J. Math. Kyoto Univ. (JMKYAZ)
31-4 (1991) 1087-1094

Invariant connections for conformal
and projective changes

Dedicated to Professor Doctor Makoto Matsumoto on the
occasion of his seventieth birthday

By

Katsumi OKUBO

In the theory of conformal changes of Riemannian metrics, the Weyl conformal
curvature tensor plays an essential role in case of dimension more than three. We
consider, however, the theory from another standpoint. In the first section of the
present paper we shall define a linear connection on a Riemannian space relative to a
given Riemannian space, which is invariant under conformal change of metric. Thus
the curvature tensor of the connection is a conformal invariant and the notion of rela-
tive conformal flatness is obtained.

The second section is devoted to the theory of projective changes of Finsler spaces
in a similar way. Relative to a given Finsler space a projectively invariant nonlinear
connection is defined. As a special case we have a Riemannian projective theory which
will be developed in the following two sections.

§1. Conformal changes of a Riemannian space

Let M be an n-dimensional differential manifold and 7T(M) its tangent bundle. A
coordinate system x=(x’) in M induces a canonical coordinate system (x, y)=(x?, y%)
in T(M). We put 0;=09/0x" and 9,=3/dy".

Let us suppose that there is given on M a Riemannian metric tensor a;(x). Put-
ting a=(1/2)as;¥'y’, we denote the Riemannian structure by (M, @). The Christoffel
symbols {;%;} constructed from a;; are coefficients of the Riemannian connection.

We now consider another arbitrary Riemannian metric tensor g;i(x). Putting L=
(1/2)gs;¥*y?, this Riemannina is denoted by (M, L). The Christoffel symbols constructed
from g;; are denoted by I';*,. We put a=det(a;), g=det(g;;) and

i

1,..ve _
1)) C=.log¥Z,  C=dC.

C is a scalar function on M and consequently C; is covariant vector field on M. Then
we have a linear connection

2) Ti=l—C0'—Cr044+Clgys,

where Ci=g*“C;. The connection /" is symmetric but not metrical. We shall call I’
the C-connection relative to . We have the following important theorem :
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Theorem 1. The C-connection °I" relative to a is a comformally invariant symmetric
connection.

Proof. Let L be a conformal change of L, i.e.,

@A) Zi(x)=exp(20)g:(x).

The Riemannian connections /" and /" are in the relation:
4) [fh=T 40,0, +0:8 —guat,
where we put ¢,=0;0, ¢'=g%¢,;. Thus we get

) IFe— i =T =} 0,00 + 040 —g ot

Since C is defined similarly to L, by the contraction with respect to suffices (7, 5), we
get nCr=nC,+nag,. Consequently, we have

(6) Ci=Ci+o.,.
From the formulas (2), (3), (4) and (6), we get
‘T=I—C0 = Cid +Cln
=[";4—C;0,'—Cr0;/+Cigs
=T} (q.e.d.)
Consequently, the curvature tensor ‘R of the C-connection °I” defined by
™ Ritwi=0, T s+ ;™ 0 —0,° ;5 — ™ s

is also conformally invariant.
We consider this confomal]y invariant curvature tensor °R. This tensor is not

coincident with the Weyl conformal curvature tensor.

Definition. A Riemannian space (M, L) is conformally a-flat or a conformally flat
space relative to a, if ‘R vanishes.

For (M, a), °I";},=I";',={;*+} because C=0. Consequently, ‘R=R=S, where R
and S are curvature tensors of L and « respectively. Therefore we have

Theorem 2. (M, a) is locally flat if and only if (M, a) is conformally a-flat.

By the straightforward calculation, we get the following formulas:
®) chiké':Rjikt+C1k5ti+g1kCzi—cjzaki—gﬂcki,
where we put
©)) C,,,=Cj|k—C,Ck+%g,-kC2, Cii=g'*C;,, C*=C;C?,
(10) Cjx=0:C;—C.["js.

It is okvious that Cj;, is a symmetric tensor.
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Theorem 3. (M, L) is conformally flat if it is conformally a-flat and n=dim M=3.

Proof. From °‘R=0, we have
an R+ Cdt 421 Cii—Cudii—gnCii=0.
Contracting (11) by (7, {), we have
(12) Rz 4+(n—2)Cjp+g;:C*=0, C*=C,t.
Transvecting (12) by g’*,
(13) R+2(n—1)C*=0.

From (12) and (13), the equation (11) is rewritten in the form

) 1 .
(14) Rjtkl_m(Rjkali'*'gijli_le&ki—glekt)

1 N
+ (n—1)(n—2) R(gjkal gjzﬁk )=0.

The left hand side of the equation (14) is the same as the Weyl conformal curvature
tensor. Consequently, the above theorem is proved. (q.e.d.)

Since R is conformally invariant, we get
Theorem 4. (M, L) is conformally a-flat, if L is a conformal change of L and
(M, L) is conformally a-flat.

§2. Projective changes in a Finsler space

Let (M, a) be a fixed Finsler space and L(x, y) be an arbitrary Finsler metric
function on M. We put

1 ) 1 .
(15) a= 5 aix, yIyty7, L=—2—gn(x, y)ytyl.

Remembering the definition of the Berwald connection, we introduce two sprays
7t and G*® associated with a and L respectively:

(16) 11=0:0,0)y'—0ia, =07,
(17) G:i=(0:0;L)y'—d;L, G'=g"G;.
Moreover, we put

. /1 .
(18) ri=d57), =t
(19) Gs= .1'(”;‘Gi>, Gjtk:a.kGf‘ .

1 ) . .

(20) B=m‘(Gii_T1¢l)’ B;=0.B, B=0,B;.
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Then B(x, y) is a scalar function and B;;=Bj;. Further we define a new spray ?N*
which is called the p-spray relative to a:

1) PNi=Gi—2By".

A Finsler space (M, L) is called projective to another Finsler space (M, L) if the
extremals of (M, L) are all coincident with those of (M, L).

We have a well-known theorem ([3]): (M, L) is projective to (M, L), if and only
if G'=G'+2py?, where p(x, y) is a scalar funtion.
Now we will prove the following theorem :

Theorem 5. The p-spray PN? is projectively invariant.

Proof. Let (M, L) be projective to (M, L), i.e.,

(22) Gi=Gi+2pyt.
Differentiating (22) by y?, we have

= . ~/1 = B . .
@) C =i (5 T) =G tpoi+py',  pi=dsp.
Thus we get
(24) Gi—1/=Gi =1+ o +p;y".

Contracting (24) with respect to (7, j), we get (n+1)B=(n+1)B+(n+1)p, because p is
positively homogeneous of degree 1. Therefore, we get

(25) B=B+>p.
From (21), (22) and (25), it follows that
PNi=Gi—2By'=Gi+2pyi—2(B+p)y'=G'—2By*="N*, (q.e.d.)

Conversely, we get

Theorem 6. A Finsler spce (M, L) is projective to another Finsler space (M, L), if
PNi=? N,

Proof. PNi=G'—2By' and P N'=G*—2By' by the definition. By the condition,
Gi=G+2B—B)y*=G'+2py*. Consequently, (M, L) is projective to (M, L).
(q.e.d).

From the p-spray PN*! we get a nonlinear connection
- (1 : i )
(26) "N,izaj(7 "N‘)= G,i—B,yi—Bd;,
and an h-connection
(27) ”F,i,,Eak"Nj‘=Gjik—B,(?k‘—B,,ﬁ,-i—Bjkyi.

Further we get the h-curvature tensor
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(28) PR i=0,P P ™ Pl ' —08, P 4 =21 ™ P
where we put 5,-:6,-—”N,-"3j. From Theorem 6, it follows that the non-linear connec-

tion ?Nj*, h-connection ?I";, and h-curvature ?R;*;, are all projectively invariant with
respect to a.

Example. Let (M, a) be a Riemannian space and {;’,} be the Christoffel symbols

constructed from a or a;;j(x).
A Randers space (M, L) is a manifold equipped with a metric function L as fol-

lows ([171,[2], [4])

29) L= 5 (Vay ¥ +b(x)y').

We put

(30) A=VEET, by,

31) E;i=bs;—bsi, biy=00:—be{i*;}, Ejf=a'*Ej,.

By the straightforward calculation, we have

32) PNi=y42E, Ej/=y'E}, where 7' are defined by (16).

For another Randers space (M, L), where L=(1/2)(A+j)* and B=b.(x)y’, we have
(33) PNi=y'+AE, .

Consequently, if (M, L) is projective to (M, L), we have E,'=F, from Theorem 5,
(32) and (33). Therefore it is obvious that E/=E’

Conversely, E;i=E;* implies ’N*=?N* and so (M, L) is projective to (M, L), from
Theorem 6. Consequently,

Theorem 7. A Randers space (M, L) is projective of another Randers space (M, L)
if and only if Eji=E}'.

Corollary. A Randers space (M, L) is projective to the Riemannian space (M, a)if
and only if E;=0.

Proof. We suppose L=a. Then E;=0 and it is obvious that Corollary is gotten
(q.e.d.)

Though these results are already known ([1], [4]), it is interesting that our theory
gives them as an application.

§3. Projective changes of a Riemannian space

We deal with projective chages of a Riemannian space as a special case of a
Finsler space in §2.

Let (M, a) be a given Riemannian space and (M, L) be an arbitrary Riemannian
space with the same underlying manifold M. We use the same notations as those of
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§1 and §2.
If we put B¥*=(1/(n+1))log (v g/+/ @), from (20) we get

(34) B;=0,B=0;B*= B*
Consequently, B;=B(x) and B;,=0. Therefore, (27) gives

(35) P[4 =G;'y—B%3,'— B}d;'.

Since (M, L) is Riemannian, we have G,,=I";,. Therefore,

(36) Pl i=I",— B%3,'— B}, .

From (28), we have

37 PRI=0,"T ;1 +7I" ;™2 ' — 0,71 1 —? ;™1 0

Immediately, we get the following theorem:
Theorem 8. The symmetric linear connection *I";,(x) is projectively invariant.
Now, we introduce the following definition :

Definition. A Riemannian space (M, L) is called projectively a-flat or a projectively
flat space relative to a, if the projectively invariant cuvature tensor ?RR vanishes.

In case of L=a, we have B*=0 and B¥=0. Therefore, ?I";{,=I";; and ?R;’,;=
R;%;. Consequently, we get

Theorem 9. A Riemannian space (M, a) is locally flat if and only if it is projectively
a-flat.

Moreover, get the following two theorems.

Theorem 10. A Riemannian space (M, L) is projectively flat and consequently it is
of constant curvature, if it is projectively a-flat and n=dim M =3.

Proof. By the straightforward calculation, we have
(38) PRy wi=R; i+ B%d.'—B%d.",
39 BY=B}.+BiBf,  B}.=0.Bf—B¥},.
The condition ?R;*,;=0 implies
(40) R v+ B%d, —B%d, ' =0.
Contracting (40) with respect to (7, {), we have
41 R;,=(n—1)B%.
From (40) and (41), we get
(42) R,ik,—gi—l(ze,ka,uzeﬂakf)=o.
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The left hand side of (42) is coincident with the Weyl projective curvature tensor.
Therefore, (M, L) is projectively flat and from the well-known theorem, it is of con-
stant curvature. (q.e.d.)

Theorem 11. A Riemannian space (M, L) is projectively a-flat if L is a projective
change of L and (M, L) is projectively a-flat.

Proof. Siuce PR, is projectively invariant, the theorem is obvious. (q.e.d.)

§4. Projective parameters

Finally we consider the projective parameters of extremals. We use the same
notations as §3.
Let (M, a) be a given Riemannian space. For an arbitrary Riemannian space (M, L),
we defined the projectively invariant symmetric linear connection ?I, i.e.,
pfjikspjik—B’}‘ﬁki—Bfﬁji, B’;Ea,B*.

From this relation, it is concluded that the path with respect to /" is coincident with
that of I,

Now, we consider an extremal C of (M, L), i.e., it is a path with respect to .
The curve C is also a path with respect to ?I’. Let s be an affine parameter of C
with respect to " and u be an affine parameter of the same curve C with respect to
P[". The notion of the Schwartzian derivative is defined by

(43) n, s1= (@3 (@ rur @,

where we put d;=d/ds.
Since the parameters s and u are affine parameters of the path C, we have the
equations of the path C as follow

(44) (do)x+ 1 dsx’dsx*=0 and (d.)x'+?"; dx*=0
respedtively, where we put d,=d/du. From these equations, we get
(45) {u, s}:%(Rik—pRjk)dsxjdsx”.
Consequently, we get

Theorem 12. The relation (45) is obtained if u and s are affine parameters of a
path with respect to I' and PI" respectively.

Here, we write various formulas with respect to the Schwartzian derivative:

(46) {u, s}=0&= u=(cs+d)as+b)"*
(47) . {ty S}:{u, S}@{t, u}:O:
(48) {u, sf=—(dus)*{s, u},

(49) {t, st={t, ul(dsu)+{u, s}.
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Now, we continue to discuss the parameters of a path with respect to I". Let ¢
be an arbitrary parameter of an extremal C. From (49) and Theorem 12, we get

Theorem 13. If u and s are affine parameters of a path C with respect to I and
PI" respectively and t is an arbitary parameter of the same curve C, then we have

(50) {t, s}—%R;kdsxfdsxkz({t, u)— ”Rjkduxfduxk)(dsu)z.

n—1
A projective parameter ¢ of a path C with respect to I” is defined by

2 )
(51) {t, S}_ijkdsx’dsx"‘—‘O-
From (50) the parameter ¢ is a projective parameter of the curve C with respect to ?I".
Therefore, we get

Theorem 14. Let (M, L) be projective to (M, L). If  and t are projective param-
eters of a common extremal C of (M, L) and (M, L) respectively, then we have i—

(ct+dXat+b)!

Proof. Since (M, L) is projective to (M, L) and ?I" is projectively invariant, we
have

(52) pRjk:pRjk .

Consequently, f and ¢ are both projective parameters of the path C with respect to 27",
which is equal to ?I° Therefore, from Theorem 13 we get

(53) {t, ut={t, ut.
Thus (46) and (45) lead us to the conclusion. (q.e.d.)

Though Theorem 14 is a well-known theorem, it is interesting that it is proved as
an application of our theory.
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