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Differential geometry of generalized
Lagrangian functions

By
Katsumi OKUBO

There are many generalizations of Finsler geometry. A Finsler metric function is
defined on the tangent bundle of a differentialble manifold with some assumptions.
Especially, it is assumed to be positively homogeneous. The importance of a general-
ized metric has been emphasized by many authors ([2], [5],[7]). Some of them studied
the non-homogeneous “metric” space ([1],[3],[4]). In [1], they investigated general-
ized Lagrangian space (M, L) from the view point of Finsler spaces (M*, L*), where
M* is the (n+1)-dimensional manifold and L* is positively homogeneous. The purpose
of the present paper is to investigate the function without the assumption of homo-
geneity from another point of view.

§1. GeEneralized Lagrangian functions

Let M be an n-dimensional differentiable manifold and 7(M) its tangent bundle.
A coordinate system x=(x') in M induces the canonical coordinate system (x, y)=
(x%, ) in T(M). We put 0,=0d/0x, 31:0/63;‘ and T,(M)={(x, y)€T(M)|y+0}. A
function L(x, y) on T(M) is called a generalized Lagrangian if it is continuous on
T(M) and non-degenerate: det(g;;)#0 on T(M), when g;i{x, y) is given by g;;=
8'13,-L. A generalized Lagrangian function is called postive definite, if (g:;) is positive
definite on T(M). A generalized Lagrangian tensor g;;(x, y) is a Finsler metric tensor
if L(x, y) is positively homogeneous of degree 2: L(x, ty)=t*L(x, y) for t>0.

We consider the cotangent bundle T°(M) of the manifold M. A coordinate system
x=(x%) in M induces the canonical coordinate system (x, p)=(x*, p;) in T¢(M). The

Legendre transformation @ is a mapping of the tangent bundle T (M) to the cotangent
bundle T¢(M):

ey O:Ty(M)—>T(M) ((x%, y') —> (x*, ps)),

with a local expression p;=0;L.

The restriction @, to T.(M) of @ is a local diffeomorphism, where T.(M) is the
tangent space at a point x and if necessarily, 0 is excluded, we call the Lagrangian L
one-to-one if @, is one-to-one at any point x, i.e., @.(x, y)=D.(x, y)oy=y".

We always assume that the dimension of M is more than two and the Lagrangian
L(x, y) is one-to-one. Consequently @, is a one to one correspondence of T.(M) to
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some connected domain D, of T4%(M), where TS(M) is the cotangent space at the point
x. Therefore we can write

2) pi=pix, y), inversely y'=y(x, p).

The generalized Hamiltonian function H(x, p) on D={(x, p)|xeM, pD,} is de-
fined by

3) H(x, p)=p:y*(x, p)— L(x, y(x, p)).

From g;i(x, y)=3,pi(x, v), we have the reciprocal g*/ of g;; in the form:
) g¥(x, y(x, p))=0y'/0p;,

and (3) gives

5) ¥y (x, p)=0H/0p:.

From (4) and (5) we have

(6) h¥(x, p)=g"(x, y(x, p))=0"H/0p.0p;.

§2. Non-linear Connection associated with L(x, y)

Let n: To(M)—M be the projection of the tangent bundle. The vertical vector
space V. ,»(To(M)) consists of the vertical vectors in T, ,(To(M)), i.e.,

O Ve p={XET ¢z, o (To(M))| m4(X)=0}.

where 74 is the diferential of =.

A non-linear connection N is a horizontal distribution in the tangent bundle ([6]),
i.e., a subspace Hz, (T o(M)) of T (s (T o(M)) is given at each point (x, y), satisfying
T o,y (ToAM)=Hz, y (T o(M)+V (2, 5(To(M)) (direct sum). And we suppose that this
distribution is differentiable. Therefore we write the sum totally in the form:
® T(T(M)=H(T (M)DV(T (M)),

where T(T (M)) is the tangent bundle of T (M).
The differential @4 of the Legendre transformation @ is the mapping of T(T (M))
to T(T<(M)). Precisely, since @(T(M))=DST(M), we have

9 Dy: T(T(M)) —> T(D)ST(T(M)).
At each point (x, y), we have
99 Dy(x, ¥): T(x.y)(To(M)) —> T, py(D)ET (2, p(T(M)).

Here, we put
V. o(D)={XET ¢z, (D) wh(X)=0},

where 7%: D—M is the restriction to D of the projection n¢: T°(M)—M. By the simple
calculation, we get

(€3Y) Vi, py(D)=Ps(x, Y)YV (2, yx(To(M))).
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Since @«(x, v) is an isomorphism, if we put
12) Hee, py(D)=0x(x, 3)XHz, (T o(M)),
for a given non-linear connection N, then we have
13) T(D)=H(D)®V(D).
At each point (x, p), we have
13" T o py(D)Y=Hz, py(D)+V ¢z, p(D)  (direct sum).

For a local base of H(T(M)) and V(T (M)), we have (ai—Niféj) and (0;) respec-
tively. Similarly, for H(D) and V(D), we have (0:—M,,;0%/) and (0**) respectively,
where we put 0*=0/0p.. We get easily the following formulas:

(14) D4(0:)=g:,0*,

(15) @ (8 — N6 )=0;— (Ni;—0:0; L)o* ,

where we put N;;=g;:N;*. Thus from the definition (12), we have
(16) Mi;=N;;—0:0;L.

There is a natural 1-form 6 on T¢(M) with a local expression §=p;dx*. The ex-
terior differential d@ has rank 2n. We put d0(X, Y)=(X, Y for X, YET . p(T(M)).

For a cotangent vector X°=(a;, b)=a;dx*+b*dp; at (x, p)T(M), we define O(X)e
T(m,p)(Tc(M)) by

a7 Y, O(X)>=X(Y) for any tangent vector Y at (x, p),
with a local expression :

a7 X=0(x, pXX)=(b, —a;)=b'0;—a,;0*".
Consequently we have an isomorphism:

18) O: T(TM)) —> T(T«(M)).

At each point (x, p), we have

(187 O(x, p): T p(T(M) —> T o p(T(M)).

The Hamiltonian function H(x, p) is defined on D. Consequently the exterior

differential dH is a 1-form on D. By the restriction to 7%D) of @, O(dH) is a vector
field on D.

Now we consider the following cannonical conditions that a non-linear connection
N associated with L should satisfy :

(o)) O(dH)eH(D).
At each point (x, y), we have

(Cl,) @(x,p)(dH)EHu.p)(D)-

Now we have the following expression of dH:
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19) dH=:;H)dx*+ (0% H)d p;.
Consequently from (17’) we get
(20) O(dH)=(0*'H)0;—(d;H )o**.
Now the condition (C,) is equivalent to
(21 0;H—(0**H)M,;;=0.
Then (5), (21) and 0;H(x, p)=—0,L(x, y) from (3) yield
(22) 8;L—(0:0;L)y' 49 Ni;=0.
Consequently we have

Theorem 1. A non-linear connection N satisfies the condition (C,) if and only if the
coefficients of N are given by
(23) yiN;;=@:0;L)y' —0;L .

Let us call y/N,* the generalized spray defined by a non-linear connection N;* and
denoted by N°.

Remark 1. We must pay attention to the covariant derivative H;=0;H—(0**H)M;
of H. The condition (C,) is not the same as H,;=0. But from (21), which is equivalent
to the condition (C,), we get H,,=H,;y’(x, p)=0, while L,=L;y’#0 in general.

§3. Finsler type connections associated with L

According to [6], we write a Finsler type connection as I'(N, F, C), where N, (x, y)
is a non-linear connection and plays an important role in our theory.
If we put

(24) G,=0:0,L)y'~0;L.  G'=g"G;,
the condition (23) in the above theorem is the same as

(25) G'=y/N,.

Moreover, let us put

26) G;‘za',.(% G),  GA=0.GS,

Then I'(G,, G;%, C;%:) is a Finsler type connection but the non-linear connection Gj
does not satisfy the condition (25), unless G* is positively homogeneous of degree 2.
Here we consider the other conditions for a Finsler type connection:

(Cz) (h)h-torsion TZO, i. e., TjikE jik—Fkij:O,
(Cy) the deflection tensor D=0, i.e., D%;=y*F, ;—N;’=0,
(Cy (h)hv-torsion C=0, i.e., C,*=0.
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It is our problem whether there exist some connections satisfying the conditions
(C)~(C,) or not. First, we define

@7 Ui=Gi—y'G;, Uj=o,Ut,

(28) Vi=Ul—yU; .

Since G' of (24) have not the positively homogeneous property, it is necessary for us
to define the above quantities. U® and V' are both considered as global vector fields

on To(M), even if they are defined by local expressions and U, is a globally defined
tensor. By differentiating (27) with respect to y’/, we get the formula:

(29) Uji=G;'—y*G:;.

Here we suppose that there exists a covariant vetor field ¢;(x, y) on T (M)
satisfying
(30) Pi(x, y)y'=1.

Let us call this ¢;(x, ¥) a characteristic covariant vector field.
Now, to define a Finsler type connection satisfying the condition (C,)~(C,), we put

(31) N;'=G;'+¢,U",
(32) FjikEGjik+¢jUki+¢kUji+¢j¢kVi’
(33> CjikEO.

The above (N, F, C) gives a Finsler type connection. As for the conditions (C,)~(C,),
we must check as follows: From (31), (30) and (27), we have first

(o) YN =yG +y' U =y'G,+U'=G".
Secondly, from (32) and G, ,—G.;=0, we have
(Cz) Tjik: .
Thirdly, from (32), (30), (29), (28) and (31), we have
Cy Y ELW=yG AU+ 01y Ui+ ¢, V!
:Gki+¢kUi
:Nki.

Finally, from the definition (33), we have
(C4) Cjik=0-
Therefore we have our first conclusion :

Theorem 2. There exists a Finsler type connection I'(N, F, C) satisfying the condi-
tions (C,)~(C,), if the generalized Lagrange space (M, L) admits a characteristic covariant
vector field ¢; on T (M) and the Lagrangian L is one-to-one.

If a generalized Lagrangian L(x, y) is positive definite there exists a characteristic
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field ¢@;:
(34 D=8y /8ary Y’ .

Consequently, from Theorem 2 we get

Theorem 3. If a generalized Lagrangian L(x, y) is positive definite and one-to-one,
there exists a Finsler type connection I'(N, F, C) satisfying the conditions (C)~(C,).

Remark 2. We have proved the existence of a connection satisfying the above
four conditions, but it is an unsolved problem to find additional conditions for deter-
mining a Finsler type connection uniquely. The condition (C,) will be most interesting,
because it determines the spray N® uniquely from L(x, y).

1 o 1 o ‘
Example 1.  L(x, y)EEam(x)y‘y’yk+7an(x)yly’—bi(x)y‘—c(x).

For this generalized Lagrangian, the straightforward calculation leads us to

(35) Gi=5 {7kl i}y’ y* v +{jk, i}y y* + Esiy’+Co,
. . 1
(36) {7k, l}—:—_4—(ajaikl+akajil+alajlzi_aiajkl)y
L. 1
37) {ik, Z}’EE’(ajaik"'akaji'_aiajk)v
(38) E;;=0;b;—0;b;,
(39) Ci=0;c.

The above {jk, [} are the Christoffel symbols, characterized by the following :
(40) Orai;—{jk,i}—{ik, 7}=0 and {jk,i}={kJs,i}.

Similarly, we find that {jk/, /} are determined by the following properties:
(41) 0sa 0 —{kli, 7Y —1{jli, kY —{jki, I} +{jkl, i}=0

and {jk/, i} are symmetric with respect to 7, # and /. Therefore, we may call these
{jkl, i} the higher order Christoffel symbols, more precisely the third order Christoffel
symbols. The Christoffel symbols are the coefficients of a connection which is a geo-
metrical object of class 2. We can prove that the third order Christoffel symbols are
the coefficients of certain geometrical object of class 2 ([10]).

1 o )
Example 2. L(x, y)=gai,(x)y‘y’—bi(x)y‘—f(X)-
This is a special case of Example 1. As to this Lagrangian, we get

(42) gii(x, y)=aii(x),
(43) Gi={jk, i}y’ y*+E;;y’+C;,

where E;; and C; are given by (38) and (39) respectively,
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(44) Gi={/ 2}y y*+E;jy’'+C,
(44") {ifet=g"{jk, l}=a'"{jk, I},
(44% Ej=g*Ep=a""E;,

(44%) Ci=g"C;=a"C;,

(45) Gjiz{jik}yk-l-%Eji,

) Ui= 5 By CY,

) U= B,

(48) Vi=Ct

(49) Gite={,"s}

§4. Variation calculus

We shall deal with the variation calculus for a generalized Lagrangian function
L(x, y). We put A(x, ¥)=+v2L(x, ¥). Along a curve C: x=x(t) (a<t<b), we consider
the definite integral :

(50) ](C)=Si,2(x(t), yedt,  vi)=dxi=dx/dt.

For a family of curves C,: x=x(t, u) (a<t<bh, —e<u=e¢) with fixed end points,
i.e., x(a, u)==x(a, 0) and x(b, u)=x(b, 0), we have

G1) du j(C,,)):SZ(aiz—atéiz)Yidt, Yi=g,xt

where we put d,=d/du, 0,=0/0u and d,=d/0t. Therefore, we get the equation of an
extremal that is called the generalized Euler equation :

(52) 0:4—d,0,2=0.
The equation (52) is transformed by the simple calculation into the following form:
(52') gi;d:y?+(0,0:L)d . x'—0; L=0,

where the parameter ¢ satisfies the equation L(x(t), y(t))=Fk (constant). The above
equation is equivalent to

(63) ded:x*+G'=0,

where G® is given by (24).

By Theorem 2, there exists a Finsler type connection I'(N, F,C) satisfying the
four conditions (C,)~(C,) in the generalized Lagrangian space (M, L) with a character-
istic covariant vector field ¢;. We denote the Finsler type connection I” satisfying the
four conditions (C,)~(C,) by I'*(L) or I'*(L, ¢) if there exists a characteristic covariant
vector field ¢; and I'(N, F, C) is determined by (31), (32) and (33).
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The equation of a path in I"'%(L) is written in the form
(54) didix'+Fjtp(dox?)(d x*)=0.
From the conditions (C;) and (C,), we get F;',y’y*=G!. Consequently, we have

Theorem 4. In the generalized Lagrangian space (M, L) with a Finsler type con-
nection I'*(L), the path is coincident with the extremal.

A Randers space is a Finsler space (M, L’) with a special metric function
1, — )
(55) L'(x, y)=§(\/auy’y’—biy‘)2.
The equation of the extremal of this space is written in the following form:
(56) dgdtxi—i‘{jik}d;xjdtxk‘l'Ejidtxj:O,

where E;' is defined by the same form as the definitions (38) and (44%) and the param-
eter ¢ is the arc-length of the extremal. It follows from (44) that the equation (56) is
the same as that of the path in a generalized Lagrangian space (M, L), where L is
given by

1 o )
(GN) L= E(aijyly’)—biy‘.
Consequently we have

Theorem 5. The paths in a generalized Lagrangian space (M, L) are coincident with
the ones of a Randers space (M, L') if L and L' are defined by (57) and (55) respectively.

Remark 3. The equation (56) is related with the unified field theory ([8]).

Remark 4. In a generalized Lagrangian space, the parameter ¢ has a significant
meaning. If the Lagrangian function L(x, y) is positively homogeneous of degree 2
with respect to the variables y?, the integral (50) does not change the value even if
the parameter of the curve C changes into another parameter. But the general trans-
formation of the parameters changes the value of the integral if L(x, y) is not homo-
geneous of degree 2.
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