A note on Γ_n^C -structures

In Memory of Professor Ryoji Shizuma

By

Masahisa Adachi

Intoroduction

Let Γ_n^c denote the topological groupoid of germs of local analytic automorphisms of C^n and $B\Gamma_n^c$ denote a classifying space for Γ_n^c -structures. The differential induces a continuous homomorphism $\Gamma_n^c \to GL(n, C)$, hence also a continuous map

 $\nu: B\Gamma_n^c \longrightarrow BGL(n, C).$

We convert this map to a fibration and write $F\Gamma_n^c$ for the homotopy fibre.

As is shown in Haefliger [5], [6], this space $F\Gamma_n^c$ is closely related to the integrability of almost complex structures on open manifolds.

Our main result concerns with the homotopy groups of this space.

Theorem 1. Let n < i < 2n and n = p+1. Let $M = S^i \times R^{m-i}$, $m-i \ge 1$, m = 2p+1. Assume $i \ne 2 \mod 4$. Then there exists a one-to-one correspondence between the homotopy group $\pi_i(F\Gamma_n^c)$ and the set of all integrable homotopy classes of PC-structures of type (p, 1) on M.

Notes. (1) Haefliger-Sithananthan [7] has shown that $F\Gamma_1^c$ is 2-connected.

(2) Landweber proved that $F\Gamma_n^c$ is (n-1)-connected (Landweber [8]).

(3) It has been shown that $\pi_n(F\Gamma_n^c)=0$ (Adachi [1]).

(4) At present there is no information about the homotopy groups of $F\Gamma_n^c$ in the range between *n* and 2*n*. On the other hand Bott [3] has exihibited homomorphisms of π_{2n+1} ($B\Gamma_n^c$) onto *C*, hence $F\Gamma_n^c$ is at most 2*n*-connected.

(5) Another reflection of the lack of information about $F\Gamma_n^c$ in dimension below 2n is the absence of an example of an almost complex structure on an open manifold which is not homotopic to an integrable almost complex structure.

Theorem 1 is deduced as a consequence of the following theorem.

Theorem 2. Let n < i < 2n and n = p + q, $q \ge 1$. Let $M = S^i \times R^{m-i}$, $m - i \ge 1$, m = 2p + q. Then there exists a one-to-one correspondence between the homotopy group $\pi_i(F\Gamma_n^c)$ and the set of all integrable homotopy classes of PC-structures of type (p, q) on M with the tangent bundle $T(\tilde{M}_0)$ of \tilde{M}_0 trivial as complex vector bundles, where \tilde{M}_0 denotes the partial complexification of (M, PC-structure).

Received September 11, 1989

Masahisa Adachi

For the definition of the partial complexification, see §1.

Theorem 2 is deduced from Transversality Theorem for PC-foliations on PC-manifolds, which we explane in §1 and §2. We show Transversality Theorem and Theorem 1 and 2 in §3.

The author is grateful to his friends and Professor H. Imanishi for their kind encouragement and valuable criticism.

1. PC-manifolds

Here we recall on PC-structures on manifolds.

Let M be a real analytic manifold of dimension n. Let \tilde{M} be a complex manifold. Let $f: M \to \tilde{M}$ be an immersion. Then for a point x of M, we denote by D(f, x) the maximum complex subspace of $T_{f(x)}(M)$ contained in $(df)_x(T_x(M))$, i. e.,

 $D(f, x) = (df)_x(T_x(M)) \cap \sqrt{-1}(df)_x(T_x(M)).$

Assume that $\dim_c D(f, x)$ is constant.

We define a subspace D(x) of $T_x(M)$ by $(df)_x(D(x))=D(f, x)$, and a complex structure I_x on the vector space D(x) by $(df)_x \circ I_x(X) = \sqrt{-1}(df)_x(X)$, for $X \in D(x)$. Then we see that $\{D(x); x \in M\}$ gives a subbundle D of T(M), i.e., a differential system on M and $\{I_x; x \in M\}$ gives a cross-section I of the vector bundle Hom(D, D). For any local cross-sections X, Y of D, we have:

(1.1) 1) [IX, IY] - [X, Y] is a local cross-section of *D*, 2) [IX, IY] - [X, Y] = I([IX, Y] + [X, IY]).

Definition 1.1. (1) Let D be a differential system on a real analytic manifold M and let I be a cross-section of Hom(D, D). Then the pair (D, I) is called an *almost* PC-structure on M if I_x is a complex structure on D(x) and I satisfies (1.1), 1). Moreover, an almost PC-structure (D, I) is called *integrable* or a PC-structure, if it also satisfies (1.1), 2).

(2) Let (D, I), (D', I') be almost *PC*-structures on manifolds *M*, *M'*, respectively. Let $\varphi : (M, D) \rightarrow (M', D')$ be an isomorphism, namely φ is a diffeomorphism and $d\varphi : T(M) \rightarrow T(M')$ is an isomorphism of vector bundles which maps *D* onto *D'* isomorphically. Then φ is called an *isomorphism* of (M; D, I) onto (M'; D', I'), if $(d\varphi)_x \circ I_x(X) = I' \circ (d\varphi)_x(X)$, for $X \in D(x)$.

By the above argument, we know that with every immersion f of M into a complex manifold \tilde{M} with $\dim_c D(f, x)$ constant there is associated a *PC*-structure (*D*, *I*) on *M* in a natural manner.

We refer to Tanaka [10] for the following informations.

Proposition 1.1. Let f be a real analytic imbedding of a real analytic manifold M into a complex manifold \tilde{M} such that $\dim_c D(f, x)$ is constant, and let (D, I) be the corresponding PC-structure on M. Then there is a complex submanifold \tilde{M}_0 of \tilde{M} such that $f(M) \subset \tilde{M}_0$ and

 Γ_n^c -structures

$$\dim M = \dim_c M_0 + \dim_c D(f, x), \qquad x \in M.$$

Moreover, \widetilde{M}_0 is uniquely determined as a germ.

Proposition 1.2. Let (D, I) be a PC-structure on a real analytic manifold M. Then there are a complex manifold \tilde{M} and a real analytic imbedding f of M into \tilde{M} such that the imbedding f satisfies

(1.2)
$$\dim M = \dim_c \tilde{M} + \dim_c D(f, x), \quad x \in M$$

and the given (D, I) is the PC-structure on M corresponding to the imbedding f.

Proposition 1.3. Let f and f' be real analytic imbeddings of real analytic manifolds M and M' to complex manifolds \tilde{M} and \tilde{M}' satisfying (1.2), respectively. Let (D, I) and (D', I') be the corresponding PC-structures on M and M', respectively. Let $\varphi: M \rightarrow M'$ be a homeomorphism. Then $\varphi: (M; D, I) \rightarrow (M'; D', I')$ is an isomorphism if and only if there is a biholomorphic homeomorphism $\tilde{\varphi}$ of a neighborhood of f(M) onto a neighborhood of f'(M') such that $\tilde{\varphi} \circ f = f' \circ \varphi$. Moreover, $\tilde{\varphi}$ is uniquely determined by φ as a germ.

By Proposition 1.1, Proposition 1.2 and Proposition 1.3, corresponding to a PC-structure (D, I) on M, the germ \tilde{M}_0 is uniquely determined. This complex manifold \tilde{M}_0 we call the *partial complex extension* or *partial complexification* of (M; D, I).

Let M be a real analytic manifold of dimension n=2p+q, $q\ge 1$. By Proposition 1.1, 1.2 and 1.3 we have the following diagram:

Here, the PC-structure of type (p, q) means the PC-structure with dimD(x)=2p for

any $x \in M$.

2. PC-submersions and PC-foliations

Let M be a real analytic manifold of dimension n=2p+q, $q \ge 1$. Let \widetilde{M} be a complex manifold. Then we call a smooth map $f: M \to \widetilde{M}$ a *PC*-submersion of type (p, q), if the following conditions are satisfied:

i) $(df)_x: T_x(M) \to T_{f(x)}(\widetilde{M})$ is a monomorphism for each $x \in M$,

ii) $\dim_c D(f, x) = p$, for each $x \in M$.

When \tilde{M} is a complex manifold of dimension p+q, the condition ii) is equivalent to the condition:

ii') $(df)_x(T_x(M))$ is transversal to $\sqrt{-1}(df)_x(T_x(M))$ in $T_{f(x)}(\widetilde{M})$.

Note. It might rather be said that f is a "partial real" immersion, when the above conditions are satisfied.

Definition 2.1. Let *M* be a real analytic manifold of dimension n=2p+q, $q \ge 1$. Let $0 \le r \le p+q$. A *PC*-foliation *G* of codimension *r* of type (p, q) on *M* is represented by $\mathcal{G} = \{(V_{\alpha}, g_{\alpha}); \alpha \in A\}$ with the following conditions:

i) $M = \bigcup_{\alpha \in A} V_{\alpha}$ is an open covering,

ii) $g_{\alpha}: V_{\alpha} \rightarrow C^{r}$ is a *PC*-submersion of type (p, q),

iii) for $V_{\alpha} \cap V_{\beta} \neq \emptyset$, there exists a continuous map $g_{\alpha\beta} \colon V_{\alpha} \cap V_{\beta} \rightarrow \Gamma_{\tau}^{c}$ satisfying $g_{\alpha} = g_{\alpha\beta} \circ g_{\beta}$ on $V_{\alpha} \cap V_{\beta}$.

Remark that *PC*-foliations \mathcal{G} of codimension p+q on *M* of type (p, q) are nothing but *PC*-structures on *M*.

Let (D, I), (D', I') be *PC*-structures on *M*. We call (D, I) and (D', I') are *integrably homotopic*, if there is a *PC*-structure (\hat{D}, \hat{I}) of type (p, q+1) on $M \times [0, 1]$, i.e., \hat{D} is a 2*p*-dimensional subbundle of $T(M \times [0, 1])$ and *I* is a cross-section of Hom (\hat{D}, \hat{D}) with $\hat{I} \circ \hat{I} = -1$, satisfying condition (1.1) on each point $(x, t) \in M \times [0, 1]$, such that

i) if we denote by D_t the portion of \hat{D} over $M \times \{t\}$, and by $I_t = \hat{I} | D_t, (D_0, I_0) = (D, I)$, and $(D_1, I_1) = (D', I')$,

ii) for each $t \in [0, 1]$, (D_t, I_t) is a *PC*-structure of type (p, q) on $M \times \{t\}$.

We denote this relation by $(D, I) \simeq (D', I')$. Then this is an equivalence relation.

Let (D, I), (D', I') be *PC*-structures on *M*. To these correspond *PC*-foliations \mathcal{G} and \mathcal{G}' , respectively. If (D, I) is integrably homotopic to (D', I'), then \mathcal{G} is integrably homotopic to \mathcal{G}' .

Now we have the following map Φ :

 $\Phi: \{(D, I); PC\text{-structure of type } (p, q) \text{ on } M\}/\simeq$

586

Γ_n^c -structures

where $PC(\tau): M \to BGL(p+q, C)$ is the composite map $\tilde{\tau} \circ f$: to (D, I) corresponds a C^{ω} -imbedding $f: M \to \tilde{M}_0$ and $\tilde{\tau}: \tilde{M}_0 \to BGL(p+q, C)$ is a classifying map of the tangent bundle $T(\tilde{M}_0)$. Remark here the homotopy class of $PC(\tau)$ depends on the *PC*-structure (D, I).

Hereafter we take q=1. This does not loose generality for our purpose. Namely, given $2 \leq n$ and n < i < 2n, there exist integers p and m such that n=p+1, m=2p+1 and $m-i \geq 1$.

Lemma 2.3. Let $M = S^i \times R^{m-i}$, $m-i \ge 1$. Assume $i \not\equiv 2 \mod 4$. Then this is a real analytic manifold of dimension m. Let m = 2p+1, i > 1. In this case the tangent bundle $T(\widetilde{M}_0)$ is trivial as complex vector bundle for any PC-structure on M.

Proof. Let $f: M \to \widetilde{M}_0$ be a real analytic imbedding corresponding to a *PC*-structure (D, I) on M. Now T(M) is trivial and the normal bundle ν of f(M) in \widetilde{M}_0 is trivial. Identify M with f(M). Let us denote the projection of the normal bundle ν by π . Then

$$T(\widetilde{M}_{0})\sim\pi^{*}T(M)\oplus\mathcal{E}^{1}$$
 ,

where \mathcal{C}^1 is the 1-dimensional trivial bundle over \tilde{M}_0 . Thus we have that $T(\tilde{M}_0)$ is trivial as real vector bundle. By Bott periodicity (cf. Bott [2]), we know that for $i \not\equiv 2 \mod 4$, the homomorphism $\rho_*: \pi_i(BU(p+1)) \rightarrow \pi_i(BSO(2p+2))$ induced by the canonical inclusion $\rho: U(p+1) \rightarrow SO(2p+2)$ is a monomorphism for i < 2p+1. Thus we have obtained the lemma.

Remark. We take q=1. In our case, the definition of *PC*-foliation of codimension r has the meaning only when r=p+1.

By the above lemma, in the situation of the lemma, the map Φ defined above becomes the following form:

 $\Phi: \{(D, I); PC\text{-structure of type } (p, 1) \text{ on } M\}/\simeq$

$$\longrightarrow \left\{ \begin{array}{c|c} h \\ h \\ M \end{array} \middle| \begin{array}{c} h \\ \swarrow \\ M \end{array} \right. \begin{array}{c} B\Gamma_{p+1}^{c} \\ \downarrow \nu \\ BGL(p+1, C) \end{array} \right\} = \pi_{i}(F\Gamma_{p+1}^{c}),$$

where * denotes the constant map.

3. Proof of Theorem 1 and 2.

Now we show Theorem 1 and 2. Our proof is similar to that of Theorem 2 in Haefliger [5].

First, we show that the map Φ is surjective for q=1. Suppose that $2 \le n < i < 2n$, n=p+1, $M=S^i \times R^{m-i}$, $m-i\ge 1$, and that $i\not\equiv 2 \mod 4$.

Let $h: M \to B\Gamma_{p+1}^c$ be a lifting of the constant map $*: M \to BGL(p+1, C)$. Corresponding to the map h we have a Γ_{p+1}^c -structure \mathcal{G} on M:

Masahisa Adachi

$$\mathcal{G} = \{ (V_{\lambda}, \psi_{\lambda}); \lambda \in \Lambda \}.$$

Associated with this Γ_{p+1}^c -structure \mathcal{G} , we have a Γ_{p+1}^c -foliated microbundle (E, ξ, \mathcal{E}) :

$$\xi \colon M \xrightarrow{i} E \xrightarrow{j} M,$$

$$\mathcal{E} \colon \Gamma_{p+1}^{c} \text{-foliation on } E$$

(cf. Haefliger [5]). Here E can be considered as a PC-manifold of type (2p+1, 1), and \mathcal{E} can be considered as a PC-foliation of codimension p+1 of type (2p+1, 1).

Let $\mathcal{E} = \{(U_{\lambda}, \varphi_{\lambda}); \lambda \in \Lambda\}$ and $f: M \to E$ be a C^{∞} -map. For each $\lambda \in \Lambda$, put $W_{\lambda} = f^{-1}(U_{\lambda})$. Then we say f is *PC*-transversal to \mathcal{E} , if for each $\lambda \in \Lambda$

$$\varphi_{\lambda} \circ (f | W_{\lambda}) \colon W_{\lambda} \longrightarrow U_{\lambda} \longrightarrow C^{p+1}$$

is a *PC*-submersion. We denote by *PC*-Trans (M, \mathcal{E}) the set of all C^{∞} -maps $f: M \to E$ which are *PC*-transversal to \mathcal{E} with C^{∞} -topology. Let *PC*-Trans $^{\omega}(M, \mathcal{E})$ be the subspace of *PC*-Trans (M, \mathcal{E}) which consists of real analytic maps. Clearly *PC*-Trans $^{\omega}(M, \mathcal{E})$ is dense in *PC*-Trans (M, \mathcal{E}) .

Let $\nu \mathcal{E}$ be the normal bundle of Γ_{p+1}^c -foliation \mathcal{E} on E. This is a complex vector bundle with fibre C^{p+1} . Let $\phi: T(M) \rightarrow \nu \mathcal{E}$ be a homomorphism of vector bundles. We say ϕ is a *PC-epimorphism*, if for each $x \in M$,

i) $\phi_x: T_x(M) \rightarrow \nu \mathcal{E}$ is a monomorphism into a fibre,

ii) putting

$$D(\phi, x) = \phi_x(T_x(M)) \cap \sqrt{-1} \phi_x(T_x(M)),$$

$$\dim_{\boldsymbol{c}} D(\boldsymbol{\phi}, x) = \boldsymbol{p}.$$

Let PC-Epi $(T(M), \nu \mathcal{E})$ be the space of all PC-epimorphisms $\phi: T(M) \rightarrow \nu \mathcal{E}$ with compact-open topology.

Then we have the following continuous map:

 $\pi \circ d$: *PC*-Trans $(M, \mathcal{E}) \longrightarrow PC$ -Epi $(T(M), \nu \mathcal{E})$,

which maps f to $\pi \circ df$. Here π denotes the natural projection $\pi: T(E) \rightarrow \nu \mathcal{E}$.

Now we state the PC-Transversality Theorem. This corresponds to the C-Transversality Theorem in Landweber [8].

Theorem 3 (*PC*-Transversality Theorem). In the above situation, the continuous map

 $\pi \circ d$: PC-Trans $(M, \mathcal{E}) \longrightarrow PC-Epi(T(M), \nu \mathcal{E})$

induces the surjection

$$(\pi \circ d)_*$$
: $\pi_0(PC\text{-}\mathrm{Trans}\ (M,\ \mathcal{E})) \longrightarrow \pi_0(PC\text{-}\mathrm{Epi}(T(M),\ \nu\mathcal{E})).$

Proof. Now M is open and "*PC*-submersion" is an open condition. Therefore, we can apply Gromov's Theorem [4] (cf. Haefliger [5], [6]).

Namely, let $X=M\times E$, V=M and $p: X\to V$ be the projection to the first factor. Let Sect(X) be the space of all smooth cross-sections of (X, p, V) with C^{∞} -topology.

588

Γ_n^c -structures

Let us denote by (X^1, p^1, V) be the 1-jet bundle of germs of local smooth cross-sections of (X, p, V). Let Sect (X^1) be the space of all continuous cross-sections of (X^1, p^1, V) with compact-open topology. Then by taking 1-jet, we have the following continuous map

$$J^1: \operatorname{Sect}(X) \longrightarrow \operatorname{Sect}(X^1).$$

Let $C^{\infty}(M, E)$ be the space of all C^{∞} -maps of M into E with C^{∞} -topology, Hom(T(M), T(E)) be the space of all homomorphisms of T(M) into T(E) with compactopen topology and Hom $(T(M), \nu \mathcal{E})$ be the space of all homomorphisms of T(M) into $\nu \mathcal{E}$ with compact-open topology. Then we have the following commutative diagram:

$$C^{\infty}(M, E) \xrightarrow{d} \operatorname{Hom}(T(M), T(E)) \xrightarrow{\pi} \operatorname{Hom}(T(M), \nu\mathcal{E})$$

$$\varphi \bigvee J^{1} \qquad \varphi \bigvee \qquad \bigcup_{\substack{V \\ PC - \operatorname{Epi}(T(M), \nu\mathcal{E})}}$$

Sect (X) \longrightarrow Sect (X¹),

where d is the map which sends f to its differential df, and π is the map which sends ϕ to $\pi \circ \phi$. The vertial arrows ϕ , ϕ are natural homeomorphisms.

Let \Box denote $\pi^{-1}(PC\text{-Epi}(T(M), \nu \mathcal{E}))$. Then we have the following commutative diagram:

where $\pi | \square$ is surjective. Therefore, $\pi_*: \pi_0(\square) \rightarrow \pi_0(PC \operatorname{Epi}(T(M), \nu \mathcal{E}))$ is surjective. Consequently, for the proof of the theorem, it is sufficient to prove that

$$d_*: \pi_0(PC\operatorname{-Trans}(M, \mathcal{E})) \longrightarrow \pi_0(\Box)$$

is surjective.

However, as is stated above, the condition "*PC*-submersion" is an open relation. Therefore, $\psi(\Box) = \text{Sect}(X^1, \Omega)$ for an open subset $\Omega \subset X^1$, where

Sect
$$(X^1, \Omega) = \{ \sigma \in Sect (X^1) | \sigma(M) \subset \Omega \},\$$

and Ω is invariant under the transformation induced by diffeomorphism of M. To say more precisely, the fibre of (X^1, p^1, M) is $J^1(m, m+2(p+1)) \times E = M(m+2(p+1), m; \mathbf{R}) \times E$. Let $\Omega_0 \subset M(m+2(p+1), m; \mathbf{R})$ be the open subset of the following matrices:

$$\binom{A}{B}_{]2(p+1)}$$
 with rank $B=m=p+1$,

and $\Omega = \Omega_0 \times E$. Then by Lemma 3.1 in the following we have $\psi(\Box) = \operatorname{Sect}(X^1, \Omega)$. Let us denote by $\operatorname{Sect}(X, \Omega)$ the space $(J^1)^{-1}(\operatorname{Sect}(X^1, \Omega))$ in $\operatorname{Sect}(X)$. Then we have

Sect(X,
$$\Omega$$
)= $\varphi(PC$ -Trans(M, \mathcal{E})).

By Gromov's Theorem, we obtain that

Masahisa Adachi

 $d_*: \pi_0(\operatorname{Sect}(X, \, \mathcal{Q}) \longrightarrow \pi_0(\operatorname{Sect}(X^1, \, \mathcal{Q})))$

is bijective. Thus we have proved the theorem.

On the other hand, by the construction of \mathcal{G} and (E, ξ, \mathcal{E}) , we have

- (1) $i^* \mathcal{E} \sim \mathcal{G}$ as Γ_{p+1}^c -structure,
- (2) $h^*\mathcal{U}\sim\mathcal{G}$, where \mathcal{U} is the universal Γ_{p+1}^c -structure on $B\Gamma_{p+1}^c$,
- (3) $\nu \mathcal{G}$ is trivial as complex vector bundle.

Consequently, if we denote $\nu = \nu U$, we have

$$\mathbf{v}(i^*\mathcal{E}) \sim \mathbf{v}\mathcal{G} \sim \mathbf{v}(h^*\mathcal{U}) \sim h^*\mathbf{v}$$
.

So we have

$$i^*(\mathbf{v}\mathcal{E}) \sim h^*\mathbf{v}$$

and the following homomorphisms of vector bundles:

where \tilde{i} is a homomorphism induced by i and ϕ is a natural monomorphism into a trivial complex vector bundle on M; i. e. on each fibre the natural inclusion $\mathbb{R}^{2p+1} = \mathbb{C}^p \times \mathbb{R} \to \mathbb{C}^p \times \mathbb{C} = \mathbb{C}^{p+1}$. Then $\tilde{i} \circ \phi$ is a *PC*-epimorphism which induces $i: M \to E$.

By the *PC*-transversality Theorem, we obtain a C^{∞} -map $f: M \to E$, which is *PC*-transversal to \mathcal{E} . By the approximation theorem, we have a C^{ω} -map $f': M \to E$, which is *PC*-transversal to \mathcal{E} .

Then $f'^*\mathcal{E}$ is an analytic *PC*-foliation on *M* of codimension p+1, namely a *PC*-structure (D, I) on *M* of type (p, 1). By the construction, $f'^*\mathcal{E}$ corresponds to the given map $h: M \to B\Gamma_{p+1}^c$. Thus the surjectivity of Φ is proved.

Injectivity of Φ is proved in quite a parallel way as Haefliger [5].

Lemma 3.1. Let $\phi: \mathbb{R}^{2p+1} \to \mathbb{C}^{p+1}$ be an \mathbb{R} -monomorphism. Then $\phi(\mathbb{R}^{2p+1})$ and $\sqrt{-1}\phi(\mathbb{R}^{2p+1})$ are transversal in \mathbb{C}^{p+1} .

Proof. Let us denote $X = \phi(\mathbf{R}^{2p+1})$. Let S^{2p+1} be the unit sphere in $\mathbf{R}^{2p+2} = C^{p+1}$. Let $P_X \in S^{2p+1}$ be the point such that $(\overrightarrow{OP}_X, X) = 0$ and \overrightarrow{OP}_X, X is positively related to the given orientation of \mathbf{R}^{2p+2} , where (,) denotes the inner product of $\mathbf{R}^{2p+2} = C^{p+1}$. Let $P_{IX} \in S^{2p+1}$ be the point corresponding to $IX = \sqrt{-1}X$ as above.

Now $X \neq IX$, so we have $P_X \neq P_{IX}$. Therefore, we have $\dim(X \cap IX) = 2p$. This shows that X is transversal to IX. Thus we have obtained the lemma.

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY

590

Γ^{c}_{n} -structures

References

- [1] M. Adachi, A note on complex structures on open manifolds, J. Math. Kyoto Univ., 17 (1977), 35-46.
- [2] R. Bott, The stable homotopy of the classical groups, Ann. of Math., 70 (1959), 313-337.
- [3] R. Bott, The Lefschetz formula and exotic characteristic class, Symposia Math. Rome, 10 (1972), 95-105.
- [4] M. Gromov, Stable mappings of foliations into manifolds, Izv. Akad. Nauk SSSR., 33 (1969), 707-734; Math. USSR-Izv., 3 (1969), 671-694.
- [5] A. Haefliger, Feuilletages sur les variétés ouvertes, Topology, 9 (1970), 183-194.
- [6] A. Haefliger, Homotopy and integrability, Lecture Notes in Math. Springer, 197 (1971), 133-163.
- [7] A. Haefliger-K. Sithananthan, A proof that B T^C₁ is 2-connected, Contemp. Math., 12 (1982), 129-140.
- [8] P. Landweber, Complex structures on open manifolds, Topology, 13 (1974), 69-76.
- [9] N. Steenrod, The Topology of Fibre Bundles, Princeton Univ. Press, 1951.
- [10] N. Tanaka, On differential systems, graded Lie algebras and pseudo-groups, J. Math. Kyoto Univ., 10 (1970), 1-82.