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The Hopf rings for connective Morava K-theory

and connective complex K-theory
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Shin-ichiro HARA

§ 0 .  Introduction

L e t E* ( )  b e  a m ultiplicative hom ology theory a n d  F * = b e  a
multiplicative Q - s p e c t r u m .  I f  t h e  K i in n e t h  f o r m u la s  hold : E* (Ek x  Pik)

E* (F_ ) OE * (f_k) f o r  a l l  k, E * F * = {E * F * }k e z  i s  a  " H o p f  r in g "  (see [R-
W 1]). T h a t  is, each E* E k is  a Hopf algebra with product * and there is another
product 0 called pairing;

E* F m E * F

which is induced by the  pairing of Q-spectrum

Em A En -,F ,„ + „.

In  recent years, Hopf rings have been computed for various (E* , F t ).

(BP* ( ) ,  BP *), in [R-W 1],

(K(n)* ( ), K (Z/pi, *)), in [R-W 2 ],

(H* ( ; Z/p), K(Z/p, *)), in [W 1],

(E * ( ) ,  K(n) * ), f o r  a  wide class of E* ( ) ,  in [W2 ].

In these cases, E* F * is generatd by the elements of E* L k with k 2. But for
F * = k(n)* and bu* , these aren't generated by E* F,, with finitely many k's where
k(n) and bu are the connective Morava K-theory and the connective complex K-
theory respectively. I n  th is  p ap e r w e  co m p u te  th e  H o p f  r in g s  fo r  E* ( )
= H * ( ;  Z/p), F * = k(n) *  a n d  bu, fo r  an  odd  prime p. Hence H* stands for
H* ( ;  Z/p) and p is a n  odd prime throughout this paper.

In  first three sections we compute H* k(n)* . The periodic case H K (n ) *  is
completely determined by Wilson [W 2 ]. H e  sh o w s  H K (n ) *  is generated by
certain elements e1,  a ( i ) H * K(n),, ho e H* K(n) 2 ,  a n d  finds m any  non-trivial
differentials in the bar spectral sequence Er* * (H* K(n) * ) H * K(n) * + ,. In Section
1 we define elements in  H* k(n) * b y  th e  sam e procedure as for H K (n ) *  in
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[W 2 ]. In  S e c t io n  2  w e construct elem ents q* oc e H * k(n) w h ic h  v a n is h  in
H K (n ) *  a n d  p re p a re  le m m a s  to  s h o w  n o  new  d iffe ren tia ls appear in
Er* * (H* k(n) * ). I n  S e c t i o n  3  w e  s t a t e  t h e  first m a in  result (Theorem
3.1). "H * k(n) * h a s  more elements ti c e .  b.1 , (I, J )=  adm issible." It is proved by
induction coupled with Theorem  3.2, where we m ake use of the bar spectral
sequence which is compatible with pairing :

Er* * (Hk(n)s) 0 IIk (n ),H * 1 )-1,+1® H* k(n),

Er* * (H * k(n)s, t) H*k(n)s,1,1

These tools are all prepared by [R-W 2 ], [T -W  ] . In [W 2 ] the induction goes on
degree, bu t in  our connective case, on m for H * k(n)„,.

In  S ec tion  4  w e com pute H * bu* . H *(B U (2n ,..., co); Z/p) a n d  H*(U(2n
+ 1, ,  co); Zip) were computed by Stong [St] for p = 2 and by [Si] for p = an
odd prim e. A nd f o r  m o d  p homologies, K o c h m a n  determined
Im [H * (BU(2n,..., co); Z/p) —> H* (BU ; Z/p)], essentially in  [ K ] .  H e  u sed  the
pairings induced by tensor products of vector bundles. By Bott periodicity, bu 2 „

BU(2n,..., oo) and2 n + 1
U (2n  +  1 , , oo), consequen tly  w e de term ine  the

m od p homologies of them  for a l l  n .  The m ain results are  Theorem 4.21 and
Theorem  4.23. W e prove them  by th e  similar method fo r H * k(n) * . First we
prove th e  result fo r  th e  periodic case H K *  (Theorem 4.10) by induction on
degree. W e make new elements Da' in  H * bu* a n d  study them in  Lemma 4.20
using the previous Proposition 2.4. Lastly we compute the connective case H * bu*

b y  induc tion  on  m  fo r H* bu,,,. T h e  proof o f  collapsing of the bar spectral
sequences is easy.

M any have been interested in  the  problem and W ilson also had results for
H* k(n) * , H * bu* and  H * (bo* ; Z/2) independently [W 3 ], but he was unable to find
a nice description of the answer. (See the remark (b) of Theorem 3.1.) There was
difficulty to give the legitimate name to the new  generators. O ur advantage is
that, as we use the maps ri* a n d  0  induced by geometrical maps to define them,
functoriality o f the  homology groups and  the  bar spectra l sequences make us
simplify the proofs.

I would like to thank A. Kono and W. S. Wilson for their helpful suggestion
and encouragement.

W e list the sections again :
§ 1 .  Definitions of elements in H* k(n) *
§ 2. Lemmas for the main theorems
§3. The main theorem for H* k(n) * and the proof
§4. Results on H * bu*

§ 1 .  Definitions of elements in H * k(n) *

W e first rev iew  t h e  resu lts o f  W ilso n  o n  th e  H o p f r in g  s tru c tu re  o f
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H * K(n) * . H e  constructs elements e 1 , [va] i n  H K ( n ) *  a n d  proves the
following theorem.

Theorem 1.1. (Theorem 1 o f  [W 2]  f or E *  = H * ( — ; ZIp)).

H K (n) * E (ei. 0[0])
I,J = ad.,ja< pn —  1 ,keZ

TP,(1)(albJe[v])
I,J = ad.,I #  I(1),(ia= Oorjo < p" —  1),keZ

0 P(a'b.1 [v ])
I  =1(1),J =ad.,j0 < pn —  1,keZ,

w here E(x ), T P,(x ) and  P(x ) are  the  ex terior algebra, th e  truncated polynomial
algebra with xPh  = 0, and the polynomial algebra, respectively, and other notation is
defined below. 0

We will construct elements in H * k(n) *  which are sent onto e l , a l bf  and [v k
n]

by p * : H * k(n) *  —> 11,K(n) * . Let n: k(n) -4 H be the canonical multiplicative map
of spectrum and n * : k(n)k 1 -1 , be the induced map between the k-th spaces of the
0 -sp e c tra . I n  general, f o r  a  spectrum X , ,K k d e n o te s  th e  k - th  space of the
associated 0-spectrum of X , that is, X:„ Q L , i , and for a map of spectrum f : X
—) Y , f: L  —> X, denotes the induced map of f .

F o r  k  = 1 ,  t h e  m a p  n * : n i _ i k (n)= n i k(n),=  n i K (Z Ip , 1) is an
isomorphism for 0 < i < 2p'' — 2 and an epimorphism for i = 2p" — 1 because the
coefficient ring is  n* k (n)= Z Ip[v i ],  deg vn = 2p'' — 2.

Thus we have an isomorphism :

n * : H i k(n) iH i K(ZIp, 1) for 0 i . 2p" — 2.

Recall H * K(Z p, 1) = E(e) T ( o ( o ) ), where r( ) is  the  divided power Hopf
a lg e b ra  a n d  t h e  e le m e n ts  e a n d  oc( i) a r e  defined as follow s. Let
S 1 K ( Z I p ,  1 )  C P  be the fibration, and consider the induced maps on their
mod p  homologies.

H S ' - 2 =-4 H* K(ZIp, 1) H *CP",

and H S ' H * C P ' f ii,•••>, then we can define : e —  u e' ct•—  *
=  4 1 (fii), am = a p „ f3i 0 = )31,,. N o w  w e  use the isomorphism n *  to  define e l , a i

and ai o  i n  H * k(n) * : e l  = it ,
1 e, a i = for i <p", a n d  a( i) = a p ,  for i <  n.

Let x :  C P "  k(n) 2 represent the complex orientation of k(n), b i be  the image
of by x * : H * CP" —> H* k (n),, and bw  b e  bp ,.

For I  = (i o , i l ,...) , J = (j 0 , j 1 ,...) , non negative finite sequences with ik =  0  or
1, we define an  element in  H * k(n) * :

= •  •  •  0  bijol 0  ha')  • • •
with convention tha t al b ' = [1] — [0 ] if I  and J  are  all zeros, a n d  t h e  is  the
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pairing of the  H opf ring . Here we remark that al b  is definable only when I is
admissible (see below). Let [vk„] be the image of the generator by the map 110 (*)

H  k(n)o - 2 (p " - ok , w hich  is  induced  by  th e  element of coefficient ring v k
n : *

k(n) 2 ( p ,,_
1 ) ,. W e use the notion of "admissible" or "ad." as follows:

(1.2) I  i s  a d .  if and only if is = 0  for a ll s> n.
J  is ad . if and only if  0  < j  

< p H
 f o r  all s > 0

L e t A i = (0, 0, , 0, 1), 1(1) = A , +  z11 + • • • + and for I  0 1(1), p(I)
= = 01.

L e t p: k(n) K ( n )  b e  th e  canonical m ap, i.e., th e  localization by v n . T o
smplify notation we used the same symbols e1, t r i  and [v k ] e H * K(n) *  in Theorem
1.1, for the images of p *  o f  th e  elements of H * k(n) * .

p: k(n) 1 K ( n ) 1 i s  a hom otopy equivalence for i < 2pn — 2, and  for i = 2p"
— 2, Z lp  x k(n) 2 p „_ 2 K (n)2p., _ 2 • T h e re fo re  so m e  fo rm ulas a re  available in
H* k(n) *  a s  well a s  in  H * K(n) * .

Proposition 1.3. (from  Proposition 1.1 [W2 ]).
(a) e1 0(— ) is  the homology suspension map.
(b) The coproduct is given by  a i0 bi0  b p

(c) e1 0e 1 =b 1 .
(d) bÇ  = 0, w here * m eans the product of  algebra.
(e) c4' = 0, i < n —  I.
(f) a "  =  —  a (0 ,0 b°4 -  [ 1 , ].
(g) 117 - 1  e  [v  , j  =  0.
(h) bP'k  [v n] = 0 (k  0).

Next, we define elements e, ot I ,V  in H * H * . Let e be the canonical generator
of 111K(Z1p, 1), and

= " ° #(13,1° )6'31) °
for non negative finite sequences I = (i o , i 1,...) , ik = 0 or 1, J = (Jo , j,,...) , where
am = otp1eH * K (Z Ip,1)= H * H , as before, and flu) is  the image of /3 p 1 e H * C P ' by
the canonical map: H * CPc° H * H 2 . With these elements Wilson shows :

Theorem 1.4. (p. 52, [ W1]). The bar spectral sequences
H * * (H * H * ) H * H * .,., collapse and

H * H * = C) {E(eo oc l  f 3 J ) C) TP i (oci  of3J )},

where the tensor product rum s over all I and J.
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§ 2 .  Lemmas for the main theorems

In  this section we prepare lemmas for the proof of the m ain theorem.

Let x :  C P "  k(n) 2 b e  th e  complex orien ta tion , and  y  b e  the composite

y: K(Z p, 1) K (Z , 2) CP" k(n) 2 . W e  u s e  t h e  sa m e  n o ta t io n  a s  its

representing homotopy class, then

Lemma 2.1. k(n)* K(Z p, 1).-_-_ k(n)* [Ly1]1(y„ • y)"). 0

P ro o f . Consider the fibre bundle S ' K (Z Ip , 1 ) `>C P', and its associated

Gisin exact sequence:

• • • —> k(n)* CP k(n)* + 2  CP k(n)* K(Z p, 1)

w here  0(z) = z • [p], („) [ x ] .  W e  k n o w  k (n)* CP" = k (n)*[[x ]], a n d  f ro m  the
computation of the formal group law of BP(see [Theorem 5.5, R-W 2 ] ) , we get
[p], ( n ) [x ] = y,1 . x ".. Therefore 0  is injective and the exact sequence is split. W e
have the lemma by (5*x = y.

We define new elements in H * k(n) * . L e t  0  be the composite 4): E 2 ( P" -
 1 )  k(n)

S 2 ( P" -
 1 ) A k(n) k(n) A  k(n) k (n), w here  y  is the m ultiplication of

k(n). Consider the cofibre sequence of spectra :

(2.2) • • • — ) H E2(P" - 1'k(n) k(n) •

and the induced fibre sequence of spaces:

(2.3) • .. — > H._ , k(n),n + 2 ( p._ k(n),„H .

Proposition 2.4. In  H * k(n) 2  pn

= c + decomposables,

w ith non zero constant c in Z ip.

P ro o f .  W e  m u s t investigate th e  m a p  n: K(ZIp, 1) —> k(n) 2 p „. F ro m  the
definition of 4) , th e  induced map

(0) *  : k(n) 2 P" K (Z p, 1) k(n)2 K (Z p, 1)

is obtained by the multiplication by yn . And we get yn - yP" = 0 from Lemma 2.1,
thus

(/) y P" 0 : K(Z p, 1) k(n)2.

Therefore there is a  m ap  d  which gives th e  followng homotopy commutative
diagram :
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K(ZIp, 1) k(n)2„ k(n),

d ÎxP"

 

K(ZI p, 1) C P '

By the way, xP" is obtained by the composite

x '" : C P' xP"CPc° x ' k(n) 2k ( n ) 2 ,

where A  is  the  iterated diagonal m ap and  o  is  the  iterated pairing m a p . F o r
a ( , , , ) e H 2 p ,+„ K(ZIp, 1),

P " )* C' + n) (XP") * 5
( I  + n)

= (X P n )* fl(,+ n)

=  (o)* ( x P'x) * 4 4130 + 0

=E (0) * (x,13i i x  x * fli2 x  • • •  x  x 413
1p

„)

= 1312. • • • obip „,

where the summation runs over the condition : i 1 +  i 2 +  •  +  ip „ = p' . By the
com m utativity of the pairings of b i ' s  they  survive on ly  fo r  i, = i 2  =  •  =
= p , . T h u s  w e  h a v e  ri* d* «( ,+ „) = . Especially, f o r  /  =  0 ,  ri* d* Œ(,,) = bit,1
=B y  Proposition 1.3, this is a  generator of H 2 p k(n) 2 p „ Z I p .  Therefore
the m ap d  is a non trivial m ap, and there is a homotopy inverse c  to  d. (We
regard c, d as the non zero elements of Z Ip  [K (Z Ip , 1 ) , K (Z Ip ,1 )].)  It follows
that

bifr = ri,,,d 4,2
( '

+ „)

= ri(d • 1 (,+ „) + decomposables)

= d • ri* ce,,,.„, + decomposables. 111

Let y be the composite :

y =  i t ° : H E2 P" 1 k(n) —  1H

Proposition 2.5. [ y ]  =  c • Q „ H 2 P- 1 H , w here Q „ is the M ilnor's primitive
element of H* H.

T his i s  a  w ell know n fact (cf. [Y ]), b u t  here  w e prove it by  unstable
calculations. W e prepare a  lemma.

Lemma 2.6. [y ] is primitive. 0

P ro o f . As ri is a k(n)-module spectrum m ap, the next diagram commutes :



C on n ec t iv e  K- th eo ry 49

k(n) A  H k(n) A E 2 P"-  1  k(n)
R

H  A H 
A

H

114

E 2 p ,  - 1  k (n )

Here po i s  the multiplication of H .  Apply H *( —) to  the diagram, and we get

H*k(n)C)H*H E-2P"'H*k (n)C)H*k (n)

H*HC)H*H
H * H  H*k(n)

We chase the images of [n ] in  H ° k(n).

[n] 0  LA 4- - -  [ i t ]  0  [it]

tiô [y] = [y] 0 1 + x J C)y i -F [T]

[Y] [Tc]

On the other hand, the map n* : H 1H —■ Hi k(n) is an isomorphism for i < 2p" — 2,
and degrees of xi 's  are less than 2p" — 2. Thus e x i = 0 implies x i  = 0, and we
have pt[y] = [y ] 0 1 + 1 0 [T ]. 0

P r o o f  of  Proposition 2.5. By Proposition 2.4,

* 04001 = LE*
11 * (a(k))

= n * (c • b r o  + decomp.)

= c • fi( ri n ) + decomp..

As I/ n 0,

7*(13(k)) 7*(.7--(*b(k))

=  * ii* rc* (b(0 ) = O.

Consider the suspension to  the stable group:

H * H * H * H E(ro , t ,  ...) C) P( 1, 2, ...)

we can see

Q03' T 'V  (see below this proof)

with J = j2 ,...)  for J = :12, • • •). Thus we have stably:

Y* Tk = c • and Y* 1, O.

O n the  other hand, by  the formula
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tk  =  Tic 1 E ut i

we have (cf. [SW. p.418, Prop. 17.11]):

12.(1- k ) =  -  T k < Q .,  1 >  + <Q., t j >  = n

Similarly, Q a k ) =  0 .  Because of the primitivity of [y] (Lemma 2.6) and Q„, they
act o n  1 1 ,1 1  as d e r iv a t io n s . T h u s  w e  h a v e  4( —) = c • Q„( — ): H * H

H * H .  This implies [7] = c • Qn .

For finite sequences, I  = (io , 11 , ...), J = (j 1 , j 2i  =  0 or 1, j  >  0 , we define
•r /V = TioTii • •• •••. W e say (I, J )  is  admissible i f  a n d  only if  1(1) = io +
+ > 1, M (/) =  max {k ik = 1} n  and  0 <  pn, for a ll s > M(/) — n. The
next proposition will be used for computations of differentials of the bar spectral
sequence.

Proposition 2.7. Im y* = Im

= Z lp  < Q.(T1 V)1(1, J )  is admissible >  H * H.

P ro o f. First we see {Q(TI V-)1(I, .1) = ad.} spans Im  Qn . When (1, .1) is not
ad., we rewrite Qn(r1 V ) .  Assume 1(1) 1 ,  so i s  the maximum of s 's  with is >  pn,
and J' = J —  pn /Is° . Then we have:

42.(T i V) = 02n(T/ V- P "2 6 ° )

=  ±  12.02.(T I /Tso -F.V )

=  ±  Q .(  E ± t i —L n - r s o + , , v ' )
i M( 1)

Q n ( E t i —  + As o

i lV1(1) —

Since s o > M(/) —  n, we see the indices (I — A +  4 + „, +  J')  are all ad. for
i < M (I) . It has been done.

Secondly we see the elements are lineraly independent. Consider the map:

H  H H * H H * H <T 1 V1(1, J) = ad.>

When (I, J *) is  ad. i t  corresponds to

zu/(1) e + P "4 m (I ) - .

the im ages are linearly independent clearly. This implies th e  independency of
{Q„(TI J )  =  adj.
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§ 3 .  The main theorem for H* k(n) * and the proof

In  this section we state the first main theorem and the proof of it. L e t  p(I)
= min 1k in =  0 1 ,  a s  before.

Theorem 3.1. Let p be an odd prime. H = H ( ; Z ip) and k(n) be the connective
M orava K-theory f o r  p .  Then the following isomorphism as  algebra holds:

H* k(n) *0 [ 1 7 ] )
k= Oor jo< p" — 1

TP 0„,(a l  b- r E vn)
/* I(1),(k = 0 orio = 0 o r jo < p.1 -

N a l ly ' 0  E vki )

I= l(1),(k=Oorjo< p” — 1)

E(e i -n * (oc').b -r )

0 TP 1 (n* (a1 ). 11).

In  the f irst three parts, the tensor products run over all admissible I  and J (see
1.2) and k >  0. In  the last two parts, they  run over all admissible (I, J). W e say
"(I, J ) is admissible" if

1(1) .> 1, M(/) > n and j s < p" f o r all s > M(1)— n,

where 1(I) = i o  +  j 1 +  • - ,  M (I )=  max fklik = 11.

Remark. (a) A s the m ap  H  --14 IP" -  'k(n) is  a k(n)-module map, w e have
following: If  1(I) > 1,

) 11* (c(1 )° =  * 0E1 0 ,
(ii) 11* (al  0 °  e l = 11* (x1 frf  oe),
and if 1' is  admissible,

* (al) 0 a l '  =  * +

especially, from Proposition 2.4,
(iv) n* (oc'' +c • a r  b P " A  + decomp.
( b )  When we rename (11* ,c(i ) o a s  al then w e can rewriteAmu) 0 bp" Amu ,— + J

Theorem 3.1 as the  following simple form :

H* k(n) *0  E ( e i  0 al  13J  ° [vt])

TPp (1 (al b.`

w here I and J  runs over the followng conditions: In E-algebra part,
if k > 0, then I  and J  are ad., 10 <P" — 1,
if k = 0, then I  is  ad. or j, p n (s>  M (I)—  n ).

In TP-algebra part,
if k >  0, th e n  I  and  J  are ad., (i0 = 0  or Jo < p" — 1),
if  k = 0, then I  is  ad, or j s >  p" ( 1s> M(I)— n),
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( p ( I ) ,  I  and J  are ad.
with p ( I ,  J ) =  o o  ,  I  = 1(1), J is ad.

1 , otherwise .
Of course, if I  is  n o t admissible, al ly  is not w ritten in  Hopf ring language as
defined before. 0

Our proof of Theorem 3.1 is almost parallel to [W 2 ] , but in our case we use
induction on m for E 11 ,k (n ),. To begin with, we observe for m < 2p" — 1, k(n)„,

ism
K(n)„„ and  Theorem 3.1 is true because it coincides with the result of Theorem

1.1. The next theorem is the k(n)-version of [Theorem 2.1, W 2 ]. The induction
goes implicitly like as ; Theorem 3.1 Theorem 3.2 and Theorem 3.2 Theorem
3.1.

Theorem 3.2. In the bar spectral sequence;

Er* * (11,k(n) * ) 1,k(n)'*,

where k(n)'m i s  the connective component of  k(n),„ we have

(a) E (H k (n ) * ) T o r * ( Z 1 p ,  Zip) = H„(11,k(n) * )

0 F(o-e, ac b ., 0  [ v k
] )

k=O orjo<P" —  1

E(o-al b i  [ v k ] )
k = Oorio=Oorjo<p , ' — 1

0  F  ((MA .' 0[1 ] ))
i„_1=o

0 F(o -e i on* (a1 )0 bJ )

O E(o -n,(oc i )0 bf)

r(0(/*(a 1 )° bj ))

In the f irst three parts the  tensor products run over all adm issible I, J, and
k > O. In the rests they  run over admissible (I, J).
(b) For the Hopf ring pairing of  the bar spectral sequence, we have the following
relations modulo decomposables:

For J  0, k  =  m (J )=  min Is Ifs > 01, consider

: H „(H * k(n) *  _ 2 ) 0 H * k(n) 2H  „ ( H  * k(n) * ).

(1) yp ,(cre i ° a' b' A k )° b(k+ 1) = Y p , (cei° d ir t ).

(2) yp ,(4)(aW - 4 ‘)).

For J = 0, k = m(J), consider

0: H * * (H * k(n) * _ H*k(n H „ ( H * k ( n ) * ) .

(3) yp ,(o- e, ak)oa(k+i)= (— 1)'" ) - 1 Tp ,(o-e,04, k  +  i <  n .

= Yp, (0(aw)).
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(4) 7,44)(a l  1 1 ") ° a(k + + i) = ( — )' (1.) -  Y p . (4 )0 ,  _ = 0, k + i +1 < n.

(c) L e t  g  = q(1).= min ts _ s = 11, 11(0) = n + 1, a n d  I ' =  I  —  An _q . The
differentials are determined by:

(1) dPg - l y,,,(o- e, 0 al b') = r • o-asn I ' bsg( - 1 +  k) ) +  ( P—  1 ) 4 '3 [ v n ] ,  I  0 0, Jo < p" — 1,

r, 0 0.

(2) d2 P" -  - 1 y _,(0(a l b-'))

= t i o-e r  A g-  I bs" + ( p" -  1 ) ° ° [v a ], I  0 0, in _i = 0, t, 0,

= to o- b " '" ( P—  " A °  [vn], I  = 0, to 0 O.

Here si (ko , k 1 , ...) denotes (0,..., 0, k 0 , k1 , ...).

(d) In  Ec° (modulo decomposables)
(1) yp ,(o-ei ° a'b' °Ev ki ) ,  Jo < — 1, represents ( - 1 ) 1 (1 ) as' l bs' ( + 4 °) . [v k ],

where if  I  0 0, then i <n(1).
(2) c•yp ,(o-e, a 'b '), J0 = —1, represents ( — 1)41 )14 (CO I  11,)) bS V  (p. — 1) A0).

(3) aal bJ  c[v ] represents e1 0 o[vkn], where k  = 0  or jo  <  p n-i .

(4) y,„(d)(al  bf o[vt])), =  0 represents as"- ' 1 + 1 ,  where i <q(I)—  1.

(5) y p 1(o-e1 on * (a1 )0b 3 )  represents n* (c0)0bs'u + A °) .
o-r4(a 1 )0 b ' represents o- e1 oq * (a1 )0 b .
yp ,(0(n * (oc1 ).  V )) represents n* (acs' + ' ' + ''')0bs'''''.

(e) A s an algebra,

E(e 1 0 al b.' [V I )
k  0  or jo < 13" — 1

TP 1 (al bJ  [1 7 ])

0  E (e, ri,k (ocI )0 b- r )

0 TP, (n*  (x i ) 0 bi ),

where the f irst tw o tensor products run ov er admissible I, admissible J  and non
negative integer k  and others run over admissible (I, J). 0

Proof  o f  Theorem 3.1 f rom  T heorem  3.2.
This is done by the  next proposition like as  in  [W 2 ].

Proposition 3 .3  ([Proposition 1 .2, W2 ] ).
(a) I f  in _, =  1 , then

c, [ v nk ])*p  =  _ aeo + scr - -  11 b(P" — 1) d o  + s J 0 [ v  nk + 1 ]

(b) If  in _ 1 = 0, then (a l b.' 0[1, 1)*P = 0. CI

This solves all algebraic extension problems for Theorem 3.2 (e) because the
Im q * -parts a r e  clear by Theorem 1.3.

Proof  o f  Theorem 3.2 f rom  Theorem  3.1.



54 Shin-ichiro Hara

Refer to the  corresponding parts of the proof o f [Theorem 2.1, W2 ]. We
show only the esssential parts of this connective case.
(a). Like a s  in  [R-W 2 ], we use homological calculations:

H * * (E(x))= F(o-x),

H * * (TP,(x)) E ( o -x) 0 F(0(xP n  1 )),

H„(P(x )) = E(o -x).

W e have to  check that, in the second F-algebra part :
{(ai bi  0 [v„])*PP " ) I / 1(1), k  = 0 or j0  < 13 " — 1 1 = {al b E v ki  Ii _ 1 = 01 (up to
sign), by Proposition 3.3. The result follows.
(b). The same a s  [W 2 ].
(c). This is also the  same a s  [W2 ], bu t we have to  prove n o  new differentials
appear other than those listed in  (c).

The bar spectal sequences for H * H * co llapse . And by functoriality of the bar
spectral sequences for the infinite loop map, we conclude the differentials on Im n*

a re  tr iv ia l. By homological degree reason, we may examine only the following
elements;

yp,(o-el. jo = p" —  1.

We prove these are permanent cycles. Suppose they aren't let i be the minimum
of such i, then the target T  of the differential is a n  odd  to ta l degree, primitive
element. Seeing  of (a), the candidate is  a  linear combination o f the  next
elements.

oralbf  EVA, k  = 0 o r io = 0 or j o < p" — 1

o-ri* (oll ). b.', (I, J) = ad.

We divide the condition "(A ) k  = 0 o r  io = 0 or j o < p" — 1" into four parts :

(B) j o < p" — 1

(B') k  = 0, j o = p" — 1

(C) k 1, io = 0, /0 = — 1, in(1) in(.1 — (Pn 1 ) 4 0)

(D )  k 1 ,  j 0  = 0, Jo = p" — 1, m(I) < m(J — (p" — 1)4 o)

(the elements of (C) correspond to targets of differentials of (1) and the elements of
(D) to targets of differentials of (2).)

W e show none of the elements of (B) appear in  T  Because these elements
h a v e  th e  low est filtration degree, they exactly  correspond t o  th e  elements

e ,. al b' 0 Evn, eon * (11). V .  Sending T  b y  p * : H* k(n) * —› H* K(n) * ,  we see that
only the elements of (B) survive linearly independently and others are killed. T h u s
we can exclude (B) from  T

We observe the elements of (B') and o-n* (oc1)01)3 , (I, J) = ad.. Stabilize these
elements by the map
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H,,k(n)„, + , suspension

We have:

e ,. A 3  o[vt], (13") --+ t i  =  ±  n (T I ),
e , . o[v t], (C), (D) 0,

e 1 on* (oc').13', (I, J) = ad. ' I W O ,  (I , J ) =  ad.,

by Proposition 2.5, where J = (11 , 12, • for J = (10, 11,
O n the  other hand, by  Proposition 2.7, we know the  set ;

{Q.(e +  A " V) I (13) , 1 + + 2.1(J) = m + 1} U {Q„(t i )(I, J) = ad.,2p" + 1(1)

+ 2.1(J) = m  + 1}

consists of linearly independent elements. Hence the elements;

ae i .a l bJ . [v n],  (B') and o-n* (a1 ) , fri ,  (I , J) =  ad.

don't appear in  T
Thus w e can conclude T  is  a  linear combination o f  th e  elements o f  (C),

(D ). B u t

T p' —  1 y

implies

T° [v a ] = alb(P"-1—.).[vp])

= 0, b y  Proposition 1.3.

Then sending T  by the  map

Er* *  p : E* * (H * k(n) * )E r * , ( H  * K(n) * ),

we see all coefficients of elements in  T are  triv ia l. T hus T  = 0  in  Er* * (H k (n) * ).
Now our assumption results in contradiction.

(d). For (1), (3), (4) it is done by the same way as in [W2]. For (5), refer to [W,,
p.55], and use functoriality of the bar spectral sequences.

For (2), even when Jo =  p" — 1, (1) is true. However, it is the problem of the
new named elements of the  right hand side in  (2). From now, we show :

(3.4) c•y p ,(o-e ,oa l b'), Jo  = p" —  1 rep resen ts

( — 1)4 1 ) n* (asq" ° -) ). V ( .1 - ( P" +  decomposables.
P r o o f .  We proved in (a) that this element is a perm anent cycle. W e show

that w e can chose elements xf' -' Ell * k(n) * , Jo = p" — 1, so  a s  to satisfy following
conditions:
( i ) x o = ( — 1)`(`) q* (cc̀ ± b " P " -  " A ° + decomp. = primitive.
(ii) c•y p ,(o-e i -a l bf )  represents x F , for i > O.
(iii) V(44;`1) =( V  is  the  Verschiebung map)
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First we chose only satisfying (ii). Let i = 0  in  (1), then we have:

c • o- e ,  al  bf  represents ( — l)'inc • a' o b°P" ° °V  -
(P" " A°

b y  Proposition 2.4,

= ( _  1),(1),1
4.k.1 (n) + decomp.)obJ - 1) do

by remark for Theorem 3.1,

_ ),(/)n* ( x i + e „) 0  b ./ _ ( p 1 1  -  
1 )  Li°d e c o m p .

Then (i) holds automatically because E n, F 1 * . Even when we replace .4-1 by
17154;i

k, (ii) still holds because Vicyp ,+,( —) = yp ,( —) in EZ,-term s. We can change
xf' J  =  x i such  tha t (iii) holds as follows:

Consider the finite sequences;

{x 0  =  vi x i  y  vi— 1 x i 4 _1! 4_y__ Vxi

As H * k(n)„, + ,  has a  finite order in each degree, we can find in the infinite tree an
infinitely long branch;

x0 4 L 14 Jei

Let x  b e  x i again.
Return to the proof of (3.4). Now we obtain:

= (VX I+  I) "  =  [P ](X 1 + 1 ) =  O.

G o in g  t o  p a r t  (e), w e  c a n  d e te rm in e  th e  e x te n s io n  o f  q ,3
*  a s  algebra

com pletely. That is, H * k(n) * has following generators:

j c, = p" —  1 for (2) of (d)

h  for others of (d).

We define the filtration degree of elements:

filt(x) = min {s x  F s * }

where F s* is  the filtration derived from the bar spectral sequence. Then we see in
EL that

(3.5) filt(h) p i im plies V i yk is  a lso  the generator of (d),

filt (Yk) < p i im plies V i yk = 0,

filt (4 - 1) = p i .

Write down the element by these generators.

( — l )'wri * (asq,  + 4 0) b 1  - (p- - 1)40)

= E c, x f  +  E  c ; • y ;  + decomp.,
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and c;  a re  elements of Zip.
Apply Il i ( —) on  it, then we have by (3.5)

( .1) 4.01,4 (
j+ bJ — (p" —  1).40

= E • 427 : +  E  ci •  v i y ;  +  decomp..
filt(YA P' 

The elements on the right side are clearly linearly independent. Thus we get by

1 if (/', J', j)  = (I, j, i)
0 otherwise ( j i),

ci = 0 if filt (y; ) pi .

Thus we obtain

_  1 )
,(1)n *(OEs, (1+ 4, ) )  0  b sici — (pn — 1) rio)

=  x l + E • x /; ' , . / ' + E  c ;  • y i + decomp..
j<i f  ilt(y )<

Therefore

yp ,(o-e i .a 1 V ) represents

( —  1 ) ( i ) ;)* (ots' ( 1 + ̀ 1”) ).bs` ( J - ( P" - 1 ) 1 1 °) -decomp..

(e). When the differentials are determined, we can compute the spectral sequence
easily. (c f . [L e m m a  6.9, 6.10, R-W2]) A s mentioned in  th e  proof o f (c), the
elements of conditions (C), (D) are hitted by differentials, hence the rests are (B) and
(B'). These are generators of the first E-algebra part. The second E-algebra part
is c lea r . A s to  the  TP,- algebra parts, we get, in from (a) by (c):

0 ao 0Evn))
(E) or (F) or (G)

C) TI) 1 (y (0 (a l V o[v ] )))
(II)

0  TP,(y p ,(o-e i . n * (a'). V))
(I ,J)= ad.

TP1(y p , (0(n.(a1 ) °
( I ,J)= ad.

where the conditions are following:

(E) / 0 , < pn — 1, 0 < i < 17(4

(F) / = 0, < pn — 1,

(G )  j o = p" —1, k  = 0,
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(H )  i„_, = 0, 0 <  i <  1/(1) — 1.

According to (d), we see the correspondeces between the elements of EZ,-term and
those of H,k (n),:

Shin-ichiro Hara

1) {Ypi(cei ° a' b' ° [V])1(E)}

U 17 pi(4)(cli ° Ev n))1( 1 1 )}

U  p i(ce a l  bj  °[1'])(F)}

represents (up to sign)

o [v ]il  0  0, m(/) m ( J ) }

U {al /if  [ v ]  / 0, m(/) < m(J)}

U fal [v ]ll =  0 ,  J O}

= {al b -1 o [v ]ll 0  0  o r  J 0},

where m(/) = min {s1 is > 0} a s  before and m(0) = co. T h e s e  are the generators of
the first TP,-algebra part of (d).

2) tYpi(uei ° bj )1(G)}

U pi(ae ° n,(0(1). 01(1, J) = ad.}

U fy(0(q(ccl). bf))1(1, J) = ad.}

respresents (up to  non zero scalar)

{11* (1 / ) ° (I, J) = ad., m(I) < m(J), M(I) —  in(I) n}

U Iri* (c(1 ). W1(1, J) = ad., m(I) m(J)}

Ulq * (ot'). bi  1(1, J) = ad., m(I) < m(J ), M(I) —  m(I) > n}

= fr/*(a l ) ° (/, J) = ad.} .

These are  the generators of the second TP,-algebra part of (d).

§ 4 .  Results on H * bu*

In  this section we compute H * bu* .
L e t  bi e H 2 i bu2 b e  th e  usua l e lem ent w hich  is  defined  by  th e  complex

orientation u: C P '  bu . W e  d e fin e  b  =  b  b  for J = (Jo, j, ...) with b(1)

= bp ,  as befo re . A nd let e be the canonical generator of H i bu i defined by the
map S 1 —+ bu t which induces the unit of the spectrum. [ t ]  is  in H 0 _2 .

The formal group for bu is the same as for K , tha t is;

Pbu(x, y) = x + y + t • xy, t e n 2 bu = Z[t].
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Let b(x) = Ei,o b ix i ,  then we have by [Theorem 3.8, R -W 1]

(4.1) b(x  + y) = b(x)* b(y)* ([t] 0 b(x) b(y))

And we have

(4.2) [ t ]  b(x) 0 b(y) = b(x + y) * b(x) -  * b(y ) - 1

(4.3) [t] o b(x). b(y) b(x  + y) — b(x) — b(y)

(modulo decomposables).

Iterating (4.2), we obtain

(4.4) [ t "  1] b(x  1) ° b(x2) ° • • • ° b(xn)

11(n°) b (a , *11r2 i b (an -  2, i) *i = 1

G)n r i )  b  
-1 0 .  *  

FI b (
n a n - 3, i) *1

(where the each
n

o-
k . , 1  <  k  < n, 1 < i < is the sum of different k  terms in {x 1 ,k

x2 , , x„}.

Proposition 4.5. L et p  be an  odd prim e . In  H * bu2 ,
(a) [t]. bi o b. (i, j)b, + m o d  decomposables,
(b) [ t " ' ] =  — ,
(c) [tP -  1 ]  b(T)  = — ( b,„ + decomp.)*P' ,
(d) ( _  1

)

 [ t n (p - 0 bpdo+(P -  I)( + . . .+   d „ -  I ) b r n D

Remark 4.6. W e know the general facts:
(a) If deg x > 0, then [O n]  x  =  0  for [On] e H ° bum .

(b) = E bi 0 bi _ , for coproduct

b, is primitive, therefore b 1 0 x is primitive for any x, and [ t ]  b 1 b, = ( - 1)1 +1

(c, + ,)* = H * B U, the  dual element of the i + 1-th chern class.
(c) e  (  — ): H * b_u,„ H  * bum + ,  is equal to the suspension map, e is primitive and
e o e = b,.
(d) (primitives). (decomposables) = O. 0

Proof of  Proposition 4.5.
(a). Compare the each coefficients in (4.3).
(b). This is  the  special case of (c).
(c). In (4.4), let n = p  and x l  =  x 2 = •-• = x p  =  x . T h e n  w e  have

[tP - 1 ].b°P(x P) =  [tP - 1 ].b(x )°P

p- 1

= fl b((p — Ox)* ( - " ( F)

i=i
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P

=  H b((p — Ox)*( -  1 )i(f)ip\*p
i =

We calculate the entry of ( ) modulo decomposables.

( p . )
p -i

b((p 0 )* ( -1 P (n I P H  E " L  k
kXi=1 1= 1 Ic C)

— 1 . ( iE  E 1 ) , (p  O k  b k xk
= 1

Let

p — 1
(P(k) = E ( 1)l

)  ( p ok,
i=

. (p — 1_ E i y )  i n -  1

i = 1

then we have

E [ tP - 1 ]. x P k  = ( E ((p(k)bk + decomp.) X kr P

= E (g9(k)b, + decomp.)*P xPk

1c 0

When k  = p°, we see cp(ps) —  1 modulo p. Thus we get

[ O H . blf) = (— 13 (5 ) + decomp.)*P

The result follows.

(d). ( b 1 )*"  = (—  [ti'  1 ]  b ) * P " -  ( b y  (b))

=  _ - i] 0 ao 0 Vn — 1 b(p - p n  ( b y  v n _  b  A „ , _ b40)

= — [tP -  I] 0 (0°)*P" Io 13(11 -  1 " .  '  (by (x 0 V y)*P = x" o  y)

by induction on n,

= [ t P  1] -  1 [ t (n -  1 )(P -  1 ) ] 0 bP 0+ (1)- 1)(LII + + - 2) 0  b (p -1 )A n -

= l r E t n ( P  1 ) ]°  b P  4 0 +(P 1 )( 4 1  + . - +  - 0

Let g  be a factor of bu ( ) , th e  connective ring spectrum such that:
There are a map 0 0 : bu ( )  —■ g and a multplicative inclusion 1: g —> bu( p )  with 'I

 2

= idg . And bu ( )  =  H Eg g.
= o
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= Z ( ,) [v] ir* buo ,) =  ( ) [t ] with v = tP - 1 .
W e define  th e  com plex orientation y: C Ps°  g  2 b y  y  =  0 0 . u ,  and  le t

bi e H 2 ig 2  be the element defined by y as usual, and let e be the canonical generator

of H i g i  defined by the map s1 g 1 , which gives the unit of the ring spectrum: S
g. Then we have

(4.7) (Po*bi — bi•

By [Theorem 1, J ]  we know, in butp ) CP"

= E log(1 + tu)'+ It(n + 1)!
Omodp— 1

tU
2

+ +  
113 — 11! + 11 1 = u  tP- 1 uP PUP+1 •••

2 P! (p + 1 2(p — 1)!) t

Thereore we can calculate / * b(i) from this.

(4.8) / * No  b (i) m odulo decom p. in H * bu2 . Especially / * b i =  b 1 .

Proposition 4.9. L et p  be an  odd p rim e . In H * g 2

(a) [v ]. = —  big ,

(b) [y ]  b,°(f) = —  (b ( ) + decomp.)*P ,

(c ) ( _  l) [v n ] o bPA0+07 - 1 )( 4 1+ ..•+ _ LII

P ro o f . (a), (b). By (4.8)

/ * ([v ]obv  =  [ tP - 1 ].( b ( i ) +  decomp.)"

= [tP - bir) + [tP -  1 ] (decomp.)"

O n the other hand, b y  Proposition 4.5 we know

[ t "  
1 ]

 b °(f) = —  (b (1) + decomp.)*P ,

and we can check

[tP - (decomp.)°P = (decomp.)*P

Thus

* ([v] iNt4) = — (1) ( ) + decomp.)*P + (decomp.)*P

= — (b ( i ) + decomp.)*P

Apply 0 * ( —), then

[y]. bir) = — ( b 1 + decomp.)*P

= — + decomp.)*P
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(c). It is done by the same procedure as (d) Proposition 4.5. 0

Let p , p ' be the localization by t ,  y  of but t,»  g ,  then the square commutes :

bu()K  ( p )

î
g

We define elements b i in  H2 1 1( ( p ) 2  a n d  H2 ,G2 b y  p * bi , p '* b i ,  and let e  be the
canonical generator of H i K t p " , H i G i , defined by p * e ,  p e .  Then Proposition 4.5
is available for H K *  and Proposition 4.9 is also available for H * G* .

Theorem 4.10.

H * K ( p ) * 0  { E ( e o b  o  [e ])0  P (b f  o [O]) }
J=ad.,keZ

H * G* '- ' (Replace t  by  y),

where, for = we say J = ad. if  and only if  0  i s < p  for ails, and if  J
= 0  we regard P(b' o [t1 )  as the group ring Z Ip [Z ( p ) ]. 0

Theorem 4.11. In  the bar spectral sequences

(a) E 2  =  H * * (H * K ( p ) * )

{T(oT .  o[t k ]) 0 E(o - bJ  o[t1)}
J=ad.,keZ

=.H*1C(p)*+ 1 '

=  H ( H G )

(Replace t  by  y)

(b) The spectral sequences collapse, and

(1) ( — 1)" ( J ) yp ,(creob J  o[y "m ]) + decamp. represents
d i  + s' - " ( J - ( p -  1 ) 0 0  +  •••+  A„_ 1 )) )* p w

where n n ( J )  =  max Inlp —  1 =.lo =.ii = • • • 11, in convention that max
= O.

(2) (TV  represents e

Lemma 4.12. The f iltration degree induced by the bar spectral sequences is
given as following:

filt {(11 9*" * (fri  2 )*e 2 * • • • * (bi krek}

= p m " a p (e i ) + pm ( J 2 ) a p (e2 ) + • • • + pm(Jk)ap(ek)
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with adm iassible J i 's  which are all different, where m (J)= min Is ijs  > 01, a(e )  =  the
sum  of  entries of  the p-adic expansion of  the integer e.

Remark. Theorem 4.10 is available for H* ( — ; 417)).

As we know HOK (p)* (resp. HO G* ), the bar spectral sequences give information
of H „ ,K (p ) „ ,  (resp. H „ ,.G „ , )  from those of H * K ( p ) *  (resp. H G ) .  W e prove
4.10, 4.11, 4.12 simultaneously, b u t  these a re  done by im plicit inductions on
degrees, m o d u lo  [t], (resp. [v ])  s im ila tly  to  [W2 ] .

Proof  o f  Theorem 4.11 from  Theorem  4.10.
(a). It is obtained directly.
(b). In  each spectral sequence, the generators of Er„ are concentrated in odd or
even degrees o n  each  stage, therefoere the differentials a re  tr iv ia l. Next we
examine representatives in  E ,L -te rm . By degree reason, ae  represents b ° °. B y
compatibility between filtrations and pairings, we have

— o-(e  b ( P- 1 ) ( A ° ±  -+ A "-  1 ) o[v a]) represents
( b p d o  +(p  -  1 )(d i + •••  + i)  0 [ v n ]

= (13°0)*P" (by Proposition 4.5, 4.9).

Next we show :

(4.13) ( — 1)ny p ,(cre b ( P- 1 ) "° +  •• A " - 1 )  [0]) + decom p.

represents (b A ')*Pn

By Lemma 4.12 (cf. 4.15), filt (b( ) )*P" =  p 1,  thus w e  can  use  the  following
commutative diagram :

F,

E ); E T *  .

Since V i(b 4 )*P" = (V ib° )*P" = (b Al*P" a n d  Py p ,(o- — ) = a —  , the images of the
both elements of (4.13) coincide in ET* . While, we know Ker V = decomposables,
by the form o f  E - t e r m .  Therefore we obtain (4.13).

Apply ( — ) o bs' n-r to (4.13), then

( — lry p ,(o-e b( P- 1 ) ( 4 )± 1)+8"J , [0]) + decom p.

=(—  1) (o-ecb (P- 1 ) " ° ' " + ° " - 1 ) 0 [0 ]+  decomp.)ob '

represents (b ° )*P". b' * ".1 = (b A ' + ")*P".

This we get (1). (2) is already done.

Proof  o f  Theorem 4.10 from  Theorem  4.11.
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W e only observe the following:

{Ai + s i
-

n ( j ) ( J —  (1) —  1 )(A  + ••• + A n ( J ) _ 1 ) ) i 0 , J = ad.}

= { J1 J = ad., J  0 0 } .

Proof of  Lemma 4 .12 . This is done by the induction on the degree together
w ith Theorem  4.10, 4.11. Furtherm ore w e u se  the  induc tion  on  t, where t
= max {m(.11 ), m(J 2 ), ...1 for m (J)= min {si >  0 }.

W hen t  = 0, b y  Proposition 4.5 (b) and Proposition 4.9 (a), w e know  filt
(Fk))*P" = 1 and the pairing preserves the filtrations, thus we get

filt (b AP+ J )*P" = filt (b °0 )*1)".bs" .1 = 1.

On the other hand, we see that if xl , x2 ,... are represented by different generators
of an algebra t h e n  filt (xel 'x 2 •••) = Ee s •filt xs  fo r 0 < es < p . Therefore we
affirm the statement for t  = 0.

Suppose the statement is true for all t( < i). By Proposition 4.5 (c) and 4.9 (b),
we know

(4.14) [y]obP°' = — (P 9* 1  + x*P

with decomposable elements x. And we can also see x is written by bi  w ith  j
< p t. By assumption of the induction on degrees, we may suppose Theorem 4.10
and 4.11 a re  tru e . Thus we conclude that x*P can be written uniquely as a linear
combination of

o h r e  *  (b. z)ke2 * * krek

with 111 (  <  P l e ,  Now, from the equation (4.14), we have

2 p '  =  d e g  ( b i l ) * e 1
*(1,12)*e2 * * (bJk) ek

+21J 2 1.e2 + + 2 1Jkl'ek,

where 1J1 =E lsP s •

Ples implies p •ap (e s ) . 
L i k e w i s e ,  1.1 ,1 > Pm(J)•

W e have

f ilt  {Oh r e ' * (b j 2 ) * e 2  * • • • * (fri k r e k }

=  pm(" o -
p (e 1 ) + pm (J 2 ) o-

p (e2 ) + • • • + pm (J k) a p (ek )

e 2 e k
1•111 . —  +1 .1 21 . —  + •••+IJk l• — =1)`•

The equation needs for k  = 1 , J 1 = d i _ 1 ,  e , = p . But this element is excluded in
x "  of (4.14). This leads x * P  F p ,_ i . Again by (4.14), we get

(4.15)f l i t  (b ° )*1) = flit bP A  =  flit b (o = pt.



Connective K -theory 65

Thus the lemma is true in the case for k  = 1 ,  J  =  A ,  e ,  = p.

Next apply (  )*P" to  (4.14), then we have

(4.16) (1)°•)*0" = ([1] o  b"")*P" + x*P".

Observe the filtration degree of the elements on  the  right side;

flit ([1 7 ].b ")* P' - ' = f ilt ([17]. b A')*P" OP -

 )1 -

= filt (b i 7)*P"

= p i ,  by induction on n.

From  the  assumption of the induction on t  o f this lem m a, we know filt x*P"
= flit x *P < p i . Thus we obtain from (4.16):

(4.17)f l i t  ( P')*P" = pl.

This is  the lemma for k  = 1 , J =  A . and a( e 1 ) = 1.
(4.17) goes the induction of Theorem 4.10, 4.11 on degrees. (See the proof of

(4.13)). Observing the form of E -term, like as for t 0, we can affirm the entire
statement of this lemma for m < i. We finish the inductions.

We generalize Proposition 4.5 (d) and Proposition 4.9 (c).

Corollary 4.18.

( — 1)" [v] 0 b P 2 6 1 - ( P -  1 " ( b ° )*P" m od u lo  F„-1 , 4,•

P ro o f .  W e see [1]. bP'1. — (b 4 )*P mod Fp- 1,*  from  (4.14), so w e can do
the same process of the proof for Proposition 4.5 (d), since the pairing preserves
filtrations. 0

Consider the cofibre sequence of spectra :

g g k ( l )  a L ,  D

Definition 4 .1 9 .  L et the m ap a be the composite

0 = q*  : H * H * H * k ( 1 ) * + 2 p - 1 H*9*+2p• LI

Lemma 4 .2 0 .  O(oc
°
°  Lig ") = c-b ° °+ "77 f o r  q 0. 0

P ro o f .  From Proposition 2.4,

ii * (a A q+ 1)  =  c  • b " q  +  decomp..

Thus we have
( 1 40 + = (574 , 1 4 000 c A q

= (n a 0 cpc'77' '),
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since ri is  a  k(1)-module map,

= (am °I1*(0tA g'

= 6'* (a(a 0(c • bP-4 g + decomp.))

= 6'* (ata  ( c  • b " ', ))

= 6 (a m o r* (c • bPA g)),

since 6 ' is a g-module map,

= 6'* (a(a ). (c • bPA g).

From  the definition of am , 5 a (0) = bm , finally we obtain

0(0 '3 + ' )  =  b (a  (c • bP). D

W e use the above lemma essentially to prove the next main theorem.
For J = (j o, I = i1,...), j .  = 0  o r  1. We say J = ad. if and only if

0  j s  <  p  for a ll s 0 , and  (/, J) = ad.' if  and  only if  the  following conditions
satisfies:

/(/) =  io + + • • • > 2,

M N ) <  s < M (I) implies j s =  0 ,

s M(/) implies ./5 < P,
where M (/) is defined by the largest integer s  such that
second one, i.e., M i (/) = — Am(I)).

= 1, and M i ( /)  is  the

Theorem 4.21. L et H * = H * ( Z ip) f o r an  odd prime p.

H g * = 0 { E(e V  [v 1) ® P(b' °Ev il)}
J = a d . ,k . ? 0 ,

o rJ  =

( )  { E ( e  -  al  b J ) 0  T P 1(01' 0 b -1 )}
( I , J )=  ad'.

where if  J = 0  then P(b i  o[0]) Z I p [ Z ( ,)].

Theorem 4.22. In the bar spectral s e q u e n c e  E ( H g )  H o'* +1 ,

(a) = H * * (H * g.)

IT(o-e o  Fri  0[11)0 E(o - lri  0 [vk ])}
J = a d . , k 0

or. =  pd ii+  s i*

(j) {r(o - e- eocl  0 bi ) O E(o- ace h i )(DT P 1(4)(ecci  b J )){
UM = ad '.



Connective K -theory 67

T he spectral sequence collapses, and  w e hav e f ollow s: I n  E *' * - te rm  (modulo
decomposables),

(1) yp1(o- e 0 1 3 ".[1 1 )  represents
( o ho  Ai h(J -  (p - 1)(40 + ••• + Ah - I» 0 [ v k - h ] ) * p h

where h = h ( J,  k ) = min { n (J), k}.

(2) • yp i(creob" , ' + I K )  represents Oa A i  + A 1 +  + 1  °  b s i +  ' K .

(3) al," o [y ] represents e o b 'o p l .

(4) yp,(o- e . e a ' W ) represents ( — 1 )»' ) aas' i  0 A 0 " ) .

(5) 49- 01 1 . b '  represents e .  Oa' b".

(6) yp i(Cacc l o bf ))  represents Occ Ai+si+ 1 1 obsi+ 1 .1

Consider the map p ': g , it is homotopy equivalence for i <2p —  2, and for i
= 2p — 2, g 2 - 2 x  Z (,) G 2p - 2 . Therefore we conclude that Theorem 4.21 and
Theorem 4.22 a re  true  fo r m < 2p — 2, comparing Theorem 4.10 and  Theorem
4.11. Our proofs for Theorem 4.21 and Theorem 4.22 are done by induction on m
fo r  E H g ,  lik e  as done for 1/k(n) -case. T he  induc tions go  implicitly.

is m —

Proof  o f  Theorem 4.22 from  Theorem  4.21.
(a) Clear.
(b) Collapsing is clear because on Oal  it comes from collapsing of the bar spectral
sequence for H * H  on y 1 (c e )  it can be examined by collapsing for H * G  and
other cases follow . N ext w e see w hat the elements of E,T*  represent.
(1). For J = ( p - 1 ) ( 4 0 + ••• + .61„_ 1), k  = n  it is true since, sending to 1-1,G2

by p *  (this map is monic in this stage), we know the same result, Theorem 4.11, (b),
Genearlly we use the compatibility of the pairing between the E - te r m  and

filtrations.
(2). F o r i = 0 , Lemma 4.20 implies

C • o- e .  b " -" "  'I C  represents c • beo +pA i +s, * e a t t o +  A,ci v+11C .

Thus that is true. F o r  i > 0, we can reduce them to this case, using v i  like as we
did in the case for H * k(n) * . (See the proof of Theorem 3.2 (d) (2).)
(3), (4), (5), (6). C lear. (cf. [W 1 ])

Proof  o f  Theorem 4.21 from  Theorem  4 .2 2 . We have to solve the extension
problems of algebras. However, all we need now is to count the following sets.
P-algebra part.

{ (b A,-  (p -  1 ) (d o +  + 0 )  [ v k - h r p h

J = ad., i 0 ,  k  0 ,  h  =  h(J, k )}
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= {( 1 ) j  °[v 1) * P "IJ = ad., k  > 0

o r J = pt1 i + s i  + 1 K , K  = ad., i 0 , k  = 0 ; k  > 0 1 .

TP r algebra p a rt .  Recall m (J)= Is1j s > 01, m(0) = co.

{oot e,+. 0 b" - `+ 1 K li > 0, 0, K  = ad.}

u Poo bs'(°. +3)1 o, (I, J)= ad.'}

U {Ocx° ' + si+ i 0, (/, J) = ad.'}

= tOotiJ ) =  ad.', 1(1) = 2, m(/) < m(J)}

u V a l ° b./ (/, J)= ad.', m (1). m (J)}

u p a l b.' J) = ad.', 1(1)> 3, m(/) < m(J)}

= faal o b (1, J)= ad.'} .

We know
p — 2

14bU (, )*E
1=0

and

= b + decomposables,

by (4.8). Thus we have the next theorem a s  a  corollary.

Theorem 4.23 . L e t  H  H (  ; Z ip) f o r an  odd prime p.

11,bu (p ) , 0 {E(eob J  [ t k]) P ( b i  ° PI)}
J=ad.,k0 ,

orJ = p + IC,K = ad.,05k< p— 1,i

{E(e b TP1 (act i [ t k ] ) 1
(I,J)= p— 1

I f  I = 0, P(V . [t k ]) is considered to be the group ring Z Ip[Z (p ) ], as  usual.

The next theorem is a n  easy application.

Theorem 4.24 . L et I I ,  1 -1* ( ; Z ip) f or an odd prim e p. For the connective
coverings;

c: go (2(p — 1)n, , --■  go ,

c': B U(2n,..., co) Z  x  B U,

we have

Im [c * : H o 0 (2(p —  1)n,..., OE)) H.go]

0 P(bJ)
J = ad.,I(J)= k(p-

or.1= p + K,K= ad.J(J)=n(p -
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and

H * BU(2n,..., Go) H Z  x BU]

0 P(W)
J = ad.,I(J)1.n

orJ = p + IC,K = ad.,0.‘1(J)— n < p —

Here f o r  = (Jo, • • • ), J  =  ad. if  and only if  0  is < P. 1 0 =  Jo + J, + and
(J)

b .1 = W0°) . b31) • •• [vP -  ']

o r  = b°(i010 b°(i') . • •• U l m].

P ro o f . We see that

Im c Im [[vn] : H g 2( _2(p — 1)n H  *g  0 ]

and

[ y ]  ° =  [y] ° (Y*(11(C( I ))

=  *  ( [ V ]  q*(c)CI ))

= ■Y* (4) * (17* (0(1))) =

because 00 n O. ( s e e  (2.3).) Thus Tm  [v] o  ( —) is spanned  by  th e  generators
algebraically. O n  th e  other hand , we can see these generators a re  algebraically
independent using f iltra tio n  in d u c e d  b y  th e  b a r  s p e c t r a l  sequence (Lemma
(4.12)). T he  B U case is  similar. 0

Remark. (a) O u r  result for g agrees with Kochman's re s u lt . In  [K ] he uses

different notation; bu
1(J)

p ,o  f o r  g , L(k) fo r  M(k) fo r  m(J), w ith k = IA  and
— 1 '

*g 2(n + 1)(p — 1) H  0 ] .pB * ( n ) for Tm [ c :  H
(b) We can investigate easily :

Im [H * BU(2m, ,  co) H * BU (2n, . , co)]

for m >  n. T he  cohomological case is done by Singer [Si].
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