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Differential geometry of generalized
Lagrangian functions

By
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There a re  many generalizations o f Finsler geom etry. A  Fins le r metric function is
defined on the  tangent bundle o f  a  differentialble m anifold with some assumptions.
Especially, it is assumed to be positively homogeneous. The im portance of a  general-
ized metric has been emphasized by many authors ([2 ], [5 ], [7 ]). Some of them studied
th e  non-homogeneous "metric" space ([1 ], [3 ], [4 ]) . In  [1 ] , they investigated general-
ized Lagrangian space (M , L ) from the  view point of Finsler spaces (M *, L*), where
M* is the (n+1)-dimensional  m anifold and L* is positively homogeneous. T h e  purpose
o f  t h e  present paper is to investigate th e  function without th e  assumption o f homo-
geneity from another point of view.

§1. G Eneralized Lagrangian functions

L et M  be a n  n-dimensional differentiable manifold and T (M ) its  ta n g e n t bundle.
A  coordinate system x= (x i ) i n  M  induces th e  canonical coordinate system (x, y)=
(x i, y ') in  T (M ) .  We p u t ac=a/a.e, 'ii , a/ayi a n d  To(M)=- {(x, Y )E T (M )Iy# 01 . A
function L(x, y )  o n  T (M ) is  ca lled  a  generaliz ed Lagrangian i f  it is continuous on
T (M ) and non-degenerate : det (g i ; ) ,# 0 o n  To(M), when g i i (x, y )  is  g iv en  b y  g i i =

A generalized Lagrangian function is called postive def inite, if  (g i i )  is positive
definite on  T o (M ) .  A  generalized Lagrangian tensor g i i (x, y) is a  Finsler metric tensor
i f  L(x, y ) is positively homogeneous o f degree 2: L (x ,ty )= P L (x , y ) fo r t>0.

We consider th e  cotangent bundle Te(M) of the m anifold M .  A coordinate system
x=(x 1 )  in  M  induces th e  canonical coordinate system (x, p)-=(x, p i )  i n  T e (M ).  The
Legendre transform ation 0  is a  mapping of the  tangen t bundle T o (M ) to the cotangent
bundle P (M ):

(1)
 

P: T 0 (M) — >  T e (M ) (( 1 , 1 ) pi)),

with a local expression p,=& L.
The restric tion Ox  to  T x (M ) o f  0  is a local diffeomorphism, where T x (M ) i s  the

tangent space at a  p o in t x  a n d  if  necessarily, 0  is excluded, we call the Lagrangian L
one-to-one i f  Ox is one-to-one at any point x, e ., 0 1 (x, y)=0.v(x, .3 7 ')<=) .Y=Y'•

We always assume that the dim ension of M  is more than two and the Lagrangian
L(x, y ) is one-to-one. Consequently Ox  is  a  o n e  to o n e  correspondence o f  T  ,(M ) to
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some connected domain D.x  o f  T (M ) ,  where T (M )  is the cotangent space at the point
x .  Therefore we can write

(2) pi=pt(x, y), inversely y'=yi(x, p).

The generalized Hamiltonian function H(x, p ) o n  D={(x • P )1xEM , PED .} i s  de-
fined by

(3) H(x, p)=p i y'(x, p )- L(x, y(x, p)).

From g o (x, y)4 ) p i (x, y ), we have the reciprocal gii of g o  in  th e  form :

(4) gii(x, y(x, p ))=ayilap i ,

and (3) gives

(5) yi(x, p)=aHlap i .

From (4) and (5) we have

(6) hi'(x, p) - gz"(x, y(x, p))=81-1/ap p .

§ 2. Non-linear Connection associated with L(x, y)

Let Tr: T 0(M)-4M be the projection of the tangent bund le . T he vertica l vector
space V(s, y )(To(M)) consists of the vertical vectors in  T c x , , , ( T o ( M ) ) ,  e . ,

(7) V(z, {XGT(x,,)(To(M))1r*(X)=0} .

where r * is  the  diferential o f r.
A  non-linear connection N  is  a horizontal distribution in the tangent bundle ([6]),

i. e., a  subspace Hcx,o(To(M)) of T ( . y )( T o(M )) is given at each point (x, y), satisfying
cx y )( TO(M))-= (X , o(T o(M))+V x , y )(T o(M )) (direct sum ). A nd we suppose that this

distribution is differentiable. Therefore we write the sum totally in  the  form :

(8) T(To(M))=H(To(M))EDV(To(M)),

where T (T o (M )) is the tangent bundle o f To(M).
The differential 0 *  of the Legendre transformation 0  is  the mapping of T(To(M))

to T (P (M ) ) .  Precisely, since 0 (T 0 (M ))= D T c (M ), we have

(9) 0 * : T (T o (M ))-->  T (D )_T (T c (M )).

A t each point (x, y), we have

(9') *(x , y): T (.. u )( T o(M ) ) - -> T ) (D )  T (  p ) (T c (M)) •

Here, we put

(xp)(D).---= IXET(...p)(D)12**(X)=0} ,

where eD : D—>M is the restriction to D of the projection r  : Tc(M )— M . By the simple
calculation, we get

(11) V ( s. p)(D)-= *(x .31)(V (x. y )(T o(M))) •
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Since 0 * (x , y ) is  an isomorphism, if we put

(12) H(x. p)(D)=-  0*(x, 37)(1 1 (x.v)(To(M))),

for a given non-linear connection N , then we have

(13) T(D)=H(D)EDV(D).

At each point (x, p), we have

(13') T(s,p)(D)-=11(x.p)(D)+V(x,p)(D) (direct sum).

For a local base of H(To(M)) and V (T o (M )), we have (81—N1 ' )  and ( ) respec-
tively. S im ila r ly , fo r H (D ) and  V (D ), w e  have (&i —mi,a*, ) and (841) respectively,
where we put a*i=a/ap,. We get easily the following formulas :

(14) 0*(k)=gi,8*i ,

(15) *(ai—NA,)=ai—(Ni,—aA
where we put N i ,= g ,,,N ,k . Thus from the definition (12), we have

(16)

There is a  natural 1-form 0 on Te(M ) with a  local expression 0=p 1 dx 1 . The ex-
terior differential cl0 has rank 2n. We put dO(X Y)=<X, Y> for X, Y ET (x.p)(T e(M)).
For a cotangent vector X'=---(a i , b')=a i dx i d-bidp i  a t  (x , p )  Tc(M ), we define e(x9E
T ( x,p)(Te(M)) by

(17)< Y ,  e(x, )>=Xe(Y) for any tangent vector Y  a t (x , p),

with a local expression :

(17') p)(210=(1)1, —

Consequently we have an isomorphism :

(18) e: Tc(Te(M ))---->  T (Tc(M )).

At each point (x , p), we have

(18') e(x, p ): Te,,p ) ( Tc(M ))--->  T  ( x , p ) ( Tc(M )).

The Hamiltonian function H(x, p )  is defined on D .  Consequently the exterior
differential dH is a  1-form on D .  By the restriction to Tc(D ) of e, e(dH ) is a vector
field on D.

Now we consider the following cannonical conditions that a  non-linear connection
N  associated with L  should satisfy :

(C1) G(dH)EH(D).

At each point (x , y ), we have
(C1 ') e(r, p)(dH)E11(x, p)(D).

Now we have the following expression of dH:
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(19) dH=(31H)dxid-(a*"H)dpi.

Consequently from (17') we get

(20) e(dH )= 0.i.m a1— oim a.i

Now the condition (C1)  is equivalent to

(21) ail-1—(a*iH)M1f=0.

Then (5), (21) and ai ll(x , p )=-a i L(x, y ) from (3) yield

(22)

Consequently we have

Theorem 1. A  non-linear connection N  satisfies the condition (CO if and only if the
coefficients o f N  are given by

(23)

Let us call yiN i
i  the generalized spray defined by a  non-linear connection Ni ' and

denoted by N t .

Remark 1. We must pay attention to the covariant derivative H, J =d ; H—(a*iH)M i i

of I I .  The condition (C1) is not the same as 1-11.) = 0 .  But from (21), which is equivalent
to the condition (CD, we get H 10 7__=11, i y i(x , p )= 0 , while L i o L u yi in general.

§ 3 . F insler type connections associated with L

According to [6 ], we write a  Finsler type connection as F(N, F, C), where N /(x , y)
is a  non-linear connection and plays an important role in our theory.

If we put

(24) G;=(ai5; L)y' —a L , G i gii G  ,

the condition (23) in the above theorem is the same as

(25)

Moreover, let us put

(26) ,

Then r  ( G  j i  , G  j i  k C  j i  k )  is a  Finsler type connection but the non-linear connection Gi i
does not satisfy the condition (25), unless G ' is positively homogeneous o f degree 2.
Here we consider the other conditions for a Finsler type connection :

(C,) (h )h -to rs io n  T = 0 , e ., T i
i

k— F k 1 i = 0 ,

(C,) the deflection tensor D=0, i. e.,

(C4) (h)hv-torsion C=0, e.,  C 4 1 = 0 .
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It is our problem whether there exist some connections satisfying the conditions
(C1),--,(C4 )  or no t. First, we define

(27)

(28)

Since G t of (24) have not the positively homogeneous property, it is necessary for us
to define the above quantities. U t and V ' are both considered as global vector fields
on T 0 (M ), even if they are defined by local expressions and U i i  is a  globally defined
tensor. By differentiating (27) with respect to y ',  we get the formula :

(29)

H ere w e suppose that there exists a covariant veto r field 0 .,(x , y )  o n  To(M)
satisfying

(30) 95,(x, 303''= 1 .

Let us call this 0 ,(x , y ) a  characteristic covariant vector field.
Now, to define a  Finsler type connection satisfying the condition (C 3 )-, -(C4 ), we put

(31) G,` +0,P ,

(32) le —=Gj'k+0111 k ' +OkU j ' H- 0 ,450 7 '

(33) C ;k  == -0 .

The above (N , F, C) gives a  Finsler type connection. As for the conditions (C1) -•-(C4).
we must check as follows : From (31), (30) and (27), we have first

(Ci ).

Secondly, from (32) and G k —G k ', = 0 , we have

(02) T i z k=0 .

Thirdly, from (32), (30), (29), (28) and (31), we have

(CO yiFi'k--=?Glk+Uk'+OkYJUJid-Ok17'

=G k f .-E-Ok U'

Finally, from the definition (33), we have

(CO C j i k=0 .

Therefore we have our first conclusion :

Theorem 2. There exists a F in s le r  type connection F(N, F, C) satisfying the condi-
tions (C1)--, (C4), i f  the generalized Lagrange space (M, L) admits a characteristic covariant
vector field çhi  on  T o (M ) and the L agran g ia n  L  is one-to-one.

If a generalized Lagrangian L(x, y ) is positive definite there exists a characteristic
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field Of  :

(34) vii -=-- gfi3e/gabY a .Yb •

Consequently, from Theorem 2 we get

Theorem 3 .  I f  a generalized L agrangian L (x , y ) is positive definite and one-to-one,
there ex ists a Finsler type connection IAN, F, C) satisfy ing the conditions (C1)-s-, (C4).

Remark 2 .  We have proved the existence of a  connection satisfying th e  above
four conditions, but it  is  an  unsolved problem to find additional conditions for deter-
mining a Finsler type connection uniquely. The condition (C1) will be most interesting,
because it determines the spray N i uniquely from L (x , y).

1Example 1. L(x, a1,k(x)Y t.Y .7.Y k+-
2

a1(x)yiy)— b1(x)yi— c(x).
6

For this generalized Lagrangian, the straightforward calculation leads us to

(35) { jk l,i} y )y k y 'd -{ jk ,i }y ly k +E „y 'd-C 1,3

1 ( n(36) jkl, i f  =---- -

4
■viaik/ - E ak a ii/ ± a ta ik i — a ia ik i ) ,

1
(37) Ilk , il= -

2
(a p a ik + a k a i,— a ia i k),

(38) E

(39)

The above { jk , /} a re  th e  Christoffel symbols, characterized by the following :

(40) akaii— {1k , j } = 0  a n d  I j k , i l = i k i , i l .

Similarly, we find that { jk l,i } a r e  determined by the following properties :

(41) a ia jk i— { k li, k l— { jk i, l} ± { jk l, il =0

and I j k l , i l  are symmetric with respect to j ,  k  and 1. Therefore, we may call these
I j k l , i l  th e  higher order Christoffel symbols, more precisely the third order Christoffel
sym bols. The Christoffel symbols are the coefficients of a connection which is a  geo-
metrical object of class 2. W e can prove that the third order Christoffel symbols are
the coefficients of certain geometrical object of class 2 ([10]).

Example 2. 1L (x , y )=-- -
2

a i ,(x )y iy '— b,(x )y '— c(x).

This is a  special case of Example 1. As to this Lagrangian, we get

(42) g ii(x , y )=a 0 (x ),

(43) Gi= { jk ,

where E p t  a n d  C i  a re  given by (38) and (39) respectively,
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(44)

(44') j i  k g ii {  k  ,  l }= a " I jk , l1 ,

(44') E l i g ik E ik = a ik E j k  ,

(44')

(45) E i i ,

(46)
1 . . .

(47) U - -
1
E

(48) V i= C i

(49) G iik = f ijk l

4 .  Variation calculus

We shall deal with the variation calculus fo r  a  generalized Lagrangian function
L (x , y ) .  We put 2(x , y )= V 2L (x , y ) .  Along a curve C : x = x ( t ) ( a t b ) ,  we consider
the definite integral :

(50) ./ ( C ) = 2(x(t), y(t))dt , y i(t)=d t xi d  / d t

For a family of curves C : x =x (t, u) (a t < b ,  - - - s < u s )  with fixed end points,
i. e., x (a, u )=x (a, 0) and x (b, u)=x (b, 0), we have

(51) clu(i(C.))=6a(ai2— aA 2)y idt, )7 .1 .a„xi ,

where we put d u =d / d u ,  au=a/au and d,=0/at. Therefore, we get the equation of an
extremal that is called the generalized Euler equation :

(52) da12=0.

The equation (52) is transformed by the simple calculation into the following form :

(52') g11dty l-1-(dA L)dtx  —ai  L=0,

where the parameter t satisfies th e  equation L (x (t), y (t))=k  (constant). The above
equation is equivalent to

(53) dtdtx1+G1=0,

where Gi is given by (24).
By Theorem 2 , there exists a  Finsler type connection (N , F, C ) satisfying the

four conditions (C1 )--(C 4 )  in the generalized Lagrangian space (M , L ) with a character-
istic covariant vector field q5i . We denote the Finsler type connection P satisfying the
four conditions (C1)--(C4) by P ( L )  or r 4 (L , 0 )  if there exists a characteristic covariant
vector field q5i  and F(N , F, C) is determined by (31), (32) and (33).
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The equation of a path in r 4 (L ) is written in the form

(54) dtdtx '±F.,'k (dtxJ)(dtxk).-=0.

From the conditions (CO and (C1), we get F i t ', y 'y '=G i . Consequently, we have

Theorem 4 .  In the generalized L agrangian space (M , L ) w ith a  Fin sle r type con-
nection 1"4 (L ), the path is coincident with the extremal.

A Randers space is a  Finsler space (M , L ')  with a  special metric function
1(55) L '(x , y ) -=-
2

(V a

The equation of the extremal of this space is written in the following form :

(56) d2d1x1-1-{ ;k}ci1x'd3xk+E11d2x'=0,

where E ., ' is defined by the same form as the definitions (38) and (442 ) and the param-
eter t  is the arc-length of the extrema!. It follows from (44) that the equation (56) is
the same a s  that of the path in a generalized Lagrangian space (M , L ), where L  is
given by

1(57)
2

(a i i y i  i)— b i yi

Consequently we have

Theorem 5. The paths in a generalized L agrangian space (M , L ) are coincident with
the ones of a Randers space (M , L ')  i f  L  and L ' are defined by (57) and (55) respectively.

Remark 3 .  The equation (56) is related with the unified field theory 0 1 .

Remark 4 .  In a generalized Lagrangian space, the parameter t  has a  significant
m eaning. I f  th e  Lagrangian function L (x , y ) is positively homogeneous of degree 2
with respect to the variables y ',  the integral (50) does not change the value even if
the parameter of the curve C  changes into another parameter. But the general trans-
formation of the parameters changes the value of the integral if  L (x , y ) is not homo-
geneous of degree 2.
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