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Relations on pfaffians I: plethysm formulas

By

Kazuhiko KURANO

1. Introduction

Let R  be a commutative ring with unity, and fix an  integer n >  1. Suppose
x i ;  b e  variables with 1 < i < j  n .  Denote by S  = R [X ] the polynomial ring
with n(n — 1)/2 variables x , . P ut x i i  = — xi i  for 1 <_ i < j  n  a n d  x i , =  0  for
i = n .  (xi.) is the generic n by n antisymmetric matrix with entries in S. F o r
a  positive  integer t  such that 1 <2t <  n  a n d  a  strictly increasing sequence
(1 <)p1<•••<P2 t( n),

1
t ! (TES2r

— E (s g n 0-) xpc , „ ) , ( 2 ) •  •  •  Xp,,(
2 t  -  1 ) P ( 2 t )

is called a  2t-order pf af f ian. (This polynom ial is defined over a n  arbitrary
commutative ring R . )  It is well-known that the square of this 2t-order pfaffian
coincides with the determinant of the 2t by 2t antisymmetric matrix (xp a ,,)i ,_
We denote by Pf2 i th e  ideal generated by all 2t-order pfaffians of (x i)  and  call
it the pfaff ian ideal of order 2t.

It is well-known that, if  R  is  Gorenstein, Pf2 ,  is  a G orenstein ideal with
grade (Pf2 i) = hds (S IPf2 ,) = (n — 2t + 1)(n — 2t + 2)/2 ( [ 7 ]  o r  [ 9 ] ) .  Furthermore
any Gorenstein subscheme of codimension 3 is known to be defined by certain
pfaffians of a certain antisymmetric matrix ([3]).

T he  m a in  purpose o f  this article is to investigate when th e  first syzygy
modules of pfaffian ideals are generated by their relations of degree 1. When R
contains the rationals Q, any relation on pfaffians can be written by relations of
degree 1 (in this case all the syzygies have been determined in  [7 ]  o r  [8 ] ) . In
th e  c a s e  o f  arbitrary characteristic, when t  = 1 , n  = 2 t, n  = 2 t + 1 ([3]) or
n = 2t + 2([14]), minimal free resolutions have been already constructed and the
relation modules are generated by relations of degree 1. The main result of this
article is

Theorem 5.3. 1 .  The f irst syzygy  of  the pfaffian ideal Pf2 , is generated over
S(A 2 E) by  relations of  degree at m ost t, i.e.,

Ker(114,)= S(A 2 E)•( E Ker(M t „)).
r=1
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2. L et R  be a f ield and regard the rational num ber f ield as o f  characteristic
infinity. T h e n  the f irst sy z y gy  o f  Pf2 ,  is generated over S( A2 E ) by  relations of
degree 1 w hen 2p> n — 2t. (p  is the characteristic of  R .)

By using this theorem we will know that the first syzygies of pfaffian ideals are
generated by their relations of degree 1 over a n  arbitrary commutative ring R
when n —  2t < 3. The main ideas are the same as the case of determinantal ideals
of generic m atrices ([11]). B ut, in  general, the relation modules of pfaffians are
not generated only by their relations of degree 1 ([12]).

Section 2 is devoted to  in troducing the  basic  facts o f  characteristic free
representation theory. All propositions of this section are proved in [1].

W e will construct the plethysm formulas for Sr ( A2 E ) in  S e c tio n  3 . When
R is a field of characteristic zero, any finite dimensional polynomial representation
of GL (E) are completely reducible. In  fact we have

Sr ( A2  E) = @ A e r r , L E,

where F r  i s  a set of partitions defined in  D efinition 3.1. The plethysm formula
is  to  g iv e  a  natura l filtration over a n  arbitrary  com m utative ring R  whose
associated graded object coincides with 0 2 E  r,  L I E.

By using this form ula and the Knuth correspondence ([10]) we can show
that the usual minimal generating set of the pfaffian ideal Pf2 ,  forms a Greibner
basis for any field R  and for any integers 1 <2t < n. In Section 4 this is proved
and some spectral sequences are constructed from the general theory o f G rane r
bases in Remark 4.15.

From plethysm form ulas and the theory of Grbbner bases, Theorem 5.3 is
proved in Section 5.

T he  author w ould  like  to  thank P rofessor J . Nishimura fo r  his valuable
advice and encouragement.

2. Preliminaries

I n  th is  section, we review th e  characteristic free representation theory of
G L . F o r  th e  proofs of propositions, w e refer to A kin e t  al. [1]. Throughout
th is  section, w e  deno te  by  R  a com m utative ring w ith  un ity  a n d  all tensor
products are defined over R.

Definition 2.1. A partition is  a  sequence of positive integers A  = (A ,,...,A q )
such that 2 ,>  r1 ,2  >  • • •  >  a q . The w eight of is defined to  be 2, +  22  • • •

and  denoted by 121. To each partition A  we associate its transposed partition
= 2 , 1 , 1 ) ,  where ;1' ,k is  the  number o f  As su c h  th a t  As >  k .  We introduce

t h e  lex icog raph ic  o rde r to  th e  s e t  o f  p a r t i t io n s ;  i.e., f o r  tw o  partitions
= (2 1, and p = (11 1, ,  p r ), we say that A is higher than p  and write A > p,

if th e re  e x is ts  i s u c h  t h a t  A ,—  p, f o r  all k < i  a n d  Ai >  p „ regarding
2q + 1 = 2,1 + 2 = ••• = 0  and  II r+ 1 P r + 2

 0. A p m eans A > p  or 2  =  p.
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Definition 2 .2 .  L et E  b e  a  finitely generated free R-m odule and  k  a
non-negative integer. We denote the k th  exterior and symmetric modules of E
by A k  E  and Sk E , respectively. Furthermore, we define A E  = k>o A k E  and
S E = rf -). . . .k > 0 S k  E .  Then they become Hopf algebras with the multiplications m
and the comultiplications A .  (m is defined as usual, and LI is induced by the
diagonalization. Note that Sk E  a n d  A k  E  are polynomial GL(E)-modules;
moreover m  and z1 are morphisms of GL(E)-modules.)

For a sequence of non-negative integers a = (a , aq ) , we denote by A E
and

 S Œ
 E the tensor products A Œ 1  E C) • • • 0 A aa E and S •  •  •  0 S a ,  E , respectively.

(Note that S E  is a polynomial ring over R  with rank (E )  variables.)
For a partition =  (2,, ,  ,  let (au )  be a (g x 2 1 )-matrix over the ring of

integers Z  such that au =  1  when j  Ai and au  =  0  when j > A i . Now consider
the GL (E)-morphisms

A k E =  A 2 1 E 0 - 0  A A g E

.4®•••ciad

( Aa" E C )  0 E) 0 0  ( A aq' E 0 C ) A agA . E )

(Sa i i E C) • C ) E) C) • •• 0 (Sa o  E  C ) • • C) E)

(Sa i l  E 0 • • • C) Sa o  E) C) • • 0 (S a i , , E • 0 E)

ime,••om

E = SLE C) • • •

where the second map is induced by IV" E  = S a ., E  (recall that au  =  0  or 1) and
the third one is the permutation according to the index au . Denote this composite
map by da(E) or dA .

Definition 2 .3  (Schur functors). Let L , E  be Im (da( E ) ) .  LA is ca lled  the
Schur functor of the partition A. (When R  is a field of characteristic 0, LA E  is
the irreducible polynomial GL (E)-module of degree 1AI corresponding to the
partition A.)

Proposition 2.4 (Universal freeness of Schur functors). For any  R , E  and A,
LAE is a f re e  R -m o d u le . I f  S  is an  R -algebra, then (La E) ORS = LA (E O R S).

Definition 2 .5 .  When .31 , s 2 ,  and k  are positive integers such that k  < s 2 ,
we have the GL(E)-morphisms

A si +k E  0  As2 - k E A s ,  E  A R  E  A s 2 - k E  iL8, 471 A si  E  0  As2 E .

This composite map is denoted by O k (E) or E lk.
Similarly when a =  (a Œq) is  a  sequence of positive integers, we define a

GL (E)-morphism as
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E E AG" EC)— C) 0 AOE''E A Œ ''' - k  EC) A"t+ 2 0 . -  A / 9  E
1=1 k = 1

1 9 - 1 . r + I
E  1 8 -0 1 0 0 k (E 1 g 1 8 -0 1

t = l k = 1

A G,E= AŒ 1 E(:).••()AŒgE

and denote it by Ino,(E) or D OE.

Proposition 2.6 (Theorem 11.2.16 in [ 1 ] ) .  For any  partition A, the sequence
o f  GL (E)-morphisms

0 1m (0,1 (E)) A,,E1'(E4L,„E — *  0

is exact.

Definition 2.7. For a partition A = (A,,...,A q ) ,  w e associate this partition
with the set

BA = { b11 , b 1 2 ,. . . ,b iA „

which consists of I A  variables. Let n  b e  a positive in tege r. Tab,d1,...,n} is
defined to be the set of maps from BA to {1,..., n}, and each element of this set
is called a  tab leau . Further, a tableau T is sa id  to  be  standard if the following
tw o conditions are satisfied:

(I) For any i and j  such that 1 j  < Ai , T ( b )  < T(b i i + , ) holds.
(II) For any i and j  such that T (b ,,,i) holds.

W e denote by St. Tab t i , n} the subset of Tab ). {1,...,n} consists of all
standard tableaux.

Moreover let be  a free basis of E .  For a tableau T  contained
in Tab A {1,...,n}, eT  is defined to  be an element of A  E  as follows:

eT  = eT o t i , A  ••• A  eT 0 ,,A , , C) (S) e ( N 1 ) A  • • • A  eT (bg a g )

Proposition 2.8 (Theorem 11.2.16 in [ 1 ] ) .  For any A , E and R, the following
set form s an  R-free basis of  LA E:

{c1,,(eT )1 TE St. Tab Â {1, , n} }

Using these basic facts about the characteristic free representation theory of
GL, we will introduce plethysm formulas in the next section.

3. P lethysm  formulas

This section is devoted to introducing plethysm formulas for Sr ( A 2  E), which
play very important roles later. Essentially, these formulas are found in  [4].

F o r a  non-negative integer r ,  Sr ( M E ) h a s  a polynomial GL(E)-module
structure. It is completely reducible when R is a field of characteristic zero. In
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fact by com puting th e  character o f  Sr ( M E )  a s  in  [1 3 ] , w e know  tha t it is
decomposed as

Sr( A 2 E )=
e1;

Here, F r is  a set of partitions which will be defined in  Definition 3.1. Unfortu-
nately, over an  arbitrary commutative ring R , such decompositions d o  not exist
in genera l. But Sr ( A2  E) has a  natural filtration whose associated graded module
coincides with a t e r,L ,E .  W e call such filtrations plethysm formulas.

Filtrations as above will be constructed in  this section.
Throughout this section, R  is a commutative ring with unity, and E a  finitely

generated free R-module of rank  n.

Definition 3 . 1 .  F o r  a  non-negative integer r, F r  is defined as

Fr  = 12: partition IA  = 2 r; when 2 = (A l , , AO, all A i 's  are even} .

Definition 3 .2 .  For a positive integer t, pf2 ,  is defined to be the map

Pf21 A 21 E s t (  A 2 E ) ,

where, when f 1 , . . . , f 2 , are elements of E, pf2 , sends f 1 A A f 2 , to  the polynomial
so - called 2t-order pfaffian

(sg n co(fc 1 ) A  f ok.(2))( L .3 .  A fa (4 )) • • • ( fa (2t — 1) f c r ( 2 t ) ) ,Tt !.ES2t

where S 2 ,  is the symmetric group o n  { 1 ,...,2 0  and the sum above runs over all
perm utations. (Note that each monomial appears just 2 t! tim es w ith the same
signature in the above sum.)

Moreover, for a  partition  2  = (2r 1 ,...,2 r q)  contained i n  F „ th e  following
composite m ap is denoted by pf,;

A  E = A 2 r1 E • 0  A 2 rg E

Sr i ( A2 E)0 ••• 0 S r g ( A 2 E)

S r ( A 2 E).

(It is easily verified that pf2 1 a n d  pf , are well-defined and have the structures
of GL (E)-morphisms.)

Lemma 3 .3 .  L et he 's  and  f  be elements o f  E .  Then, for positive integers c
and d, we have

(1 )

c  +  c l )  

Pf2(c + d)(h1 A  ••• A  h 2 ,c + d ) )
C
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(sgn o-)pf2 c (h, ( , ) A • • • A h, n f  ((2c), • ra 2c/ h.  cr(2c+ 1 )  A  • • • A  ho r(2 (2 + d )))5
[ 1 , 2 c ; 2 c  +  1 ,2 (*

t r E '2 ( c  +  d )

2c + 1

(2 ) Pf2(c+ 1 ) ( h 1  A  ••  •  A  h 2 + 1  A  f )  =  E (— n1+lpf2c(h1 A  • • • A  h, A  • • • A  h 2 + 1 )
1= 1

• Pf2(h1 A  f ) '

where h , A  • • •  A  h, A  • • •  A  h 2 c 4 . 1 m eans h ,  A  • • • A  h1 1 A  111 + 1  A  • A  h 2 + 1 ,  an d
(c±

c
a )  i s  the binom ial coefficient. F o r integers satisf y ing 1 < i < j  <  k  < 1  m ,

514-i'k m  is the subset of  the symmetric group S .  defined by

sVi ,j ;k ,1 ]  =  10- eS„,lo- (i) < o- (i + 1) < • • < o - (j), r(k ) < o - (k  + 1) < • • • < o- (1)}.

P ro o f . It is easy to see that we may assume that R  is the complex number
field C .  First, consider the diagram

A 2(c+d) E

A

A 2 c  E  0  A 2 dE

IPf2c®Pf2d

Sc ( A 2 E) S d ( A2 E )  r +1 Sc +d( A 2  E).

Since A2 ( c+ d ) E  is irreducible and Sc + d ( A2 E ) = 0  Ae r c +  d  LA E , Hom G L (E ) ( A 2 ( c  + d )  E,

Sc.+ d( A2 E n  C  by Schur's lemma. So, there exists a  complex number z  which
satisfies

M 
° (Pf2c 0 Pf2d) ° A  = Z • Pf2(c+ d)•

It is easily verified that z  coincides with the binomial coefficient (c ll.
Second, consider the diagram

A 2 c + 1 E 0 E A 2 c E 0 E 0 E

1P f 2 c 0 A  2

Sc ( A2 E) A 2 E

1-
A 2(c+ 1) E  P f 2 1c +  S ,  1 ( A2 E ) .

Since A 2 ' ' E  E  L
—  ( 2 ( c  + 1 ) )

E  L ( 2 c  + 1 )  E , by the P ieri formula [1 3 ] ,  we have
H M G L ( E ) (  A

2 c+ 1  E E ,  Se +  1 ( A 2  E)) C  by Schur's lem m a. So, the second
equation will be proved in the same way. Q.E.D.

Definition 3.4. For each partition i n  F „  G L(E)-subm odules .1 1  and it,
of Sr ( A2 E ) are defined as

=  E  Im (pf d, ./1,t E (pfm)
per, r ,

p> A
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where the sums run over the partitions such that the above conditions are satisfied.
(It is  e a sy  to  see  th a t p f , is  surjective w hen v  is  (2, 2, ..., 2) w hich is the

lowest partition in Fr  under the lexicographic order, because pf2 : A 2  E —)S,(A 2  E)
is  the isom orphism . So, w e have d i ,  = Sr ( A2 E ) .  Therefore {.11„}„E F r g ives a
natural filtration on Sr ( A 2 E).)

Proposition 3.5 (Plethysm form ulas). Fo r an  arbitrary  commutative ring R
and an arbitrary  non-negative integer r, /11,1,-, is a natural f iltration of  S,( A 2 E)
whose associated graded object coincides w ith C),"-,L ,E.

P ro o f . W e have only  to  prove that fo r any partition 2. in  F , . I I A /.A A s
isomorphic to LA  E  a s  a  GL (E)-module. Consider the  diagram

A  A E ./112 S r ( A 2  E)
IPA

L, E

where p ,  is  the projection and 4), is  the composite m ap  13,0 pf,. I n  order to
construct t h e  isom orphism  LA E=0 itl,t 1 J 1 , ,  it i s  s u f f i c i e n t  t o  sh o w  that
Ker (c1„) = Ker (4)„) since both ci, and 4 A  are surjective.

First we will prove Ker (d„) K er (C ). By Proposition 2.6, this is equivalent
to  show Tm (E L )  Ker (OA ) for any partition A in Fr . In short it suffices to show
that 0,„ = 0  for each partition A  in  F r . By definitions o f 4%1. a n d  111A, we
may assume tha t partition A consists of two integers.

Suppose A  = (2a, 2b), where a + b  = r a n d  a > b. It suffices to prove the
next claim.

CLAIM. The composite map

ma+k E  0  A 2 1' — k E m a  E ® A 2 6  E  P f (2 a ,2 1 3 ) ,
( 2 a ,2 b )  

1 ( 2 a , 2 1 , ) ,
' ' ' ' ( 2 a , 2 6 ) / '

u 1 '
(2 a ,2 b )

is  the 0-m orphism  for k  = 1, 2, ... , 2b.

O ur proof of this claim will be proceeded by the induction on a + b.
W hen a + b  = 1 , i t  i s  trivial. ( I f  b = 0 , w e can  n o t ch o o se  k  satisfying

1 < k 2 b . )
So, assume a + b > 2 and b > 1.
First, suppose k  < 2 b . F o r any f i 's and gi 's in  E , we have

P A 2 a,2 0  °  O k ( f l  A  • • • A  f 2 a +k gk  + 1 A  • • • A  g2b)

= E (sgn o-) p f ,( f , ( , ) A  • • • A f 1,  a( 2 a),
[1,2c1;2e2 + I,2a + k J

CE
'2 a  +  k

. Pf 2 b (f a(2a + 1 )  A A  f a(2 a + k )  A  k + 1  A  —  A  g 2b)

(sgn ( — l)' ' f2a N . ,  a(1) A A  f a(2 a))
c r E s [2 1 ,2 a ;2a

1 ,2 “
 k l+ k  i=
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•Pf2(b- 1)(fa(2a + 1) A A fa(2a + I ) A  ••• A  f a ( 2 a  + k )  A  g k + 1  A  • • •  A  g 2 6 -1 )

• fa(2a + I )  A  g 2b) (1)
2b— 1

E  (sgn o- )( — rt-Ei Pf2a(f (i) A  • • •  A  fa (2a ))
[21,,, ,2ak,2“ +  1 ,2a  +  k ] t

a e S

• Pf2(b—  1)(f17(2a + 1) fa (2 a + k ) A  g k +  1  A  • • •  A  A  • • •  A  g 2 b _ 1 )

•(g, A  g 2 b ), (2)

c [ 1 , 2 a ; 2 a  + 1 ,
2a + k

2 a  + k ]  is a  set of permutations defined in  Lemma 3.3.
By the inductive assumption o n  a + b,

(sgn o- )pf2 a  ( f r ( 1 ) A  • • • A  fa a (2 a ) ,
[ +1. , 21;2a + 1,2aES2

+

•Pf2(b —  1 ) ( f a ( 2 a + 1 )  A A f ( 2 a + k )  A  gk+1 A  • • •  A  A  • • •  A  8 2 b - 1 )

• °is contained i n 0 , 1 1 ( 2 a , 2 ( b - 1 ) )  
for each t. So, it is easy to see that the term (2) is

contained in  Ji(2a,2b)•
O n the  other hand, (1) is arranged as

(sgn o- )( — 1 )k+  1
Pf2a(f17(1) A  • • •  A  f17(2a))

[2 1a , 2a ; 2a  +  1 ,2a  +  k  - 1)+ k  creS

• P f 2 (b -1 ) ( f a(2 a+1 )  A  " •  A  f a ( 2 a + k - 1 )  A  gk+1 A  • •  •  A  a2b—  1) • ( fa(2a + k) A  g 2 b )

2a + k

= E (- ot+i (sgn o- )pf2 a (A ) A • • • A f4 2 ,0 )
2a1 + 1,2 + k  -  1 )1= 1 seS[21:+21:

• P f 2 (b -1 ) ( f 4 2 a + 1 )  A  • • •  A  f c g( 2 a+k - 1 )  A  g k + 1  A  • • •  A  g 2 b  —  1 )  •  ( f t  A  g 2 b ) ,

where we define f i t = — f + 1 ,• • • , f L + k -1  = f 2 a + k  fo r each t.
S o , by induction, it is easily verified that th e  term (1 ) is also contained in
•1 1 (2 a ,2 b ) •  (When k -= 1, the  term (1) is obviously contained in  .1 1 ( 2 a , 2 6 )

 from the
second formula in Lemma 3.3.)

Next assume k  = 2 b .  Then for any f ' s  in  E , we have

Pf(2a,26)
°
 0 2 b ( f l  A  • • •  A  f2(a + b))

(sgn o- )pf , a (f „ ) A  • • • A f 1  of  faa(2a), •  , a  2 b . a a ( 2 a + 1 )  A  • • •  A  fa(2(a + 6)))
[ I , 2 a ; 2 a I , 2 ( a  +  b ) ]

0 E 5
2 ( a  +  13)

= +a b l  , f2
I 1-',1 (a + ( f ' + 6 )))

by the first formula in Lemma 3.3. We have completed the proof of the claim.
By the claim above, for each partition i n  Fr , there exists a natural surjective

map 1,: L ,E— >J1,/,1:1, which makes the following diagram commutative;

where
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A  E p fA c  Sr ( A' E)
o,

I P A

L A E

Since C),E  r, L A E  and S,.( A 2 E )  are free R-modules with the  same rank over an
arbitrary commutative ring R  (see Propositions 2.4 and 2.8 and note the formula
Sr ( A2( 1 ) , " 1 -, L A E  over th e  complex number field C), /A 's  m ust be injective
for all A in  Fr . Q.E.D.

4. Grifobner bases of pfaffian ideals

Throughout this section R  is  a fie ld  of arbitrary characteritic and  E  is  an
R-vector space of dim ension n. L et {e 1 , ,  en } be a  basis of E  and t  an integer
such that 1  <  2 t <  n . W e denote by P f 2 ,  th e  ideal of S( A 2  E )  generated by
Pf2t( A2 ` E) and  call it the pfaf f ian ideal of order 2t.

It is easily verified that

{Pf2t(e11 A ••• ei2,)11 <i1  < " ' <iz t

is  a  homogeneous minimal generating system of the ideal P f2 ,. In  this section,
by using the  Knuth correspondence [10], we will show that this homogeneous
minimal generating set forms a Grifibner basis of P f2 t . By the general theory of
G ra n e r  b a se s , th e  first syzygy m odule of P f2 ,  is proved to be generated by
relations of degree at most t  (see Theorem 5.3).

First, we review some basic facts about Griibner bases.
Let A  = R [x i , . . . ,x q ]  be the polynomial ring over a fie ld  R  with variables

x l  , x q  a n d  le t  M  be the set of monomials of A, i.e.,

M  =  {x 1  • • • xa'q oci 's  are non-negative integers} .

Definition 4 .1 .  M  has a  s tru c tu re  o f  a  totally ordered se t, i.e ., fo r  two
monomials M  = x i  a' • x q 'q  and  N  x 1

11' ••• x g flq, we say that M  is higher than
N  and write M  >  N  if

al) > -  E fie,
i = 1i  = 1

where > - is  th e  usual lexicographic order. M  > N  means M  = N  or M >  N.
This order is sometimes called the  reverse lexicographic order.

Definition 4 . 2 .  F or each non-zero polynomial f  in  A , a  monomial M  in  M
is called the highest term of f  and denoted by Hterm ( f )  if M  is  the  highest in
the set of monomials which appear in  f  with non-zero coefficients. Moreover,
the coefficient of M in f  is denoted by Hcoeff ( f ) .

Remark 4 . 3 .  F o r  monomials L ,  M ,  N  satisfying M  > N , M L > N L
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holds. So, for two non-zero polynomials f  and g , we have Hterm(fg) = Hterm (f )
Hterm (g).

Definition 4 .4 .  A set of non-zero polynomials {f1 ,...,f,.} is called a Graner
basis of the polynomial ideal ( f 1 , . . . , fr)  if, for any non-zero polynomial g  in

Hterm (g) can be divided by Hterm (fi) for some i.

It is easily verified that any non-zero polynomial ideal have a Griibner basis
and any minimal GrI3bner basis consists of a fixed number (determined by the
given ideal) of elements.

By the general theory on Grbbner bases, we can find a  generating set of
the first syzygy module as follows.

Definition 4.5. For two non-zero polynomials f  and g ,  we define

S ( f  g )  =  H c o e f f ( g )  
1.c. m.(Hterm ( f ) , Hterm (g))

Hterm (f )

—  H c o e f f  ( f  )
1. c. m. (Hterm ( f ) ,  H term (g))

g,Hterm (g)

where 1.c.m. ( )  means the least common multiple.

Let {f1 ,...,f,.} be a  Gr6bner basis of I  =
1 < i < j  < n, we can describe S( 4 )  in the form

s(f i>4 )= E gk.fk.
k = 1

Since { f i  , , f , . }  is a  Grbbner basis, we can choose each gk which satisfies

Hterm(gkf k) = Hterm(gk) Hterm (f,) Hterm (S (fi , 4)).

Let L  be a  finitely generated free A-module of rank r, and let {1,,..., /,.} be
a  basis of L . W e  have a exact sequence

> A  — > AII — > 0,

where 6(0 = f i for i = 1,...,r. Then Ker (6) is the first syzygy module of I.

Definition 4.6. For i and j  such that 1 < i < j  <  r, we define

R ( i ,  j ) =  H c o e f f  ( 4 )  
I. c.m. (Hterm ( Hterm (4)) 1,

Hterm (f)

—  H c o e f f ( f )
l.c. m. (Hterm ( f i), Hterm (.0 )1 ig k l k .

Hterm ( fi ) k = 1

By definition, R(i, j) is contained in Ker (5).

Proposition 4.7 ([2 ]). K er (S) is generated by

For i and j  such that
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ti? < j  < r}

Now we start o t  prove that a  homogeneous minimal generating set of the
pfaffian ideal Pf2 1 is  a  G r a n e r  basis.

First, we introduce a n  order to the set of monomials of S( A 2 E).
When { e,,...,e„}  is a  fixed basis of E, let x 1 =  e, A  e 2 , x 2  = e 2  A

=e,,_ , A e„, x„— e, A  e3 , x „, 1 =e 2  =  e, A  e n . Identify S( A2 E)
with A  = R [x i ,..., x„

( n -  1 ) / 2 ] 1  
and introduce the reverse lexicographic order to the

set of monomials M  of A  as in  Definition 4.1.

Definition 4 .8 .  Define the  monomial ideals E  and E ' as

E  = (Hterm (g)10 g e Pf2 ,),

E ' = (Hterm(pf2 1 (e11 A  • • •  A  e 1 2 1 ))11  <  i t < <  iz t n).

It is easy to see that fo r any monomial M  contained in  E , there exists a
homogeneous element g  in  Pf2 ,  such that Hterm(g) = M.

For a  homogeneous ideal J ,  we denote by ( J) ,  th e  r  th  homogeneous
component of J.

We have to note that every xk 's  and  every e  A  e ls  are  of degree 1.

Lemma 4 .9 .  For each positive integer r,

dim R (r), dim R (E), = dim R (Pf21),.

Moreover, {pf
2 1

(e1 1 •-• e i „)I 1 <  •••  < n }  i s  a  G ra n e r b as is  o f  the
pfaff ian ideal Pf2 ,  if  and  only  if  dim R (E),.= dim R (E),. holds f o r any  r.

P ro o f . We can find monomials M 1 ,..., M ,  such that {M ,„ .. ,M ,}  is  an
R-basis of (E),.. Then there exist in (Pf

2 1
),. satisfying Hterm(g 1) =  M i  for

i = 1, „., g. It is easy to see that { g ,,...,g ,}  is  an R-basis of (Pf2 ,),.
The second assertion is obvious. Q. E. D.

We will prove that dim R (E),. = d 1mR(Pf2t), for any r. We may assume r t ,
because (E), = (Pf2t), = 0  if r <  t. By the plethysm formula (Proposition 3.5), we
have (Pf2t)r = <AA, '  where A' = (2t, 2,...,2) in F,.. Since

u p  to  filtration, w e  have

dim R (Pf2t),= E °{St. Tab, {1- • • , }
ILE r,
A > 2 '

by Proposition 2.8. ( 4 1 1  means the cardinary of the given set.)
So, we have only to show that
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dim , (E l =  E  {St. Tab i, {1, }
l i  F ,
g

for r > t.

Definition 4 .1 0 . For each positive integer s, define subsets of n by n matrices

Mat (s) = {(au )la il s  are  non-negative integers such that E i ,J a i i  =  ,

S. Mat (s) =  {(ai i )e Mat (s)la i i  = a i i  fo r  i j ,  and  au  =  0  for i =

Definition 4 .1 1 . A  2  by u  matrix

(b, • • • bu )

is said a  two-line array  of weight u  if the following conditions are  satisfied;
• bi 's  and c i 's are positive integers less than o r equal to n,
• 1 < b i  < • • • < b u  < n,
• if b i = 1) 1 + 1 ,  then cic 1 + 1 .

The set of two-line arrays of weight u  is denoted by TLA (u).

Let E u  b e  the  elementary n  by n  matrix whose (i, j) entry is 1, and  others
(b i  • • • by )

c i  • • •
a bijection ik, : TLA (y) —> Mat (y).

For a monomial M  = (e i ,  A eh ) •-• (eL  A e )  in M, =( E  + E i k i k )
gives a injection :  M u  —> Mat (2u), where M . is the set of monomials of degree
u. It is easy to see that U M u) S. Mat (2u).

, • •
Definition 4 .1 2 . F o r  a  two-line array T = (

b •  b u  ,  
th e  length of the

c, • • • cu

longest strictly decreasing subsequences of c, •• • Cu is denoted by 1(T).

Proposition 4.13 (Knuth correspondence, Theorem 4  in  [1 0 ] , [1 6 ]) . For each
positive integer r ,  there ex ist bijections K- 2 r  and  l e 2 ,  w hich m ak e the following
diagram commutative;

TLA (2r) K 2 rH St. Tab, {1 ..., x  St. Tab,i {1, ,
A: partition

=I'I 2 r

CI  •  • • Cu

a re  0 . F o r  a  two-line array T = of weight y, OJT) = Ey= i  E .  gives

H  St Tab A {1,..., n}
A: partition

I Al = 2r

H St. Tab, {1,..., 0 ,
Ae

Mat (2r)

S. Mat (2r)

Mr
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where i an d  ç  are inclusion, and d is the diagonal map.
Furthermore, f o r each tw o-line array  T  in TLA (2r), if  1c2 r (T )  is contained in

St. Tab, {1, ..., n} x  St. Tab, {1, ,  n} f o r some partition 2  =  then 1(T)
coincides with A ,.

By using this result, we can prove

Theorem 4 .1 4 .  For any  positive integer t  such that 1  <2t < n,

{pf2 ,(e 11 A  - •  A  e i 2 ,)11 <  • • •  < i2 n }

form s a  Graner basis of  the pfaffian ideal Pf,„.

P ro o f . It suffices to show that

dim, (E ') ,  =  E {St. T ab ,{1 , , n}}
LE F,

for any positive integer r  not less that t.
F or a  2t-order pfaffian pf2 ,(e 11 A •-• A e1,1)(1 < j1 < ••• < izt it is easy to

see that

Hterm(pf2 ,(e i , A ••• A e i 2 1 )) =  (e1, A  e 1 2 1 )  ( e 1 2  A  e 1 2 1 _ , ) • • •  (e i , A ei , F 1 ).

So, we have

E ' = ((e 1 , A  e 121 )•(e 12 A  e 121 _,)•-•(e 1, A  e11 ,,)11 < <iz t

L e t  M  b e  a  monomial contained i n  M ,.. I t  is  e a s y  to  check  that
0 1  ° > 2t if and only if M is contained in (E'),.. Hence, the assertion

is clear by the  Knuth correspondence. Q.E.D.

Remark 4 .1 5 .  L et A  =  R [x ,,..., xq ]  be a polynom ial ring over a  fie ld  R
and M  (resp. Mr) the set of monomials (resp. monomials of degree r). Suppose
that {h ,.. . ,f ,}  is a  Gr6bner basis of a polynomial ideal I ,  and  J = (Hterm(fi)!
i =  1 ,...,1 ). By th e  general theory o f Griibner basis ( [2 ])  we can construct a
finite free resolution o f  A l l  which is isomorphic to Taylor's resolution ([17])
of A IJ up to some filtration. So there exist spectral sequences

= Tor1.
1 (A 1J, A /(x , , Tor ìi (A ll, A l(x i ,..., xq ))

for every i. (Note that A I J a n d  A/(x i , . . . ,x q )  a re  M-graded, so is Torii i (A/J,
A/(x, , xq )).)

Furthermore, when I  is homogeneous, there exist

{Elf  = Tori4 (A IJ, A  /(x , , Tor14 (A ll, A l(x ,,..., xq )),.

for every i  and r.
We can describe E it ,  i n  terms o f  cohomology groups o f  some simplicial

complex using the  same method as in  the  proof of Hochster's formula (DD.
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So the  system of above spectral sequences seems to be a  natural extension
of Hochster's formula.

5. Main theorem

I n  th is  section R  is  a  prim e fie ld  and  E  is  a n  R-vector space with basis

Suppose tha t t  is  a positive integer such that 2t < n.

Definition 5.1. Denote by M , the composite map

A 2t E  0  s (  A 2 E )  ) 2 ®1 S
t ( A 2 E) S (  A 2 E)m S( A 2 E),

and  fo r a  non - negative integer r, define M .  to  b e  the composite map

A zt E  (:) 
S r (

 A 2 E ) s t (  A 2 E )  0  
S r (

 A2 E )  St+,.( A E).

Ker (M e) is usually called the first syzygy, or the relation module of 2t-order
pfaffians.

By definitions, Ker (M t) = O r ,  Ker 
( M t , r ) .

 ( I t  is  e a sy  to  see  th a t Ker (Mt, 0)
= 0  because of the linear independence of 2t-order pfaffians.) Each element of
Ker (M,, r)  is called a  relation of degree r  o n  2t-order pfaffians.

Definition 5.2. F or a  positive  integer r  m ore th a n  o r  e q u a l to  t, F  is
defined as

= {AE Fr IA > (201,

where >  means the  lexicographic order.

O ur m ain purpose is to prove the following result.

Theorem 5.3. 1. The first syzygy o f the pfaffian ideal Pf2,  is generated over
S( A 2 E) by relations of degree at most t ,  i.e.,

Ker (M t) = S( El • ( E Ker (Mt,r)).
= 1

2. Regard the rational number field  as of characteristic infinity. T h e n  the
first syzygy of Pf2 1 is generated over S( A 2  E) by relations of degree 1 when
2p > n —  2t. (p is the characteristic o f  R.)

Before proving this, we define some more notation.

Definition 5.4. F o r  non-negative integers r >  t ,  a n d  fo r  a  p a r tit io n  A. in
F r,t , (5r,t and (5,,t a r e  defined as follows :

1 .  f 5r  t :  A 2 r E  _4  A2t E  0  s r  t (  A2 E) is defined inductively.
Let= a n d is determined by
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2r— 1

(5,,,,(e i , A ••• A  e i 2 r )  =  E — lY + 1 A  • • •  A A  • • •  A  e i 2 r  _ •  ( e i ,  A  e j ,
1= 1

where l < ••• < izr < n.
2. Suppose = (2r 1 , ...,2r q )  is a partition such that r, t, r, + • • • + r =  r .

Denote by the composite map

A , E  =  A2 r1 E  • A2rq E

16r i ,t 0 Pf 2r 2
0 P f

A 21 E Sr , _ t ( A 2  E ) 0  S r 2 ( A 2  E )  0  • S r g ( A 2  E)

11E0.

A 2 1  E  ® S r , ( A 2 E).

O r a  a n d  6 , t ,, depend o n  a  choice o f  basis elements o f  E .  S o , they a re  not
GL(E)-morphisms.)

It is easy to check that M- t,r— i ° br,t P f 2 r and = pf,„ (see the second
formula in Lemma 3.3).

Lemma 5 .5 .  L et a and  k  be integers such that a >  t  and  1 k  2 ( a  +  1 ) .
Then f o r any increasing sequence 1 < •  •  < i2(a +1) n,

6 a+ 1 ,1(e11  A  • • •  A  e1 2 ( I ) )
k — 1

—E (— l r j + 1 6 a ,t (e i ,  A ••• A  e i i  A A  elk  A ••• A  e1 2 ( + 1 ))  (e 1 i A  elk )
i= 1

2 ( a + 1 )

— E ( — A  • - •  A  e i k  A A  e i i  A  • • •  A 1)) • (e i ,  A  el k )
j= k +  1

is contained in  S a _ t ( A 2  E)• Ker

Lemma 5 .6 .  L e t  a  be an  integer m ore than o r equal to  t. Then f o r any
increasing sequence 1 <  •  • •  <  i2 a±  n  an d  any  in teger k  su ch  th at 1 < k
< 2a + 1 ,

E ( — 1
) l + 1

ba ,i (ei , A ••• A A  • •  A  e12 • L
( e11 e lk )

t=1

is contained in  S a A 2  E)• Ker (M 1,1 ).

Lemma 5.7 . L e t  a  be  an  integer m ore than o r equal to  t. Then f o r any
increasing sequence 1 < < i• • • 2 ( a + 1 ) n,

(a + 1) . 15a +  1 1 (e11 A  ' • •  A e121 1))

(sg n b a , t (e i ( i )  A  • - •  A  e 1cr 2 a1 ) • ( e 1,,, 2 + ,
)
 A  e 1 ,,(2 ( L)))

[ 1 ,2 c1 ,2 a  +  1 , 2 0  +  1 )]
6 e 2 ( a  1)

is contained in S a t ( E). Ker (M i , i ).

(-A41,1).

2 a + 1
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D irect com putations and induction on a  give these lem m as. So w e omit
the  proofs.

Proof o f  Theorem 5.3. From  Theorem  4.14,

{pf2 ,(e
i1 A A e 12t)11 < < i2t n}

is  a  G r a n e r  basis of the pfaffian ideal Pf2 t . So, b y  Proposition 4.7, w e have
a  system of generators of Ker(M i ). Since all 2t-order pfaffians are homogeneous
o f degree t ,  a ll R(i, j) 's  are relations of degree  a t m ost t. Therefore, th e  first
assertion is  clear.

Now we prove the second assertion. Let X be a given homogeneous relation
of degree s. W e shall prove that X  is contained in  Ss _ ,( A 2 E )K er(M ,,,). B y
the first assertion, we m ay assume s <  t.

Let A' = (2t, 2,...,2) in Obviously, 5 2 l
, i s  surjective. So, there exists

C  i n  A E which satisfies

=  X.

By adding a n  appropriate element o f  Ss _ i ( A2 E)• Ker (M,,,) to X , we wish to
reduce X to higher partitions, i.e., whenever we have a  equation

E  ( T OE) X  modulo Ss _ ,( A2 E)• Ker (Mt,i),

we shall show that we can always find a  new equation

E (Tp') X  modulo Ss _ ( A 2  E)• Ker (M,, i )
PC + t,t

such that the lowest partition fl for which T I 0  0  is strictly higher than the lowest
p a r t i t io n  a  f o r  w h ich  T u n d e r  t h e  lex icographic  order. (N ote  that

= X itself is one of such equations.)
CASE I. A ssum e (5,,,(7i„) X  m odu lo  Ss _ i ( A2 E)• K er(M ,,,), w here  v  =

(2(s + t ) )  is t h e  h ighest p a r t it io n  in  T s + . S in c e  X  a n d  a ll e lem en ts of
Ss _ ,( A2 E)• Ker(M ,,,) are contained in Ker (M,,,), we obtain

M , °  , 1(T ) = PL (T y ) = O.

Becausepf = P f2 ( s + t ) :  A2 0  E —>Ss + ,( A2 E) is injective (see Proposition 3.5), T„(8 +
must be equal to O. So, X is contained in A2 E)• Ker(M,,,).

C A S E  II. A s s u m e  that there exist partitions A 1 >  ••• >  A,. in  F and TA k

i n  A  E  such  tha t

E .1 (T X  modulo S, _ 1 ( A2 E) • Ker
k=  1

w ith TA, 0  0, where (2(s + t)) >  A,. Since /14 1,5 (X) = 0, w e have
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mt,s( E 6A,„,(T2)) = E pfi r (To =
k=1 k=1

By the definitions of 4 1 ,, and  4 1,  (see Definition 3.4), pf ,,(T O is contained in
From  the commutative diagram

A 1 E J / 2  S,.( A 2  E)

I P A

L A E  . --'- >M 2 I./4 2 ,

TA, is contained in  Ker (c/A ,) =Im  (E A).
Therefore we have only  to  show

CLAIM. Let 110(2(s + t)) be a partition contained in 1 I f  C e  A E is
contained in Tm (O m), then

E Tm 04,0 + ss-1( A2 E)• Ker (Mt, O.
le rs

This claim  is proved by induction on s.
First suppose s  = 1. Then I/ m ust be (2t, 2). L et tt' b e  (2(t +  1)). Since

C is in Im (O m), pf,,(C) is contained in < So there exists Dc A  E such that

Pfp(C)= Pf„•(D).

In  this case, (5 (C)— ,i (D) is contained in  Ker (M e, 1) .
Next, assume s > 1. Let /.1 = (2m1 , ..., 2mq). By the definition,

q -1  2m1,1
1=111 = E  E  1°' " 0  Elk 0  1

®(q -I- 1)
1=1 k=1

Suppose tha t C  is contained in  Im (1 to -i) 0  E lk 1 0 ( q - 1 —  1 ) ) .

W hen 1 > 2 , w e can show  the claim immediately by th e  plethysm formula
(as in  th e  proof of Proposition 3.5, we can reduce C  to  higher partitions than
it from the assumption s < t).

Therefore, assume 1= 1. I f  q >  3 , the assertion is  c le a r  b y  induction on
s. Hence we m ay assume th a t kt = (2a, 2b) such  tha t a >  b  >0 , a + = s  + t ,
a >  t ,  and  that there exists k  such  tha t 1 < k  <2 b  a n d  C e Im (Ill k). L et C  be
Elk (e, A ••• A e i 2 „ „C ) eh , *  • • • A e k b ) ,  w here 1 i 1 <  " ' <  12a+k n  a n d  1 <

ik + 1  < <  i2 b  n.
CASE 1. Suppose k <2b —
Then, we have

(sgn a) S a , , ( e i r , ( , ) A  • • • A ei,,(2.))
c r E s [2 1. , 2 a  2a + 1, 2a + lc]+ k ; 
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•Pf2b „  A  • • • A  e,.. (2 + k )  A  ei k + ,  A • • A  eh b )

(sgn E(— ni ± 1 6 ,( e i c ,( , ) A  • • •  A  e i , ( 2 . ) - ( e , * „ A e h b )
z= i

•P f2 (b -n fr ic , ( 2a+i ) A  " •  A F  1 ) A  • - •  A  e i c ,(2 , ,  A  e i k * , A ••• A  eh b _ , )

crESVZ 2; 2a + 1,2a + k]+ 1  

2 6 - 1

(sgn a )  E(— 1)1 + 1 is to
k • - i , „ „ ) A  • • •  A  e i , „ ( 2 ) )

l =k +1

• P f 2 0
-

1 ) (
e

i . 1 2 . + 1 )  A  • • •  A  e i o
(

2 . + 7 0  A  ei k +  A  • • •  A  ei , A  • • •  A  eh b _ ,)• (ei , A  eh b )

By the inductive assumption on  s,

(sgn a) Sa ,t (ei , (  i ) AA e i ,,, 2 a )
c r e s v ,21 ; 2a + 1,2a +a + 

A  • • •  A  ei ( 2 ,, + k )  A  ei „, ,  A  • • •  A A  • • •  A  e
: 1 2 6  -  1

)

can be reduced to higher partitions than (2a, 2(b — 1 ) ) .  So, the second term (4)
is reduced to higher partitions than pi =  (2a, 2b). (The second term (4) does not
appear when k  = 2b —  1.)

O n the  other hand, the first term (3) is rewritten

(sgn (50 , t  (eG ,„ A  • •• A  e i ,,( 2 a ,)
[1,2a; 2(a + 1),2a + kl

6 6 . 2a + k.

A  e i 2 O • P f 2 ( , - 1 ) ( e i , ( 2 ( „ + , ) ,  A  ••• A  e i.„ ( 2 a  k )  A  e i k + , A  • • •  A  e 2 b _ 1).

It is easy to see that we can reduce this to higher partitions by the induction
on  s. (When k  = b  = 1, use Lemmas 5.5 and  5.6.)

CASE 2. Suppose k  = 2b.
We may assume 2(a +
If  k  = 2, the assertion is clear by Lemma 5.7.
When k  =2 b  > 4 , we have

6
12,t °2 6 ( e , ,  A  • • •  A  e i 2 ( a + b ) )

(sgn a) ba ,t (ei , i )  A  - •  A  e; • . pf, b ( ;— + 1) A  • • •  
A  e

i ( 2 ( . + b ) ) )
,[1 ,2a ;2a  +  1 ,2 (a  +  b )]

a E . 2(a + b)

1= _ ogn a)(5,,,,(eG ( i ) • - • e,,,,2,,)
b [1,2a,2a+ 1,20 + 1 ),2a +  3 ,20 + b )]

0 e '2 (a  +  b )

•
(
e

io.(2a +  1 ) A  e ic r (2 0 + 1 D
) •

P f2 (b
-

1)(
e

ia (2a+  3 )  A  • • • A  e i c . ( 2 ( . + 0 ) )

w h e r e  SE
1 ,2 1 ;2 1  +  1 ,2 (a  +  1 );2 a  +  3 ,2 (a  + b )] i2(a -I- 6) s  the  subset of S 2 ( 0 + b )  defined as

ta e Si o-(1) < ••• < a(2a), a- (2a + 1) < o- (2(a + 1)), o - (2a + 3) < ••• < a(2(a + b))}.

[1“ ,2_a k; 2a + 1,2a + k]
geS 2

(3)

(4)
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(Since a > t, a + b = s + t, 2 p >  n — 2 t and 2(a + b) < n, we have b  <  p . So, b
is a unit in R.)

By the inductive assumption on s, we can reduce 5, ID 219 (eii A  • • • A  e2(, b))
to partitions higher than tt.

We have completed the proof of the claim. Q. E. D.

When n < 2t + 3, Ker (M t) is generated over S( A 2 E) by relations of degree
1 over an arbitrary prime field R  by (2) of Theorem 5.3. So, by Proposition 2
of Section 4  in  [1 5 ] or Proposition 11.3.4 in  [5 ] ,  we obtain

Corollary 5.8. When n < 2t + 3, Ker (M t) is generated as an  S(A 2  E)-module
by relations of  degree 1 over an  arbitrary commutative ring R.

In general, Ker (M t) is not generated over S( A 2 E) only by relations of degree
1 ([12]).
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