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Local trees in the theory
of affine plane curves

By

D. DAIGLE*

If S is a complete nonsingular algebraic surface and D is a divisor of S with
normal crossings then the pair (S. D) determines a weighted graph which carries
some information about the surface S\D. If the divisor D with which one has
to cope doesn't have normal crossings then one has to desingularize it by
blowing-up the surface at the “bad™ points of D. This paper develops a graph
theory which relates that desingularization process to the weighted graph obtained
at the end. This is done by attaching graph-theoretic devices called “local trees™
to the singular points of D. in such a way that each blowing-up gives rise to a
transformation of local trees (also called a blowing-up).

The first and third sections study sequences of blowings-up of local trees in
a purely graph-theoretic manner. and the case where certain members of the
sequence are contractible to linear trees is given particular attention. The two
other sections apply these methods to geometry. The second section gives a
characterization of the coordinate lines in the affine plane. in terms of the
multiplicity sequence at infinity; the fourth section classifies the birational
morphisms of the affine plane with one or two fundamental points.

These graph-theoretic methods have been developed, as a part of our doctoral
thesis research, in order to investigate certain problems related to the geometry
of the affine plane. We would like to thank our professor, K.P. Russell, for the
help he provided during the time this work was done.

For the theory of weighted graphs. we use the notations and results contained
in the fift section of [3]. For all geometric considerations, our ground field is
an arbitrary algebraically closed ficld k, all curves and surfaces are irreducible
and reduced, all surfaces are nonsingular and the word “point” means “closed
point”. If X is a (nonsingular) surface, Div(X) is its group of divisors: if P is
a point of X and DeDiv(X) then u(P, D) is the multiplicity of P on D;if
D'eDiv(X) has no component in common with D then (D.D’), is the local
intersection multiplicity at P: if X is complete then D.D’ is the intersection
number and D2 = D.D (sell-intersection number). If DeDiv(X) and XX is
a monoidal transformation (resp. X G X' is an open immersion) then the strict
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transform of D in X (resp. the closure of D in X') is denoted by D whenever no
confusion seems likely to arise. N. Z and Q denote respectively the sets of
positive integers, integers and rational numbers. If a, b are two integers, their
g.c.d. is sometimes denoted by (a, b).

1. Local Trees

This section introduces local trees and begins the study of their blowings-up and
contractions. We refer to the last section of [3] for generalities about graphs
and weighted graphs.

Definition 1.1. A Jlocal tree is a 4-tuple F = (T, x4, R, 2) where:

1. Tis a finite set and x,€T;

2. R is a collection of subsets of T such that every ae R contains exactly

two elements, and (T, R) is a tree:

3. Qs aset map T\{x,} - Z.
The elements of T are called the vertices, and those of R the links; x, is called
the root of 7. Given xeT\{x,}, 2(x) is the weight of x. Write R® = {aeR|
xo€a} and call the elements of R® the principal links of . The neighbours of
the root are called the principal vertices. The set of neighbours of xe Tis denoted
Ng(x).

An isomorphism of local trees is a bijective map between the sets of vertices,
preserving the root, the links and the weights.

Definition 1.2. If 7 =(T. x4, R, £) is a local tree, a multiplicity map for T
is a set map

p: R°U{xe} — N

(where N is the set of positive integers) such that u(a) > u(x,) for every aeR°.

An m-tree is a pair (7. u) where J is a local tree and u is a multiplicity
map for 4. Given an m-tree (. p). if x is either the root or a principal link
the number pu(x) is called its mudiipiicity: denote by 4 (J,u) the set
{xe Nz (xo)lu({x. x0}) = u(xo)}.

Definition 1.3. Let 9 = (T, xo. R. Q) be a local tree. A blowing-up of T is
a local tree 7’ = (T, x4, R, ') together with a root-preserving injective set map
B: T— T'. such that if we identify T with its image in T’ then the following
conditions hold:

1. "= Tu{e}, for some e¢T;

2. R ={{e. xo} JUR\{{x. xo}|xe A} )U{{x. e}|xe A} for some set A<
.A/:"(X()) such that l‘/V:y'(xo)\Als 1. Note that 4 = ./Vf(Xo )\.Mf'(xo):
-1, f x=e
3. Q(x)= [ Q(x), il x¢{e, xo} UN¥(xo)
Q(x) -1, if xe .45 (x,).
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A map fi: T— T’ such that the above conditions hold is called an identification
map. A blowing-up of & is denoted by F « " or ' =7 and the set Tis
usually identified with its image in T'.

Definition 1.4. Let (7, p) be an m-tree, 7 = (T. x,, R, ). We define three
notions of blowing-up of (7. u).

1. A blowing-up of the first kind of (. pu) is an m-tree (. i), where
T =(T', xq, R, ), together with an identification map T— T’ (i.e., we
have F « J'), such that (in the notation of (1.3))

@ AT, p) € Aglxo)\ N5 (xo):
(b) #({x, xo}) = u({x, xo}) — pixo). if x€ 4 5(xx)N.N5-(X0);
(©) #'({xo, e}) < ulxo).

A blowing-up of the first kind of (. u) will be denoted by (7', u')—
(F.u) or by (T, u)— (T, ).

2. A blowing-up of the second kind of (F, p) is a blowing-up of the first
kind (. p) (7", ') such that equality holds in (la). That situation
will be indicated cither by (', ') = (J. p) or by (T, u)« (T, ).

3. A blowing-up of the third kind of (7, u) is a blowing-up of the second
kind (7, p) « (7. ') such that equality holds in (Ic). That situation
will be indicated either by (7', y')=(7, p) or by (I, p)<=(J", i).

Remarks. 1. If  « 7" then ' has either one or two principal link(s).
2. Any local tree  can be blown up: in particular, there is an essentially
unique blowing-up J « J such that ' has exactly one principal link.
3. If (7, u)—(7', i) then, in the notation of (1.3) and (1.4), pu(x,) =
K ({e, xo}) = i (o).

4. A blowing-up of the second (or third) kind can be performed on an
m-tree (F, p) iff | A5(xo)\ A (T, p)] < 1. If this is the case. then there
is an essentially unique blowing-up J « " such that (7. )<= (7", y)
for some u' (where p' is not necessarely unique).

Note that the set of multiplicity maps for a given local tree is an additive
(nonempty) semigroup. We make the following trivial observation:

L5. let F « 7" be a blowing-up of local trees with identification map
B: T—T'. Then, if 4’ is any multiplicity map for ', there is a unique g such
that (7, p)<=(J". i) (with the same f). The map u'+>pu so defined is a
homomorphism of semigroups: denote it by f*. In general, 8* is neither injective
nor surjective. In particular, B*(u,) = f*(u,)<> p,(a) = u,(a). for all principal
links a of 7.

This can be generalized as follows:

Lemma 1.6. If J, .-« ZF(k=>1), each multiplicity map p, for 7,
determines uniquely (ug. ... gy _,) such that (Fy. po) <---<=(F,. u). Moreover, if
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) is such that (Fo. po)<=--<(J;. W) and for some qeQ we have

qu(a) = p(a). all aeR). then q(po,... px-1) = (oo  Hi=1)-

Definition 1.7. Consider a sequence of local trees S: Z;+ -+« J, where
k is any nonnegative integer.

1.

Define Mul(S) to be the set of k + 1-tuples u = (yq..... ;) of multiplicity
maps such that (Fg. o) =---<=(F,. ). Then Mul(S) is a semigroup
and (1.6) says that the projection map Mul(S)—Mul(F,) is an
isomorphism.

Suppose that k > | and that 9, has one principal link a. An element
it = (Ho,.... ) of Mul(S) is said to satisfy the condition of (1.7.2) if the
following holds:

Let the euclidean algorithm of (ugla), uelxe)) be written as

Hold) = agpo + Py (where po = po(Xo))
Po=2p F P,

Ps-1 = AsPs-

Then (po(Xg)y...s Hi-1(X0)) = (Poeeer Po. Prenes p,) where each p; occurs
exactly a; times.

Lemma 1.8. Let S:Jy+ -« F, be a sequence of local trees such that
k > 1 and such that F, has one principal link. Then the following conditions are

equivalent
1. {v|F, has one principal link} = {0. k}.
2. all ueMul(S) satisfy the condition of (1.1.2).
3. some peMul(S) satisfies the condition of (1.7.2).

Remarks. e Il the conditions of (1.8) are met, ueMul(S) and if the

principal links of J, and 7, are a and a' respectively, then p,(a’) is the
g.c.d. of py(a) and po(x,).

If k> 1 and the conditions of (1.8) are met then the principal vertex of
J, is a branch point (for Z,_, has two principal links. while J, has
only one). So a branch point is created each time an euclidean algorithm
terminates.

Definition 1.9. 1. Given S: J, « --- «— , such that k > | and both ; and

F, have one principal link, define
F(8) = {jl0 < j < k. F; has one principal link and ., has two}.
H(S)={jl0 <j <k, 7;-, has two principal links and J; has one} and
I'=(# of branch points of Z,) — (# of branch points of F).
We see that |.#(S)| = |#(S)| =1 Write

F() = {owuuoidi-1} 0<jo<<ji-1.

H(S)=1h,..... h}. O<h < <h<k;
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then 0 <j, < h, <j, < <jj_,<h <k

..... )eMul(S) then the pair (S. u) determines the following
numbers (where x, is the root of any ; and q; is the principal link of
7., whenever i is such that J; has exactly one principal link):

[8S]
—
—
=
I
=
(=)

io = “fo(a}o)
i, = (a,) = u;.(a;), O<v<l

i = ﬂh,(an,)

{mv =p;(x), O0=gv<l
m=m(S, ) =mgy + -+ m_,.

Then ig>mg2i,>m, >2--2i,_,>m_, =i and, by (1.8), we have
ged (i,_y,m,.)=1i forv=1..1

Definition 1.10. Given an infinite sequence S: (J,. po) —(7,. u,)~—---. there
exists an i > 0 such that
e 7; has at most one principal link, and if it has onc then its multiplicity
is p;(xo):
e Vj>i J; has exactly one principal link. say a;, and pja;) = p(xo).
The least such i will be denoted k(S). Observe that if k= k(S) then
(Tx- ) = (Txs1s Prsr) =0

Relation to Geometry. See the last section of [3] for the definitions of strongy
normal crossings (s.n.c.) and of the dual graph 4(S, D) associated to a pair (S, D).

Definition 1.11. We consider a triple (P. D, S) where
1. S is a nonsingular projective surface,
2. DeDiv(S) has s.n.c. and ¥(S, D) is a (possibly empty) tree,
3. Pesupp(D)if D#0.
The local tree of (P, D.S)is F = (T, x¢, R. Q) where:
(a8) xo =P, T={P}u{D,.....D,}. where D,,...,D, are the distinct irreducible
components of D,
(b) R={{D;. D}li+#jand P¢D,nD;#@}u{{P, D}|PeD;}.
() Q(D,) = D? (self-intersection number in S).
The local tree of (P, D, S) is denoted 7 (P, D,S). If C is a nonzero cffective
divisor of S such that
4. Pesupp(C),
5. C and D have no irreducible component in common,
we definc the m-tree of (P, C, D.S) to be (¥, pn), where = F (P, D, S) and
p: R°U{x,} = N is as follows:
(d) ulxe) = u(P. C) (multiplicity of P on C),
© u({xq, D:}) = (C.Dy, (local intersection multiplicity at P). if {x,, D;}eR%. i.c.,
if PeD,.
Let €(P. D. S) denote the set of nonzero effective divisors C of S satisfying (4)
and (5). We note that it is a semigroup and that the map Ci— yu, determined
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by conditions (d-e). is a homomorphism of semigroups €(P. D. §) » Mul(J).

1.12 (Blowing-Up). Suppose (P. D, S) satisfies conditions (1-3) of (1.11) and
let F=F(P.D.S). Let n: §—S be the blowing-up of S at P. E=n"'(P)e
Div(S), let ~ mean “strict transform of...” and define D' = D+ EeDiv(S). 1If
P’ is a point of E then we may consider 7' =9 (P', D". S) and we clearly have
J « J'. where the identification map is the obvious one.

If Ce¥(P.D,S) is such that P'esupp(C) (i.e.. Ce%(P. D.S)), we may
consider the m-trees (7, p) of (P, C, D. §S) and (F, y') of (P'. C.D.§). We let
the reader convince himscif that

(T, ) — (T, i)
and that the following claims are true:
. (7. pw— (7. ) iff Ensupp(D)nsupp(C)< {P}:
2. (F.we— (T w) il Ensupp(C) = {P}.

Definition 1.13, Let (S, D) satisfy conditions (1-2) of (1.11) and let C be a
nonzero effective divisor of S satisfying condition (5). If P is a place of C, i.e..
a closed point of the nonsingular model of some irreducible component of C,
then the triple (P, C, S) determines an infinite sequence of monoidal transforma-
tions

So—— 8§, <8, — .-

where S, = S, P; = image of P in S;_, and 7, is the blowing-up of S;_, at P;. If
P,esupp(D) or D=0, we say that the 4-tuple (P.C,D.S) is as in (1.13), or
satisfies the conditions of (1.13). I that is the case. let C” be the strict transform
of C®=C in S; and let E,=n7'(P;); define D°= DeDiv(S,), D' = (strict
transform of D'™') + E;eDiv(§) (i = 1).

Then, for i > 0, (P;,,. C®, D'. S) satisfies conditions (1-5) of (1.11) and we
can consider its m-tree (J;, u;). By (1.12). we have

(Fos Ho) — (T, py) =— -

which we call the infinite sequence of m-trees of (P, C.D, S). We denote by
k=k(P,C.D.S) the intcger determined by this sequence, as defined in
(1.10). Observe that (7. u,) = (Fxs . te+1) < -+ and that, as far as the place P
is concerned, the desingularization process ends with S,_, « S,. What we mean,
here. is that k is the least integer i > 0 which satisfies:

P,,, belongs to exactly one irreducible component I of C, I is nonsingular
at Py, and (I'.D")p, , < 1.

For these reasons, the finite sequence

(Fo. Mo} — -+ — (Fx. H)
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is given special consideration: we call it the sequence of m-trees of (P, C, D. S),
and denote it by u(P, C, D. S). The sequence

Tye— - — T,

is called the sequence of local trees of (P, C. D, S).

Lemma 1.14. Let (P. C. D, S) be as in (1.13) and consider

u(P.C,D.S): (T po) — =+ — (Tx. )

Let the notation be as in (1.13) and assume k > 0.

1.

If supp(C*® + D*) = supp(B) for some BeDiv(S,) with s.n.c., then
(o o) ¥ - — (T W)

If C is the disjoint union of the nonsingular models of the irreducible
components of C, and if t: C —supp(C) is the canonical surjective set
map, then following are equivalent:

® (o o)== T )
L T-I(Pl) = {P}

If S\supp(C + D) has no loops at infinity (see [3], just before (5.19)), then
the following are equivalent:

o (o o)== (T, 1)
e only one irreducible component of C contains P,.

Proof. Immediate from (1.12).

Contraction of Local Trees. Given weZ. the symbol (w) will denote any
local tree which has two vertices and such that the principal vertex has weight
w. We will now study sequences

(@) = Toe— I,

of local trees such that J, contracts to some simple local tree, such as (w) or a
linear local tree. First, we define the necessary notions.

Definition 1.15. Let 9 =(T. xo. R, 2) be a local tree. We say that J is
a linear local tree if it has exactly one principal link and if the tree (T, R) is linear.

Definition 1.16. Let J = (T. x,, R, 2) be a local tree.

1.

A superfluous vertex of F is a vertex ee T\({x¢} UA5(x,)) which is linear
and which has weight — 1.

If e is a superfluous vertex of J then an elementary contraction of I
at e is a local tree 7' = (T’ x5, R, Q') together with a root-preserving
injective set map B: T’ — T such that, if we identify T’ with its image
in T, the following conditions hold:
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T' = T\{e}
o {(R\{ {e. x}IxeNp@DU{AF@). 1N =2
R\{{e. x}Ixe Hs(e)}. if |45 (e)] = 1.

Qx)+ 1. if xe V5 (e)

Q(x) = { .
0(x), if xe T\({xo. e} UAN5(e)).

In other words, an elementary contraction of 9 at ¢ can be obtained
as follows: first, forget that x, is the root and assign an arbitrary weight
to that vertex; then 9 becomes a weighted tree and e is a superfluous
vertex of that tree; blow-down 7 at e: forget the weight of x, and
remember that x4 is the root. The local tree so obtained (together with
the set map which came with the blowing-down) is an elementary
contraction of J at e. Note that the elementary contraction of J at ¢ is
essentially unique.

3. A contraction of J is a local tree ' = (T, xg, R’. ) together with a
set map f: T' — T, such that either § is an isomorphism or the following
condition holds:

There exist local trees Jg.....J, and maps B,,....0 (k > 1) such that
Fo=9F,9,=9",(F,, B) is an elementary contraction of JF;_, at some
superfluous vertex (1 <i<k), and f=B,¢---0p,.

In particular, we see that f is a root-preserving injective map and that
B restricts to a bijection of the sets of principal vertices (we say that the
two trees have the same principal vertices and principal links). A
contraction as above is denoted by ' <.F or J > J’. and we say
that J contracts to 9.
Since the set map T’ — T determined by a contraction 5’ < J allows
us to identify {xo} UR™® with {xo} UR®, we can compare multiplicity maps
for the two trees and define:

4. For m-trees (Z, pu) and (F. y). we define (T, )2 (T, )T > T
and u=y'.

Remark 1.17. We deliberately avoided the term “blowing-down™ for local
trees, to emphasize that the contraction is not the inverse operation of blowing-up
(for blowings-up happen at the root, while contractions occur away from the
root). Contractions do not affect data which are “local” to the root, such as
multiplicity maps. Indeed, if (P. C. D, §) satisfies conditions (1-5) of (1.11) and
(9, p) is the m-tree of that 4-tuple, and if E is an irreducible component of D
which is a rational curve and a superfluous vertex of J, then the elementary
contraction of & at E corresponds to the contraction of the curve E. More
precisely, by Castelnuovo’s criterion for contracting a curve, there is a monoidal
transformation p: S —» §’, where §' is a nonsingular projective surface and p(E)
is a point of §. Now let p,: Div(S)—» Div(§') be the homomorphism defined
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by p(E)=0 and p,(I')= p(I") (any curve I other than E). Let P' = p(P).
C' = p(C) and D’ = p,(D). then (P, C’, D', §) satisfies conditions (1-5) of (1.11)
and determines an m-tree (. ¢') such that (7, W)=>(7 ', i'). Indeed, by definition
of superfluous vertex. p is an isomorphism in a neighbourhood of P and the
multiplicities are not affected by the contraction of E.

The next fact is an easy consequence of the definitions; we omit its proof.

Lemma 1.18. Let 9. 5" and " be local trees with sets of vertices T. T’
and T" respectively. If ' < J and T" < T then the following are equivalent:
1. The maps T' > T and T" — T have the same image.
2. There exists an isomorphism ' = 3" that commutes with T'~ T and
T" = T i.e.. the 1wo coniractions are essentially the same.

Hence we can refer to a contraction process by specifying which vertices
disappear and which survive. In view of that, let us adopt the following language:

Let F = (T xo. R, ©2) be a local tree, v a vertex of J other than the root
and B a branch of 4 at » not containing the root. Suppose that
T 29 =(T', xg, R, ), where T'= T\B (after identification of T’ with its
image in T). Then we say that B is absorbed by v or that v absorbs B.

Definition 1.19. Let w, i. i’ be positive integers. A sequence of type (w. i. i)
is a finite sequence of positive integers, of the form

where [ > 1,

m,_, occurs w times (1 < v <),

i, occurs 2n, times, for some n eN (Il <v</—1),

i, occurs n, times. for some n,eN,

and such that the following conditions hold (where we define i, = i):

. =1
2. m,_, =n,i, 1<vl
3. iyy,=0om,_, +i, l1<v<gl

Remark. Consider a sequence of type (w, i, i’). with notation as above.
Then:

l. ig>me=iy>m 2--2h_(>m_, 2]

2. i,_y =(on, + )i, Igvl

3.0 ged(iyo,.m,_y) =i, I1<vgl

Lemma 1.20. Ler w be a positive integer and let

F i Tyge— - — T, (k = 0)
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be a sequence of local trees. such that Fy has one principal link a. Then the
following are equivalent:

1. 3u = (go..... g ) e Mul(F) such that (g(Xg)..... -1 (xo)) is a sequence of
type (w. pola), i), for some i'.

2. Vu=(g..... i) eMul(F). (polxp).....ux—1(x0)) is a sequence of type
(w. pola), i'), for some i'.

Moreover, if these equivalent conditions are met then k > w + 1, F, has one principal
link a,i' = u(a) (in the notation of (1) or (2)) and the principal vertex of 7, is
a branch point.

Proof. Follows from (1.6) and (1.8).

Definition 1.21. Let w be a positive integer and let &: F e -« F, be a
sequence of local trees. We say that & is of 1ype w if F, has one principal
link and if the equivalent conditions of (1.20) are met. When that is the case,
we have in particular k > @ + 1, F; has one principal vertex and that vertex is
a branch point of Z,.

Remarks. 1. If &#:Fy« -« T, is of type w. ue Mul (&) and if we write
(Hlxg)li=o0,. k-1 = (mg..... iy) according to (1.9), then this sequence satisfies
the conditions of (1.19), with the same m,’s and i,’s.

2. If & is as in (1), then the numbers n,.....n; of (1.19) are completely
determined by &. Indeed, if u, ¢'e Mul(¥) then by (1.6) there is a
nonzero rational number g such that g(ug,.... - 1) = (Ho.... . Hg—y)-

Definition 1.22. We are now going to define a notation that we will use
to avoid drawing pictures of local trees. We do this for practical reasons only
and we suggest that the reader reconstructs all pictures whenever these notations
are encountered. Let F be cither a local tree or a weighted tree with a root
(i.e.. a distinguished vertex), let p be the weight of the root (with p = if J is
a local tree) and suppose that, for each vertex v, the set of branches (of 7 at
v) that don’t contain the root has been totally ordered. In particular. let
B,.....8, (n>0) be the branches of F at the root. Then the tree J will be
denoted by the symbols ([Z7]). where [7] is the sequence of symbols defined by

p fn=0
[(T1=5 p. [#,] ifn=1
p. ([#.D),....([#.]) if n>1.

This makes sense, since each 4, is itself a weighted tree with a root (the root
being the neighbour of the root of 4). with an ordering for each appropriate
set of branches. etc. For instance, the local tree J :
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where ¢ is the root and &, # are branches at v. is denoted by
(*, — 1- (_ 2)7 (_ 2, - 25 ([‘d])’ (["JZ])))'

Abusing a bit, we write J =(x, — 1,(— 2). (— 2. = 2. ([«]). ([#]))). which
amounts to identify ¥ and ([J]): doing the same thing with &/ and %, i.c..
writing & = ([«/]) and # = ([#]), we get

T =(* - L(=2,(-2 -2 o, %)

Remark. If weN the local tree (w), defined before (1.15). is the same as
(*, w).

We are now ready to state the first significant result. in the theory of local
trees.

Theorem 1.23. Let w and k be positive integers and let . Ty« -+~ T, be
a sequence of local trees such that 7y = (w). ;. has one principal vertex and that
vertex is a branch point of J,. Then the following are equivalen::
(a) . contracts to a linear local tree,
(b) & is of type w.
Moreover. if these conditions hold then (see (1.9) for definition of jo.....J—1)

. Fjse... TG, contract to (w):
2. Fi=(, — L (—=n—1-=2...,—2), #). where * — 2" occurs w — 1 times,

n is the positive integer n, of definition (1.19), # is a branch that the
principal vertex (call it v) of J, can absorb and v gets weight O after
absorption of %

3. T Ty« Tiun is the (unique) sequence such that 9, .; has one
principal link (0 <i<n). then 7,,, = (w).

Since contractions do not change the number of principal links of a local
tree. it certainly makes sense to assume. in (1.23). that J, has one principal
vertex. However, the assumption that that vertex is a branch point is there only
to make the conclusion simpler; when we do have to cope with a sequence &
such that the principal vertex of Z; is not a branch point, (2.23) gives a description
of the nontrivial part of &, say Jy« -« 5, . and J,, «---« F, is trivial (ie..
every tree in it has one principal link).

Before we can prove the theorem, we need to introduce some notions and
state some facts. The proofs are elementary and most of them are omitted:
some can be found in [2].
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Definition 1.24. A local tree J is minimal if it has no superfluous vertex.

Lemma 1.25. Let F be a local tree that contracts to a linear local tree. If
v is a branch point of  then there is a branch of F at v, not containing the root,
which can be absorbed by v. If M is a minimal local tree such that # < T,
then M is a linear local tree.

Proof. Follows easily from (5.11) and (5.12) of [3].

Definition 1.26. A local tree J is universally minimal (write “J is UM")
if for every sequence

T =Fge——JTJ, (k20).

J, is minimal. Observe that if & is UM then it is minimal, and ' is UM
wherever F « 5.

Lemma 1.27. Let 9 be a local tree. Then the following are equivalent:
. F is UM;
2. 9 is minimal and every linear principal vertex of F has negative weight.

Lemma 1.28. Suppose that Ty« -« G, (k> 1) and that T3> ;. Then
there is a unique diagram

To e— T, — - — 3,
i v v
FToe— T — e}

such that the underlying diagram of set maps is commutative. (By “unique”, we
mean unique up to isomorphisms commuting with all maps.)

Remark. Whenever we have a commutative diagram as in (1.28), where the
first row is denoted by &% and the second by %', we have Mul(¥) = Mul(¥).

Lemma 1.29. Let Jy«---—3F, (k= 1) be such that J,_, has more than
one principal link and J, contracts to a linear local tree. 1f i <k then J; can’t
contract to a UM tree.

Proof. Llet i<k be such that 5, >4, where  is UM. Construct a
commutative diagram as in (1.28):

T — 3,

Vi v
U=WU— o — U,

Since %, is minimal, %, < 7, and Z, contracts to a linear local tree, (1.25) implies
that %, is linear. Then clearly %,_, is linear, which is absurd since &, ., has
more than one principal link and 9,_, = %, _,.

Definition 1.30. 1. A local tree J is a comb if at every vertex v there are
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at most two branches that don’t contain the root. and at most one of
them is not a linear branch. (A linear branch is a branch which contains
no branch point of J : this means more than being linear as a graph.) In
particular, the root is a linear vertex.

2. If 7 is a comb, a tooth of F is a linear branch & of 7. at either a
branch point or the root, such that &/ doesn’t contain the root. So
every branch point has at least one tooth (one branch point has two
teeth) and, if there are two principal links. the root has at least one tooth.

3. 7 is a comb with negative teeth if it is a comb such that
(a) at every branch point there is at least one tooth & such that

o< —1;
(b) if F has two principal vertices, then one of them, say v, has negative
weight and belongs to a tooth & such that &\ {v} < — 1.
(Recall that, if 4 is a weighted tree, ¥ < — | means that every vertex
of 4 has weight less than — 1))

Remark. Every linear local tree is a comb with negative teeth.

Lemma 1.31. Suppose that either 7 « JF' or § >2J'. If T is a comb
(resp. a comb with negative teeth) then so is I .

Proof of (1.23). By (1.28). one can consider a diagram of the form

‘9/-04_.3" 4——...4—"‘7/_,‘
\ \Y \

(W=FTge— T — - —T,.

Then a little argument (which we leave to the reader) shows that we may assume
that 7, = (w). We will prove that (a) implies (b), (1) and (2);: (2)=(3) and
(b) = (a) are easily verified.

Supposc that (a) holds, i.e., J, contracts to some linear local tree. Using
the notation of (1.9), we write

I =I(P) = {jos-erdi-1}
H =H(S)={h.....h)

where, clearly. 1 > 1 (for I is the number of branch points of Z,). We proceed
by induction on I

Case | = 1. Then the principal vertex v of & is the only branch point of
J,. Let L denote the principal vertex of F,. Since L is a free vertex of 7, it
is a free vertex of J,. Thus J, = (*, — |, o/, #) where o and # are linear
branches at v and L is in & (say). Since , contracts to a linear tree and since.
in 7, every vertex other than xg. v, L has weight less than — 1 we must have
B=(—-2,..,—-2, —1) by (1.25). Let n>0 be the number of vertices of .
Then one easily figures out that & begins with

To=(x, 0)e— (¥, (= 1), (@ — 1)) e— - e— (5, (= |, = 2,.... = 2).(0) = .
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and continues

Tpir = (=2, = (= L. = 1)) e— -

e e— (*,(—n, —2...., -2.(-1,=2....—-2 —1)
— (t, — 1, (— n— 1, - 2‘.... - 2)~ (_ 2,---~ - 2~ - l))= g-w+n = ‘71(

We leave it to the reader to check that & is of type w and that 4, has the
desired form (with, in particular, n = n, = n,).

Inductive step. Assume [>1. For 1 <v </ let e, be the branch point
created in J, _, < J,. In particular. ¢_, is the principal vertex of 7, ,
=(x, — |, o' &) where of' and #' are branches at ¢,_,. We have h, =k, so
e, is the principal vertex of 7, = (», — 1. &. #). where of, & are branches at ¢,
and @ = (b,....,b,.&, o', #') contains e,_, (more precisely, s > 0, ¢ is the weight
of ¢,_, in J, and the branches &', # at e,_, are identical to what they were
in 7, ).

Observe that, by (1.31) and the remark immediately before it, J; is a comb
with negative teeth (0 <i<k): let o' be the tooth of F, at e_,; with
&' < — 1. By (1.25), it follows that e,_, can absorb # in Z,, hence in 9, |
as well. Thus

F,,., contracts to a linear local tree.

Applying the inductive hypothesis to &,_,: Fo « --- « F,,_,, we conclude that it
is a sequence of type w, Jj,.....;,_, contract to (w) and that J,, _, contracts to
Fp ,=(* 0 —m—1,-2...—2). where “—2" occurs w—1 times and
m=n,_,. Construct the commutative diagram (1.28)

Gy, — o — T

\%4 \%

Let a=j,_,—h_,20. If a=0 then J, _,,, is UM by (1.27): since
h_y+1=j_;+ 1 <k (for 7}, _,,, has two principal vertices by definition of
ji—1). this contradicts (1.29). Hence x> 0. Note that

T = (=1 (=2....=2. =L —-m=1-2..-2),

where the first sequence of “ — 2" contains a terms and the second has w — 1
terms. That contracts to I} _ 4, =(*.(—1). (—lL,a—m—1, =2,..., —2)) which
can’t be UM by (1.29). By (1.27), that tree is not minimal, and we have
x=m. We conclude that F; =(. -1 -2, —2. -1, —-m—1 =2,
— 2). where there are a — | =m — 1 terms in the first sequence of “— 2", and
w—1 in the second. Hence that tree contracts to (w), and so does
J;,_,- Applying the inductive hypothesis (or the case I=1) to J;,_ « -« F,,
we see that it is of type w and that J; has the desired form. Since a =m =n,_,
and &,_, is of lype w, one sees that & is of type w. This completes the proof
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of (1.23).

2. Coordinate lines in A2

We regard A? as being equipped with a fixed coordinate system. In particular,
it makes sense to speak of the degree of a curve in A2. An open immersion
A? g P? is said to be standard if it doesn’t change the degrees of the curves:
the standard immersions form an equivalence class. (Two open immersions
A’ g P? are equivalent if they form a commutative diagram with some
automorphism of P2) Following several people. we adopt the following
terminology for lines in the affine plane.

Definition 2.1. Let C be a curve in A2,

1. C is a coordinate line if there is an automorphism ¢ of A? such that
¢(C) has degree one. Equivalently, the polynomial Fek[X, Y] deter-
mined by C is such that k[F, G] =k[X. Y] for some Gek[X. Y].

2. Cis a line if C=A" (abstractly). Equivalently. the polynomial F
determined by C is such that k[X. Y]/(F) is a polynomial algebra in
one indeterminate over k.

As is very well known (see [1]), all lines are coordinate lines if and only if

chark =0,

Definition 2.2. Let I be a curve in A? with one place P at infinity. We
say that I" is graph-theoretically linear if there is an open immersion A% g P?
with the following property:

If L=P\A? and Fy « ---« T, is the sequence of local trees of (P. I, L, P?)
then 7, contracts to a linear local tree.

Remarks. 1. Note that J, = (1), in (2.2). See (1.13) for the definition of
the sequence of local trees of (P, I, L, P?). Note that, in u(P, I, L, P?),
all blowings-up are of the third kind by (1.14.2).

2. It can be shown that if I" is graph-theoretically linear then all open
immersions A? g P? satisfy the condition of (2.2).

Proposition 2.3. Let I" be a curve in A%, with one place at infinity. Then
the following are equivalent:

1. I is graph-theoretically linear,

2. I is a coordinate line.

Proof. (2)=(1) is trivial: Choose an open immersion A2 g P2 such that
the closure in P2 of I" has degree one. Then k(P, I, L, P?) =0, i.e., 7, = I, = (1)
which is already a linear local tree. Hence I' is graph-theoretically linear.
(1)=(2) Let I" be graph-theoretically linear and let A2 5 P? be an open immersion
satisfying the condition of (2.2). Let P be the place of I at infinity and L = P?\ A?
the line at infinity. Then, as in (1.13), (P, I, L, P?) determines an infinite sequence
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of monoidal transformations and an infinite sequence of m-trees:
Alc, P2 = Sp — o e— S, — -
(Jo, o) = = (T}, ) == -+

where k = k(P, I', L, P?). By definition. J, contracts to a linear local tree. If
k=0 then (I L), =1 in P2, by definition of k; hence I"L=1. I' is a line in
P? and we are done. Assume k> 0. Then the hypothesis of (1.23) is satisfied
and, by the last assertion of it, we see that 7,,, > (1) for some positive integer
n. Since all blowings-up have centers i.n. S,\AZ, A2 is naturally embedded in
Sy+n and, in fact, S,,,\A?=supp(L**") and (., M+, is the m-tree of
(Pesnsy, FEM L**0 S, )-notation consistent with (1.13). By iterating the
argument of (1.17), we see that the contraction J,.,> (1) corresponds to a
birational morphism p: S,,, — S" which contracts all components of L**" except
Eyine Let P =p(Pyipsy). I''=p (r'**") and L = p (E,,,); then by (1.17) the
m-tree of (P'. I'", L', §’) is ((1), &'), where the multiplicity ¢’ of the principal link
of (1) is equal to the multiplicity p,,, of the principal link of ,,,. i.e., it is 1.
Hence (I"'.L')p. = 1 and since these two curves meet only at P, I'". L' = 1. Now
we have an embedding of A? in the nonsingular projective surface S', such that the
complement of A% is one curve L'. As is well known, §' must be a projective
plane. Since I".L'=1, I'' is a line in §' = P? and we are done.

Our characterization of coordinate lines can be stated in terms of the
multiplicity sequence at infinity.

Definition 2.4, Let I” be an affine plane curve with one place P at
infinity. Embed A2 in P? the standard way. As noted in (1.13). an infinite
sequence of monoidal transformations is uniquely determined,

P2 =55+ 8, 8§, e ...
Let P; denote the center of n;: S; - S;_, and I'? the strict transform on S; of
the closure in P2 of I. The sequence u(P;. I'®), u(P,, I'V).... is called the
multiplicity sequence of I' at infinity. That sequence is completely determined by
the “embedding” of I" in A?, i.e., is independent of the choice of an embedding
of A% in P?-as long as that embedding is “standard”.

Corollary 2.5. Let I" be a curve of degree d in A?, with one place at
infinity. Let (ro, ry,...) be the multiplicity sequence of I' at infinity. Then the
Jollowing are equivalent:

1. I is a coordinate line.
2. Either d =1 or there is a positive integer k such that (rg....,ry_,) is a
sequence of type (1, d. 1) (observe that, in the latter case, d > | and r; =1

if j=k).
Proof. Clear from remark (2) after (2.2). together with (1.23).
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3. Weak sequences

Recall that (1.23) is concerned with sequences of local trees, some members of
which are contractible to linear local trees. This section is devoted to similar
considerations, but the sequences of local trees are of a different type.

A weighted tree with a root is a pair (%, v) where % is a weighted tree and
vy is a vertex of ¥4, called the root.

Definition 3.1. Let F be a local tree, and ¥ a weighted tree with a root v,.

1. If v a vertex of 4 other than the root then 77 denotes the local iree
obtained by taking the disjoint union of 4 and % and linking ¢ to
ve. (For instance, let = (=, 1, 2), let v be the principal vertex of J
and let % = (0, — 1). where the notation (1.22) is used. Then F*? =
(*, 1, (0. — 1), (2)).) If ¢ consists of one vertex of weight xeZ, we also
write I =7"% If 4,.....9, are weighted trees with roots, define
T Io= (o (F 9.9 Then 9,...., %, are branches of 7%+ %»
at v, called the extra branches. Clearly,

(@ if T — T then FoTmTr  Frodudy,
(b) if F > and v is in J' then F"FrFr > FoFiFp,

2. T [¥] denotes the weighted tree obtained by taking the disjoint union
of F and ¥ and identifying v, with the root of 4. (For instance, 7 [¥4]
=[-=1.0,1,2] if & and ¥ arc as above and if we use the notation of
[3]. (5.13) for linear weighted trees.) If % consists of one vertex of weight
aeZ, we also write 7 [a] = J [¥]. We have the following properties:

(@) if 9 =7 then J[¥] contracts to T '[¥4];

(b) if I «T' and [Nz(xp)]l<|Ay5(xp)|=1 then T [4]~T'[9].
where ¢’ is obtained from % by decreasing by 1 the weight of the
root. In particular, F[a] ~ T '[a— 1], aeZ.

Definition 3.2. Given local trees F7, . the symblol & «— " indicates that
we have chosen a map £, from the set of vertices of F to that of J', satisfying
the following condition:

There exists a blowing-up F « J, such that, if e is the vertex created in
that blowing-up, then F* = F %1% for some 9,....,%,(p > 1). and B is
the composition of the identification map of T « J, with the inclusion of

T, in T
Definition 3.3. A sequence ....,J, of local trees (with sets of vertices
Ty..... T, respectively) is called a weak sequence if k > 1. J, has one principal
link and if, for i = 1,...,k, there exists (and we have chosen) a map B;: T,_, = T;

1
such that either J;_, « J; or J;_, < J;. The sequence is said to be weak ar
g, if i\ & T,
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We now explain how the notion of weak sequence is related to Geometry.

Definition 3.4. Let S be a nonsingular projective surface, let D #0 be a
reduced effective divisor of § and P a place of D (i.e., a closed point of the
nonsingular model of some irreducible component of D). We say that D can be
desingularized by blowing-up at P if the following condition holds:

Let S =8y S, « -+ be the infinite sequence of monoidal transformations
determined by (P, D. S). let s;eS;_, be the center of S;_,«S; and let
F;eDiv(S)) be the corresponding exceptional curve. For G eDiv(S). define

{G° = GeDiv(S,).
G' = (strict transform of G'~') + F;eDiv(S). i> 1.

Then D' has s.n.c., for some i.

Observe that, by Lemma (5.19) of [3]. if S\supp(D)= A? then D can be
desingularized by blowing-up at some place P of D.

Definition 3.5. We say that a 4-tuple (P, C, L. S) satisfies the conditions of
(3.5 if

e S is a nonsingular projective surface;

e C, L are connected, effective divisors of S such that C + L is reduced, L
has s.n.c. but C + L doesn't;

e the members of ¥[U] are trees, where U = S\supp(C + L):

e Pisaplace of C and C + L can be desingularized by blowing-up at P;

e if L#0 then the image of P on S belongs to supp(L)nsupp(C).

Now suppose (P, C, L, S) satisfies the conditions of (3.5), let D = C + L and
consider the sequence of monoidal transformations S = S, « S, « --- determined
by (P, D, S), with notations s;, F;, G' as in (3.4). Let Jy+ .-« J, be the
sequence of local trees of (P,C,L,S). The notion of weak sequence of
(P. C. L, S), which we will soon define, is motivated by the question

How can we obtain the weighted tree %(S;. D*) from the local tree 7, ?

To make the notation simpler, let’s denote a divisor of some S; and its strict
transform in S;(j > i) by the same symbol. If only one irreducible component
C, of C contains s, then the above question has a simple answer:
%4(Sy. DY) = F,[9(S:. C)], where 4(S,. C) is regarded as a weighted tree with a
root, the root being C,. From now-on, assume that s, belongs to more than
one irreducible component of C-this is case that requires the notion of weak
sequence. Write C = 2T, e Div(S), where each I', is a connected, reduced effective
divisor having exactly one irreducible component C, containing s,. Observe that
there is a unique v, such that s,,,eC,. If v# v, then for some i<k the
blowing-up S;_, « S; “gets C, away from P”, i.e..
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s;eC, in §;_,
si+1 €€, in §;.

Let a, < --- <, be the indices i such that S;_, « §; gets some C,’s away from
P; for r=1.,.... m, say that S, _, < S, gets C, ,...,C,  away from P. Then
we have for each r=1,..., m:

o I' I>*=C, F,=1(<j<p);
o I ... I, meet F, at distinct points and s, ,, is not one of those
points:

e (I,,+--+1,,)+L"eDiv(S,) has s.n.c.

Let 4,,=9(S,,.T,,) and 4, =9(S,. I',) and regard C,, (resp. C,) as the root
of 4,; (resp. 9,). Definc

7 f0<i<a,,
. (- (T Fe T Frpy N Ir e if either 1 <7 <m and
W = ‘
A <I1<A,, 0r
r=mand a, <i<k
Then #5..... %, is a weak sequence; it is weak at %, ..... #,,.. Moreover, the

question raised after (3.5) is answered by %(S,. D*) = #;[%4,].

Definition 3.6. Let (P. C, L, S) be a 4-tuple which satisfies the conditions of
(3.5). The weak sequence of (P, C.L,S) is the sequence #j....,#;. as defined
in the above discussion.

To be precise, if only one irreducible component of C contains s, (i.e., m = 0)
we define the weak sequence of (P, C. L, S) by (#5,..... W) =(F,..... 7).

In any case. since we start with a DeDiv(S) which doesn’t have s.n.c.. we
have k > 0. D*~! doesn’t have s.n.c. and, by (5.19) of [3]. F, is a branch point
of 4(S,. DY, i.e.,

the principal vertex of W, is a branch point.

Let P,; denote the place of C, , which corresponds to the point C, nF, in

S,,. Now fix je{l.....p,} and let & =7 (P,;. L', §,)): note that J has only
one principal link. Clearly, the sequence #, «—---— #, _, « J consists of the
sequence of local trees of (P,;, C,,,. L, S). followed by a (possibly empty) sequence
of blowings-up in which every tree has exactly one principal link. Thus 7 carries
some information about the curve C, , and its embedding in S. On the other

hand. 7 is related to the weak sequence #4..... #, in the following manner:

A

|

Wy o — W, _, P W, W,
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and #,[9,1e%[U] by above. II, for instance. U = A2, then #,[%9,] ~ [1] and
it might be possible to say something about 7, hence about C,,,- by investigating
the graph-theoretic situation described by the above diagram. These ideas. and
in particular the question whether " is contractible to a linear local tree. underly
the rest of this section—which is purely graph-theoretic. Actual applications to
geometry are given in the last section.

Theorem 3.7. Let #j..... W, be a weak sequence of local irees, weak at W,
and possibly at other places. Let Wy~ F be the blowing-up such that J has
one principal link. Assume that F does not contract 10 a linear local tree and
that there exist a linear weighted tree ¥ and a weighied tree with a root 4 such that

#.[9]1~ 2.

Then every extra branch created in 1//{,4L W, can be absorbed by the vertex to
which it is attached, the principal vertex of J is a branch point, I contracts to
a local tree whose only branch point is its principal vertex and. given a weighted
iree 9" with a root, 7 [9'] is equivalent 10 a linear weighted tree iff 4 can be
absorbed by the principal vertex of 7.

Moreover. if (£> < | then Wy can't contract to a local tree containing a
nonprincipal vertex of nonnegative weight.
(The nonnegative integer (%) is defined in (5.8) of [3].)

Proof. Suppose the principal vertex of #; is not a branch point. Then
k—12>1, #,_, has one principal link and, if 4 is the weighted tree with a
root obtained from % by increasing by 1 the weight of the root, then
We-[9] ~ % [9] (for #,_, « #;). Hence it’s enough to prove the theorem
for the weak sequence #j..... W,-, and #y,«< .9, i.e., k can be decreased.
Therefore we may assume that

(*) the principal vertex of W, is a branch point (of weight — 1); consequently, it
survives to any contraction of Wi[%] to a linear weighted tree.

Now let’s prove the last assertion of the theorem. Supposc #y > #7;. for some
local tree #7, having a nonprincipal vertex of nonnegative weight. Observe that,
by the two assertions included in the first part of (3.1), (1.28) can be generalised
to weak sequences in such a way that the upper sequence is weak at some tree
iff the lower sequence is weak at the corresponding tree. So we may form the
“commutative diagram”

Woy —— W, W,
\4 \4 \
Woe—— W H.

Thus #7; has a vertex v of nonnegative weight, such that v is not a neighbour
of the principal vertex—call it u. Since u has been created in the blowing-up
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involved in the “passage” from #7;_, to # 7, it has weight — 1. So its weight
is not increased by the contraction %, > %", and it follows from (*) that u is a
branch point of #',. Since ¥ [¥%] ~ #,[¥%] ~ &¥. u can absorb a branch of
“[9] by (5.11) of [3]; that branch doesn’t contain ¢ (for v has nonnegative

weight) so #°,[¥4] contracts to a weighted tree ¢* which contains vertices u, v with
nonnegative weights and not neighbours of each other. By [3], (5.9),
1 <{%*)={%) and the last assertion is proved—and so is (3.8). below.

The assertion about .7 [¥¢'] is an immediate consequence of the preceding one.

Let #;,..... Wi 1 =iy <--<i;<k be the trees at which the sequence is
weak. For the rest of the proof. we proceed by induction on g. The case g =1
will be proved after the

Inductive Step. Suppose g > 1 and let #;,_, — 7' be the blowing-up such
that 7 has one principal link. We claim that F'[— 1] is equivalent to a linear
tree. Indeed, this is clear if 9 contracts to a linear local tree: if ' doesn’t
contract to a linear local tree, the claim follows from the inductive hypothesis
applied to #;,_, < 7" and the weak sequence % _,, ¥,.....#,. Then the
inductive step follows by applying the inductive hypothesis to #, « 4 and the
weak sequence #5.....%,_,. 9"

Case g =1. If J has a superfluous vertex u that is not a neighbour of the
principal vertex, then u is a superfluous vertex of #,. Let #7; be the elementary
contraction of #, at 1« and form the commutative diagram:

T — Wy —— W) — . — #,
Y, v v/ v
T s W W — e — W

Since 7 doesn’t contract to a linear local tree and #,[9] ~ #,[%]. it's enough
to prove this case for the weak sequence #7....,#7, and ¥ (<5 '. In other
words, we may assume that

(**) all superfluous vertices of J are neighbours of the principal vertex.

Consider the blowings-up

such that if e is the vertex created in 7, « 4, then for some 4,.....%, (p=1)
we have %= J 9% (i=1,....k). Before we continue the proof. let us state
a definition and a lemma:

Definition. Let 9 =(T. x, R, Q) and 7; = (T,, x;. R;, ) (i = 0. 1} be local
trees and suppose that J has one principal link and that § - J,« 7,. Let
e (resp. ¢) be the vertex created in J,« J, (resp. J,« J). We define an
injective set map T\{x} — T, by
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{e' — e,

t—s B, (BT, e T\{¢'. x},

where f;: Ty~ T, and f: To — T are the identification maps. That map should
be thought of as a natural embedding of F in 7, (or in F57%, for arbitrary
G %,). Observe that the root of F is not embedded in these trees.

Lemma. Consider local trees J — Jy«— F,, where I has one principal
link. Let e be vertex created in Iy~ F,, let 4,..... 4, be weighted trees with
roots and embed I in W, = T 3% % as in the above definition. Let b be a
vertex of J, other than the root; then b has same weight in %, as in . Let
By,....8, (n20) be the branches of F at b, not containing the root. Then the
JSollowing hold:

L. If b is not the principal vertex of J then the branches of %, at b, not
containing the root, are #,. ..., #,. W, has one more branch 8, at b: B,
contains the root, all principal vertices. the extra branches %,.....%, and
possibly other vertices.

2. If b is the principal vertex of J then b is just e in W}, so 4,,...,9, are
branches of W, at b. Moreover:

(@) If #, has one principal link then its other branches at b, not containing
the root, are #,,...,8,. and W, has one more branch #, at b: B,
is just the root.

(b) If #, has two principal links then its other branches at b, not

containing the root. are #B,....B,_, (if B,.....B, are suitably
labelled); W\ has one more branch ®, at b: #, consists of the root
and #,.

We now return to the proof of (3.7). Since F doesn't contract to a linear
local tree, it is not a linear local tree; so J must have a branch point. Let b
be a branch point of 4, and let #,....,8, (n > 2) be the branches of F at b,
not containing the root. Embed & in #, as in the above definition.

If b is not the principal vertex of F then by the above lemma the branches
of i at b are #,.....2, and #,, where #, contains. in particular. the principal
vertex of ¥,. Since #,[%] contracts to a linear weighted tree, b must “absorb™
n—1 of the n+ 1 branches (of #,[%9] at b) so by () it must absorb some
#;. This is impossible, because by (+s) #, contains no superfluous vertices {for
b is not the principal vertex of J7).

So. not only does & contract to a local tree whose only branch point is
its principal vertex, but 4 itself is such a tree (this is because of assumption
(«+)). Now let b be the principal vertex of J: then #,..... A, are linear
branches. To finish the proof. there are two cases to consider-and in both cases
we have b=-e in W, (i > 1).

Casc 1. #] has one principal link.

By the above lemma, the branches of #; at b are #,,...,%,. 9,..... 9, and &,
where %, contains the root of ¥} (but #, may not contain the principal vertex
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of %, since b might be that vertex). For each i. if b can absorb %, in #, then
b can absorb %, in J. Since J doesn't contract to a linear local tree, at least
two #;s can't be absorbed (in &, hence in #,[4]). Thus b must absorb every
other branch (in #,[¥]) and, in particular. 4,....,%,.
Case 2. #, has two principal links.

By the above lemma, if #,,....48, are suitably labelled then the branches of #;
atbare #,,....%8,-,.%,.,.... 9, and #, where, now, #, does contain the principal
vertex of #, (because #, has two principal links and #, has only one = k > |
and b is distinct from the principal vertex of #;). By (), b can’t absorb
#,[%]. Hence at most one branch in #,..... B,-1.%,,....,%, can’t be absorbed
by b. Since F doesn't contract to a linear local tree, some #,(i <n) can't be
absorbed, so b absorbs ¥,,....%,.

We point out the following fact, which was established in the above proof.

Lemma 3.8. Let #,...., W, be a weak sequence such that the principal vertex
of W, is u branch point. If there exists a weighted tree with a root % such that
W,.[%] is equivalent to a linear weighted tree £ with (&) < 1, then no W; with
i < k can contract to a local tree having a nonprincipal vertex of nonnegative weight.

Theorem 3.9. Ler w. k be positive integers and let
STy e— - — T,

be such that Iy = (w), I, has one principal link and its principal vertex is a branch
point. Suppose that F, does not contract to a linear local tree and that there
exist a linear weighted tree & and a weighted tree with a root 4 such that
F.[%] ~ &. Finally, suppose that J,_, can’t contract 10 a local tree having a
nonprincipal vertex of nonnegative weight (and note that by (3.8) this condition
holds whenever (&) < 1).
Then J, contracts to a local tree whose only branch point is its principal
vertex and 9 can be absorbed by the principal vertex of 7.
Let u = (po..... ) be the unique element of Mul(¥) such that p(a,) = 1. where a;
is the principal link of JF; whenever J; has only one principal link. and write
i=polag) and r; = pj(xo). 0 < j < k. Define integers w and p by
k-1 k=1
w— Y rt=-1 and p—zr—’u=0.
j=0 i=0 2
Then the following conditions hold, where we use the notations of (1.9) determined
by & and p:
(a) If ged(i,rg) =1 (ie., I = 1) then

(i—Dlro=1)

w=irg—1 and p= 5

Moreover, if £ =[1] then w>2, i=w— 1, rg =1 and the principal veriex
of T, gets weight O after absorption of 4.
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(b) Ifged(i.rg) # 1 (i.e. 1> 1) then %: Ty -« T, is of type w, where h = h_;

thus n,_, = m,_,/i,_, is a positive integer. Writing 6 = j,_, — h 2 0, we have
n-, =96 and
h-1
P—w=@-0Y ri+[on.,+1-06)i}, —i_ m_, + 1L
=0

2
(l +—>i+2p—w—2= n_y—0+2/w)ij—y —m_,.
)

Moreover, if & =[1] then nj_ =8 w>2 i,.,=w—1, m_,=1 and the
principal vertex of J, gets weight 0 after absorption of 4.

) fw<2or X=[1]or J;_, 2w then

2
<l+—)i+2p—w—2>0.
w

Before we prove (3.9) we state some numerical lemmas, the verification of
which we leave to the reader. But first, let us introduce the notation

x(x—1)

S =22

R xelZ.

Lemma 3.10. Let i > py = i' > 0 be integers such that ged (i, po) = i'. If the
corresponding euclidean algorithm is written as

i=0appot+ Py
Po=21P1+ P2

poor = 2,0,  (where p,=1),
then agpl + - + a,p? = ipy and agpy + -+ agp, =i+ po— 1.

Together with (1.8), this gives

Corollary 3.11. Let (Fy, po) =< (Fs. w) (k 2 1) be such that 7, has one
principal link iff ve{0, k}. Let a (resp.d’) be the principal link of F, (resp. A
and write i = po(a), i’ = u(a). Let r,=p,(xo). 0<v<k— 1 Then

k-1 k-1 kol iro—i—ro+7V
Yri=irg, 3 rj=itro—i" and Zf(f;)=—_2—'
j=o i=0 j=o

Lemma 3.12. Let w, i, i’ be positive integers and let (ry,....7,—,) = (Mq..... i)
be a sequence of type (w. i, i'), with notation as in (1.19). If m=mg +---+ m_,.
then

. i=wm+1.
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k—~1
2. Yr=@+2m-—m_,,
j=0

k-1
3. P=w ) rf+(on+ 1)i?,
i=0

k-1
4 fli-N=0Y fir)+flom+ (©n + )fE) - i + 1.
i=0

Proof of (3.9). Let the notations of (1.9) be in force, i.e., we consider
F(L) = {orondi=r}. H(F)={h,.....h}, and the numbers iy.....i; and my, ...,
my_,. For 1 <v </ let e, be the branch point created in 7, _, « J,..

As in (1.23), we may assume that 9, = (w). Then J, is a comb with negative
teeth, 0 <v<k by (1.31). Also, 7,=(*, — |, of, B) where o/, # are the
branches at e;, not containing the root, and ./ < — 1 is a linear branch. So
the branches of Z,[¥] at e, are &, # and 4. Now e, can't absorb & < — 1,
and e, can't absorb # (for g, doesn't contract to a linear local tree). However.
T [9] ~ & so e, must absorb some branch, in Z,[¥4], by (5.11) of [3]. Hence
e, absorbs 4.

If I =1 then J, is already a local trec whose only branch point is its principal
vertex. If I > 1, let's prove that J, contracts to such a local trec. J, has three
branches at e,_,, say &', #’ and #, where o' < — 1 is a linear branch and %,
contains, in particular, ¢, which is a branch point of weight — 1: hence e,_,
can absorb neither &' nor #,[¥] in Z[¥9]). Since F,[¥] contracts to a linear
tree. ¢;_, must absorb one of the three branches. So it absorbs # and J,
contracts as specified.

Before we prove that conditions (a)—(c) hold, let us explain why /=1 is
cquivalent to ged(i, ro) = 1, as asserted in (a) and (b). We claim that 4, has
two principal links. If not, then J, = (=, — |, w — 1) has a nonprincipal vertex
with nonnegative weight, and so do 4,...., Fy-1. so one of the hypotheses of
the theorem is violated. Hence:

(1) 9, has two principal links.

Clearly, J,_, has two principal links. since the principal vertex e, of 4, is a
branch point. Thus it is clear that | =1 is equivalent to: J, has one principal
link iff ve{0, k}, and by (1.8). I = 1 <>ged (i, ro) = p(a,) = 1.

ConpiTiON (a). The two equations follow immediately from (3.11). The
other assertions follow from the proof of condition (b), from (15) to the end:
Put I =1 and observe that &, = 9, = (w), i.e.. the two rows of diagram (15)
are the same,.

ConDITION (b). Suppose !> 1. Consider the integer h=h,_, >0: the
branch point e,_,, which can absorb the branch # of Z,. was created in
Th-1+< T, in fact, F,=(+, — 1, ' &), so & can be absorbed in 7, as
well. Hence
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(2) I, contracts 1o a linear local tree.
So we consider the sequence %;: (w) = Fy « -« F,. By (1.23),

(3) Lrisof ype w, F,=(s, — 1,(—n—1 —2,...,—-2), &) where n = n,_, and
where * — 27 occurs w — | times, and the absorption of # increases by 1 the
weight of e,_,.

Observe that p,(a,) = i,., by definition. By (3),
@) (ror.miy) is of type (@, i iiy). _
Applying (3.12) to ¥, we deduce (where m =mg + --- + m,_,):

h—1
w Y r}+[wn+ 1]i,.
i=o

(%) i?

h—1
© fi-N=w) Su) +flwym+ [on+ 111G ) =i, + 1,
j=0

h-1
(7) er=(w+2)m_m,_2.
i=0

8) i=om+i_,.
By definition of j,_, and h, J; has one principal link whenever h <j <j,_,, so
] h<j<jioy=ry=i_,.
If we define 6 =j,_, — h>0, then
T, = =1 =2, -2, (—n—-1,.-2,....- 2. @),

where the first sequence of " — 2" contains & terms and the second w — 1
terms. So J,_, contracts to the following linear local tree:

L., =*x06-n—-1 -2, -2).

Ji-a
where “ — 2” occurs w — 1 times. We claim that 6 <n. In fact, if 6 > n then
£, has a nonprincipal vertex with nonnegative weight. Since by definition
ji-1 <k, one can consider the commutative diagram (1.28) determined by
Ly ST, +-«F,_, and deduce that F,_, contracts to a local tree which

contains a nonprincipal vertex with nonnegative weight. This contradicts one of
the assumptions. So,

(10) é<n.

On the other hand, we have u;,_ (xo) =m,_, and u; _ (a;_,) =i, by definition,

Ji-1

and (i,_,. m_;) =i =1 by our choice of ue Mul(¥). By (3.11),

k-1

(ll) z rf=i,_1m,_1.

i=jt-1
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k-1

(12 Y or=hytmoy =
J=i-
k- s _
(13) . Zl f(’j) - (i 1)(2'"1—1 1)'
J=ii-1

We can now check that the two equations of condition (b) hold.

k=1 Jfi-a=1 k—1
2—w=@-YrH- Y rf- Y rf+1
j=o i=h j=jt-1
h-1
=(@—-1)Y r}+(on+ )i, = 8if-, — i ymy_y + 1.
i=0
by (5), 9) and (11). So
h-1
(14) P—w=@-D)Y rP+(@n+1-=08)it, —i—ym_, + 1.
=0

which is the first equation, since n = n,_, by definition-see (3). For the second
equation, observe that
Ji-1-1

h-1 k-1
f(i—l)—p=(f(i—1)—j§of(r,-))— ,; )y - Y fir)

i=ji-a

h-1

=(w-1) Z Sr) + flwym + (@n + 1 —=08)f(ij-1) —i1-4

j=o

_(il—l - Dlm_, — 1)
2

+1

by (6), (9) and (13). By multiplying that equation by 2 we obtain

h-1 h—1
2=3i+2-2p=(@-DYyri—(@-1) ri+2f(w)m
j=0 =0

+lon+ 1 =0, — i) =20, +2—i_ymy_,
+i-y+moy — 1

k=1
=@i2-w—(w=-1 ) rj+2f(0)m
i=o
—(u)n+2—5)i,_1 +ml-l
by (14). Therefore,
h=1
3i+2p—w—-2=(@—-1) ) r;—2f(@)m + (@wn + 2 — &)ij_, —m_,
j=o

=(w - DN{w+2)m—m_,] —olw-—1)m
+(won+2-98i_,—m_,
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=2 —m—(0—Dm_; +(wn+2—08)ij_y —m_,
=2(w—1)m—(w— 1)m_, + (@ — Oni;_,
+(n+2—=08)i_y—m_,
=2@—-m+Mn+2-98i_,—m_,
by (7) and the fact that —m,_, + ni_; =0, which follows from (4). Since
m=(i—i_,)/o by (8), we find

1
3i+2P_“'_2=2( )(i—il—l)+(n+2_5)il-l_ml'lv

1— =
w

from which the desired equation follows.
Next, consider the diagram

i, —
\ \4

—_ * € " *
gjl-l —g—jl—l '7-&‘

If 6 < n then, by the description of .#;,_, given above, between (9) and (10),
we conclude that ¥ = (x, — |, &/*, %*) where #* =9/ < — | and #* < — 1
are linear branches. Recall that the principal vertex of 4, can absorb % (in
F.[4]). Thus the principal vertex of ¥ can absorb ¢ (in ¥[¥4]) and

&L ~ T [F] ~ Ti[9] ~ [A* o, B*],

where 4* and B* are nonempty sequences of integers less than — | and a is
some nonnegative integer. So % 4 [1] by, say, (5.16) of [3]. Thus £ ~ [1]
= § =n, as asserted.

Now assume that & ~ [1]. Then é =n and, by our knowledge of &, .

J,_., 2%, _,2(w). Consider the local tree J defined by

h-1
'9-11-1 - ‘9;
(15) \ v/

In that diagram, each tree in the lower row has the same number of principal
links as the corresponding tree in the upper row: hence, in the lower row, only
(w) and J have one principal link (all others have two). Thus F = (s, — 1, &,
(by.... b,, w)), where & < — 1 is a linear branch, o’ < w is the weight of the
vertex which was the principal vertex of (w). v>=0 and b, < -1 for
1 <i<v. Since J, doesn't contract to a linear tree, J doesn’t contract to a
linear tree, i.e.,

(16) o # —1 or 3 b, < — 2.

In the notation of (1.22), write o =(a,,..., a,). Since ¢, absorbs ¥, .7 [¥]
contracts to the linear weighted tree
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H = [ag,....0q0, & by, b, w]l,

where « > 0. Now # ~ 7 [4] ~ 7,[¥4] ~ [1]. so # must be minimal. Indeed,
if ¥ is not minimal then w' = — 1 and by (16) it contracts to a minimal weighted
tree ' = [a,....,2,, o by.....b;_y, by + 1] which has more than two vertices but
only one nonnegative weight. Such a tree can’t be equivalent to [1]. again by
[3]. (5.16).

So # is minimal. Since || > 2, (5.16) of [3] implies that v =0, «a = 0 and
@ > 0. Since v =0, every vertex of o has weight — 2 by definition of &, thus
w =1 by [3]. (5.16) again. Now v =0 implies that i,_, is a multiple of m,_,,
because of the relation (see (1.8)) between the euclidean algorithm of (i;_,, m_,)
and the sequence of multiplicities of the roots in (). y;,_,)<=---<=(7, w). Thus
m_,=i=1and 1= =w—i._,. Since i,_, >m,_, by definition, we get
w=1+1i_,>2 This proves condition (b). (Note that the principal vertex of
J, gets weight a = 0 after absorption of 4.)

ConDITION (c). If ged(i, rg) = 1 then

2
<1+~)i+2p—w—2=3i—r0

w w

2
by condition (a). Clearly, =i —rq>0if w <2;if & =[1] then Ei —ro=1— 3
) ) 0]

> 0 by condition (a) again. Note that j,_, =j, =0, so it is not possible that
T, #(w).

Jr-1

Now suppose that ged(i, ro) # 1. By condition (b), it is enough to prove

2 .. . .
(n,_1 -0+ 5) ij-y —m;_, > 0. This is certainly the case if w <2 (for n_,—296

2 .
2521) By (b), if £ =[1] then d=n_,.m_,=1, ij_,=w—1 and

2 2
<n1—1_6+;)i1_1""nl_.1=5(w—l)—1=1'—%>0.

By our knowledge of #;,_ . it is clear that the condition 7}, | 2 (w) is equivalent
to é < n,_,, which implies

2.
(n,_l -0 +(; h_y—m_,>0_,—m_,>0.

This completes the proof of the theorem.
Corollary 3.13. Let ¥ : Ty« -« T, satisfy the hypothesis of theorem (3.9)

for some @ and assume, in addition, that

ged(iro)=1 or <2 or Z=[1] or T;_ #w).

J
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Then no triple (d, u, v) of nonnegative numbers can satisfy one of the following
two conditions:
(@ u+v<d i=d w=d>—u* -2,

=(d—1)(d—2)_u(u—l)_v(v—1)‘

and
P 2 2 2

b) v+v+ro<d, i=d+(w—)rg. w=d*>—u? —v? +(w— 1)ri.

___(d— 1)(d —2)_ u(u — 1) 3 viv — 1) - ])ro(ro— l).

and
P 2 2 2 )2

Proof. Assume that ged(i, rg)=1. Then by (3.9), w=iro—1 and p=(i—1)
(ro — 1)/2. 1f (d. u, v) satisfies (a). then d?> —u?> —v? =dry — 1 and d* — 3d + 2
—uw? —v*4+u+v=(d— 1)(ro—1). These two equations imply that (d — u — v)
4+ (d—ry) =0, whence ry = d =i which is absurd. (Note that whenever the
hypothesis of (3.9) is satisfied we have i> r,, because of (1) in the proof of
(3.9).) If (d, u. v) satisfies (b), then d? —u? — v? + (0 — )rd =dry + (@ — )i — 1
and d—-NDd~-2)—uu—D—viw—1D)+(w—-Drolro—1=d+(w—1)ro—1)
(ro — 1). From these two equations, we find (d —u—v —rg)+d =0, whence
d < 0, contradiction. That proves the case ged(i, ro) = 1.

Now assume that ged(i.rg) #1. Thenw<2or £ =[1]or F;_, #(w). so
condition (c) of theorem (3.9) says that B > 0, where we define

2
A=it—w-1 B=<l+—>i+2p—w—2.
w

Now a little calculation gives

) : {uz +v2—1, if (a) holds,
2@ - o+ (@ —1)(@—-2)r2+u* + 02— 1, if(b) holds,
@ B (—24+2/w)d +u+v, if (a) holds,
(=24 2/w)d—re) +u+v, if (b) holds.
2
Ifw>2then —2+—< — 1, s0
w
0<BS{—d+u+v$0. l:f(a)holds.
—d—ro)+tu+rv<0 if (b) holds,

and this is absurd. 1If w =1 then, by (3.9),
A=y + 1 =08k, — i ymoy =i (o + 1 =8)ipoy —m_y) =xy
B=(m_, =6+, —m_y =i+, =0+ Di_, —m_, =x+y

where we define x=14_, and y=(m_, — 6+ 1)i,-; —m_,. Thus x and y are
integers. x > 2 and y > 1. Whence B> — 24 = x> + y> > 5. On the other hand,
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we find from (1) and (2) that if either (a) or (b) holds then B? — 24 =2 — (u — v)?
< 2, which is absurd.

Corollary 3.14. Let F: Ty« -« F, satisfy the hypothesis of theorem (3.9)
Jfor some w. If there exists a triple (d. u. v) of nonnegative integers satisfyving
d>v.dz>u+ry. i=d+(@— g, w=d? —u? —v* + (w — 1)rd

_M-Dd=D) wu=-l) ww—1) o= 1)

d
ana.p 2 2 2 2

then the integer 1 of (3.9) is at least 3 and 7}, > (w).

Proof. Note that if | >3 then Jy« -« F, is of type w by part (b) of
(3.9). where h=h_, 2 h,>j,: hence J; >(w). It remains to prove that
I#1and!#2 1fl=1 then, as in the proof of (3.13), we find 0 =d —u—v—r,
+d=d—-u—ry)+(d —v)>0, a contradiction.

Suppose [ =2. Define 4 and B as in the proof of (3.13) then

1§} A=2dlw— Drog+(w—Nw-2ri+u® +v2 -1
2) B=(—2+4+2/w)(d—re) +u+v.
On the other hand, we have by part (b) of (3.9)

k-1
A=(w—-1) Y ri+[on +1-46)it—im,
j=o
B=[n -6+2/w]i,—m,.
ro=niy, iy =i—wrg=d—r,.
hi-1
Y rlP=irg=dro +(@—1)rd,
j=0
the last equation by (3.11) and the third line by parts (2) and (3) of (1.19). So
(3) A=(0-NDdry+(w—1)rd)
+[((@—Dn +1-=2/w)+ (0, — 6+ 2/w)]i? —iym,
=(w— )dro+ (@ — 1)rd) + [(w—)n, + 1 — 2/w]i? + Bi,
=2(w— l)dryg + (@ =) (@ —-2)rd + (1 — 2/w)i? + Bi,.

We get u? +v2 — 1 = (1 — 2/w)i} + Bi, = (u + v)i, — i? by equations (1). (2) and
@A), ic..

vP—he+ (il -fhu+ut—1)=0.

That quadratic equation in v has discriminant

.2 . 2 2\ 4,
4= —3if +4ui, —4u*—1)= -3 ll—gu +§(2u—3)
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which is negative whenever u>2. Thus u<1 and i, —-u> -, since [>1

Wik
u.|&

implies i, > 2. Hence 4 <0 in any case. a contradiction.

4. Birational morphisms A? - A?

We studied birational morphisms of non-complete surfaces in [3], with special
attention to the case A* - A% In particular, we considered the problem of
classifying the irreducible birational endomorphisms of A? (f: A% A2 is
irreducible if it is not an automorphism of A2 and if, whenever it is factored as
a composition f=heg of birational endomorphisms of A% g or h is an
automorphism of A?). This section shows how the machinery of local trees and
weak sequences can be used to investigate that classification problem.

We use the notations and terminologies of [3]. and in particular see (1.2)
for the notions of minimal decomposition, fundamental point, missing curve,
contracting curve, for the set J and for the numbers n(f), c(f). go(f). j(f) and
0(f): see (2.8) for the matrices . &, ¢ and ¢ determied by a minimal decomposition
of f.

The following result can be found in [3] with a somewhat fancy proof (see
(4.10) of [3]). We reprove it here by using the methods of this paper.

Theorem 4.1. Let f be a birational endomorphism of A2, with n(fy= 1. Then
S is a simple affine contraction.

Proof. By [3]. (4.3). f has one missing curve and that curve is rational
with one place P at infinity: we have to prove that that curve is a coordinate
line (2.1). Embed A? in P? the standard way, let L= P?\ A2, let P2 > P2 be
the blowing-up of P? at the fundamental point P, and let C denote the closure
in P? of the missing curve of f and also its strict transform in P2. Note that
both (P, C, L, P?) and (P. C. L. P?) satisfy the conditions of (1.13). Using the
notation of (1.13), write S = P2, etc., and consider the sequence of m-trees of
(P,C. L, P%:

Se — - — S,

(P, C, L. PY): (Fy. o) = -+ == (T}, ).

If k=0 then C.L= po({P. L}) = y,({P, L}) =1, so C is a line in P? and we are
done.

Assume k> 0. Let d=degC, u=pu(P;,C)(i.e., u=1, but we don’t neced
to know that) and

k-1

a=d*—u® - Z (u;(x0))%.

j=0

We see that J,[«] = 4(S,, C® + L*) ~ [1] and that the principal vertex of Z,
is a branch point. If 4, does not contract to a linear local tree the hypothesis
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of (3.9) is satisfied (with w = 1, 4 = [a]. & =[1]) and consequently « = — 1; it
follows that the triple (d, u, 0) satisfies condition (a) of (3.13), which is
absurd. Consequently, J, does contract to a linear local tree. Since the
sequences u(P, C. L, P?) and u(P, C, L. P?) are identical, the missing curve is
graph-theoretically linear, i.e.. it is a coordinate line by (2.3).

For the rest of this section, we shall study those birational endomorphisms
of A? having the property that each missing curve is blown-up at most twice, i.e..
those endomorphisms for which every column of the matrix g has at most two
nonzero entries. We begin by stating the results: the first one says that we are
in fact restricting ourselves to the case n(f) < 2.

Theorem 4.2. Let [ be an irreducible birational endomorphism of A?, with
n(f)y=2. If every missing curve of f is blown-up at most twice then n(f)= 2.

Note that, if f is such that every missing curve is blown-up at most twice.
then so is h whenever f = heg. Hence (4.2) can be rephrased as:

4.3. Let f be a birational endomorphism of A? each of whose missing curve
is blown-up at most twice. If n(f)>0 then f=heg for some birational
endomorphisms g, h of A? such that 1 < n(h) < 2.

The next two results give a complete classification in the case n(f) = 2.

Theorem 4.4. Let f be an irreducible birational endomorphism of A%, with
n(f)y=2. Then q(f) =2 and there is a coordinate system on A? such that the
closures of the missing curves meet the line ai infinity at distinct poinis, when A?
is embedded in P* the standard way. Moreover, that coordinate system is unique.
up to affine automorphism of A? (i.e., linear automorphism + translation), and has
the following property: If the missing curves C,, C, and the fundamental points
P, P, are suitably labelled (where P, may be i.n. P,) then there is a positive
integer b such that:

1. C, is a rational curve of degree 2b + 1. with one place at infinity:

2. uP,.Cy)=b+ 1 u(P,.C,) =b:

3. C, is the line (of degree one) through P, and P,;

4. the multiplicity sequence of C, at infinity begins with a sequence of 1ype

(2. 2b + 1, 1) and continues 1, 1.....

Theorem 4.5. Let C,.C,, P,, P, be curves and points in A* satisfying the
Sour conditions listed in (4.4). for some positive integer b. Then there exists an
irreducible birational endomorphism f: A* = A?, with n(f) = 2, having C,. C, as
missing curves and P,, P, as fundamental points. Moreover, that endomorphism
is unique, up to equivalence.

We mention the following related fact: Given a positive integer b and a
sequence & of type (2, 2b + 1. 1). there exist C,, C,, P,, P, satisfying conditions
(1-3) of (4.4) and such that the multiplicity sequence of C, at infinity begins with &.



626 D. Daigle

To avoid repeating long parts of arguments. (4.2) and (4.4) are proved
together. The following two lemmas are needed.

Lemma 4.6. If f is a birational endomorphism of A% with n(f)> 0 and such
that some column of the matrix p has less that two nonzero entries then f = heg
where h is a simple affine contraction in A*®.

Proof. Suppose that u(P;, C;})=0 if i # 1. Then every entry of the first
column is divisible by u(P,, C,), whence u(P,. C,) =1 by (4.3b) of [3]). Let W
be the surface obtained by blowing-up A at P, and removing the strict transform
of C,, and let h: W— A? be the birational morphism so obtained. Clearly,
f=hog for some birational morphism g: A2— W. By (4.4) of [3] we have
W= A% and h is a simple affine contraction by (4.1).

Lemma 4.7. Let f be a birational endomorphism of A* all of whose missing
curves have degree one (with respect 1o some coordinate system on A%). If n(f)>0
then f = heog where h is a simple affine contraction in A%,

Proof. By (4.6), we may assume that each missing curve is blown-up at
least twice. We now show that ¢(f) =1, so that the result follows from (4.11)
of [3].

Suppose g(f) = 2. Choose a minimal decomposition for f, with notation
as in (1.2h) of [3]. embed Y, = codom(f) = A? in ¥, = P? the standard way and
consider the corresponding diagram

AlesY, =Y,
J:xn !;..

bk

A2 _— YO L} YO —— PZ

where #; is the blowing-up of Y;_, at P,(1 <i<n). Let L be the line at infinity
andD=C,+---+C, + Z E; + LeDiv(Y,). By [3],(2.17). it is clear that D has
Jed

s.n.c. iff the missing curves meet L at distinct points.

If D has s.n.c. then the weighted graph (Y, D) contracts to a minimal
weighted tree 4 which has exactly one vertex of nonnegative weight—that vertex
is L and its weight is positive. Moreover. if L is the only vertex of 4 then the
weight of L is greater than one. So ¢ + [1] by [3], (5.16), and this is absurd.

If D does not have s.n.c. then by [3]. (5.19), there is a monoidal
transformation S, —» S, = Y, with center s, and exceptional curve F, such that
D + F,eDiv(S,) has s.n.c.. Let $=9(S,. D+ F,). Since the point s, belongs
to L and to at least two C;'s, F, is a branch point of weight — 1 (in %) and
also a “special vertex”. which contradicts [3], (5.18).

Proof of (4.2) and (4.4). Let f be an irreducible birational endomorphism
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of A% such that n(f) = 2 and such that every missing curve is blown-up at most
twice. By (4.6) cvery missing curve is blown-up exactly twice and by (4.11) of
[3] we have g(f)=2. Given any open immersion 1: A2 = codom(f) g P2, let
L be the line at infinity and consider the following condition on i:

(x) Al missing curves of f meet L at the same point, in P*.

As is well known, the embeddings that don't satisfy (*) form a finite number of
equivalence classes (two embeddings A? g P? are equivalent if they form a
commutative diagram with some automorphism of P?). The first part of the
argument consists in the construction of an embedding that doesn’t satisfy
(»). From the existence of such an embedding we will then deduce that n(f) =2
(which will settle (4.2)) and prove the rest of (4.4).

CLAM 1. Some missing curve is a coordinate line.

Proof. Choose a minimal decomposition for f, with notation as in (1.2h)
of [3]. choose an embedding : that satisfies (*) and consider the diagram in the
proof of (4.7).

Let S=Y,. C=C,+ - +C,+Y E;eDiv(S) and D=C+LeDiv(S). Clearly,

jeJ
S\A? = supp(D). By (#). C is connected and D does not have s.n.c.. By [3],
(5.19), there exists a place P of one of the C,’s such that *D can be desingularized
by blowing-up at P” (see (3.4)) and it follows that (P, C. L.S) satisfies the
conditions of (3.5).

Consider the weak sequence #;.....#; of (P, C. L.S). We refer to the
discussion preceding and following (3.6) for the definition of the numbers 2, and
p. the curves C, . the places P, . the graph %,. etc., and for thc meaning of
the sentence “the blowing-up §;_, « S; gets C, away from P”.

Let’s show that, given je{l.....p,}. C,, is a coordinate line. Let J =
T (Py;, L. §,)). Clearly. the sequence #j,«---— ¥, _,«J consists of the
sequence of local trees of (P,;, C,,,. L, S) followed by a (possibly empty) sequence
of blowings-up in which every tree has exactly one principal link. We are now
going to show that J contracts to a linear local tree. Since the sequence of
local trees of (P,;, C,,U, L, §) is identical to that of (P,, Cm, L, )_’0), it will then
follow that C,,, is graph-theoretically linear, and hence a coordinate line by (2.3).

Suppose F doesn’t contract to a linear local tree. Since #,[4,] ~ [1]. we
may apply (3.7) to the weak sequence #; _,,...,%#,. We conclude that the
principal vertex of  is a branch point. [ — 1] is equivalent to a linear weighted
tree and #,, ., can’t contract to a local tree having a nonprincipal vertex of
nonnegative weight. Hence the sequence

M=Hge— ce— W, — T

satisfies the hypothesis of (3.13). Now (3.7) also says that cvery extra branch

created in #, _, —_ #,, (in particular, %,;) can be absorbed by the vertex F, .
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which implies that Cfu. = — 1 in S, since every other vertex of %,; has weight
less than — 1 (by. say, (1.2i) of [3]). Therefore (d, u, v) satisfies the condition
(a) of (3.13) (which is absurd). where d is the degree of C,,, in Y, and u, v are
the two nonzero entries of the v, column of the matrix u. That proves claim 1.

By replacing if necessary the minimal decomposition of f by another one,
we may assume that C, is a coordinate line and that u(P,. C,)= u(P,.C,) = 1.
These assumptions will be in force until the end of the proof of claim 6,
below. Consider the following condition on the embedding ::

(#+) C, has degree one in Y,.

Since (++) is satisfied by infinitely many nonequivalent embeddings. there are
embeddings satisfying both (*) and (*%).

Cramm 2. If 1 satisfies both (%) and (s+) then k > 1 and the center of the
blowing-up S, — S, is a point of L. Moreover, C, is the only missing curve of
degree one and the blowing-up S, — 84 gets C,. and no other missing curve, away
Sfrom P.

Proof. Suppose k =1. Then D'eDiv(S,) has s.n.c., which implies that
C,.L=1in S, (hence in Y,) for I <v<gq, ic. all missing curves are lines in
Y,. Since that contradicts (4.7), we see that k > 1.

Now suppose that the center of S,— S, in not on L. Then, in
%(S,. DYe¥[A%], L has weight 0 and is not a neighbour of F,. which is a
branch point of weight —1 (by. say, (5.19) of [3]). As is shown in the proof of
(3.7), such a tree contracts to a weighted tree 47 which contains vertices of
nonncgative weights and not neighbours of each other. so that (%(S,. D*)) ={(¥*)
> 1, a contradiction.

Clearly, the first blowing-up S, « S, gets a missing curve away from P iff
that curve has degree one in Y,, i.e., a, =1 and C,,,.... C,,,, are those missing
curves which are lines in Yo. Thus each C,,, has weight —2 in #}...., W,
Hence the branches of 4(S,. D*) = %,[%,] at F, are $i1eeenGyy . B where B is
the one that contains F; and where 4,; < — 1 for each j ([3].(5.17)). Since F,
is a branch point of weight — 1. # can’t be absorbed by F,. Hence no branch
can be absorbed by F, and, by [3]. (5.11), F, must be a linear vertex of 4(S,. D%).
i.e.. p, =1 and claim 2 is proved.

Cram 3. If v# | then u(P,,C,)#0 or u(P,, C)) #0.

Proof. Choose an 1 satisfying (x) and (*») and let d be the degree of C, in
Y,. By previous claim, d > 1 and C,nC, =0 in S,. Therefore

uis,, C)=C,.C,lin Se)=d — p(P,. C,) — u(P,. C,).

Let s; denote the point C,nL of Y,. Then we must have u(s,. C,) = u(s;. C,) <d.
which proves the claim.
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CLaiM 4. Suppose j(f) >0. Then for each ve{2.....q} there is a unique
EWef{l. 2} such that p(Py,,C,)#0 and a unique [(v)e{3,....n} such that
u#(Py,y. C,) # 0. Moreover. the numbers ((2)..... L(q) are distinct.

Proof. By [3]. (4.12), j(f) > 0 implies that d(f) < j(f). Since u has cxactly
S(f) zero rows. u has at least g + | nonzero rows. Since the upper two entries
of the first column are nonzero and since each column has exactly two nonzero
entries, the result follows from claim 3.

CrLamMm 5. Suppose j(f)>0. If v# 1 and either C, doesn’t meet Eg,, in Y,
or u(Py,,. C,) =1 then the ring of functions k[X. Y] of Y, = A? is generated, as
an algebra over k. by the irreducible polynomials G,. G, that correspond to C,, C,
(i.e.. some coordinate system on A% has C, and C, as coordinate axes).

Proof. Let u = p(Pg,. C). If C, doesn’t meet Eg,, in Y, then u(Py,. C,)
=u too, so the v** column of u is a multiple of u. By [3], (4.3b). it follows
that u = 1. Since {i|P;e C,nC,} = {&£(v)} and since C, and C, are disjoint in Y,.
the intersection number of C, and C, at finite distance is u = 1, i.e.. the k-vector
space k[X, YJ/(G,. G,) has dimension 1; since missing curves have one place at
infinity, the assertion follows from a known result-see for instance [4], (1.17).

CLAIM 6. Let € be the connected component of Y,\A’> containing C,.

1. If € contains some E; then some coordinate system on A* has C, and
some other missing curve as coordinate axes.

2. If € doesn’t contain any E; then, for some coordinate system on A% C,
and some other missing curve C' meel the line at infinity ai distinct points
(when A? is embedded in P* the standard way) and. if n(f)=2. the
multiplicity sequence of C' at infinity begins with a sequence of type
(2.d’, 1) where d' =degC".

Proof. For the first assertion, let’s proceed by contradiction and assume
that € contains some E; and that no coordinate system on A? has C, and
another missing curve as coordinate axes. Clearly, either E; or E, is in ¢ and.
in fact, E, is in € whenever P, is i.n. P,. So in any case we may assume that
% contains E,. Note that j(f)>0 and a(f) > 2.

Our assumptions and claim 5 imply that C, meets Eg, in Y, for
v=2,...,9. In particular, E,,, can't be in 4, so {(2)=---=¢&(¢g)=1 and the
missing curves are already disjoint in Y,. Consequently, no element of
{P,. Pyay..... Pyy} is i.n. another element of that set and. if we define

M) = {max {i>2|P;in P,}. ifv=1
max {i = {(v)| P;i.n. Py}, v=2,....q.

then M(1),....M(q) are distinct elements of {3.....n} (and in particular
n(f)>3). Since E¥,,=—1 in Y,(v=1..,9) no M(v) is in J by (1.2} of
[3]. Whence
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J={l..n]\{M(1)...,M(g)} and leJ.

Recall that C, meets E, in Y, in Y, if 2<v<gq. By (2.17) of [3]. it therefore
follows that ¢ = 2. that E, doesn't meet C, in Y, (which implies P,€E,) and that
C, meets E, transversally in Y,. Define u = u(P,. C,); since u> 1 by claim §,
we sec that Py, eE; and that u(Py,.C,)=u—1. We may assume that
{(2)=3. Since u(P;. C,) =0 for i >3 and since E, and Ey meet C, in Y. E,
and E; meet C, in Y,;so 3¢J by (217) of [3], ie. M(2)=3 and
{1....n}\J = {3, n}. Moreover, P;,¢E; (4<i<n) and. if n(f)>4, P,eE,_,
(5<i<n) for 3 and n are the only i’s such that E2= —1 in Y,. Finally,
P,eE\NE, since these two curves are disjoint in Y,. By what has been said,

(000 --- 7

100 -
e=|100 -
110 -..
R

(see 3], (2.8). for dcfinition of &, ¢, u) and therefore

1 u 1
1 0
, [101---} 0 u-1 1 2u—1
8#= =
abo.. 0 0 a+b au
L0 0 .

where a, b are positive integers. Then one sees that the determinant of &' u is
neither 1 nor — 1, which contradicts [3], (4.3b).

To prove the second part of claim 6, we assume that € contains no E; and
we choose an embedding ¢ that satisfies both () and (s#). If g > 2 then we may
assume that C,, = C,(i.e.. v;; =2). In any case, the curve C, in ¥, has one
place P’ at infinity. Let

Yo=58;— S — Sje— -

be the infinite sequence of monoidal transformations determined by (P, C,. Y)
and denote by F; the exceptional curve created in S;_, « §;. Let

(T o: Mo) =T . u}) = ---

be the infinite sequence of m-trees of (P, C,, L, Yy): let r; be the multiplicity of
the root of  [(i.c.. (rg, ry,...) is the multiplicity sequence of C, at infinity), let
d be the degree of C, in Y, and let u, v be the two nonzero entries of the second
column of u where, say, v occupies a lower position than « does. We now
proceed to prove the following fact:
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Cramm 6.1. Let ny=ryfr,: then nyeZ and d—ro=r, =---=r,, . Moreover.
if n(f) =2 then (ry. ro. ry. ry. r3,...) begins with a sequence of type (2, d + rg. 1).

Proof. Define

}_{k if g =2.
o la,,  ifg>2

and note that i > k(P'. C,. L. Y,)-see (1.13) for the definition of k(P'. C,. L, Y,).
Consider the sequence of m-trees

(V-1 v )= (¥5. vo) = (¥}. p)) = --- == (¥}, 1)
where, in the notation of (1.22),

o V_,=(%2), t_,(xg) =ro and the value of v_, at the principal link is
d+rgy:

o Vy=(*.(—1), (1), volxg) =ry, and the value of v, at the principal link
that contains the vertex of weight — 1 (resp. 1) is r, (resp. d):

o ¥;=W;,(1<j<4i) and

{‘I/fk, ifg =2,
* F(P.L7.S,,), ifqg>2.

(Observe how ¥, « ¥, is a consequence of the assumption “C contains no
E;”.) Note that if ¥ contracts to a linear local tree then

Q)=Y_|e— v e— ~Vk(}".cz,L,Fo)

is a sequence of type 2 by (1.23), thus (rg, ro. 71, 73...., TyP'.Ca L To)—1) 1S @ SEquUEnce
of type (2.d +ry, 1) and claim 6.1 follows. Let’s assume that ¥ does not
contract to a linear local tree. We now show that n(f) > 2 and that claim 6.1
holds in this case too. Let & be the sequence ¥_, « -« ¥].

Case q(f)=2. ¥, =¥, so the principal vertex of ¥} is a branch point
and ¥;[9,] ~[1]. Hence the sequence & satisfies the hypotheses of (3.9) and
(3.13), with o =2. By (3.9), ¢, can be absorbed by the principal vertex of ¥}
(which implies CZ2 = — 1 in S, = §,). Hence the triple (d, u. v) satisfies condition
(b) of (3.13) except, perhaps, for the inequality u + v +ro<d. Thus u+v+r,
> d (otherwise we contradict (3.13)) and since

d={r0+u+v, ifn=2,
ro +u. ifn>2,

we see that n> 2. The assertion is then a consequence of (3.14). (That result
asserts that there is a j such that 1 <j< 1 and ¥} > (2); then ¥; contracts to a
linear local tree, where i = max(H#(F)n{— 1.....j}), hence ¥_., « -« ¥} is of
type 2 by (1.23), etc))

Case q(f)> 2. By (3.7) applied to the weak sequence
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1~ + /8

4”cu—l — W;z ﬂk’
the principal vertex of ¥} is a branch point, ¥,[— 1] is equivalent to a linear
weighted tree and ¥ _, can't contract to a local tree having a nonprincipal vertex

of nonnegative weight. Hence the sequence & satisfies the hypothesis of (3.9).

with @ = 2. Moreover, (3.7) says that every extra branch created in ¥, _, _

#,, can be absorbed by the vertex to which it is attached (which implies that
Ci=—11inS,,=8,). Hence the triple (d. u, v) satisfies the condition of (3.14)
and, as in the case gq(f) =2, claim 6.1 follows.

From claim 6.1 we see that
T i1 =k, =1, =2, =2(=n; = 1), (=2..... —-2.-1)

where the first sequence of “— 2" has n; terms. Hence 73,,+, = (1) and to that
contraction corresponds a birational morphism p: S5, ,, = § that contracts L,
F3. F;.....Fj,,. F{, in that order. So we get an embedding A% g § such that the
complement of A% is L' = p(F3, ,,), which is a curve of self-intersection 1. Hence
§'=P?. Moreover, if x denotes the point Fj, NF3, ,, of 3, 4. then C, meets
L' at the point p(x), which is distinct from the point at which C, meets L'. So
we have constructed an embedding A? g P? such that C, and C, meet the line
at infinity at distinct points: notc that the multiplicity sequence of C, at infinity
is now (r;)js2,,, which begins with a sequence of type (2.d —r,. 1) whenever
n(f)=2 (by claim 6.1): one easily sees that d —ro = degC,, so the proofl of
claim 6 is complete.

By claims 1 and 6, there exists an embedding 1: A% g P? that doesn't satisfy
(*); we choose such an embedding. Then one of the missing curves, say C,, has
degree one and doesn't meet any other missing curve at infinity, by [3].
(4.3c). Choose a minimal decomposition such that u(P,, C,)=1 = u(P,. C)).
For each je{2.....q}, let £(j) and {(j) be the two elements of {1....,n} such that
w(Pgp» C) # 0 and p(Py;,, Cj) # 0, with £(j) < {(j). The minimal decomposition
and the immersion ¢ determine a commutative diagram as the one displayed in
the proof of (4.7).

Cram 7. n(f)=2.

Proof. Assume n(f)>2. Letje{2,....q}). Since C; and C; don't meet at
infinity they must meet at finite distance, whence £(j)<2. We claim that
{(j)> 2. Indeed, if {(j) <2 and j(f) =0 then f is reducible by (4.5) of [3]; if
{(j)<2 and j(f)>0 then pu has at least n(f)— q(f) =j(f) zero rows, i.e..
8(f) = j(f) >0 and f is reducible by (4.3a) of [3]. Hence {(j) > 2. which implies
that C, and C; are already disjoint in Y. i€

#(Pyy). C) =C,.C;=degC; in Y,.

So we must have degC; =1, i.c., all missing curves have degree one. This
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contradicts (4.7). hence n(f) =2 and claim 7 is proved.

Note that the proof of (4.2) is now complete: let’s now finish that of (4.4). By
changing if necessary the minimal decomposition, we may assume that
w(Py. Cy) = u(P,, C;)=beN. Since the determinant of u is 1, we have
u(P,,C;)=b+ 1. Since C, and C, are disjoint in Y,, the degree of C, in Y,
must be pu(P,. C,) + u(P,. C,) =2b + 1. Finally, it is well known that there can
be at most one coordinate system that doesn’t satisfy () (up to affine
automorphism of A?). Hence the coordinate system which we are considering
right now is essentially the same as the one that is given by the second part of
claim 6. Consequently, the multiplicity sequence of C, at infinity begins with a
sequence of type (2, d', 1) where d’ is the degree 2b + 1 of C,. So (4.4) is proved.

Proof of (4.5). Embed A? in P? the standard way and let L be the line at
infinity. Blow-up P2 at P, and P,. then C, and C, are disjoint and C, is
exceptional of the first kind. It's enough to show that the complement of
supp(C, + C, + L) is A%, Equivalently, if S is the complete nonsingular surface
obtained by contracting C, and if U = S\supp(C, + L), we have to show that
U = A2, By [3]. (4.1). it's enough to prove that [1]Je¥4[U].

Let P be the place of C, which corresponds to the point C,nL of S. Let
S = Sg+ S, «--- be the sequence of monoidal transformations determined by the
triple (P, C,. S) and let

(To, o) = == (Fi. 1)

be the sequence of m-trees of (P, C,, L. §). If D is the reduced eflective divisor
of S, such that S;\U = supp(D) then, clearly, D has s.n.c. iff C, is nonsingular
in S,. Now the last condition of (5.3) says that

(Fo.eo- Ti—y) = (Uj(x0))j=o0....k-1 is of type (2,2b + 1. 1).

Let’s use the notation f(x)= x(x —1)/2, xeZ. as in the numerical lemma
(3.12). Using parts (1) and (4) of that lemma (with @ =2,i=2b+ 1,i' = 1) we
find that the arithmetic genus of C, in §; is

k-1
(f2b)—fb+ 1) —fBN— Y. fr))=bb—1)—bb—1)=0,
j=0

so D has s.n.c., Now the dual graph %(S,. D) is just F,[B]. where 8= C? in
S,. By part (3) of (3.12) we find f = n,, where n, is determined by (r,..... Fe-1)
as in (1.19). Since Jye---«F, is of type 2. F, > (*.0, —n,— 1. —2) by
(1.23). Hence

4[U1a 28] = Filnd ~ [m. 0. — = 1, = 2] ~ 1],
as desired.

One of the consequences of (4.3) and (4.4) is that if f is a birational
endomorphism of A? with the special property that every missing curve is
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blown-up at most twice, then one of the missing curves is a coordinate line. The
following example shows that this fails in general.

Example 4.8 (Russell). In A% let P, =(0.0). P,=(0.1), Py =(—1, —1),
Py=(1,2) and let C,. C,. C; and C, be the curves given by the polynomials
F,=Y>+8X2-6XY-Y?
F,=Y*+32X?-48X%Y+ 20XY*-2Y>+20X % - 20XY+ Y2
Fy=Y*—32X3+48X2Y—-20XY? - 2Y3 - 28X 24+ 20XY+ Y?
Fo=7Y>+128X* —288X3Y+224X%Y2 - 60XY? —2Y* 4+ 96X 3
—156X2Y+60XY? + Y?

respectively. Blow-up A% at P,, P,, P, and P, and remove from the surface so
obtained the strict transforms of C,. C,. C; and C,. The resulting open set is
isomorphic to A?, so an equivalence class of endomorphisms f: A2 — A2 is
determined. Note that

2223

1222
=202

1122

so the endomorphism is irreducible by [3]. (4.5). Note that all missing curves
are singular.
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