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In the theory of conformal changes of Riemannian metrics, the W eyl conformal
curvature tensor plays a n  essential role in case of dimension more than three. We
consider, however, the theory from another standpoint. In  th e  first section of the
present paper we shall define a  linear connection on a Riemannian space relative to a
given Riemannian space, which is invariant under conformal change of metric. Thus
the curvature tensor of the connection is a  conformal invariant and the notion of rela-
tive conformal flatness is obtained.

The second section is devoted to the theory of projective changes of Finsler spaces
in a similar w ay. Relative to a  given Fins ler space a  projectively invariant nonlinear
connection is defined. As a special case we have a Riemannian projective theory which
will be developed in the following two sections.

§ 1 .  Conformal changes of a Riemannian space

Let M  be an n-dimensional differential manifold and T (M ) its tangent bundle. A
coordinate system x =(x i )  in M  induces a  canonical coordinate system (x , y )=(x i, y i)
in T (M ) . We put a i= a/ ax i and 5i =0/3yi•

Let us suppose that there is given on M  a  Riemannian metric tensor  a ( x ) .  Put-
tin g  a=(1/2)a i 1 y iy i, we denote the Riemannian structure by (M , a ) .  The Christoffel
symbols fi

i
k I constructed from ao  are coefficients of the Riemannian connection.

We now consider another arbitrary Riemannian metric tensor g i i ( x ) .  Putting L =
(1/2)g i g 1yi, this Riemannina is denoted by (M , L ). The Christoffel symbols constructed
from g i ;  are  denoted by F i

i
k . We put a =det (a i i ), g-=det (g i ,i ) and

1 ,
(1) EE —logn a '
C  is a  scalar function on M  and consequently Ci  is  covariant vector field on M . Then
we have a linear connection

(2) cr i ik .r ;k — C ,a 'k — C IP )+ C 'g jk

where C t g i C 1 .  T h e  connection CT '  is symmetric but not metrical. We shall call cP
the C-connection relative to a .  We have the following important theorem :
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Theorem 1. The C-connection cr  relative to a  is a comformally invariant symmetric
connection.

P ro o f . Let L be a  conformal change of L , j .  e.,

(3) gii(x),---exp(2a)gi1(x).

The Riemannian connections r and P  are in the relation :

(4) ' , k  r ; k + 0 , a k '+ C r o V — g i k a i,

where we put cri =a j a, a i=g i ia j . Thus we get

(5) r i ik — { iik l— r ;k — iiik l+ cr ia k .+ 0 .0 3 ., i— g ik a  •

Since C  is defined similarly to L, by the contraction with respect to suffices (i, j), we
get nC k =nC k ± n a k . Consequently, we have

(6) k=Ck+Crk •

From the formulas (2), (3), (4) and (6), we get

e ri i k=-- r ij i k— C- j3k i — Ck3j i +C i gjk

j i  k (q. e. d.)

Consequently, the curvature tensor cl? of the C-connection c r  defined by

(7) cR i i k i _ a i cr  k + c r i ntk er m i t  a h cr i i i _ c r i nt i c r  m i k

is also conformally invariant.
We consider this confomalw invariant curvature tensor e R .  T his tensor is not

coincident with the Weyl conformal curvature tensor.

Definition. A  Riemannian space (M , L ) is conformally a-flat or a conformally flat
space relative to a ,  if eR  vanishes.

For (M , a), crj i k -=r14={ i i k}  because C = 0 . Consequently, c R =R =S , w here R

and S  are curvature tensors of L  and a respectively. Therefore we have

Theorem 2 .  (M, a ) is locally  f lat if  and only  if  (M , a)  is conformally a-flat.

By the straightforward calculation, we get the following formulas :

(8)

where we put
1Ci k =Cp k —C i C k - F -
2

g i k C2 , C j i  = g i k  C jk C 2 =  C  iC i  ,

CjIk — a k c , — c i r i i k •

It is okvious that C ik  is a  symmetric tensor.

(9)

(10)
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Theorem 3 .  (M , L ) is  conformally  flat if it  is  conformally  a-flat and n=dim

P ro o f . From cR=0, we have

(11) R j ik t + C

Contracting (11) by (i, 1), we have

(12) R jk -F(n-2)C,k +gik C*-=0,

Transvecting (12) by gjk,

(13) R+2(n-1)C*=-0.

From (12) and (13), the equation (11) is rewritten in the form

1  
(14) R , i 1' 1 n-2 (Rikbii-Fg

1
(n-1)(n-2) R (g ik ai

i — gitaki)-0 •

The left hand side of the equation (14) is  the same as the Weyl conformal curvature
tensor. Consequently, the above theorem is proved. (q. e. d.)

Since 'I? is conformally invariant, we get

Theorem 4 .  (M , L.) is conform ally  a-f lat, i f  L i s  a  conform al change of L  and
(M , L ) is  conform ally  a-flat.

§ 2 .  Projective changes in  a  Finsler space

Let (M , a ) be a  fixed Finsler space an d  L (x , y ) be a n  arbitrary Finsler metric
function on M .  We put

1 1

(15) a= —
2

a i i (x , y )y"y ' ,L = - - g 1 (x , y ) y i  .2 

Remembering the definition of the Berwald connection, we introduce two sprays
r i  and G  associated with a  and  L  respectively:

(16) ri=raiirj,

(17)

Moreover, we put

(18) 75 =61(1 74 ) , n 'k = 6 1 tn i ,

(19) G 1=ã1(--G ),G j
i k=6kG j

i  •

1  (20) B = 
n + 1

(G1
1 —r1 ) , B 11= 5 ;B 1 .
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Then B (x , y )  is a  scalar function and B i i = B i i . Further we define a  new spray PiV i

which is called the p-spray relative to  a:

(21) PNi = G i  — 2By

A  Finsler space (M , L ) is called projective to another Finsler space (M , L ) if  th e
extremals of (M , L ) are all coincident with those of (M, L).

We have a well-known theorem ( [3 ]) : (M , L ) is  projective to (M , L ), if  a n d  only
i f  -0 i =G i +2py i ,  where p(x , y )  is a  scalar funtion.

Now we will prove the  following theorem:

Theorem 5. The p-spray PA rt is projectively invariant.

P ro o f .  Let (M , L ) be projective to (M, L), i .  e.,

(22) 6i=Gi+2pyi.

Differentiating (22) by y i, we have

(23) 6 1= Gi i + A i - FAO/ Pi==-jiP •

Thus we get

(24) 'a ii— r ii= G ii-7 .ii+ P a ii+ P g i •

Contracting (24) with respect to (i, j), we get (n+1)L-=(n+1)B+(n+1)p, because p is
positively homogeneous of degree 1. Therefore, we get

(25) 13=B ±p.

From (21), (22) and (25), it follows that

P5ii=_6i-2.Py i =G i -F2py i -2 (B + p)y i =G i -2 B y i a=_PNi . (q. e. d.)

Conversely, we get

Theorem 6 .  A  Finsler spce (M , L ) is projective to another Finsler space (M, L), if

Proof . PN i -- 6 i-2 1 -3. y i  a n d  P  N i  G ' — 2B y i  b y  th e  definition. B y  the condition,
-6i=Gid - 2(i3- -B )yi=G id - 2pyi. Consequently, (M , L ) is  projective to  (M, L).

(q. e. d).

From the p-spray P  Ni we get a  nonlinear connection

(26)

and an h-connection

(27) Yi •

Further we get the h-curvature tensor
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(28) PR j i h + P r  j m kP r n t 2 1- 3 kP r ; i — p r j m 1P F m i .

where we put a,=a,— PNA. From Theorem 6 , it follows that the  non-linear connec-
tion PN, i ,  h-connection P r i i k  and h-curvature P R/I?' are  all projectively invariant with
respect to a.

Example. Let (M, a )  be a  Riemannian space and  1 ;0  be the  Christoffel symbols
constructed from a o r a o (x).

A Randers space (M , L ) is a manifold equipped with a  metric function L  a s  fol-
lows ([1], [2], [4])

(29)

We put

(30)

(31)

1 L-= —
2

(-V +b1(x)y1)2

 

2--= V a i i (x)yi yj , =bi(x)Y1

bi ,i =a ; b1 —bk f ki  j} E j i= ik
•

By the  straightforward calculation, we have

(32) P N 1= 74 -2E 0 i , E 0 y E 1 , where ri are defined by (16).

For another Randers space (M , L ), where L -_—..-(1/2)(2-1-)2 and ig--. 6i (x)y i ,  we have

(33) PNi=r+2E 0 '.
Consequently, i f  (M , L ) i s  projective to (M; L), we have P o

i =E o
i  from Theorem 5,

(32) and (3 3 ). Therefore it is obvious that
Conversely, E i

1 =E 1 i  implies PTV- i =PN i  a n d  so (M , L ) is  projective to (M, L), from
Theorem 6. Consequently,

Theorem 7. A  Randers space (M, L) is projective of another Randers space (M, L)
i f  and only i f  E 7=E i i.

Corollary. A  R anders space (M , L) is projective to the Riemannian space (M , a)if
and only if E ;

1 =0.

P ro o f .  We suppose L = a .  Then Ê 1 =0 a n d  it is obvious that Corollary is gotten
(q. e. d.)

Though these results are already known ([1 ], [4 ]), it is interesting that our theory
gives them as an application.

§ 3 . Projective changes of a Riemannian space

We deal with projective chages o f  a  Riemannian space a s  a  special case  o f a
Finsler space in  § 2.

Let (M, a )  be a  given Riemannian space and (M , L ) b e  a n  arbitrary Riemannian
space w ith the same underlying manifold M .  We use the same notations as those of



R i n  1)B:rk

(R i kV — R itak i )=0 .n - 1
1

1092 Katsumi Okubo

§1  and §2.
If w e put B*=(1/(n+1)) log (v g -W a ) ,  from (20) we get

(34)

Consequently, B = B ( x )  and B ik = 0 . Therefore, (27) gives

(35) P r/  k G  j i  k B 1 53 k i  B t

Since (M , L ) is Riemannian, we have Gi
i

k = r i
i

k . Therefore

(36) Pi - 7 k =  r k  1 :3 1 5  k i .

From (28), w e have

(37) P R i'k /=a1 P r/k +P r k P  r  - a k P r 1
1 1- P r i - ,P r m i  k •

Immediately, we get the following theorem:

Theorem 8. The symmetric linear connection P k ( X )  is  projectively  invariant.

Now, we introduce the following definition:

Definition. A  Riemannian space (M , L ) is called projectively a-flat or a projectively
flat space relative to a , if  the  projectively invariant cuvature tensor P  R  vanishes.

In case of L = a ,  w e have B*-=0 and B t= 0 . Therefore, P r i i h= r j i k  and P R i i k1= - -

R • i ki. Consequently, we get

Theorem 9 .  A  Riemannian space (M , a ) is locally flat if and only if it is projectively
a-flat.

Moreover, get the following two theorems.

Theorem 1 0 .  A  Riemannian space (M , L ) is projectively f lat and consequently  it is
of constant curvature, i f  it  is  projectively  a-f lat and n=dim

P ro o f . By the straightforward calculation, we have

(38) PRjik i=R/k i+B tkati— B Y /aki,

(39) 13Pk1--- B '1 k 13' Bt , Bp, 

The condition PRi zi a =- 0  implies

(40) R j i  k l+ B Yla k i  =  •

Contracting (40) with respect to  (i, l), w e have

(41)

From (40) and (41), we get

(42) R jik i
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T h e  left hand side o f  (42) is coincident with the W eyl projective curvature tensor.
Therefore, (M, L) is  projectively flat and from th e  well-known theorem, it is o f  con-
stant curvature. (q. e. d.)

Theorem 1 1 .  A  Riemannian space (M , L ) is projectively  a-f lat if  L is  a projective
change of  L  and (M, L) is projectively  a-flat.

P ro o f . Siuce PR i
i

k t i s  projectively invariant, the  theorem is obvious. (q. e. d.)

§  4 . Projective parameters

Finally we consider the  p ro jec tive  parameters o f  e x tre m a ls . W e u s e  th e  same
notations as § 3.

L et (M, a )  be a  given Riemannian space. For an arbitrary Riemannian space (M, L),
we defined th e  projectively invariant symmetric linear connection PF, i .  e.,

P r ;k := F I
' k - - - B W - 13;t3;

From this relation, it is concluded that th e  path with respect to F  is coincident with
that o f  PT.

Now, we consider an extrem al C  of (M ,  L ) ,  e ., it is  a  path with re sp ec t to  F .
T h e  curve C  is a lso  a  path with respect to PT . L et s  be a n  affine parameter o f  C
with respect to F  an d  u  be a n  affine parameter o f th e  same curve C  with re sp ec t to
PT'. T h e  n o t io n  o f  th e  Schwartzian derivative is defined by

3
(43) in , s1=-[((d) 3 u )d u - --2-((d

s ) 2 0 2 1 ( d s u ) - 2

where we p u t d a =d /d s .
Since th e  parameters s  a n d  u  a re  affine parameters o f  th e  path C ,  w e  have  the

equations o f th e  path C  a s  follow

(44) (c/s)2.V ±Pi'k dsx 'dsx '-=0 a n d  (d.) 2 + P r  d  x h =-0

respeotively, where we p u t d u r-- - d / d u .  From these equations, we get

(45) lu,
n 2 - 1

(R  — PR )k )clsx idsx '.

Consequently, we get

Theorem 1 2 .  The relation (45) is obtained i f  u  and s  are af f ine param eters of  a
p a th  w ith respect to F  and Pr respectively.

Here, we write various formulas with respect to th e  Schwartzian derivative :

(46) fu, s1=-0 u =(c s +d ) (as +b ) '

(47) ft, sl=  {u, s} (=>  ft, u1=0,

(48) fu, s1=— (d,, )- 2 { s, u},

(49) it, s}=  { t, u} (d s u) 2 + { u, s) .
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Now, w e continue to discuss th e  parameters o f  a  path with respect to .  L e t  t
be a n  arbitrary parameter o f  a n  e x tre m a !  C . From (49) and  Theorem 12, we get

Theorem 13. I f  u and s are  af fine param eters o f  a path C  w ith respect to and
P r respectively and t  is  an  arbitary param eter of  the sam e curve C , then w e have

2  (50) {t, s}
n - 1  

R
'k

ds x'd s x '= ( { t ,  u }  
n -

2

1  
PR

i
kd„xiduxk)(dsu)2.

A projective parameter t  o f  a  path C  with respect to r is defined by
2  

(51) It, sl—
n - 1

 R,kdsx'd3x=0.

From (50) th e  parameter t  is  a projective parameter of the curve C with respect to P r .

Therefore, we get

Theorem  14. L et (M , L ) be projective to  (M ,  L ) .  I f  a n d  t  are projective param-
eters o f  a common extremal C o f  (M , L ) an d  (M , L )  respectiv ely , then w e hav e  t=
(ct-l-d)(at+b) - 1

P ro o f .  Since (M , L ) is  projective to (M , L ) and  P r is projectively invarian t, we
have

(52) PRik=PRik .

Consequently, i  and  t  a re  both projective parameters o f th e  path C with respect to Pr,
w hich is equal to  T. Therefore, from Theorem 13 we get

(53) {t, u }= {t, u}.

Thus (46) and (45) lead u s to the conclusion. (q. e. d.)

Though Theorem 14 is a  well-known theorem, it is interesting that it is proved as
an application of our theory.
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