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Relations on pfaffians I: plethysm formulas
By

Kazuhiko KUurRANO

1. Introduction

Let R be a commutative ring with unity, and fix an integer n > 1. Suppose
x;; be variables with 1 <i<j<n. Denote by S= R[X] the polynomial ring
with n(n — 1)/2 variables x;;. Put x;; = —x; for 1 <i<j<n and x; =0 for
i=1,...,n. (x;;)is the generic n by n antisymmetric matrix with entries in S. For
a positive integer t such that 1 <2t <n and a strictly increasing sequence
(I <)py << pu(<n),

1
Z (Sgn O-) xPa(l)Pa(Z) xpa(B) Po(4) T xPa(Zt — 1) Po(2t)

2tt!aesn
is called a 2t-order pfaffian. (This polynomial is defined over an arbitrary
commutative ring R.) It is well-known that the square of this 2t-order pfaffian
coincides with the determinant of the 2¢ by 2t antisymmetric matrix (x,,,); j=1, .2
We denote by Pf,, the ideal generated by all 2t-order pfaffians of (x;;) and call
it the pfaffian ideal of order 2t.

It is well-known that, if R is Gorenstein, Pf,, is a Gorenstein ideal with
grade (Pf,,) = hdg(S/Pfy) =(n — 2t + 1)(n — 2t + 2)/2 ([7] or [9]). Furthermore
any Gorenstein subscheme of codimension 3 is known to be defined by certain
pfaffians of a certain antisymmetric matrix ([3]).

The main purpose of this article is to investigate when the first syzygy
modules of pfaffian ideals are generated by their relations of degree 1. When R
contains the rationals Q, any relation on pfaffians can be written by relations of
degree 1 (in this case all the syzygies have been determined in [7] or [8]). In
the case of arbitrary characteristicc when t=1, n=2t, n=2t+ 1([3]) or
n =2t + 2([14]), minimal free resolutions have been already constructed and the
relation modules are generated by relations of degree 1. The main result of this
article is

Theorem 5.3. 1. The first syzygy of the pfaffian ideal Pf,, is generated over
S(AE) by relations of degree at most t, i.e.,
t

Ker(M,) = S(A*E)-( Y. Ker(M, ).

r=1
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2. Let R be a field and regard the rational number field as of characteristic
infinity. Then the first syzygy of Pf,, is generated over S(A*E) by relations of
degree 1 when 2p > n — 2t. (p is the characteristic of R.)

By using this theorem we will know that the first syzygies of pfaffian ideals are
generated by their relations of degree 1 over an arbitrary commutative ring R
when n — 2t < 3. The main ideas are the same as the case of determinantal ideals
of generic matrices ([11]). But, in general, the relation modules of pfaffians are
not generated only by their relations of degree 1 ([12]).

Section 2 is devoted to introducing the basic facts of characteristic free
representation theory. All propositions of this section are proved in [1].

We will construct the plethysm formulas for S,(A2E) in Section 3. When
R is a field of characteristic zero, any finite dimensional polynomial representation
of GL(E) are completely reducible. In fact we have

S,(A*E) = @®,... L,E,

where I, is a set of partitions defined in Definition 3.1. The plethysm formula
is to give a natural filtration over an arbitrary commutative ring R whose
associated graded object coincides with @, . L,E.

By using this formula and the Knuth correspondence ([10]) we can show
that the usual minimal generating set of the pfaffian ideal Pf,, forms a Grébner
basis for any field R and for any integers 1 <2t < n. In Section 4 this is proved
and some spectral sequences are constructed from the general theory of Grobner
bases in Remark 4.15.

From plethysm formulas and the theory of Grobner bases, Theorem 5.3 is
proved in Section 5.

The author would like to thank Professor J. Nishimura for his valuable
advice and encouragement.

2. Preliminaries

In this section, we review the characteristic free representation theory of
GL. For the proofs of propositions, we refer to Akin et al. [1]. Throughout
this section, we denote by R a commutative ring with unity and all tensor
products are defined over R.

Definition 2.1. A partition is a sequence of positive integers 4 = (4,,...,4,)
such that 4, > 4, > --- > 4,. The weight of 4 is defined to be 4, + 4, + --- + 4,,
and denoted by |A]. To each partition 1 we associate its transposed partition
A= (1,...,4,,), where %, is the number of A such that A >k We introduce
the lexicographic order to the set of partitions; i.e., for two partitions
A=(A,...,4) and p = (u,,...,1,), we say that 4 is higher than p and write 1 > ,
if there exists i such that A, =y, for all k<i and A;>y; regarding
Ag1 = g2 =--=0and p .y =p, 4, =--=0. A>pumeans A>por A=p
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Definition 2.2. Let E be a finitely generated free R-module and k a
non-negative integer. We denote the kth exterior and symmetric modules of E
by A*E and S, E, respectively. Furthermore, we define A E = @®;., A*E and
SE= @®;>0S:E. Then they become Hopf algebras with the multiplications m
and the comultiplications 4. (m is defined as usual, and 4 is induced by the
diagonalization. Note that S,E and A*E are polynomial GL(E)-modules;
moreover m and 4 are morphisms of GL (E)-modules.)

For a sequence of non-negative integers a = (a,,...,%,), we denote by A, E
and S, E the tensor products A" EQ---®@ A“E and S, E®---®S,_E, respectively.
(Note that SE is a polynomial ring over R with rank (E) variables.)

For a partition 4 = (4,,...,4,), let (a;)) be a (g x 4,)-matrix over the ring of
integers Z such that a;; = 1 when j < 4, and a;; =0 when j > 4,. Now consider
the GL (E)-morphisms

ANE=AN"E® - ® A“E
lA@-"@A

(/\“11E® ® /\"MIE)® ®(/\“q1E® ® /\"U-IE)

l

Sa ,E® - ®S,,, H® - ®(S,,E® - ®S

(SallE® o ®Saq1E)® e ®(SII|A|E® A ®S

me-:--@m

S;E=8;E® - ®Sj, E,

E)

E)

aqa

where the second map is induced by A"E =S, E (recall that a;; =0 or 1) and
the third one is the permutation according to the index a;;. Denote this composite
map by d,(E) or d,.

Definition 2.3 (Schur functors). Let L,E be Im(d,(E)). L, is called the
Schur functor of the partition . (When R is a field of characteristic 0, L, E is
the irreducible polynomial GL(E)-module of degree |A| corresponding to the
partition A.)

Proposition 2.4 (Universal freeness of Schur functors). For any R, E and A,
L,E is a free R-module. If S is an R-algebra, then (L, E) ®zS = L,(E®gS).

Definition 2.5. When s,, s,, and k are positive integers such that k <s,,
we have the GL (E)-morphisms

ASitkE@ A2k E AL AsiE @ AKE® A2 FE 1208 AT E® ASE.

This composite map is denoted by [J,(E) or .
Similarly when a = (a,,...,,) is a sequence of positive integers, we define a
GL (E)-morphism as
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qil ail MNME® @ A E® A“E® AN ' FE® A% 2@ - ® A“E
1=1k=1 ljl-:::g:m"'men"w)@mmm
NE= N"E® - ® A\“E
and denote it by [1,(E) or [,.
Proposition 2.6 (Theorem 11.2.16 in [1]). For any partition A, the sequence
of GL (E)-morphisms

0 —— Im((0,(E)) — ALE2E LLE——0

is exact.

Definition 2.7. For a partition 4 = (4,,...,4,), we associate this partition
with the set

B;' = {bll’ b12,...,b111, bll’""b2}.z’""bql""’bqlq}’

which consists of |A| variables. Let n be a positive integer. Tab,{1,...,n} is
defined to be the set of maps from B, to {1,...,n}, and each element of this set
is called a tableau. Further, a tableau T is said to be standard if the following
two conditions are satisfied:

(I) For any i and j such that 1 <j < 4;, T(b;;) < T(b;;.+,) holds.
(IT) For any i and j such that 4., >j, T(b;) < T(b;,,;) holds.

We denote by St. Tab,{1,...,n} the subset of Tab,{l,...,n} consists of all
standard tableaux.

Moreover let {e,,...,e,} be a free basis of E. For a tableau T contained
in Tab,{1,...,n}, ey is defined to be an element of A E as follows:

er = erp ) A Al ® @ e, A A ey,

Proposition 2.8 (Theorem 11.2.16 in [1]). For any A, E and R, the following
set forms an R-free basis of L,E:

{d,(er)| TeSt. Tab,{1,...,n}}

Using these basic facts about the characteristic free representation theory of
GL, we will introduce plethysm formulas in the next section.

3. Plethysm formulas

This section is devoted to introducing plethysm formulas for S,(A % E), which
play very important roles later. Essentially, these formulas are found in [4].

For a non-negative integer r, S,(A*>E) has a polynomial GL(E)-module
structure. It is completely reducible when R is a field of characteristic zero. In
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fact by computing the character of S,(A2E) as in [13], we know that it is
decomposed as

S,(AN’E)= @ L,E.
Ae Iy

Here, I, is a set of partitions which will be defined in Definition 3.1. Unfortu-
nately, over an arbitrary commutative ring R, such decompositions do not exist
in general. But S, (A2 E) has a natural filtration whose associated graded module
coincides with @, L, E. We call such filtrations plethysm formulas.

Filtrations as above will be constructed in this section.

Throughout this section, R is a commutative ring with unity, and E a finitely
generated free R-module of rank n.

Definition 3.1. For a non-negative integer r, I, is defined as
I', = {4: partition ||A| = 2r; when 1= (A1,...,4,), all A’s are even}.
Definition 3.2. For a positive integer ¢, pf,, is defined to be the map
pfar: N*E — S,(A?E),

where, when f,,...,f,, are elements of E, pf,, sends f; A --- A f,, to the polynomial
so-called 2t-order pfaffian

1
ey Z (sgn 0)(fa(1) A a(2))(fa(3) A a(4))“'(fa(2z—1) A fa(zn),

2't ! geSy,

where S,, is the symmetric group on {1,...,2t} and the sum above runs over all
permutations. (Note that each monomial appears just 2't! times with the same
signature in the above sum.)

Moreover, for a partition A =(2r,,...,2r,) contained in I,, the following
composite map is denoted by pf;;

AE= AME® - ® A E

pf2r,®®pfar,
$,(ANE)® - ®S, (A E)
S,(A2E).

(It is easily verified that pf,, and pf; are well-defined and have the structures
of GL (E)-morphisms.)

Lemma 3.3. Let h's and f be elements of E. Then, for positive integers c
and d, we have

c+d
(1) ( c )pr(c+d)(hl A A h2(c+d))
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= Z (sgn 0) pfoc(hory A -+ A hoae) Pfaalhozes 1y A 0 A Boa2+ay)s
o‘eS[zl(;zf;dz)c +1,2(c+ d))
2c+1 .
(2) pr(c+1)(hl A Ahyery Af)= Z (— I)IHPch(hl A A ﬁi A A hyy)
i=1

b A f)

where hy A -« ARy A oo A hyyy means hy A - ARi_y ABiyy Ao A hyyy, and
(t% is the binomial coefficient. For integers satisfying 1 <i<j<k<l<m,
Stbiskll js the subset of the symmetric group S, defined by

Stikll — (eS8, [o(i) < oli + 1) < -+ < a(j), (k) < ok + 1) < - < a(I)}.

Proof. 1t is easy to see that we may assume that R is the complex number
field C. First, consider the diagram

/\2(c+d) E

pr(c +d)

AZcE® AZdE

lpf2c®pf2d
S.(A?E)® SA(A2E) "> S,, ,(A2E).

Since A2¢*9E is irreducible and S, (A*E) = @ ,.r.,, L E, Homg g (A*“*?E,
S.+4(A%2E)) ~ C by Schur’s lemma. So, there exists a complex number z which
satisfies

me (pf2. ® pfrg)o 4 = Z'sz(c+a)-

It is easily verified that z coincides with the binomial coefficient (°79).
Second, consider the diagram

ANHTEQE 2 \A*EQEQE

lpfu‘sf\’

m S.(A2E)® A’E
AMH D Pheen, §  (A2E).

Since AN**'E®E ~ L341)E® L3c4+1,1)E, by the Pieri formula [13], we have
Homg, (A***E®E, S.,;(A*E)) ~C by Schur's lemma. So, the second
equation will be proved in the same way. Q.E.D.

Definition 3.4. For each partition 4 in I',, GL(E)-submodules .#; and M 2
of S,(A*E) are defined as

‘/”l = Z [m(pfu)’ ‘/”/1 = Z Im (pfu)
uel, uel,
n=a u>a



Relations on pfaffians 1 719

where the sums run over the partitions such that the above conditions are satisfied.

(It is easy to see that pf, is surjective when v is (2, 2,...,2) which is the
lowest partition in I, under the lexicographic order, because pf,: A*E — S, (A?E)
is the isomorphism. So, we have .#,=S,(A*E). Therefore {4}, . gives a
natural filtration on S,(A2E).)

Proposition 3.5 (Plethysm formulas). For an arbitrary commutative ring R
and an arbitrary non-negative integer r, {#,},.r, is a natural filtration of S,(A*E)
whose associated graded object coincides with @, .. L, E.

Proof. We have only to prove that for any partition A in I, # A/J/} Y
isomorphic to L, E as a GL(E)-module. Consider the diagram

AE a4, <S,(A2E)

Paup

L,E MM,

where p, is the projection and ¢, is the composite map p,°pf,. In order to
construct the isomorphism L,ES .4 ;'/.//2 2, it is sufficient to show that
Ker(d;) = Ker(¢,) since both d, and ¢, are surjective.

First we will prove Ker(d;) = Ker(¢;). By Proposition 2.6, this is equivalent
to show Im([1,) = Ker(¢,) for any partition 4 in I,. In short it suffices to show
that ¢,°[J; =0 for each partition 1 in I',. By definitions of .#; and [],, we
may assume that partition A consists of two integers.

Suppose A = (2a, 2b), where a+ b =r and a>b. It suffices to prove the
next claim.

CrLamM. The composite map

A2a+k E® /\Zb—kE O, A2a E® /\ZbE Pf(za,zb)q ‘/”(Za,Zb) "gz.:,zza)l '/I{(Za,Zb)/'/”o(Za,Zb)
is the O-morphism for k=1, 2,...,2b.

Our proof of this claim will be proceeded by the induction on a + b.

When a+ b =1, it is trivial. (If b=0, we can not choose k satisfying
1 <k<2b)

So, assume a+b>2 and b > 1.

First, suppose k < 2b. For any f’s and g;’s in E, we have

Pf(za,zm"Dk(fx A A Sk ®@Gusr A r A gay)

= Z (Sgna)pra(fd(l) A A fa(Za))

[1,2a;2a +1,2a + k]
9€S, v 1

Pa(foar 1y A " A SsZatiy A Gis1 A 0 A Gap)

k
Z (sgno)(— 1)l+1pf2a(fa(1) AR /\fa(za))

{1,2a;2a + 1,2a+ k] [ = |
aeSZn+k



720 Kazuhiko Kurano

—
“2haw-1y(foza+ 1y A A fozasny A A foasiy A Gkt A A Gap-1)

“(fo2a+ny A G2b) (1)
2b-1
+ Z Z (sgno)(— 1)'+1sza(fa(1) A A foa)
aes[zlﬂ,:ak;2a+l.2a+k],=k+1

Pfaw-1)(faza+ 1) A 0 A Soarig A Gket A A G A s Agapoy)

“(9e A G20)s (2

where SLL2¢i2a*1.2a%k g 3 set of permutations defined in Lemma 3.3.

By the inductive assumption on a + b,

(sgn O')PfZa(fa(n A A fa(Za))
aeSlzla’f';(;h+ 1,2a + k]

'sz(b—l)(fa(2a+1) A A foarig Akt A AGe A A 926-1)

is contained in_.# 5, 541y for each t. So, it is easy to see that the term (2) is
contained in A ,, 1p)-
On the other hand, (1) is arranged as

k
% 2Mk_”(SgnO')(— 1) Hsza(ﬁru) A A foa)
[P '

'sz(b—l)(fa(2a+1) A A f¢(2a+k—1) ANGiksr N0 A gzb—l)'(fa(zaﬂc) A Gap)
2a+k

= Z (— 1! Z (sgn o) pfoa(fuy A -+ A :iza))
=1 reslb2ai2a s L2at k= 1)

2a+k-1

'sz(b—l)(fzizﬁ pAc A t:2a+k—1) ANGr+1 N0 A 92b—1)>'(ft A G2p)s

where we define f{ =f,,....f 1 =fi—1, F=Ffiv15--sS2a+k—1 = faa+i for each t.
So, by induction, it is easily verified that the term (1) is also contained in
M2a.25- (When k =1, the term (1) is obviously contained in .# ,,, 5, from the
second formula in Lemma 3.3)

Next assume k = 2b. Then for any f;’s in E, we have

Pf(2a,2b)°[]2b(f1 A A frasw)

= , ZZ 2 (sgn U)sza(fau) A A a(2a))'l’f2b(fo(2a+1) A e /\fa(z(a+b»)
(1,2a;2a + 1, a+ b))
2(a+b)

= (a:b)pr(a+b)(f1 AN Af2(a+b))a

aeS

by the first formula in Lemma 3.3. We have completed the proof of the claim.
By the claim above, for each partition 4 in I7, there exists a natural surjective
map 1,: L, E —» #,/#, which makes the following diagram commutative;
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AE —EPa, g, S (A*E)

ld,l\ lpl
LLE —% s )4,

Since @, L,E and S,(A*E) are free R-modules with the same rank over an
arbitrary commutative ring R (see Propositions 2.4 and 2.8 and note the formula
S,(A*E)~ @, L,E over the complex number field C), 1;’s must be injective
for all 4 in I,. Q.E.D.

4. Grobner bases of pfaffian ideals

Throughout this section R is a field of arbitrary characteritic and E is an
R-vector space of dimension n. Let {e,,..., e,} be a basis of E and t an integer
such that 1 <2t <n. We denote by Pf,, the ideal of S(A2E) generated by
pf2(A*E) and call it the pfaffian ideal of order 2t.

It is easily verified that

{pfales, A - A el <ip <. <iy, <n}

is a homogeneous minimal generating system of the ideal Pf,,. In this section,
by using the Knuth correspondence [10], we will show that this homogeneous
minimal generating set forms a Grobner basis of Pf,,. By the general theory of
Grobner bases, the first syzygy module of Pf,, is proved to be generated by
relations of degree at most ¢t (see Theorem 5.3).

First, we review some basic facts about Grobner bases.

Let A = R[x,,...,x,] be the polynomial ring over a field R with variables
Xi,...,X, and let M be the set of monomials of 4, i.e.,

M = {x,* - x,%|as are non-negative integers}.

Definition 4.1. M has a structure of a totally ordered set, i.e., for two
monomials M = x,* -.-x,* and N = x,#'...x,f+, we say that M is higher than
N and write M > N if

q q

(Z ai’ aq’--->a1)>(z ﬁi’ ﬂq?---aﬁl)’

i=1 i=1

where > is the usual lexicographic order. M > N means M =N or M > N.
This order is sometimes called the reverse lexicographic order.

Definition 4.2. For each non-zero polynomial f in 4, a monomial M in M
is called the highest term of f and denoted by Hterm(f) if M is the highest in
the set of monomials which appear in f with non-zero coefficients. Moreover,
the coefficient of M in f is denoted by Hcoeff(f).

Remark 4.3. For monomials L, M, N satisfying M >N, ML> NL
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holds. So, for two non-zero polynomials f and g, we have Hterm ( fg) = Hterm (f)
Hterm (g).

Definition 4.4. A set of non-zero polynomials {f,,...,f,} is called a Grébner
basis of the polynomial ideal (f},...,f,) if, for any non-zero polynomial ¢ in
(f1»....f,), Hterm(g) can be divided by Hterm(f;) for some i.

It is easily verified that any non-zero polynomial ideal have a Grobner basis
and any minimal Grobner basis consists of a fixed number (determined by the
given ideal) of elements.

By the general theory on Grobner bases, we can find a generating set of
the first syzygy module as follows.

Definition 4.5. For two non-zero polynomials f and g, we define

l.c.m.(Hterm (f), Hterm (g))

S(f. 9) = Hcoefl(g) Hierm (/) f
_ Hcoeﬁ,(f)Lc.m.(HtePrlttr;fI{])(,g:-Iterm 9) ’

where L.c.m.( , ) means the least common multiple.

Let {fi,....f,} be a Grébner basis of I =(fi,...,f,). For i and j such that
1 <i<j<n, we can describe S(f,f)) in the form

SUif) = Z gt

Since {f,....f,} is a Grobner basis, we can choose each g, which satisfies
Hterm (g, fi) = Hterm (g,) Hterm ( f,) < Hterm (S(f, f))).

Let L be a finitely generated free A-module of rank r, and let {/,,...,],} be
a basis of L. We have a exact sequence

L2 A— A/l —0,

where 6(;) = f; for i=1,...,r. Then Ker(9) is the first syzygy module of I.

Definition 4.6. For i and j such that 1 <i<j<r, we define

l.c.m. (Hterm (f}), Hterm(fj))l
Hterm (f}) ;

Lc.m. (Hterm (f), Hterm(fj))l. RS

j Z Giclk-

Hterm (f)) k=1

R (i, j) = Hcoeff(f)

— Hcoeff(f)

By definition, R (i, j) is contained in Ker ().
Proposition 4.7 ([2]). Ker(d) is generated by



Relations on pfaffians 1 723
(RGNl <i<j<r}.

Now we start ot prove that a homogeneous minimal generating set of the
pfaffian ideal Pf,, is a Grobner basis.

First, we introduce an order to the set of monomials of S(A2E).

When {e,,...,e,} is a fixed basis of E, let x; =e; A e, X, =€, A €3,....%X,_;
=€ 1 A€y, X,= e Aey, Xpp1 =€ A CyrisXpuo1)2 =€ A e, Identify S(AZE)
with 4 = R[x;,...,X,u—1)2], and introduce the reverse lexicographic order to the
set of monomials M of 4 as in Definition 4.1.

Definition 4.8. Define the monomial ideals X and X’ as

2 = (Hterm (g)[0 # g€ Pf3,),
2" = (Hterm (pfy(e;, A -+ A e,))1 <iy < -+ <y, < ).

It is easy to see that for any monomial M contained in X, there exists a
homogeneous element g in Pf,, such that Hterm(g) = M.

For a homogeneous ideal J, we denote by (J), the rth homogeneous
component of J.

We have to note that every x,’s and every e; A e;’s are of degree 1. -

Lemma 4.9. For each positive integer r,
dimg (2"), < dimg (2), = dimg (Pf3,),.

Moreover, {pf,,(e;, A -~ Ae,)ll <iy <. <iy <n} is a Grébner basis of the
pfaffian ideal Pf,, if and only if dimg(2"), = dimg(X), holds for any r.

Proof. We can find monomials M,,...,M, such that {M,,...,M,} is an
R-basis of (2),. Then there exist g,,...,g, in (Pf,,), satisfying Hterm (g;) = M; for
i=1,..,q. Itis easy to see that {g,,...,g,} is an R-basis of (Pf,),.

The second assertion is obvious. Q.E.D.

We will prove that dimg(2"), = dimg (Pf5,), for any r. We may assume r > t,
because (2), = (Pf,,), = 0 if r < t. By the plethysm formula (Proposition 3.5), we
have (Pf,), = #;, where A’ =(2t,2,...,2) in I,. Since

‘/”l’= @ L”E

nel,
u=a

up to filtration, we have

dimg (Pf,), = ¥ #{St.Tab,{1,...,n}}

uel,
u=a

by Proposition 2.8. (*{ } means the cardinary of the given set.)
So, we have only to show that
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dimg (2), = Y #{St.Tab,{1,...,n}}

uel,
u=a

for r >t
Definition 4.10. For each positive integer s, define subsets of n by n matrices
Mat(s) = {(a;;)|a;’s are non-negative integers such that X, ja; = s},
S.Mat(s) = {(a;;) e Mat(s)|a;; = a;; for i #j, and a; =0 for i=1,...,n}.
Definition 4.11. A 2 by u matrix
<b1 b.,)
cl e c“
is said a two-line array of weight u if the following conditions are satisfied;
® b’s and c;’s are positive integers less than or equal to n,
® 1<h <--<b,<n,

. if bi=bi+l’ then CiSCH_l.
The set of two-line arrays of weight u is denoted by TLA (u).

Let E;; be the elementary n by n matrix whose (i, j) entry is 1, and others
] b, b, ) )
are 0. For a two-line array T=( ! ) of weight v, y,(T) =Y !_, E,,., gives

Cic
a bijection ¥,: TLA (v) » Mat(v). T

For a monomial M = (e;, A ;) (e;, A e;) in M, &, (M) =Y 4_ | (E,;. + E;.)
gives a injection &,: M, — Mat(2u), where M, is the set of monomials of degree
u. It is easy to see that &£,(M,) = S. Mat (2u).

b,--b,
cl e cll
longest strictly decreasing subsequences of ¢, --- ¢, is denoted by [(T).

Definition 4.12. For a two-line array T=< ), the length of the

Proposition 4.13 (Knuth correspondence, Theorem 4 in [10], [16]). For each
positive integer r, there exist bijections x,, and k',, which make the following
diagram commutative

TLAQ2r) —— ][ St.Tab,{l,...,n} x St.Tab,{l,...,n}

A:partition {
IwZ_rl 1Al =2r
Mat (2r) ‘
L [] St.Tab,{1,...,n}
l:par_tin'on
S. Mat (2r) S
T:Zr
M, L TEEN [_[St.Tabl{l,...,n},

AeT;
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where 1 and ¢ are inclusion, and d is the diagonal map.

Furthermore, for each two-line array T in TLA (2r), if k,,(T) is contained in
St.Tab, {1,...,n} x St.Tab, {1,...,n} for some partition 2= (A, A,,...), then I(T)
coincides with A,.

By using this result, we can prove
Theorem 4.14. For any positive integer t such that 1 <2t <n,
{Pfalei, A - eIl <y < v <y <}
forms a Grobner basis of the pfaffian ideal Pf,,.

Proof. 1Tt suffices to show that

dimg(£), = ¥ *#{St.Tab,{1,...,n}}

uel,
n=i

for any positive integer r not less that t.

For a 2t-order pfaffian pf,,(e;, A -+ A e, )(1 < iy < -+ <iy < n), it is easy to
see that

Hterm(prt(eil A A eizl)) = (eh A e '(eiz A eiz:—l) .”(eit A€ )

12t Le+1

So, we have

2 =((e;, nep) (e, Aey )le, ey, )l <ip < <ip<n).

12t 12¢-1 et

Let M be a monomial contained in M,. It is easy to check that
I3, e10&,,(M)) > 2t if and only if M is contained in (2’),. Hence, the assertion
is clear by the Knuth correspondence. Q.E.D.

Remark 4.15. Let 4 = R[x,,...,x,] be a polynomial ring over a field R
and M (resp. M,) the set of monomials (resp. monomials of degree r). Suppose
that {fi,...,f;} is a Grobner basis of a polynomial ideal I, and J = (Hterm(f})!
i=1,...,1). By the general theory of Grobner basis ([2]) we can construct a
finite free resolution of A/I which is isomorphic to Taylor’s resolution ([17])
of A/J up to some filtration. So there exist spectral sequences

{E!ti = TOI';A(A/J, A/(xl""’xq))M}MeM :TOI’#(A/I, A/(xlv--’xq))

for every i. (Note that 4/J and A/(x,...,x,) are M-graded, so is Tor (A/J,

A/(xy,...,%,)).)
Furthermore, when I is homogeneous, there exist

{El = Tor (A/J, A/(Xy,....,X))u} mem, = Torf (A/1, A/(xy,...,X,)),

for every i and r.
We can describe E} in terms of cohomology groups of some simplicial
complex using the same method as in the proof of Hochster’s formula ([6]).
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So the system of above spectral sequences seems to be a natural extension
of Hochster’s formula.

5. Main theorem

In this section R is a prime field and E is an R-vector space with basis
€l,...,p.
Suppose that ¢ is a positive integer such that 2t < n.

Definition 5.1. Denote by M, the composite map

A*E ® S(A2E) 2221, S (A2E) ® S(A2E) —2— S(A%E),

and for a non-negative integer r, define M,, to be the composite map

A*E®S,(A2E) 2281, S (A\2E)®S,(A?E) —™— S, , (A E).

Ker(M,) is usually called the first syzygy, or the relation module of 2t-order
pfaffians.

By definitions, Ker(M,) = @, Ker(M,,). (It is easy to see that Ker(M, )
= 0 because of the linear independence of 2t-order pfaffians.) Each element of
Ker(M,,) is called a relation of degree r on 2t-order pfaffians.

Definition 5.2. For a positive integer r more than or equal to ¢, I',, is
defined as

r,,={Ael|A> @20},

where > means the lexicographic order.

Our main purpose is to prove the following result.

Theorem 5.3. 1. The first syzygy of the pfaffian ideal Pf,, is generated over
S(A2E) by relations of degree at most t, i.e.,
t
Ker(M,) = S(A2E)-( Z Ker (M, ,)).
r=1
2. Regard the rational number field as of characteristic infinity. Then the
first syzygy of Pf,, is generated over S(A? E) by relations of degree 1 when
2p>n—2t. (p is the characteristic of R.)

Before proving this, we define some more notation.

Definition 5.4. For non-negative integers r >t, and for a partition 4 in
r,, o,,and é,, are defined as follows:
1. 6,,: N"E—> NYE®S,_,(A’E) is defined inductively.
Let J,, =id and 4,, is determined by



Relations on pfaffians 1 727

2r—1
N
Srule, Ao ne)= 3 (= IVT10, g e, A A A e, ) (e A e,
=1

where 1 <i; < - <iy <n

2. Suppose A =(2r,,...,2r,) is a partition such that ry >t,r  + - +r,=r.
Denote by ¢, , the composite map

AE=AN"EQ- ® NME
larl,@pfz,z@-"@pfzrq
ANE®S, (ANE)®S,(NE)® - ®S, (AE)
ll@m
A*E ®S,_,(A*E).

(6,, and d,, depend on a choice of basis elements of E. So, they are not
GL(E)-morphisms.)

It is easy to check that M,,_,°d,, = pf,, and M, ,_,°d,, = pf, (see the second
formula in Lemma 3.3).

Lemma 5.5. Let a and k be integers such that a>t and 1 <k <2(a+1).
Then for any increasing sequence 1 <i; < -+ <ly,4qy <,

Oarrles, A A,

k—1
. A~ ~
— S (DS, e, A A A N A Aegy, ) (e A ey)
=1

L

2(a+1) . A~ A~
-y (- 1)"’”5,,‘,(&1 Acs N A A A Ae ) (e A ey
j=k+1

is contained in S,_,(A*E)-Ker(M,,).

Lemma 5.6. Let a be an integer more than or equal to t. Then for any

increasing sequence 1 <i, < --- <iy,.; <n and any integer k such that 1<k
<2a+1,

2a+1 41 A

+
z (=)0, (e, Ao A A Ae,,, ) (e, e
=1

is contained in S,_,(A*E)-Ker(M, ).

Lemma 5.7. Let a be an integer more than or equal to t. Then for any
increasing sequence 1 < iy < -+ <liy,4q) <N,

(a + 1)'5a+1,t(ei1 A e A eiz(a+|))
B i za~z;1 2‘“,)](Sgn 0’)64:,:(9:'011; A A eio(za;)'(eia(zun A eio(uaﬂn)
0€S5 0t 1) ’

is contained in S,_,(A*E)-Ker(M,,).
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Direct computations and induction on a give these lemmas. So we omit
the proofs.

Proof of Theorem 5.3. From Theorem 4.14,
{Pfales, Ao Ae )l <ip <o <y <n}

is a Grobner basis of the pfaffian ideal Pf,,. So, by Proposition 4.7, we have
a system of generators of Ker(M,). Since all 2t-order pfaffians are homogeneous
of degree t, all R(i, j)'s are relations of degree at most t. Therefore, the first
assertion is clear.

Now we prove the second assertion. Let X be a given homogeneous relation
of degree s. We shall prove that X is contained in S;_;(A*E)Ker(M,,). By
the first assertion, we may assume s <.

Let ' =(2t,2,...,2) in I',;,,. Obviously, o, , is surjective. So, there exists
C in A, E which satisfies

5).',t(c) =X.

By adding an appropriate element of S,_;(A%E)-Ker(M,,) to X, we wish to
reduce X to higher partitions, i.e., whenever we have a equation

Y. 6,.T) =X modulo S;_,(A?E)-Ker(M,,),

aelg .y,

we shall show that we can always find a new equation

Y. 85.(T;) =X modulo S,_,(A?E)-Ker(M,,)
Bels .,

such that the lowest partition g for which Ty # 0 is strictly higher than the lowest
partition o for which T,#0 under the lexicographic order. (Note that
6,.,(C) = X itself is one of such equations.)

Case 1. Assume 6,,(T,)=X modulo S, ,(A?E)-Ker(M,,), where v=
(2(s +t)) is the highest partition in [I,,,. Since X and all elements of
S,—1(A?E)-Ker(M, ;) are contained in Ker(M, ), we obtain

M, 6, .(T,) = pf(T,) = 0.
Because pf, = pfas+y: NP E > S, ,(A?E) is injective (see Proposition 3.5), T,
must be equal to 0. So, X is contained in S;_,(A?E)-Ker(M, ;).
Casi II.  Assume that there exist partitions A, > --- >4, in I'y,, and T,

in A4 E such that

Y 6,,..(T;) = X modulo S,_,(A?E)-Ker(M, ;)
k=1

with T, # 0, where (2(s + t)) > 4,. Since M, (X) =0, we have
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M, (Y 8,.(T)) = Y pfi(T) =0.
k=1 k=1

By the definitions of .#, and M . (see Definition 3.4), pf; (T,) is contained in
M, . From the commutative diagram

ALE 22 4, = S,(NE)
Ea
LlEL"/”l/*/éb

T,, is contained in Ker(d;) = Im([1,).
Therefore we have only to show

CLAamM. Let p # (2(s + t)) be a partition contained in I'y,,,. If Ce N, E is
contained in Im((],), then

6,.(C)e Y, Im(b:,) +S,-,(A*E)-Ker(M,,).

gel i,
(2]

This claim is proved by induction on s.
First suppose s = 1. Then pu must be (2t,2). Let y' be (2(¢ + 1)). Since
Cis in Im(0d,), pf,(C) is contained in .#,. So there exists De A, E such that

pf.(C) = pf,.(D).

In this case, 6,,(C) — 6, (D) is contained in Ker(M, ;).
Next, assume s > 1. Let u = (2m,,...,2m;). By the definition,

q—12mp+

O,= Y Y 1o veO,@1ee-t-b,
I=1 k=1

Suppose that C is contained in Im(1®¢~ Y ® [, ® 1®@~1~1),

When [ > 2, we can show the claim immediately by the plethysm formula
(as in the proof of Proposition 3.5, we can reduce C to higher partitions than
u from the assumption s < t).

Therefore, assume [ = 1. If g > 3, the assertion is clear by induction on
s. Hence we may assume that u = (2q, 2b) such that a>b >0, a+b=s+1,
a>t, and that there exists k such that 1 <k <2b and Celm([],). Let C be
Chle, A Ae,,, ®e,. A Aep,), where 1 <ij <+ <iyyp<n and 1<
Jerr < <Jjp=n

Case 1. Suppose k <2b — 1.

Then, we have

6,,4(C)

- [1,2 ~;+ 1 2a+k](sgn 0’)6“" (eia(l) AR eia(:n))
seslly 22
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.prb(eia(2a+l) NN iy N €y N A ejzb)

k

_ 1+1 .

= oL 60 BT ey A A ) e A )
sesly 1030 1020 -

o~
pfz(b_l)(eio(2a+l) AN N ey N A Civzario N ey N A e.izb-l)

3)
261
1+1
* [1,2a; ;-rl 2a+k](Sgn a) —Z ( 1) 541 t(elc“) oA eio‘(Za))
sZa+k’ I=k+1
N
‘pfz(b-l)(eia(2a+l) NN Cairy N Cieay N N €N ANy ) (en A €jr
]
By the inductive assumption on s,
(Sgl’l O') 541 t(el.,(l) A eio(Zu))
a'eS” s2a3;2a + 1,2a + k)

2a+k
A

‘pfz(b_l)(eia‘(Zu'O'l) AN i N Gy NN EG A A ehbﬂ)
can be reduced to higher partitions than (2a, 2(b — 1)). So, the second term (4)
is reduced to higher partitions than u = (2a, 2b). (The second term (4) does not
appear when k =2b — 1))
On the other hand, the first term (3) is rewritten

(Sgn 0) 5a,t (ei,,m A A eia(za))
[1,2a;2(a + 1),2a + k]
€854 t k.

.(eia(2q+l) A ejn,).pr(b—1)(eia(z(a+1)) A A Cicizarin N Cjar N0 A eij—l)'

It is easy to see that we can reduce this to higher partitions by the induction
on s. (When k=b =1, use Lemmas 5.5 and 5.6.)

Case 2. Suppose k = 2b.

We may assume 2(a + b) < n.

If k =2, the assertion is clear by Lemma 5.7.

When k = 2b > 4, we have

6u,t°|:|2b(ei1 A A eiz(a+b))
= Z (Sgn O') 5a,l (eia(n A A eic(za)).prb(eiq(za+1) A A eic(Z(a+b)))
[1,2a;2a + 1,2(a + b)]
€S (a+ b)
1
= - (Sgn 6) 5a,t(eio-(1) A A eia(za))
b gesll2aizat 1,2(at Di2a+3,2(a+ b)]

2(a +b)

’ (eid(2n+ N Cigaar 1))) ' pr(b‘ 1)(eia(2a A AN T b)))>

where SYi;7pijet -2@r D:2a®3,2@+ 0] jg the subset of Sy, defined as

{oeS|o(l) < <0(2a),02a+ 1) <o(2(a+ 1)), 6(2a+ 3) < --- <c(2(a + b))}.
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(Since a>t, a+b=s+1t 2p>n—2t and 2(a + b) <n, we have b <p. So, b
is a unit in R))

By the inductive assumption on s, we can reduce 6, ,°[y(e;, A -~ A e
to partitions higher than u.

We have completed the proof of the claim. Q.E.D.

i2(a+ b))

When n < 2t + 3, Ker(M,) is generated over S(A?E) by relations of degree
1 over an arbitrary prime field R by (2) of Theorem 5.3. So, by Proposition 2
of Section 4 in [15] or Proposition II.3.4 in [5], we obtain

Corollary 5.8. When n < 2t + 3, Ker(M,) is generated as an S(A? E)-module
by relations of degree 1 over an arbitrary commutative ring R.

In general, Ker(M,) is not generated over S(A2E) only by relations of degree

1 ([12]).
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