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§1. Introduction

Let G be a compact, connected, simply connected simple Lie group, g its Lie algebra
and 1=m(1)<m(2)< --- <m(l) its exponents where [ is the rank of G. The homotopy type
of the Kac-Moody group £(g¢) is GXRQG(2)y, where 2G(2) is the 2-connected cover of
QG, the based loop space on G. (See [9].) For a free graded module M=@M; of
finite type over a ring R,

,%__"% (rank M)r'< Z[[t]]

is denoted by P(M; R) and for a space X such that H*(X; R) is free of finite type
P(X; R)=P(H*X; R); R). V.G. Kac and D.H. Peterson defined a positive integer
d(G, p) for any prime p and showed that

1.1) P(RG2); Fp)=(1+12eC m-1)(] 422G ) 1R (1)

where a(G, p)=p¢C»
(1.2) Rs(t)= Eﬁ)(l—t"’"(”)“

in terms of the Affine Weyl groups ([9], [11]). On the other hand there is a fibering

T
(1.3) St — QG2 — Q6.

In [13], the first named author shows (1.1) by use of the cohomology Gysin sequence
and determines d(G, p).

Since G=~,I1i=:S*"@*! by Serre ([22]), 2G{2)=,I1;-.02S5?"*1 and therefore the
odd dimensional rational homology of 2G<2)> is zero. Since H,,(2G; Z) is free and
Hym (2G; Z)=0 for any m by Bott ([7]), the homology Gysin sequence of (1.2) with
R-coefficient is

T X
(1.4) 0 — H,n(2G<2); R) - H,(2G; R) —R> H,, «(2G: R)
—> Hyn (2G<2y; R) —> 0.
Using (1.4), we deduce that H,,(2G<{2); Z) is free and H,n_,(2G{(2>; Z) is a finite
group for any m. Therefore to determine Hy (2G{(2>; Z), it is sufficient to determine

Hy(RG<2); Z(p))~
Define a graded Z(,,-module M(d, p)=P;..M(d, p); by
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Zp, if j=0
Md, p)y={ Z/p7"%, if j+1=2p"k, (k, p)=1 and r=d,
0, otherwize.
and denote by L(G, p) a free graded Z(,,-module satisfying
P(L(G, p); Zp))=Rs(@).

The purpose of this paper is to show
Theorem 1.1. Hy(2G<2); Z ) is isomorphic to M(d(G, p)—1, p)®z(p)L(G, D).

Since H«(G; Z) is known, the integral homology of the Kac-Moody group is deter-
mined.
To prove Theorem 1.1, we show the following :

Theorem 1.2. There are elements a, b and a subalgebra A(G, p) of H({(QG(2); F,)
satisfying
1) lal=2a(G, p), 1bl=lal—1, b€lm p and A(G, p)CIlm p where p is the mod p
reduction,
(2) H(QG2y; F)=F,[alRQADYRQA(G, p) as an algebra.

Using the fact that Hyace, py-1(2G<2); Z(py)=Z/p (Theorem 3.1 of [16]), Lemma 2.1
of [16] and Theorem 1.2, we can compute the Bockstein spectral sequence constructed
in [16] and get Therem 1.1. If (G, p)#(B,, 2) or (D,, 2), Theorem 1.1 is proved in
[15] and [16]. But the proof of this paper is applicable for any (G, p) and is an im-
provement of [15] and [16].

Acknowledgement. The first author gratefully acknowledges the support of the
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§2. Some properties of p and Xz(p)

Denote by P,n(R) the submodules of the primitive elements in H,,(2G; R) and by
Q:n(R) the indecomposable quotient Q*"(H«(£2G; R)).
Consider the commutative diagram of the Gysin exact sequence (1.4):

T X
0— H,n(2G<2); Z(p))_:‘l{zm(QG; Z ) > Hon (2G5 Zipy) = Hon i(2G<2); Zpy)—> 0

R T ‘|

pi
0 — Hom(RGC2); Fp) A Hon(QG; Fp) —> Hyn QG ; Fp)— Hyn_((2G(2); Fp) —0

where p is the mod p reduction, X:Xz(p) and X:XFp. Note that Xp is a derivation and
given by the formula

(21) XR(a)=t\A*a
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where \ is the slant product, A is the diagonal map and t=H*2G ; R)=R is a generator.
Using (2.1), we have

Lemma 2.1. P,n(R)CKerX, for m>1.
On the other hand by the Bockstein exact sequence, we have
Lemma 2.2. p: Ho(2G<2); Zipy))>Hu(RG<2)Fy) is epic for m=2a(G, p)—1.

Denote by P(p) the subset {1, p, p°, ---, p’, ---} of integers. Consider the map

T lzm
Som Hzm(QG<2>; Z(p)) —> Ifzm(QG<2>; Fp) _*) Hzm(QG H Fp) —> sz(Fp)~

where A, is the projection. Then we have

Proposition 2.3. Suppose m<a(G, p), then

() &om is epic if mEL(D),
(2) dim Coker &:n=1 if m&P(p).

Proof. Since p: Hum(2G<2>; Z(py)— Hom(RG<2); Fp) is epic for m<a(G, p) by
Lemma 2.2, we can replace &, by &;n where &, is the composition
Tk '221n.
Hzm(QG<2>; Fp) —> HZm(QG; Fp) —> sz(Fp)~
Choose a generator ¢ of HX2G; Z)=Z. There is a fibering

T t
(2.2) RG22 —> QG —> CP*=K(Z, 2)

which is the loop of the fibering

T x
(2.3) G3y— G—> K(Z, 3)

where x is a generator of H*G; Z)=Z satisfying ¢(x)=t (¢ denotes the cohomology
suspension). Therefore the mod p homology Serre spectral sequence for (2.2) is multi-
plicative. By the fact that Hyn_(2G<(2); F,)=0 for m<a(G, p), this spectral sequence
is trivial for up to degree less than 2a(G, p). Therefore we have as an algebra

Hy(CP>; Fp)=H«(2G; Fp)/(Im n§)
for *<2a(G, p). Proposition 2.3 follows from the fact that
H*(CPN; FI))EF}J[éh é2y Tty é]y '“]/(élpy ézp) Tty éjp’ '“)
where |é;| =2p/.
Lemma 2.4. If x€H,n(2G; F,) such that pm<a(G, p), then x?€Im Tx° 0.

Proof. Since % is derivative, Zx?=0. Therefore x?cIm w4 and Lemma 2.4 follows
from Lemma 2.2,



1118 Akira Kono and Kazumoto Kozima

§3. Proof of Theorem 1.2

First we prove the following :

Lemma 3.1. There are an element a' and a subalgebra B(G, p) of Hx(2G ; F,) such
that

1) la’'l=2a(G, p), a’€lm my and B(G, p)Clm myop,

(2) Imrmy s a polynomial algebra generated by a’ over B(G, p).

Proof. First we assume that H«(G; Z(,,) is torsion free and n(l)<a(G, p). Then
the above lemma follows easily from Proposition 2.3 and Lemma 2.4. Next we assume
that Hy(G; Z ;) is torsion free and n(/)=a(G, p). Then (G, p)=(C,, 2) or (G,, 3) by
[13] and d(G, p)=1. Since H«(L2C.; Z) is primitively generated by [14] and
H(G,; Z,) is primitively generated by the dimensional reasons, the above lemma fol-
lows from Lemma 2.1 and Lemma 2.4. Note that H«(G; Z(;) is not torsion free if
and only if (G, p) is one of the following :

@.D (Bn, 2), (Duss, 2)  (n23),
(3.2) (Gz, 2)~ (Fb 2)! (Ely 2) (126) 7’ 8)!
3.3 (Fy, 3), (B4, 3) ({=6,17,8), (£ 5).

First we consider the case (3.3). Using the structure of H*(G<(3); F,) in [12], [18]
and [20], we can easily show as an algebra

H(2G<2>; Fp)=Fylisnp|i=2,3, -, IQF,[a]QAb)

where [=rank G, |2 =2n(), |a]l=2a(G, p)and |b|=!a]|—1. We may assume f:,¢;,
belm p by the dimensional reasons. In fact, Sxa=b and for any 722, Hyne;y 1(RG(2); Fp)
=0 or

ﬂ*(Hznck)(QG<2> s Fo)Hsa, p)(QG<2> N Fp)):H2n(j)—1<QG<2> s Ip)

for some k<j where B, is the Bockstein operation. Therefore &, is epic for any
7=2,3, -, L

For the case (3.2), Hy(2G<2); F,) is known in [17] and the proof is similar. Now
we consider the case (3.1). We only give a proof for (B,,, 2) since the other cases are
quite similar. Denote the mod 2 reduction of ¢; (1<752n—1), 20; (2£7<4n—1) and
2p; 2n<j<4n—1) of Bott ([7], section 9) by x;, y; 7, respectively. Put d=d(B;,, 2).
Then by [13], 2¢7'<4n<2¢. By [7], as an algebra

H(2Bsn; F)=F,[x, X3 -, Xa-11/(x}, x5, -, x2_0)
QRF[xn, Xn41, +, Xen 1 JRQFo[ Yons1, Yonas, = Vino1]

(Note that |x;| =25 and |41 =474+2). Since ¥;;11:=72;+1 mod decomposables, we may
replace ¥;.’s by 7:j+1’s. By Proposition 2.3, if j&P(2) and 3<7<2n—1, there is an
element u;€ H,j(2Bs.; Z ) such that

Txp(U)=X; mod decomposables.
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Since p; is primitive by [7], we get 7:EIlmmyep. Put B(Baa, 2) the subalgebra
generated by {msopu;|3<7=<2n—1, jEP@)}\U{Tonsr, Tonss, =, Tanoa}. Put a’=x3a-,
then Za’=0 and so a’<Im 74 a’ generates a polynomial subalgebra over B(B.., 2) and
B(Bsn, 2)[a’]CIm my. But

P(B(Bgn, 2)[a']; Fo)=(1—1**)"'Rp, (t)=P(m 7y ; F5)
and so B(B;., 2)[a’]=Im 7.

Proof of Theorem 1.2. Fix a generator b of Hyoe.51(2G; Fp). By Lemma 2.2,
belm p. Then using the fact that my: Hom(2G<2); R)—>H,n(2G; R) is monic for any
m, we get Theorem 1.2 by Lemma 3.1.
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