J. Math. Kyoto Univ. (JMKYAZ)
31-4 (1991) 1121-1124

On a conjecture of C.T.C. Wall

By

R.V. GURJAR

Introduction.

In [6] C.T.C. Wall made the following conjecture: ‘Let G be a reductive algebraic
group/C acting linearly on C™ such that the quotient C"/G has dimension 2. Then
C"/G is isomorphic as an algebraic variety to C?/I", where ['CGL(2, C) is a finite
group of automorphisms of C¥'.

The purpose of this paper is to prove following more general result:

Theorem. Let X be a smooth affine variety/C and G a reductive algebraic group/C
acting rationally on X. Let V=X/G and y<V any point. Then there exists a reductive
algebraic group H/C acting linearly on some C™ such that the analytic local ring of V
at y is isomorphic to the analytic local ving of C™/H at it’s vertex. Further, denoting
by ¢ the quotient morphism C™—C"/H, the co-dimension of ¢ '(singC"/H) in C" is
bigger than 1.

(Here sing Z denotes the singular locus of an algebraic variety Z).

Corollary 1. With the same notations as above, n¥(V —singV) is finite. In parti-
cular, if dimV =2, then V has atmost quotient singularities and C.T.C. Wall’s con-
jecture is true.

(For the definition of n¥(V —singV), see §1.
Corollary 2. V has only rational singularities.

In fact, from our proof of the theorem, it is clear that for proving Corollary 2,
we only need X to be normal such that the divisor class groups of it’s local rings are
all torsion. Of course, Boutot’s result in [1] is more general, but we have included
this result (the main idea in the proof of Corollary 2 being Kempf’s) because of the
belief that this argument has not been observed before.

I am very much thankful to R.R. Simha for many stimulating and useful discussions.
The first part of Corollary 1 was conjectured by Shrawan Kumar and myself as a
generalization of C.T.C. Wall’s conjecture.
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§1. We begin with the definition of z¥(V —singV). Let Z be any normal complex
space and z€Z. We can find a fundamental system of neighbourhoods U,DU,D ---
of z in Z satisfying the following conditions:

i) for i>7, U; is a strong deformation retract of U,

ii) for 7>, U;—sing Z is a strong deformation retract of U,—sing Z.

The existence of such a system of neighbourhoods can be proved using the fact that
the pair (Z, sing Z) is triangulable.

Now we define n%(Z—sing Z)=n,(U,—sing Z).

Now we begin with the proof of the Theorem. Let y<V be arbitrary. We denote
the quotient morphism X—V by z. We choose a point xex!(y) whose orbit is
closed. Then by Luna’s slice theorem ([3]), the reductive group G, acts linearly on
the tangent space T's,, to the slice S at x such that the analytic local ring of Tg ./G.
at the “vertex” in Tg, ,/G, is isomorphic to the analytic local ring of V at y. We
can therefore assume that X=C™, G is acting linearly on C™ and y is the “vertex”
of V.

Assume now that = '(sing V) has a co-dimension 1 irreducible component.

The following proposition is one of the key observations in the proof.

Proposition. Let X be a normal affine variety/C such that the local rings of X at
it’s closed points all have torsion divisor class groups. Suppose G is a reductive algebraic
group acting rationally on X, V=X/G and n: X—V the quotient morphism. Let SCV
be a closed subvariety of co-dimension=2 in V. Suppose n~(S)=D\UE, where D is the
union of all the irreducible components of = *(S) of co-dimension 1 in X. Then E+¢
and the induced morphism X—D/G—X/G is an isomorphism.

Proof. By assumption on the local rings of X, X—D is affine and G-stable.
Write W=X—D/G. We have the induced morphism f:W-—V. For any yeV-S§,
let x&x (y) be a point with closed G-orbit Gx in X. Clearly GxCX—D and there
exists a point y'€W (which is the image of x under the morphism g: X—D-W)
such that f(y’)=y. Suppose y”€W is another point such that f(y”)=y and let
x”X—D be a point with closed orbit Gx” in X—D. Then the closure Gx” of Gx”
in X intersects Gx. But since Gx is also closed in X—D, Gx” cannot be closed in
X—D, a contradiction. This shows that for every yeV —S, there is a unique point
in W lying over y. Thus the morphism f is birational. Now we use the following
easy result (sometimes attributed to R. W. Richardson).

Lemma. Let f: V.=V, be a birational morphism between normal affine varieties.
If co-dimension of V,—f(V1)=2 in V,, then f is an isomorphism.

Proof. For every irreducible divisor 4CV,, there exists a divisor 4'CV, such
that f(4’) is Zariski dense in 4. Since an affine normal domain is the intersection of
it’s localizations at height 1 primes, the result follows.

The Proof of the Proposition is now complete.
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Going back to the situation of the theorem, write z~'(singV)=DUE as in the
proposition above.

Now let X,=C™—D and =,: X,V the quotient morphism.

Let x,=X, be a point lying over y such that the orbit of x, is closed in X;. In
C™, 0 is the only point lying over y with closed orbit. It follows that the isotropy
subgroup G, SG. Again by Luna’s slice theorem, G, acts on the tangent space
Ts,z, of the slice S; at x, such that the analytic local ring of TSl-xllel at it’s
“yertex” is isomorphic to the analytic local ring of V at y. Further, dim T, ., <dim X,
because dim Gx,+dimTs, ,,=dim X, and the orbit Gx, is positive dimensional. Then
we analyse the map 7, Ts,,,fl—>Tsl,,cl,gm1 treating V as Tprl/le and Ts,. -, as the
new affine space C™:. If co-dimz;'(sing V)=2, we are done, otherwise we repeat the
argument until we come to a situation as desired in the theorem.

This completes the proof of the theorem.

Proof of Corollary 1. Assume now that ¢:C"—V has the property that
co-dim ¢~ Y(sing V)=2. Then C"—="'(sing V) is simply-connected and the homomorphism
7 (C*—¢ (sing V))—m,(V—sing V) has image of finite index (if G is connected, the
homomorphism is surjective). See [4] Lemma 1.5. Thus z,(V—singV) is finite. As
V has a good C*-action with y as the vertex, it is easy to see that z¥(V —sing V)=
7:(V—sing V). For proving C. T.C. Wall’s conjecture, we can use well-known properties
of normal affine surfaces with a good C*-action to conclude that when G acts linearly
on C™ with dimC"/G=2, then C"/G=C?/I" as desired. See, for example [5].

Proof of Corollary 2. Here we use Kempf’s argument from [2]. By the result
of Hochster and Roberts, V is Cohen-Macaulay. As in the theorem, let ¢: C"—>V be
a morphism such that co-dim¢~'(singV)=2. Then Kempf’s proof shows that any
rational d-form on V(d=dimV), which is regular on V-singV extends to a regular
form on any desingularization of V, proving that V has rational singularities.

Example. Let C* act on C[X,Y, Z, W] by p/X)=tX, p.(Y)=tY, pZ)=t"Z,
oW)=t"'W. The ring of invariants is R=C[XZ, XW,YZ,YW]. Write U=XZ,
V=XW, S=YZ, T=YW. Then R=C[U,V, S, T]/UT—VS), U being the image of
Uin R etc. Let V=SpecR. Now let C* act on R by o;(U)=U, ox(T)=2aT, o)
=V and 0¢,(5)=25 for AeC*. The ring of invariants, R¢, is C[U, V] which is
isomorphic to a polynomial ring in 2-variables. If ¢:V—Spec R is the quotient
morphism, then the inverse image of the “origin” in Spec R¢* given by the maximal
ideal (U, V) is the irreducible divisor D={U=0=V} in V. It is easy to see that D
has infinite order in the divisor class group of V.

This example shows that the condition on the local rings of X in the proposition
cannot be dropped.
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