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Intoroduction

Let I'$ denote the topological groupoid of germs of local analytic automorphisms
of C™ and BI’S denote a classifying space for I'S-structures. The differential induces
a continuous homomorphism I"$—G L(n, C), hence also a continuous map

v: BI'S— BGL(n, C).

We convert this map to a fibration and write FI'$ for the homotopy fibre.

As is shown in Haefliger [5], [6], this space FI'§ is closely related to the integra-
bility of almost complex structures on open manifolds.

Our main result concerns with the homotopy groups of this space.

Theorem 1. Let n<i<2n and n=p+1. Let M=S'XR™ % m—i=1l, m=2p+1.
Assume 1£2 mod4. Then there exists a one-to-one correspondence between the homotopy

group n(FI'S) and the set of all integrable homotopy classes of PC-structures of type
(p, 1) on M.

Notes. (1) Haefliger-Sithananthan [7] has shown that FI'§ is 2-connected.

(2) Landweber proved that FI'$ is (n—1)-connected (Landweber [8]).

(3) It has been shown that m,(FI'$)=0 (Adachi [1]).

(4) At present there is no information about the homotopy groups of FI'§ in the
range between n and 2n. On the other hand Bott [3] has exihibited homomorphisms
of 7yn41 (BI'S) onto C, hence FI'S is at most 2n-connected.

(5) Another reflection of the lack of information about FI'$ in dimension below
2n is the absence of an example of an almost complex structure on an open manifold
which is not homotopic to an integrable almost complex structure.

Theorem 1 is deduced as a consequence of the following theorem.

Theorem 2. Let n<i<2n and n=p-+q, g=1. Let M=S*XR™* m—i=1, m=2p+q.
Then there exisis a one-to-ome correspondence between the homotopy group m«(FI'S) and
the set of all integrable homotopy classes of PC-structures of type (p, q) on M with the
tangent bundle T(M,) of M, trivial as complex vector bundles, where M, denotes the
partial complexification of (M, PC-structure).
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For the definition of the partial complexification, see § 1.

Theorem 2 is deduced from Transversality Theorem for PC-foliations on PC-
manifolds, which we explane in §1 and §2. We show Transversality Theorem and
Theorem 1 and 2 in §3.

The author is grateful to his friends and Professor H. Imanishi for their kind
encouragement and valuable criticism.

1. PC-manifolds

Here we recall on PC-structures on manifolds.

Let M be a real analytic manifold of dimension n. Let M bea complex manifold.
Let f: M—M be an immersion. Then for a point x of M, we denote by D(f, x) the
maximum complex subspace of T ;,,(M) contained in (df).(T(M)), i.e.,

D(f, x)=(d)o(TL(MPNV—=T(d f)o(T o(M)).

Assume that dim¢D(f, x) is constant.

We define a subspace D(x) of T.(M) by (df).(D(x))=D(f, x), and a complex
structure I, on the vector space D(x) by (df).°I.(X)=+v—1(df).(X), for XeD(x).
Then we see that {D(x); x&M} gives a subbundle D of T(M), i.e., a differential
system on M and {I,; x&M} gives a cross-section I of the vector bundle Hom(D, D).
For any local cross-sections X, Y of D, we have:

(1.1) 1) [IX, IY]—[X, Y] is a local cross-section of D,
2) [UX, IY]-[X, Y]=I([UX, Y]+[X, IY].

Definition 1.1. (1) Let D be a differential system on a real analytic manifold M
and let I be a cross-section of Hom(D, D). Then the pair (D, I) is called an almost
PC-structure on M if I, is a complex structure on D(x) and [ satisfies (1.1), 1). More-
over, an almost PC-structure (D, I) is called integrable or a PC-structure, if it also
satisfies (1.1), 2).

(2) Let (D, I), (D’, I') be almost PC-structures on manifolds M, M’, respectively.
Let ¢: (M, D)—(M’, D’) be an isomorphism, namely ¢ is a diffeomorphism and de:
T(M)>T(M') is an isomorphism of vector bundles which maps D onto D’ isomor-
phically. Then ¢ is called an ssomorphism of (M; D, I) onto (M’ ; D', I'), if (d¢)z°I.(X)
=I"+(d¢)(X), for X&D(x).

By the above argument, we know that with every immersion f of M into a
complex manifold M with dim¢D(f, x) constant there is associated a PC-structure (D,
I) on M in a natural manner.

We refer to Tanaka [10] for the following informations.

Proposition 1.1. Let f be a real analytic imbedding of a real analytic manifold M
into a complex manifold M such that dimeD(f, x) is constant, and let (D, I) be the
corresponding PC-structure on M. Then there is a complex submanifold M, of M such
that f(M)CM, and
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dimM =dim¢M,+dimeD(f, x), xEM.

Moreover, M, is uniquely determined as a germ.

Proposition 1.2. Let (D, I) be a PC-structure on a real analytic manifold M. Then
there are a complex manifold M and a real analytic imbedding f of M into M such that
the imbedding f satisfies

(1.2) dimM=dim¢M+dimeD(f, x), xEM

and the given (D, I) is the PC-structure on M corresponding to the imbedding f.

Proposition 1.3. Let f and f’ be real analytic imbeddings of real analytic manifolds
M and M’ to complex manifolds M and M’ satisfying (1.2), respectively. Let (D, I) and
(D', I') be the corresponding PC-structures on M and M’, respectively. Let ¢ : M—M'
be a homeomorphism. Then ¢: (M; D, N—(M’; D', I') is an isomorphism if and only
if there is a biholomorphic homeomorphism ¢ of a neighborhood of f(M) onto a neigh-

borhood of f'(M') such that @of=f"-¢. Moreover, ¢ is uniquely determined by ¢ as a
germ.

By Proposition 1.1, Proposition 1.2 and Proposition 1.3, corresponding to a PC-
structure (D, I) on M, the germ M, is uniquely determined. This complex manifold
A7Io we call the partial complex extension or partial complexification of (M; D, I).

Let M be a real analytic manifold of dimension n=2p-+gq, ¢g=1. By Proposition
1.1, 1.2 and 1.3 we have the following diagram:

(D, I); PC-structure
of type (p, @)

T
on M

(f, M); M: complex manifold
of dimension p+gq,
B a f: M—M, Ce-immersion
dimeD(f, x)=p

e

(f, M);

: complex manifold

of dimension p+g¢
f: M—M, Cv-imbedding
dimeD(f, x)=p

Bea=1,
a-f=1 as germ,

wee=f.

Here, the PC-structure of type (p, ¢) means the PC-structure with dimD(x)=2p for
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any xeM.

2. P(C-submersions and PC-foliations

Let M be a real analytic manifold of dimension n=2p-+q, g=1. Let M be a com-
plex manifold. Then we call a smooth map f: M—M a PC-submersion of type (p, q),
if the following conditions are satisfied :

1) (df)s: T,(M)—>T,(,)(A7I) is a monomorphism for each x€M,

ii) dimeD(f, x)=p, for each x&M.

When M is a complex manifold of dimension p+¢, the condition ii) is equivalent
to the condition :

il") (df)o(To(M)) is transversal to v—1(df).(T.(M)) in Tf(x)(M).

Note. It might rather be said that f is a “partial real” immersion, when the above
conditions are satisfied.

Definition 2.1. Let M be a real analytic manifold of dimension n=2p+gq, g=1.
Let 0=5r=<p-+q. A PC-foliation @ of codimension r of type (p, ¢) on M is represented
by 2={(V., g.); a= A} with the following conditions:

i) MzaéjAVa is an open covering,

ii) ga: V.—C" is a PC-submersion of type (p, q),
ili) for V,NVg# @, there exists a continuous map gapg: VNV ;—I'¢ satisfying
ga=8ap°&p ON VaVp.

Remark that PC-foliations ¢ of codimension p+¢ on M of type (p, ¢) are nothing
but PC-structures on M.

Let (D, I), (D', I') be PC-structures on M. We call (D, I) and (D', I’) are in-
tegrably homotopic, if there is a PC-structure (D, I) of type (p, g+1) on Mx[0, 1],
i.e., D is a 2p-dimensional subbundle of T(MXx[O0, 1]) and I is a cross-section of
Hom(D, D) with [-]=—1, satisfying condition (1.1) on each point (x, t)eMX[0, 1],
such that

i) if we denote by D, the portion of D over Mx{t}, and by I,=I|D;, (D,, Is)=
(D, I), and (D, I)=(D’, I),

ii) for each t&[0, 1], (D,, I,) is a PC-structure of type (p, g) on MX{t}.

We denote this relation by (D, I )?(D’, I’). Then this is an equivalence relation.

Let (D, I), (D', I') be PC-structures on M. To these correspond PC-foliations &
and &', respectively. If (D, I) is integrably homotopic to (D', I’), then ¢ is integrably
homotopic to &'.

Now we have the following map @ :

@: {(D, I); PC-structure of type (p, ¢) on M}/iz

h Brgw

h
— ~5 b /
M ——> BGL(p+q, C
PC(o) (p+q, C)

~
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where PC(r): M—BGL(p+q, C) is the composite map Z-f: to (D, I) corresponds a
C®-imbedding f : M—»Mo and 7: 1\7[0—>BGL(p+q, C) is a classifying map of the tangent
bundle T(]\7Io). Remark here the homotopy class of PC(z) depends on the PC-structure
(D, I.

Hereafter we take ¢g=1. This does not loose generality for our purpose. Namely,
given 2<n and n<i/<2n, there exist integers p and m such that n=p+1, m=2p+1
and m—i=1.

Lemma 2.3. Let M=S*XR™ % m—i=1. Assume i%£2 mod4. Then this is a real
analytic manifold of dimension m. Let m=2p+1, i>1. In this case the tangent bundle
T(zV[o) is trivial as complex vector bundle for any PC-structure on M.

Proof. Let f: M—M, be a real analytic imbedding corresponding to a PC-structure
(D, I) on M. Now T(M) is trivial and the normal bundle v of f(M) in A~Io is trivial.
Identify M with f(M). Let us denote the projection of the normal bundle v by =.
Then
T(Mo)~a*T(M)DE*,

where &' is the 1-dimensional trivial bundle over M, Thus we have that T (Mo) is
trivial as real vector bundle. By Bott periodicity (cf. Bott [2]), we know that for /=
2 mod 4, the homomorphism px: 7(BU(p+1))—r:(BSO(2p+2)) induced by the canonical
inclusion p: U(p+1)—SO@2p+2) is a monomorphism for i<2p+1. Thus we have
obtained the lemma.

Remark. We take ¢=1. In our case, the definition of PC-foliation of codimension
r has the meaning only when »=p+1.

By the above lemma, in the situation of the lemma, the map @ defined above
becomes the following form:

@: {(D, I); PC-structure of type (p, 1) on M}/’iz
h Br5+l zﬂi(Fng) ’

- Sa b /

M —F— BGL(p+1,C) o~

where * denotes the constant map.

3. Proof of Theorem 1 and 2.

Now we show Theorem 1 and 2. Our proof is similar to that of Theorem 2 in
Haefliger [5].

First, we show that the map @ is surjective for g=1. Suppose that 2<n<i<2n,
n=p+1, M=S*XR™*, m—i=1, and that ;%2 mod 4.

Let h: M—BI'S,, be a lifting of the constant map *: M—BGL(p+1, C). Corres-
pondong to the map hA we have a ['$, -structure ¢ on M:



588 Masahisa Adachi
G={(Va, ¢2); A d}.

Associated with this I'$,,-structure ¢, we have a I'§,,-foliated microbundle (E, &, &):

7 J
EM—E—M,
&: I'§,-foliation on E

(cf. Haefliger [5]). Here E can be considered as a PC-manifold of type (2p-+1, 1),
and &€ can be considered as a PC-foliation of codimension p+1 of type (2p+1, 1).

Let &€={Uax, ¢1); 24} and f: M—E be a C*-map. For each 1=4, put W;=
f™YU;). Then we say f is PC-transversal to &, if for each A4

902°(f|W1): W; —U;— CP*!

is a PC-submersion. We denote by PC-Trans (M, €) the set of all C*-maps f: M—E
which are PC-transversal to & with C>-topology. Let PC-Trans “(M, &) be the sub-
space of PC-Trans (M, &) which consists of real analytic maps. Clearly PC-Trans
o(M, &) is dense in PC-Trans (M, &).

Let v&€ be the normal bundle of I'$,;-foliation & on E. This is a complex vector
bundle with fibre C?*. Let ¢: T(M)—v€ be a homomorphism of vector bundles. We
say ¢ is a PC-epimorphism, if for each xeM,

i) ¢.: T(M)—v€ is a monomorphism into a fibre,

ii) putting

D(¢, x)=¢ (T AM)INV—16(T(M)),
dimeD(@, x)=p.

Let PC-Epi(T(M), v€) be the space of all PC-epimorphisms ¢: T(M)—v& with com-
pact-open topology.
Then we have the following continuous map:

med: PC-Trans (M, &) —> PC-Epi(T(M), v&),

which maps f to medf. Here m denotes the natural projection = : T(E)—vé€.
Now we state the PC-Transversality Theorem. This corresponds to the C-Trans-
versality Theorem in Landweber [8].

Theorem 3 (PC-Transversality Theorem). In the above situation, the continuous map
mod 1 PC-Trans (M, &) —> PC-Epi(T(M), v&)
induces the surjection
(rod)s: n( PC-Trans (M, €)) —> n(PC-Epi(T(M), v&€).

Proof. Now M is open and “PC-submersion” is an open condition. Therefore, we
can apply Gromov’s Theorem [4] (cf. Haefliger [5], [6]).

Namely, let X=MXE, V=M and p: X—V be the projection to the first factor.
Let Sect(X) be the space of all smooth cross-sections of (X, p, V) with C=-topology.
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Let us denote by (X, p', V) be the 1-jet bundle of germs of local smooth cross-sections
of (X, p, V). Let Sect(X") be the space of all continuous cross-sections of (X', p', V)
with compact-open topology. Then by taking 1-jet, we have the following continuous
map

J': Sect(X) —> Sect(X?).
Let C*(M, E) be the space of all C*-maps of M into E with C*-topology,
Hom(T'(M), T(E)) be the space of all homomorphisms of T(M) into T(E) with compact-

open topology and Hom(T(M), v&€) be the space of all homomorphisms of T(M) into
v€ with compact-open topology. Then we have the following commutative diagram :

d
C=(M, E) — Hom(T'(M), T(E)) —ﬂ—> Hom(T(M), v&)

U
0| I ¢ PC-Epi(T(M), ve)
Sect (X) —> Sect (X?),

where d is the map which sends f to its differential df, and = is the map which
sends ¢ to we¢. The vertial arrows ¢, ¢ are natural homeomorphisms.

Let O denote = *(PC-Epi(T(M), v&€)). Then we have the following commutative
diagram:

d
C*(M, E) — Hom(T (M), T(E)) —7r—> Hom(T (M), v&)

T v d T Vo T v
PC-Trans(M, &) — [ —— PC-Epi(T(M), v&),

where #x|[O is surjective. Therefore, my: 7(0)—n(PC-Epi(T (M), v&)) is surjective.
Consequently, for the proof of the theorem, it is sufficient to prove that

dy: wo(PC-Trans(M, €)) —> mw(1)
is surjective.

However, as is stated above, the condition “PC-submersion” is an open relation.
Therefore, ¢(0O)=Sect(X*, £2) for an open subset QC X!, where

Sect (X, 2)={o<Sect (X)) |e(M)CR},

and £ is invariant under the transformation induced by diffeomorphism of M. To
say more precisely, the fibre of (X*, p', M) is J'(m, m+2(p+1)X E=M(m+2(p+1), m;
R)XE. Let ,CM(m+2(p+1), m; R) be the open subset of the following matrices:

A\Im
( ) with rank B=m=p+1,
B/12(p+1)

and 2=£2,XE. Then by Lemma 3.1 in the following we have ¢(O)=Sect (X!, 2).
Let us denote by Sect(X, £) the space (J!)"(Sect(X"', 2)) in Sect(X). Then we have

Sect (X, 2)=¢(PC-Trans(M, &)).

By Gromov’s Theorem, we obtain that
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dy: mo(Sect (X, 2) —> mo(Sect(X?, 2))

is bijective. Thus we have proved the theorem.

On the other hand, by the construction of ¢ and (FE, &, &), we have
(1) *&~g as ['S,,-structure,
(2) h*U~g, where U is the universal /'S, ;-structure on BI'S,,,
(3) v@ is trivial as complex vector bundle.

Consequently, if we denote y=vU, we have

v(7*&) ~ vG ~ v(h*U) ~ h*y.
So we have
*(vE) ~ h*y

and the following homomorphisms of vector bundles:

1
T(M) — h*y — v&

Lol

M—— M — E,

where 7 is a homomorphism induced by 7 and ¢ is a natural monomorphism into a
trivial complex vector bundle on M; i.e. on each fibre the natural inclusion R?*P*'=
C?XR—-C?XxC=C?*'. Then i-¢ is a PC-epimorphism which induces i: M—E.

By the PC-transversality Theorem, we obtain a C*-map f: M—E, which is PC-
transversal to €. By the approximation theorem, we have a C®-map f’: M—E, which
is PC-transversal to &.

Then f’*¢ is an analytic PC-foliation on M of codimension p+1, namely a PC-
structure (D, I) on M of type (p, 1). By the construction, f’*& corresponds to the
given map h: M—BI'S,,. Thus the surjectivity of @ is proved.

Injectivity of @ is proved in quite a parallel way as Haefliger [5].

Lemma 3.1. Let ¢: R*?*'—C?*' be an R-monomorphism. Then ¢(R??*') and
vV—1¢(R?"*Y) are transversal in CP*'.

Proof. Let us denote X=¢(R??*'). Let S*”*' be the unit sphere in R*?**=C7?*',
Let Px<S?P*! be the point such that (5PX, X)=0 and O?X, X is positively related to
the given orientation of R?’*?, where (, ) denotes the inner product of R?*?*?=CP+!,
Let P,;x<=S%?*! be the point corresponding to /I X=+—1X as above.

Now X+#IX, so we have Py#P;x. Therefore, we have dim(XNI/X)=2p. This
shows that X is transversal to /X. Thus we have obtained the lemma.
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