. The periodic case H, K(n), is
completely determined by Wilson [W,]. He shows H,K(n), is generated by
certain elements e,, a;,€H,K(n),, b;,€H,K(n),, and finds many non-trivial
differentials in the bar spectral sequence E},, (H,K(n),)= H,K(n),.,. In Section
1 we define elements in H, k(n), by the same procedure as for H,K(n), in
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[W.]. In Section 2 we construct elements n,a'eH, k(n),, which vanish in
H,K(n), and prepare lemmas to show no new differentials appear in
EL (H.k(n),). In Section 3 we state the first main result (Theorem

3.1). “H,k(n), has more elements n,a'°b’, (I, J) = admissible.” It is proved by
induction coupled with Theorem 3.2, where we make use of the bar spectral
sequence which is compatible with pairing:

EL,(H,k(n),) ® H, k(n), = H, k(n);,, ® H,k(n),
E;*(H*MS+I) = H*Ms+t+l

These tools are all prepared by [R-W,], [T-W]. In [W,] the induction goes on
degree, but in our connective case, on m for H, k(n),.

In Section 4 we compute H,bu,. H*(BU(2n,..., ©); Z/p) and H*(U(2n
+1,..., o©); Z/p) were computed by Stong [St] for p =2 and by [Si] for p = an
odd prime. And for mod p homologies, Kochman determined
Im[H, (BU(2n,..., ©); Z/p) > H,(BU; Z/p)], essentially in [K]. He used the
pairings induced by tensor products of vector bundles. By Bott periodicity, bu,,
~ BU(2n,..., o) and bu,,,, ~U@2n + 1, ..., o0), consequently we determine the
mod p homologies of them for all n. The main results are Theorem 4.21 and
Theorem 4.23. We prove them by the similar method for H k(n),. First we
prove the result for the periodic case H,K, (Theorem 4.10) by induction on
degree. We make new elements da' in H,bu, and study them in Lemma 4.20
using the previous Proposition 2.4. Lastly we compute the connective case H, bu,
by induction on m for H,bu,. The proof of collapsing of the bar spectral
sequences is easy.

Many have been interested in the problem and Wilson also had results for
H, k(n),, H,bu, and H,(bo,; Z/2) independently [W,], but he was unable to find
a nice description of the answer. (See the remark (b) of Theorem 3.1.) There was
difficulty to give the legitimate name to the new generators. Our advantage is

that, as we use the maps #, and 0 induced by geometrical maps to define them,
functoriality of the homology groups and the bar spectral sequences make us
simplify the proofs.
I would like to thank A. Kono and W. S. Wilson for their helpful suggestion
and encouragement.
We list the sections again:
§1. Definitions of elements in H k(n),
§2. Lemmas for the main theorems
§3. The main theorem for H, k(n), and the proof
§4. Results on H, bu,

§1. Definitions of elements in H, k(n),

We first review the results of Wilson on the Hopf ring structure of
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H,_K(n),. He constructs elements e,, a'b’, [v,] in H K(n), and proves the
following theorem.

Theorem 1.1. (Theorem 1 of [W,] for E, = H,(—; Z/p)).
H,K(n), ~ ® E(e,°a'b’ o [V¥])

1,J=ad.,jo<p"—1,keZ

TP,u(a'b’ o [v¢])

I,J=ad., 1 #1(1),(io=0o0rjo<p"—1),keZ

P(a'b’ = [%])
I1=1(1),J=ad.,jo<p"—1,keZ,
where E(x), TP,(x) and P(x) are the exterior algebra, the truncated polynomial
algebra with x?" = 0, and the polynomial algebra, respectively, and other notation is
defined below. O

We will construct elements in H,k(n), which are sent onto e, a'b’ and [vi]
by p,: H,k(n), - H,K(n),. Let n: k(n) > H be the canonical multiplicative map
of spectrum and =z, : k(n), —» H, be the induced map between the k-th spaces of the
Q-spectra. In general, for a spectrum X, X, denotes the k-th space of the
associated Q2-spectrum of X, that is, X, ~ Q X, ,,, and for a map of spectrum f: X
- Y, f: X, - Y, denotes the induced map of f.

For k=1, the map =,:m_ k(n) =mnkmn), »nH, =mnK(Z/p,1) is an
isomorphism for 0 <i < 2p" — 2 and an epimorphism for i = 2p" — | because the
coefficient ring is n, k(n) = Z/p[v,], deg v, = 2p" — 2.

Thus we have an isomorphism:

n,: Hik(n), ~ HK(Z/p, 1) for 0 <i<2p"—2.
Recall H K(Z/p, 1) = E(e) ® I'(%)), where I'( ) is the divided power Hopf
algebra and the elements e and «; are defined as follows. Let

S' 4 K(Z/p, 1) % CP* be the fibration, and consider the induced maps on their
mod p homologies.

H,S' —“5 H _K(Z/p, 1) %> H,CP>,

and H,S' ~ E(¢'), H,CP® ~ Z/p{P,, By,---), then we can define: e =u,e’, a;
=0, (B), oz = oy, By = Bp. Now we use the isomorphism =z, to define ey, a;
and a in Hok(n),: e, =n,'e, a;=mn,'o for i <p" and a, = a, for i <n.
Let x: CP* — k(n), represent the complex orientation of k(n), b; be the image
of B; by x,: H.CP* - H_k(n),, and b be b,.
For I = (i, iy,...), J = (jo, 15 ...), nON negative finite sequences with i, = 0 or
1, we define an element in H, k(n),:

Ipd — goio o ol ... o hoio o it ...
a'b’ = ageapy)y - o bt by)

with convention that a'b! = [1] — [0] if I and J are all zeros, and the © is the
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pairing of the Hopf ring. Here we remark that a’b’ is definable only when I is
admissible (see below). Let [vf] be the image of the generator by the map H (%)

— Hok(n) _ y(n— 1y Wwhich is induced by the element of coefficient ring vk: %
= k(n)ypn—1x- We use the notion of “admissible” or “ad.” as follows:

(1.2) I is ad. if and only if i; =0 for all s > n.
J is ad. if and only if 0 <j, < p" for all s>0

Let 4,=(0,0,...,0, 1), I(1)=4o+ 4, + -+ 4,-,, and for I #I(1), p(I)
=min{k|i,_, = O}l.

Let p: k(n) » K(n) be the canonical map, ie. the localization by v,. To
smplify notation we used the same symbols e,, a’b’ and [v*]e H K(n), in Theorem
L1, for the images of p, of the elements of H, k(n),.

p: k(n); > K(n); is a homotopy equivalence for i < 2p" — 2, and for i = 2p”
=2, Z/p x k(n)ypn_ ~ K(n),n—,. Therefore some formulas are available in
H, k(n), as well as in H K(n),.

Proposition 1.3. (from Proposition 1.1 [W,]).
(@) e, °(—) is the homology suspension map.
(b) The coproduct is given by a;—Y a;,_;® a;, b;—Yb,_;®b,.
() e ce =b,.
(d) byf =0, where x means the product of algebra.
@ aff=0,i<n—1
() af’1y= —ae bl "' [v,].
@) b oero[n] =0,
(h) bP"%o[v,]=0 (k> 0).

Next, we define elements e, /8’ in H_H,. Let e be the canonical generator
of HK(Z/p, 1), and

Tod  eio i L
aﬂ =a(g))oa('l‘)o...oﬁ(-(’)o)oﬂdl)o...
for non negative finite sequences I = (ig, iy,...), iy =0 or 1, J = (jq. j;»...), Where

aq =o€ H K(Z/p, 1) = H H, as before, and B, is the image of ,, e H CP* by
the canonical map: H,CP®* - H,H,. With these elements Wilson shows:

Theorem 14. (p. 52, [Wi1). The bar spectral sequences
H, (HH,)=HH,., collapse and

HH, = 1@3 {E(eca’~p") @ TP,(a'* p)},

where the tensor product rums over all I and J. O
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§2. Lemmas for the main theorems

In this section we prepare lemmas for the proof of the main theorem.

Let x: CP® —k(n), be the complex orientation, and y be the composite
y: K(Z/p, 1) %5 K(Z, 2) ~ CP® %> k(n),. We use the same notation as its
representing homotopy class, then

Lemma 2.1 km*K(Z/p. 1) ~ kny*[[Y]1/(vs-""). 0

Proof. Consider the fibre bundle S' % K(Z/p, 1) > CP*, and its associated

Gisin exact sequence:

o — k(n)*CP* -5 k(n)**2CP® -2 k(n)*K(Z/p, 1) —> -+

where @(z) = z-[plym[x]. We know k(n)*CP* = k(n)*[[x]], and from the
computation of the formal group law of BP(see [Theorem 5.5, R-W,]), we get
[plim[x] = v,-x"". Therefore @ is injective and the exact sequence is split. We
have the lemma by 6*x = y. O

We define new elements in H,k(n),. Let ¢ be the composite ¢: X2?"~ Vk(n)
~ §20"=D A k(n) 222L k(n) A k(n) - k(n), where p is the multiplication of
k(n). Consider the cofibre sequence of spectra:

2.2) i — TTIH 1 320" D) ¢ k(n) 2> H — ...
and the induced fibre sequence of spaces:

23) o Hop =1 k(1)s 20— 1) —2 k(1) —2> Hopy — -

Proposition 2.4. In H_ k(n); .,

M aditn = ¢ p?"4 + decomposables,

with non zero constant c in Z/p. O

Proof. We must investigate the map #5: K(Z/p, 1) > k(n),,.. From the
definition of ¢, the induced map

(9)y: k(n)*P"K(Z[p, 1) — k(n)*K(Z/p, 1)

is obtained by the multiplication by v,. And we get v,-y*" = 0 from Lemma 2.1,
thus

Qo‘vp" ~0: K(Z/p, 1) — k(n),.
Therefore there is a map d which gives the followng homotopy commutative
diagram:
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K(Z/p, 1) = k()30 ~5> k(n),
K(Z/p, 1) -4 CP®

By the way, x”" is obtained by the composite

n " pn n
xP": CP® —45 x P"CP® == xP"k(n), —%> k(n), .

where 4 is the iterated diagonal map and o is the iterated pairing map. For
Uurn€Hypen K(Z/p, 1),
(yp")*“(:+n) = (xp")*é*a(1+n)

= (xpn)*ﬂ(l+n)

= (0)*( X p"x)*A*ﬁ(:-rn)

= 2(0)*(x*ﬁil X x*ﬁiz X e X x*ﬂi,,n)

= an obyoeob;
where the summation runs over the condition: iy + i, + --- 4+ i, = p'*". By the
commutativity of the pairings of b/s they survive only for i} =i, =--- =i,
=p. Thus we have Q*d*a(’*‘") = b;,’;". Especially, for [ =0, g*d*cx(,,, = b;ﬁ';
= ¢??”". By Proposition 1.3, this is a generator of H,,.k(n),,» ~ Z/p. Therefore
the map d is a non trivial map, and there is a homotopy inverse ¢ to d. (We

regard ¢, d as the non zero elements of Z/p ~ [K(Z/p, 1), K(Z/p, 1)].) 1t follows
that

b:,‘;" = ﬂ*d*a('ﬂ)
= 1,(d -2, + decomposables)
= d 1,94+, + decomposables. O

Let y be the composite:

y=mon: H 1Y 1kn) 2 Y2""1H

Proposition 2.5. [y] =c-Q,e H?>"""'H, where Q, is the Milnor's primitive
element of H*H. O

This is a well known fact (cf. [Y]), but here we prove it by unstable
calculations. We prepare a lemma.

Lemma 2.6. [y] is primitive. O

Proof. As n is a k(n)-module spectrum map, the next diagram commutes:
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k(n) A H 225 k(n) A 23"~ 'k(n)
Al
HAH < l“
Ho

H —1 5 32 -lkp)

Here pu, is the multiplication of H. Apply H,(—) to the diagram, and we get
H*k(n) ® H¥*H «—— X~ 2" H*k(n) ® H*k(n)
H*H® H*H I I
H*H T2t * k().

We chase the images of [n] in H%k(n).
[(M1® ] «— [1]1®[n]
1= +Yx;®y;+1®[] I
[v] «— [x]

On the other hand, the map n*: H'H — H'k(n) is an isomorphism for i < 2p" — 2,
and degrees of x;’s are less than 2p" — 2. Thus n*x; = 0 implies x; = 0, and we
have p3[y] =[y1® 1 + 1 ® [v]. O

Proof of Proposition 2.5. By Proposition 2.4,
V@) = Ty 4 (2 )
=n,(c-bf",, + decomp.)
=c-BE~,) + decomp..
As nom ~0,
Vs (By) = V(@4 by)

= E*ﬂ*n*(b(k)) = 0.

Consider the suspension to the stable group:
H*ﬂ* — H*H = E(TO, Ty )® P(él» éz’ ~--)
we can see
ol — &L (see below this proof)
with J = (j,, j,,...) for J = (jg, j1»j2....). Thus we have stably:
VT =c-Ef2, and y,. & = 0.

On the other hand, by the formula
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wtk = f,(® 1 + Z&f{_J@T-’,
]

we have (cf. [SW. p.418, Prop. 17.11]):
Qn(tk) = - Tk(an 1> + Z‘gllcﬂ—j(Qn* Tj> = él‘:"—n

Similarly, Q,(¢,) = 0. Because of the primitivity of [y] (Lemma 2.6) and Q,, they
act on H,H as derivations. Thus we have y,(—)=c-Q,(—): HH
— H,H. This implies [y] =c-Q,. O

For finite sequences, I = (ig, iy,...), J = (J1rj2-+)i=00r1,j; >0, we define
t1El = glogii... gl ... We say (I, J) is admissible if and only if I(I) = io + iy
+ -+ >1, M(I) = max {kli, = 1} > n and 0 <j, < p", for all s> M(I)—n. The
next proposition will be used for computations of differentials of the bar spectral
sequence.

Proposition 2.7. Im y, =Im Q,
=Z/p < Q&Y J) is admissible > = H H.
O

Proof. First we see {Q,(t'¢9((I, J) = ad.} spans Im Q,. When (I, J) is not
ad., we rewrite Q,(t'¢%). Assume I(I) > 1, s, is the maximum of s’s with j; > p",
and J'=J —p"4,,. Then we have:

Q0,(t'&) = Q, (¢4 gr )
= i Qn(Qn(tl)rso-O-né!)

= i Qn( Z i 11_435‘!’_'_'”'[50+"él’)

isM)

=+ Q”( Z + TI—A.‘+Aso+nép"Ai-n+l')

isM(I)

Since s, > M(I) — n, we see the indices (I — 4; + 4,4, p"4;_, + J') are all ad. for
i < M(I). It has been done.
Secondly we see the elements are lineraly independent. Consider the map:

H,H 25 H,H — H H/<PEN(IL ) = ad )
When (I, J,) is ad. it corresponds to
o am——y €l+p"AMm-n

the images are linearly independent clearly. This implies the independency of
(QUEYII, J) = ad}. °



Connective K-theory 51

§3. The main theorem for H k(n), and the proof

In this section we state the first main theorem and the proof of it. Let p(I)
= min {k|i,_, = 0}, as before.

Theorem 3.1. Let p be an odd prime. H = H( ; Z/p) and k(n) be the connective
Morava K-theory for p. Then the following isomorphism as algebra holds:

H k(n), ~ ® E(e,°a'b’<[v;])

k=0orjo<pn-—1

TPp{l)(a[bJ °© [Vﬁ])

I#1(1),(k=0o0rio=0o0rjo<p"—1)

P(a'b’ > [v;])

I1=I(1),(k=0orjo<p"—1)
® E(ey ~n,(a’) > b’)
® TPy (n, () b’).
In the first three parts, the tensor products run over all admissible I and J (see
1.2) and k > 0. In the last two parts, they run over all admissible (I, J). We say
“1, J) is admissible” if
IH)>1, M(I)>n and j, < p" for all s> M(I) — n,

where I(I) = iy + iy + ---, M(I) = max {k|i, = 1}. O

Remark. (a) As the map H -%» 27"~ 'k(n) is a k(n)-module map, we have
following: If I(I) > 1,
(1) nu(@)od’ =n, ('),
(ii) m(@'B)oe; = ny(@'poe),
and if I’ is admissible,
(iii) ny@)ea” =mn, "),
especially, from Proposition 2.4,
(V) ol e
(b) When we rename n,(a')ob’, as a' ~AM@opP"amm-n*J then we can rewrite

Theorem 3.1 as the following simple form:

H,k(n), ~ ® E(e, ° a'b’ o [v])
® TPp(I,.I)(aIbJ ° [Vﬁ])’

where I and J runs over the followng conditions: In E-algebra part,
if k>0, then I and J are ad., jo<p"—1,
if k=0, then I is ad. or j, > p"(s > M(I) — n).
In TP-algebra part,
if k>0, then I and J are ad., (i, =0 or j, < p"— 1),
if k=0, then I is ad, or j,> p" (s > M(I) — n),

) =c-a' o bP"4 + decomp.
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p(I), I and J are ad.
with p(I, J) = ( o, I=1I(1),Jis ad
1, otherwise .
Of course, if I is not admissible, a’b’ is not written in Hopf ring language as

defined before. O
Our proof of Theorem 3.1 is almost parallel to [W,], but in our case we use
induction on m for Z H,k(n);. To begin with, we observe for m < 2p" — 1, k(n),,

i1sm

~ K(n),,, and Theorem 3.1 is true because it coincides with the result of Theorem
1.1. The next theorem is the k(n)-version of [Theorem 2.1, W,]. The induction
goes implicitly like as; Theorem 3.1 = Theorem 3.2 and Theorem 3.2 = Theorem
3.1

Theorem 3.2. In the bar spectral sequence;
Eyy (H K(),) = H k() 1,
where k(n),, is the connective component of k(n),, we have
(@) Eiu(H,k(n),)~ Tor (™ (Z/p, Z/p) = H 4 (H (k(n),)

~ ® [(oe, °a'b’ o [V¥])

k=0orjo<pr—1

X E(ga'b’ > [v;])

k=0orig=0orjo<p"—1

® I O(d>(a'b’o [val)

® I'oe, o n, (@) b?)
®E(an,(a") > b’)
® I'(¢(n4(a") o b’)

In the first three parts the tensor products run over all admissible I, J, and
k>0. In the rests they run over admissible (I, J).
(b) For the Hopf ring pairing of the bar spectral sequence, we have the following
relations modulo decomposables:
For J #0, k = m(J) = min {s|j, > 0}, consider
oi Hy (o (H k(n), - 5) ® Hk(n), — H . (H,k(n),).
(1) yp(oe;ad’ =) oby .y, = vy(oe, °a'b’).
(2) fo(d’(ale_Ak))O b(k+i+ n= Vpi(¢(alb1))-
For J =0, k =m(J), consider

o! Hy W (Hyk(n)y 1) ® H k(n), — H . (H k(n),).

() yploe;ca' ) oay,y = (= 1" y,(0e,0d)), k+i<n



Connective K-theory
) Vpi(¢(a1_4k)°a(k+i+1) =(- l)’m_l)’p-’(d’al)a ho1=0,k+i+1l<n

(¢ Let q=n()=min{sli,.;=1}, n0)=n+1, and I'=1-4
differentials are determined by:

(1) dpq—l‘}’pq(()'el Oalb.l) — rl_o_asql'bsqu-i» Ao)+(p"—1)4o o [an I+# 0, jO < pn _ 1’
r; #0.

@ & ypa((a'h))
— tlo.asql'+A.,-lbsq.l+(pn_1)doo [vn], I#0, i1 = 0, t; # 0,

— too.bquHpn—l)Aoo[v"l I =0, to # 0.

n—q-*

Here si(kg, ky,...) denotes (0,‘_..1.._,’0, ko, kyv...).

(d In EZ, (modulo decomposables) o
(1) y,(oe,°a'b’ o [VE]), jo < p" — 1, represents (— 1yPa* b+ 4o [y,
where if 1 #0, then i <n(I).
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(2) c-yp(oeca'b’), jo = p" — 1, represents (— 1)“”g*(a‘i"+“"’)ob““"”"‘“‘"’.

n—1

(3) oa'b’ o [V¥] represents e, a'b’ o[V], where k =0 or j, <p

@)y, o [vE])), i,—, = O represents a*" "'+ 4 b"", where i < y(I) — 1.

(5) vp(oe; oy (af)ob’) represents n,(@f)o b+ 4,
an.(af)o b’ represents aey°n,(a)ob’.
7;(¢(ﬂ*(“1) ob”)) represents n, ("t 4)o b,

(e) As an algebra,
B 0,8,  BeabvD

® TPy(a'b’ < [v])
® E(e; o ny(a')ob’)
® TP, (n,(x") > b?),

where the first two tensor products run over admissible I, admissible J and non

negative integer k and others run over admissible (I, J).

Proof of Theorem 3.1 from Theorem 3.2.
This is done by the next proposition like as in [W,].

Proposition 3.3 ([ Proposition 1.2, W,]).
(@ Ifi,_,=1, then

(alblo [V',:])*p — (_ l)l(!)aAo+s(!— Ay - ,)b(p"—l)Ao+sJo [Vﬁ+ 1].
(b) Ifi,_, =0, then (a'b’ - [V*])*? = 0.

This solves all algebraic extension problems for Theorem 3.2 (e) because
Im n,-parts are clear by Theorem 1.3.

Proof of Theorem 3.2 from Theorem 3.1.

O

O

the
O
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Refer to the corresponding parts of the proof of [Theorem 2.1, W,]. We
show only the esssential parts of this connective case.
(a). Like as in [R-W,], we use homological calculations:

H,  (E(x)) = I'(ox),
H,(TP(x)) = E(ox) ® I'(¢p(x" ")),
H,,(P(x)) = E(ox).

We have to check that, in the second I'-algebra part:
(@b o AP T £ 1(1), k=0 or jo<p"— 1} = {a'b’[¥]li,-, =0} (up to
sign), by Proposition 3.3. The result follows.
(b). The same as [W,].
(c). This is also the same as [W,], but we have to prove no new differentials
appear other than those listed in (c).

The bar spectal sequences for H H, collapse. And by functoriality of the bar

spectral sequences for the infinite loop map, we conclude the differentials on Im #,,
are trivial. By homological degree reason, we may examine only the following
elements;
Vpi(oe oa'd’), jo=p" — 1.

We prove these are permanent cycles. Suppose they aren’t let i be the minimum
of such i, then the target T of the differential is an odd total degree, primitive
element. Seeing EZ, of (a), the candidate is a linear combination of the next
elements.

oa'b’ o [V], k=0 or i, =0 or j,<p"—1
on, (@) b, (I, J) = ad.
We divide the condition “(4) k =0 or iy =0 or j, < p" — 1” into four parts:
B) jo<p"—1
(B) k=0 jo=p"—1
C) k=1,i,=0,j,=p"— 1, m(I) =m(J — (p" — 1)4,)
(D) k=>1,i,=0, jo=p"— 1, m(I) <m(J — (p" — 1)4,)

(the elements of (C) correspond to targets of differentials of (1) and the elements of
(D) to targets of differentials of (2).)

We show none of the elements of (B) appear in T. Because these elements
have the lowest filtration degree, they exactly correspond to the elements
e oalb? o [VE], eon,(a')ob’. Sending T by p,: H,k(n), - H,K(n),, we see that
only the elements of (B) survive linearly independently and others are killed. Thus
we can exclude (B) from T

We observe the elements of (B’) and og*(a’)ob’, (I, J) = ad.. Stabilize these
elements by the map
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suspension
H*Mm+1 'H*ﬂm+l 'H*—m—lH

We have:
eyoa'b’ o [Vi], (B) — t'¢d = £ Q, (T4 &),
e oa'b’[v;], (C), (D) — 0,
ey ong(@)ob’, (I, J) = ad. —>c-Q,(c'¢h, (I, J) = ad,
by Proposition 2.5, where J = (j, j....) for J = (jo, j1» jo...)-
On the other hand, by Proposition 2.7, we know the set;
(" *EDI(B), 1+ UI) + 2-1(J) = m + 1}U{Q, ("¢, J) = ad.2p" + )
+2-1(J)y=m+ 1}
consists of linearly independent elements. Hence the elements;
oeyca'b’ o [vk], (B') and on,(a')ob’, (I, J) = ad.

don’t appear in T.
Thus we can conclude T is a linear combination of the elements of (C),
(D). But

T=d"" 'y,(oe,oa'b?" 1)
implies
Telv,] = d"pp(oe; 2 a'b” e [,])
= 0, by Proposition 1.3.
Then sending T by the map

E;*B: E;*(H*_kiﬂl*) — EL(H,K(n )

we see all coefficients of elements in T are trivial. Thus T =0 in E} (Hk(n),).
Now our assumption results in contradiction.
(d). For (1), (3), (4) it is done by the same way as in [W,]. For (5), refer to [W,,
p.55], and use functoriality of the bar spectral sequences.
For (2), even when j, = p" — 1, (1) is true. However, it is the problem of the
new named elements of the right hand side in (2). From now, we show:

(3.4) c-y(oe o a'd’), jo = p" — 1 represents

(— DDy (@ )0 p*I =" =D 4 decomposables.

Proof. We proved in (a) that this element is a permanent cycle. We show
that we can chose elements x!/’ e H k(n),, jo = p" — 1, so as to satisfy following
conditions:

(1) xo=(—1)Pp(a!*4)op’ ="~ D4 4 decomp. = primitive.
(ii) c-y,(oe;, ©a'b’) represents x{*/, for i > 0.
(iii) V(xiYy) =x{’. (Vis the Verschiebung map)
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17 only satisfying (ii). Let i =0 in (1), then we have:

First we chose x
c-oe, oalb’! represents (— ])I(I)C,alobopuob,_(p,,_lmo’
by Proposition 2.4,
= (= 1)Pa’ o ny(ap + decomp.)o b’ "= D,
by remark for Theorem 3.1,

= (= 1)y, *4)ob! "= D% 4 decomp.

Then (i) holds automatically because E¥, ~ F,,. Even when we replace x{/ by
VéxlY,, (i) still holds because V*y,ici(—) = y,(—) in EZ,-terms. We can change
x!*/ = x; such that (iii) holds as follows:

Consider the finite sequences;

{xo = Vix; = ViTlx; el oo F Vi 5 xi}i0.

As H, k(n), ., has a finite order in each degree, we can find in the infinite tree an
infinitely long branch;

xo‘_V_x'l P A ‘-'+V—x}<—V—x;~+1<L

Let x! be x; again.
Return to the proof of (3.4). Now we obtain:

xFP = (Vx;+ )* = [pl(x;4+1) = 0.

Going to part (e), we can determine the extension of EJ, as algebra
completely. That is, H, k(n), has following generators:

x!Y, jo=p"— 1 for (2) of (d)
y, for others of (d).
We define the filtration degree of elements:
filt(x) = min {s|xe F,},

where F,, is the filtration derived from the bar spectral sequence. Then we see in
EZ, that
(3.5) filt(y,) > p’ implies V'y, is also the generator of (d),
filt (y,) < p' implies Viy, =0,
filt (x!*) = p.
Write down the element by these generators.

( _ 1)'(1)n*(as‘(l+ A..)) ° bs‘(l—(p"— 1) 4o)

.
=Yy xi+ Y ¢jy; + decomp.,
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cry; and ¢; are elements of Z/p.
Apply Vi(—) on it, then we have by (3.5)

( —‘1)‘(’)'1*((1’*. An) ° bJ—(P"_ 1) 4,

r,J’ i
=Y cppp X2+ Y ¢ Viy; + decomp..
j=i filt(yy)z pi

The elements on the right side are clearly linearly independent. Thus we get by
(0):
(i Iy =d, )
rai =\ 0 otherwise (=1,
¢; =0 if filt(y;) > p'.
Thus we obtain
( _ l)r(l)n*(as‘(l + A,.)) o bs‘(J—(P"— 1) 40)

=x+ Y cpgpxit+ Y ¢y + decomp..
<i sinly<pi

Therefore
y,i(oe, °a'b’) represents

(— 1)‘(1)Q*(as‘(l + A.,)) o pSU (- 1)Ao)_dec0mp"

(e). When the differentials are determined, we can compute the spectral sequence
easily. (cf. [Lemma 6.9, 6.10, R-W,]) As mentioned in the proof of (c), the
elements of conditions (C), (D) are hitted by differentials, hence the rests are (B) and
(B). These are generators of the first E-algebra part. The second E-algebra part
is clear. As to the TP, -algebra parts, we get, in Eg,, from (a) by (c):

%%

TP (yp(ae; °a'b’ < [v;]))
(E) or (F) or (G)

((?) TP, (y,(¢(a'b’ > [v:]))

®  TPi(yploe; °ny(a)eb’)

I, J)=ad.

® TP (,((n,(a") > b)),

() =ad.
where the conditions are following:
B) 1#0, jo<p"—1,0<i<ny),
(F) I=0,jo<p"—1,

@) jo=p"—-1 k=0,
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H) i,-,=0,0<i<n)—1.

According to (d), we see the correspondeces between the elements of EZ,-term and
those of H k(n),:

1) {vpiloe, o a'd’ o [vi]I(E)}
U{pi(e(a'd’ > [vi])I(H)}
U{ypi(oe, °a'b’ = [VDI(F)}
represents (up to sign)
{a'b’ o [VE]IT # 0, m(I) > m(J)}
u{a'd’ o [viIIT # 0, m(I) < m(J)}
u{a'd’[Vi]I1 =0, J # 0}
= {a'b’ o [v¢]|1 # 0 or J # 0},

where m(I) = min {s|i, > 0} as before and m(0) = co. These are the generators of
the first TP, -algebra part of (d).

2) {1pi(oe; °a'b))(G)}
U{yploe, o ny(a)o b)I(L, J) = ad.)
U {7y (o) BI(I. J) = ad}
respresents (up to non zero scalar)
{ny(eyo b’ |(1, J) = ad., m(I) < m(J), M(I) — m(I) < n}
U{n, (") o b’I(1, J) = ad., m(I) = m(J)}
Ufny(a)o b’ |1, J) = ad., m(I) < m(J ), M(I) — m(I) > n}
= {n (@ eb'|(I, J) = ad}.
These are the ger:erators of the second TP,-algebra part of (d). O

§4. Results on H bu,

In this section we compute H bu,.

Let b;eH,;bu, be the usual element which is defined by the complex
orientation u: CP® — bu,. We define b’ = b3 o bidy --- for J = (jo, jy,...) with by,
= b, as before. And let e be the canonical generator of H,bu, defined by the

map S! — bu, which induces the unit of the spectrum. [t] is in Hobu_,.
The formal group for bu is the same as for K, that is;

WX, ) =X+ y +t-xy, tem,bu = Z[t].
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Let b(x) = Y, ,bix', then we have by [Theorem 3.8, R-W,]

(4.1) b(x + y) = b(x) * b(y) * ([t] > b(x)  b(y))
And we have

4.2) [£1°b(x)° b(y) = b(x + y)*xb(x)~ ' xb(y) "'
(4.3) [t1°b(x)°b(y) = b(x + y) — b(x) — b(y)

(modulo decomposables).
Iterating (4.2), we obtain
(4.4) [t~ 170 b(xy) e blxy) e -+ o bx,)
19, b, )*«[12, blo,_p)x- -
19 boy_, 011D, bloy_sdn - .

where the each ak,,.<1 <k<nl<ic< <n

k)) is the sum of different k terms in {x;,

Xayeers Xy}

Proposition 4.5. Let p be an odd prime. In H, bu,,

(@ [t]eb;ob;=(i, j)b;s; mod decomposables,

(®) ["~'Jeby = — b7,

© [tP"1]ob® = — (b + decomp.)*™",

(d) (_ 1)"[["(1’_1)]obI’AO*‘(P_”(A""'""'A"“) — b,lkp"‘ O

Remark 4.6. We know the general facts:
(a) If deg x > 0, then [0,]°x =0 for [0,]€ Hybu,,
(b) ¥b,=)b;®b,_; for coproduct ¥.
i
b; is primitive, therefore b, © x is primitive for any x, and [¢]¢b, b, =(—1)
(¢;+1)*€H, bu, = H, BU, the dual element of the i + 1-th chern class.

() e°(—): H,bu,— H,bu,,  is equal to the suspension map, e is primitive and
ece=b,.
(d) (primitives)o(decomposables) = 0. O

i+1

Proof of Proposition 4.5.
(a). Compare the each coefficients in (4.3).
(b). This is the special case of (c).

(). In (44), let n=p and x;, =x, =---=x,=x. Then we have

p

(7717 bP(xP) = [t~ ] > b(x)”

-1
=T b — ey
i=1
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p—1 .
= (] bl(p — i)xyx- V'®Vpyxp,
i=1
We calculate the entry of ( ) modulo decomposables.

<">
:’IJ: b((p — i)x)*~ Di¢)p = n Z( = i)kbkxk

i=1 k20

Let

then we have

Y [P 1] e b xPk = (Z (o(k)b, + decomp.) x*)*?

k20
=Y (p(k)b, + decomp.)*PxP*.
5o

When k = p°, we see ¢(p) = — 1 modulo p. Thus we get
[t?~ '] o b = (— b, + decomp.)*?
The result follows.
@). (B)*" = (=[P ]obP%)*""" (by (b))
— [P Je(b%o Y 1pP~DA-1)xe" " (hy YT 1pdn-1 — pdo)

_ [t"' 1] o(bAO)*P"“ o pP~1)An-1 (by (x ° Vy)*” — x*”oy)

by induction on n,

- _ [tp-l]o(_ 1)"_1[t(”_1)(17_1)]obPAO"‘(P_l)(A|+...+An—2)ob(P_l)An—l

(_ l)n[tn(p—l)]ObPAo+(P‘1)(Al+...+A..—|) O

Let g be a factor of by, the connective ring spectrum such that:
There are a map @,: bu(p, — g and a multplicative inclusion 1: g — bu, with @,

=id, And bug,, = ]_[ Xig.
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Mg = Zy)[vV] < mbugy, = Z,)[t] with v =1tP71,
We define the complex orientation v: CP® —»g, by v=®,°u, and let
b;e H,,g, be the element defined by v as usual, and let e be the canonical generator

of H,g, defined by the map St — g1, which gives the unit of the ring spectrum: §
—g. Then we have

@) ®o,b; = b,
By [Theorem 1, J] we know, in bul, CP*

1,V = Z log(1 + tw)y"*!/t(n + 1)!
n=0modp—1
tu? (p—D'+1 1 1
— - e +—tP 1,0 _ tP p+1 cee
u-t P! S e Tra TS L

Thereore we can calculate ¢,b; from this.
(4.8) 1,by = b; modulo decomp. in H,bu,. Especially 1,b; =b,.
Proposition 4.9. Let p be an odd prime. In H,g,
@ [v]ob¥ = —by",
(b) [v]eb® = — (b + decomp.)*?,
© (= 1p[y]obraormiiasay — pro O
Proof. (a), (b). By (4.8)
L ([v]ob) = [t?~ '] e (b + decomp.)®
=[t?"']ob® + [t~ '] (decomp.)™.
On the other hand, by Proposition 4.5 we know
[P 1] o b = — (b + decomp)*?,
and we can check
[P~ 1] o (decomp.)? = (decomp.)*P.
Thus
1, ([v]ebB) = — (b, + decomp.)*? + (decomp.)*?
= — (b + decomp.)*®.
Apply @,(—), then
[v]ebf = — é*(bm + decomp.)*”

= — (by + decomp.)*P.
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(c). It is done by the same procedure as (d) Proposition 4.5. O
Let p, p' be the localization by t, v of by, g, then the square commutes:
buy = K
g 2 G
We define elements b; in H,,K ,), and H,;G, by p,b;, pi.b;, and let e be the

canonical generator of H,K,;, H,G,, defined by p,e, p,e. Then Proposition 4.5
is available for H, K, and Proposition 4.9 is also available for H,G,.

Theorem 4.10.

HKpy~ ® {E(ecob’o[1*])® P(b’-[t*])}

J=ad. keZ
H,G, ~ (Replace t by v),

where, for J = (jo, j1,...), we say J = ad. if and only if 0 < j, < p for all s, and if J
=0 we regard P(b’ < [t¥]) as the group ring Z/p[Z,]. O

Theorem 4.11. In the bar spectral sequences

(a) Ei* = H**(H*E(p)*)

~ ® {I(oe°b’*[1*])® E(ab’*[t*])}

J=ad.keZ
= H, K1,
Ei* =H,,(H,G,)
~ (Replace t by v)
= H*Ql* +1-
(b) The spectral sequences collapse, and
(1) (= 1)y"Dy(cecb’ o [v"")]) + decomp. represents

(bA-‘+S""(J—(P' 1)0(4o+ -+ An- 1)))*17”

where n =n(J)=max{n|lp—1=j,=j, =+ =j,-,}, in convention that max ¢
=0.
(2) ob’ represents e°b’. O

Lemma 4.12. The filtration degree induced by the bar spectral sequences is
given as following:

ﬁlt {(bll)*el * (blz)*ez Kook (b"k)*ek}

= P e) + PRIy er) + - + P e)
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with admiassible J;’s which are all different, where m(J) = min {s|j; > 0}, o (e) = the
sum of entries of the p-adic expansion of the integer e. O

Remark. Theorem 4.10 is available for H, (—; Z,). O

As we know HoK ), (resp. HyG,), the bar spectral sequences give information

of Hy ;1K )4 +1 (resp. Hy 4G, ;) from those of H K, (resp. H,G,). We prove
4.10, 4.11, 4.12 simultaneously, but these are done by implicit inductions on
degrees, modulo ©[t], (resp. ©[v]) similatly to [W,].

Proof of Theorem 4.11 from Theorem 4.10.
(a). It is obtained directly.
(b). In each spectral sequence, the generators of E’,, are concentrated in odd or
even degrees on each stage, therefoere the differentials are trivial. Next we
examine representatives in Ej,-term. By degree reason, ge represents b%. By
compatibility between filtrations and pairings, we have

(— 1)"o(eo bP~ Dot % 4u-1)5 [y"]) represents
( _ l)n pro+(p— 1A+ +An-1) o [vn]
= (b%)*?" (by Proposition 4.5, 4.9).
Next we show:
(4.13) (— )"y i(geo bP~ Dot -t dn-)o [y1)) 4 decomp.
represents (b4)*P",

By Lemma 4.12 (cf. 4.15), filt (b;)*"" = p', thus we can use the following
commutative diagram :

Since Vi(b4)*"" = (Vib4)*!" = (b*)**" and V'y,(c —) =0 —, the images of the
both elements of (4.13) coincide in EY,. While, we know Ker V' = decomposables,
by the form of EZ, -term. Therefore we obtain (4.13).

Apply (—)°b""" to (4.13), then

(= 1)'ypi(gec bt~ Didot et dn-0)+s™, [ym)y 4 decomp.
=(— )"y i(oecbP™ Dot du-)o [y 4 decomp.)o b* "/
represents (b4)*¥P"c ps' " = (pAitsUykrn,
This we get (1). (2) is already done. O
Proof of Theorem 4.10 from Theorem 4.11.
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We only observe the following:
{4;+s7"DJ = (p— Do+ -+ d,gy- )i =0, J =ad}
={J|J=ad, J #0}. U

Proof of Lemma 4.12. This is done by the induction on the degree together
with Theorem 4.10, 4.11. Furthermore we use the induction on t, where ¢
= max {m(J,), m(J,),...} for m(J) = min {s|j, > 0}.

When t =0, by Proposition 4.5 (b) and Proposition 4.9 (a), we know filt
(b%)*P" = 1 and the pairing preserves the filtrations, thus we get

filt (b%*7)*P" = filt (b%)*?" o b* = 1.

On the other hand, we see that if x,, x,,... are represented by different generators
of an algebra EZ,, then filt (x{'x$---) = Y e,-filt x, for 0 < e, < p. Therefore we
affirm the statement for ¢ = 0.

Suppose the statement is true for all ¢( <i). By Proposition 4.5 (c) and 4.9 (b),
we know

(4.14) [v]obP4i = — (bA)*P 4 x*P

with decomposable elements x. And we can also see x is written by b; with j
< p'. By assumption of the induction on degrees, we may suppose Theorem 4.10
and 4.11 are true. Thus we conclude that x*? can be written uniquely as a linear
combination of

(b7 1)%er * (bI2)*e2 ... x (bTK)*ex
with m(J,) <1i, ple, Now, from the equation (4.14), we have
2pit 1 = deg (b71)*¢! x (b72)*e2 % - x (bTr)*ex
=2|J,|-e; +2|J,]-e5+ - +2|J,] ¢,
where |J| =Y jp’.

ple, implies e, > p-a,(e,). Likewise, |J | > p™Vs.
We have
filt {(b71)*e % (b72)*e2 % oo % (bTH)*x}

— pm(.h)a.p(el) + pm(.lz)o-p(ez) + -+ pm(.lk)o,p(ek)
€ e e .
S|J1|'—l+|J2|._2+ +|Jk|'—k=Pl-
p p p

The equation needs for k =1, J, = 4;,_,, e, = p. But this element is excluded in
x*? of (4.14). This leads x*?eF,_,. Again by (4.14), we get

(4.15) filt (b%)* = filt b*4 = filt b, = p'.



Connective K-theory 65

Thus the lemma is true in the case for k=1, J =4, e, = p.

Next apply (—)**""' to (4.14), then we have
(4.16) (bAy*P" = ([v]o bPa)*r" ™" 4 x*r",
Observe the filtration degree of the elements on the right side;
filt ([v] o bP4y*r" ™" = filt ([v] o bA)*P" "o pP~ DAisn-1

= filt (b2y*r"""
= p’, by induction on n.

From the assumption of the induction on t of this lemma, we know filt x*?"
= filt x*” < p. Thus we obtain from (4.16):

4.17) filt (b4)*7" = p'.

This is the lemma for k =1, J = 4; and a(e,) = 1.

(4.17) goes the induction of Theorem 4.10, 4.11 on degrees. (See the proof of
(4.13)). Observing the form of E,-term, like as for t = 0, we can affirm the entire
statement of this lemma for m <i. We finish the inductions. O

We generalize Proposition 4.5 (d) and Proposition 4.9 (c).
Corollary 4.18.

(_ l)n[v] Opr.‘+(p— 1)(Ais1++Bitn-1) = (bA.-)*p" modulo Fpl_ Ly O
Proof. We see [v]ob?% = — (b%)*” mod F,_,, from (4.14), so we can do
the same process of the proof for Proposition 4.5 (d), since the pairing preserves
filtrations. O
Consider the cofibre sequence of spectra:
--—»g—""—»g—’»k(l)—"’—»Zg—»--~
Definition 4.19. Let the map d be the composite
’ * é;
5=é*ﬂ*2H*ﬂ* H_’H*@*+2p-1 _'H*Q*+2p' O
Lemma 4.20. J(a%* %) =c-b%*P4  for ¢ > 0. O

Proof. From Proposition 2.4,
Ny(a%*') = c-bP% + decomp..

Thus we have
' Bat 4ty = §,n, (% oot )

4
=0y My (T a0 0™ "),
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since n is a k(1)-module map,
= 0y (a0)° My )
= 8, (a°(c-bP% + decomp.))
= 8 (a)© (c-bP))
= 8, (ae) o rylc- b)),
since &' is a g-module map,
= dy(ae)°(c-b"%).
From the definition of a), 84a, = b finally we obtain

Ba%* 4at) = b o(c-bP4).

We use the above lemma essentially to prove the next main theorem.

O

For J = (o, j1»...) I = (i» iy,...), i, =0 or 1. We say J = ad. if and only if
0<j,<p for all s>0, and (I, J)=ad. if and only if the following conditions

satisfies:
Iy=iy+i; + - >2,
M, (I) < s < M(I) implies j; =0,
s > M(I) implies j; < p,

where M(I) is defined by the largest integer s such that i; = 1, and M (I) is the

second one, i.e., M (I) = M(I — dyyy)).
Theorem 4.21. Let H, = H,( : Z/p) for an odd prime p.

H,g, = ® {E(ecb’ - [V]) ® P(b’ > [V])}

J=ad.,k20,
orJ=pAi+sit'K=ad. .k=0,i20

® {E(e~da'ob’)® TP,(0a' = b)}

(I,J)y=ad’.

where if J =0 then P(b’°[V]) ~ Z/p[Z,].
Theorem 4.22. In the bar spectral sequence E,(H,g,) = H,gy+1
(@) Ejx=Hyy(Hyg,))

~ ® {[(ce°b’ > [V¥]) ® E(ab’ < [v*])}
J=ad. k20
orJ=pAi+si*1K,K=ad..,k=0,i20

® {[(oe-da'~b’)® E(0 o' = b’) ® TP (¢(da » b))}

(IL,Jy=ad'.
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The spectral sequence collapses, and we have follows: In Eg.-term (modulo
decomposables),

(1) y,(ceob’ o [v*]) represents
p

(= 1Y(bA+5 "0 = (P~ Ao+ oot dno 1)) [k~ K] k"
where h = h(J, k) = min {n(J), k}.
(2) c-y,(ceobP2*¥"'K) represents duditAriviops K,
(3) b’ o[v] represents eob’ o [v*].
(4) yp(oeda’ ob') represents (— 1y gast o ps 140+,
(5) o0alb’ represents e da'ob’.
(6) 7,:(p(0a’ o b”)) represents dadi*ts" M op O

Consider the map p’: g; it is homotopy equivalence for i < 2p — 2, and for i
=2p—2,95,-2 X Zy~G,, ,. Therefore we conclude that Theorem 4.21 and
Theorem 4.22 are true for m < 2p — 2, comparing Theorem 4.10 and Theorem
4.11.  Our proofs for Theorem 4.21 and Theorem 4.22 are done by induction on m

for ) H,g; like as done for H,k(n),-case. The inductions go implicitly.

ism

Proof of Theorem 4.22 from Theorem 4.21.
(a) Clear.
(b) Collapsing is clear because on da' it comes from collapsing of the bar spectral
sequence for H H,, on y,(ce) it can be examined by collapsing for H,G,, and
other cases follow. Next we see what the elements of EY, represent.
(1. ForJ=(p—1)d4o+ 4, + -+ 4,_,), k = n it is true since, sending to H,G,
by p, (this map is monic in this stage), we know the same result, Theorem 4.11, (b),
(1).— Genearlly we use the compatibility of the pairing between the E,-term and
filtrations.
(2. For i =0, Lemma 4.20 implies

c-geobP4*s 'K represents c-bdotPATSTIK — gy dot Avipstt K

Thus that is true. For i > 0, we can reduce them to this case, using V' like as we

did in the case for H, k(n),. (See the proof of Theorem 3.2 (d) (2).)
(3), ), (5), (6). Clear. (cf. [W,]) 0

Proof of Theorem 4.21 from Theorem 4.22. We have to solve the extension
problems of algebras. However, all we need now is to count the following sets.
P-algebra part.

{(bAa+S"‘"(J—(p— 1)(do+-+ An-1)) ¢ [vk—h])*p"

|J=ad, i>0, k=0, h=h(J, k)}
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={(b' o [V]*"|J =ad., k>0
or J=pd;+s"'K, K=ad, i>0, k=0; k >0}
TP,-algebra part. Recall m(J) = {s|j; > 0}, m(0) = co.
(it a1 opi*+ 1K (>0, 1> 0, K = ad.)
U{0asTo b5+ N|i >0, (I, J) = ad.'}
U{Bad*s"1i>0, (I, J) = ad.}
= {0al o b7 | (1, J) = ad’, I(I) = 2, m(I) < m(J)}
{dal o b’ (I, J) = ad!, m(I) > m(J)}
U{dod o b’ |(I, J) = ad, I(I) > 3, m(I) < m(J)}

= {6a'°b’|(1, J)=ad'}. O
We know
p-2 .
H, bu,, ~ ‘;0 1 Hyg, o]

and
b’ = b’ + decomposables,
by (4.8). Thus we have the next theorem as a corollary.

Theorem 4.23. Let H = H( ; Z/p) for an odd prime p.

H  bug,), =~ ) S@k . {E(e° b’ [1*]) @ P(b’ < [1*])}
or.l=pAg+s“‘E,‘;(;as..(')sk<p—l.i20

{E(e° da! o b’ o [t*]) ® TP, (da" o b’ (D)}

(I,J)=ad'.,0sk<p-—1

If =0, P(b’<[t*]) is considered to be the group ring Z|p[Z )], as usual.
The next theorem is an easy application.

Theorem 4.24. Let H, = H,( ; Z/p) for an odd prime p. For the connective
coverings;

c:go(2(p — Dn, ..., ©) — go,
¢: BU?2n,..., 0) — Z x BU,

we have

Im[c,: Hygo(2(p — Dn, ..., o) — H,go]

= ® P’
J=ad.,l(J)=k(p—1),kzn
orJ=pAi+sit1K,K=ad. l(J)=n(p—1),i20,
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and

Im([c,: H BUQ2n,..., ©) — H,Z x BU]

P(5)

J=ad.,l(J)zn
orJ=pAi+si*'K,K=ad.,0<l(J)—n<p-1,i20.

Here for J = (jo, j1»...), J = ad. if and only if 0 <j <p. W(J)=jo+j + -, and
)
B = bty by 1)

or = b3 obyyo--o [t'“7]. 0O
Proof. We see that
Imc¢~1Im [[v']e: H grp-1n — H*go]
and
[v]eda' = [v]° &, (n(a)
= 0, (V] e m, (@)
= 0, (4(n,(«")) =0,

because ¢on~0. (see (2.3)) Thus Im[v]e(—) is spanned by the generators
algebraically. On the other hand, we can see these generators are algebraically
independent using filtration induced by the bar spectral sequence (Lemma

(4.12)). The BU case is similar. O

Remark. (a) Our result for g agrees with Kochman’s result. In [K] he uses

I(J
different notation; bu,, for g, L(k) for p( )1,

M(k) for m(J), with k =|J|, and

pBy(n) for Im[c,: Hygawms1yp-1) = Hygol-
(b) We can investigate easily:
Im[H,BU@2m, ..., ©) — H, BU(2n, ..., ©)]

for m > n. The cohomological case is done by Singer [Si].
DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY
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