
J .  Math. Kyoto Univ. (JMKYAZ)
31-4 (1991) 1023-1062

Theory of G-categories toward equivariant
algebraic K-theory

By

Masahiko NIW A *

The notion of a G-category —a category with an action of a group G— was needed
to make algebraic K-theory equivariant o n e .  Though various notions have been used
so far, the relations with them have not been explained explicitly y e t .  Beginning by
introducing the  notion of a  G-category from point of view of Galois descent in  linear
categories, I deal comprehensively with various notions of G-categories a n d  establish
th e  comparison in  th e  complete fo rm . It is important for us to study simultaneously
the limit categories together with G-categories and G -functors. The objects to appear
in  text are as follows.

G-category G-functor limit category

a  category C with a
G-descent datum

a morphism of Galois
descent data

descended category
JHC

a  pseudo functor

a : G—Cat

a  pseudo nat. transf.
G .1, Cat

a fibered category over
G

r :  D—>G

a cartesian functor over
G; D D'—>

representation category
CartG(H, D) or
CartG(G/H, D)\ G Z

a  lax functor a  lax nat. transf. lax limit over G

a (strict) functor

a : G—>Cat

a  nat. transf. ZIHa(•) or a (- )"
G  1 Cat

an  0 0
0 P-category

P : O00 —*Cat

a  nat. transf. (G/H)
OG°P ,I, Cat

§  1 .  Introduction: The notion of G-categories

In order to introduce the notion of G-categories j. e. categories on which the group
G acts, I think, we are asked to fit it to the  following problems. One of them is the
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problem of G alo is  descen t. L e t B /A  b e a G alois extension of rings (or a  G alois
covering B— A of schemes) of Galois group G .  I shall consider the notion of a linear
category with a Galois descent datum of Galois group G  originated in A. Grothendieck
(see N. S. R ivan o  [18 ]). L e t  L  be an  A-linear category and LB denotes the  B-linear
category deduced from L  by extension of scalars from A  to B .  In the Galois case the
usual datum of descent on LB relative to B/A reduces to the  following datum by using
the  isomorphism BO A B  

G

For each sE G  there is an  equivalence of categories

a, : LB — * LB

and for each pair s, tEG there is a  natural isomorphism

as, - - >  « e a t

satisfying coherence conditions

(as*at, 0° as, tu — ( as , t* au ) ° as t ,u

for any s, t ,  u E G . Further th e  usual descended category can be rewritten in  the
following form by the Galois descent datum (a,, a,,t) on L B .  The descended category
ZIG LB has as objects the pairs (X , (23)sea) where X  is an object o f  LB and  A,: X—>a,X
is an  isomorphism o f LB for each sEG  such that

2e =id x  ( e = th e  identity element o f G)

as(yit).2, -=(a.,,t)x°2,t•

The morphisms of 4GL B  a re  defined to be morphisms o f LB com m uting all A ,. It is
shown that th e  descended category z10  LB is  an  A-linear category which is equivalent
to the original L .  ([18])

Watching these data we find the fact that the  descent situation may be formulated
i n  t h e  form independent o f  th e  r in g  e x te n s io n  B /A  a n d  o f  th e  linearity of the
categories. So leaving theory of linear categories we interpret abstractly th e  descent
d a ta  a s  th e  d a ta  concerning any categories and any groups, and then we reach the
notion of a category with a  G-descent datum (or a  G-category). This i s  th e  starting
po in t o f our theory o f  G-categories. However when we give the  definition we had
better normalize the data so that the  equivalences and  the  natural isomorphisms cor-
responding to the  identity element e of G  are  the identities.

Definition 1.1. L e t  G  b e a  fixed group whose identity element is denoted by e
and let C  be a  category. A  datum (a „ a „,) is called a  G-descent datum o n  C  if  fo r
each element s o f G  a , is an  equivalence of categories

a, : C ---> C

and for each pair s ,t of elements o f G  as ,, is a  natural isomorphism

a, , , : a,, ---> asoa,
satisfying
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a e =ld c  ( = -- th e  identity functor o f C)

( sE G )

(a s * at„) .a ,,t .=(as ,i* a.) .as t , (s, t, uE G )

w here id a ,  denotes the  identity  natural transformation of the functor as.
T hen w e call (C ; a s , a s ,t)  a  category with a G-descent datum o r  a  G-category.

The notion of G-functors is obtained by applying the notion of morphisms of data
o f  d e sc e n t to  the Galois descent c a s e . Together w ith  the notion of G-natural trans-
formations between them as 2-arrows we have a 2-category denoted by Des(G).

Definition 1 . 2 .  A  G-functor o f G-categories

(F, 770: (C; as, as,t) - - -> (C' ; a ,  ah,,)

consists of a  functor F : C— >C' of the underlying categories and a  natural isomorphism
for every sE G

72s : Foa s ---> ce;oF
such that

(a's,t*F)o72st=(a's*77t).(Y ievat).(F*as.t) (s, tEG )

w here id F  denots the  identity morphism of the functor F.
A  G-natural transformation o f G-functors

t :(F, (F ', n 's)

is defined to be a  natural transformation t :  F— >F' of functors satisfying the conditions

(a 's *t).77,=77',.(tiqr s ) (sEG).

W e can also define the  descended category ZIG C  only from  the  datum in  Definition

Definition 1 . 3 .  For a  category with a  G-descent datum (a  G-category) (C;  a s , as, t)
th e  descended category LIG C  is  d e f in e d  a s  follow s ; A n  o b jec t o f  4 G C  i s  a  p a ir
(X, (208EG) consisting of an object X  of C  and for every  s E G  an  isomorphism o f C

2,: X - -> as X
such that

A , id

as(2t).2,— (as,t)x.A st (s, tEG).
A  morphism of LIG C

f  (X, (AO) --->  (X', (A))

is  a  morphism f :  X — >X ' o f C  such  that for any  sE  G

2's° f  = a s ( f ) .2 8 .
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Thus we have got a n  abstract formulation for Galois descent.
Another problem required f o r  theory o f  G-categories is that o f  representation

theory. F o r  a  r in g  A  what relations are there between a  category C  of A-modules
a n d  a  category e of module over the  group ring A [G ] o f  a  group G  over A ?  Under
c e r ta in  a  nice circumstance Ô  turns to be the functor category Fun(G , C ). On the
other side when th e  G-descent datum (a„ as,c) o f  a  G-category C  is triv ia l say

a,=Idc

f o r  any s G, t h e  descended category J G C  is equivalent to th e  fu n c to r  category
Fun(G , C ). Thus this second problem is reduced a s  a  special case to the  first problem
about G alo is descent. A t the  same time theory o f  G-categories gets some advantage
from th e  te c h n iq u e s  in  theory o f  representations. F or in stance  induc tion  theory
(=abstract formalism o f representation theory) will be generalized to theory o f  G-
categories for finite G  in § 6.

T h e  other problem is about an  usual G-category C j. e. a  group G ac tig  on  C  as
a  s tr ic t  fu n c to r . W e call it a  split G-category i n  order to distinguish it from the
n o tio n  o f  our G-category i n  which G  acts o n  C  a s  a  pseudo fu n c to r . A s  a  split
G-category provides a G-space under the  c lassfy ing  space f unctor th is n o tio n  o f  G-
categories has been treated so f a r  by many authors in equivariant algebraic K-theory.
[5], [11 ], [1 9 ]  etc. •••

I shall g ive in  §  4  th e  procedure o f  constructing a  split G-category from our
(pseudo) G-category. This is carried out by using the G iraud construction [7] through
the notion of fibered categories over G .  (T h e  resulting one is called the split version.)
This construction makes G-categories the ones to which theory o f  G-spaces in  algebraic
topology can be used effectively. I m ust note that even though we a re  handling split
G-categories from the  first it is important to apply th e  above construction to them by
thinking o f them as our G-categories. Because th e  subject o f  theory o f  G-categories
is not the  re la tion  o f a  G-category C with th e  H-fixed category CH fo r  a  subgroup H
o f  G , b u t  it is that o f  C  with th e  descended category ZIH C .  I w ill show also in §4
that fo r  CS P  t h e  split version of C  the both categories LIH Csl) and ( CsP)H are equivalent
to  th e  o r ig in a l descended category J H C .  T h e  usefulness o f  such procedure is found
fo r  in s ta n c e  in  th e  work o f S h im ak aw a  [19 ] ab o u t th e  con stru c tio n  o f infinite G-
deloopings o f  symmetric monoidal (split) G-categories.

I shall now  g ive th e  organization of this p a p e r .  First we will show in § 2 that
the notions of our G-categories and G-functors are equivalent to those of fibered cate-
gories over G  an d  ca rte sian  fun c to rs  over G .  T h e  idea o f using fibered categories
over G  in equivariant algebraic K-theory is due to FrElhlich-W all [6][26]• They used
th e  term of stab le  G-graded categories. B ut I think that to formulate G-categories in
theory of fibered categories is appropriate f o r  th e  n a tu r e  o f  th e  theory. M oreover
when a  f ib e re d  category D  over G  is associated with a  G-category (C ; a„ a,, t )  it is
shown that th e  representation category Rep(G, D) of Friihlich-Wall (ibid.) is equivalent
to our descended category J G C.

If the situation is exchanged to a  subgroup H  o f  G, the  above representation cate-
gories (relative to H ) become delicate to deal with. In  particular this is the case when
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applied to induction theory. So I introduce in  §  3  a  new representation category which
is n a tu ra l.  It is shown that this new representation category is equivalent to t h e  old
o n e . T h is  result turns out to be important later. (§ 4, § 8)

G-categories could be interpreted a s  pseudo functors from th e  category G  to the
2-category Cat o f small categories. We get the notions of lax G-categories a n d  split
G-categories by replacing th e  pseudo functors by weaker lax functor and by stronger
(stric t)  func to rs. After noting that th e  descended category o f  a  G-category is equiv-
alent to  a  lax  lim it over G , I investigate the  re la tion  of G-categories with split G-
categories. The content is such a s  mentioned in  th e  above third problem. (§ 4)

A s a  next topic we shall study G-categories with further s tru c tu re s . T h e  eq u iv -
a r ia n t  v e r s io n  o f  a  category with some stru c tu res  (e. g. an  ex ac t G-category) goes
through in  the sim ple and natural form in  our theory o f  G-categories. F o r  a  pseudo
functor we may only exchange th e  target Cat with relevant 2-category. T h e  inherit-
ance of structure in question to th e  limit categories (e. g. th e  descended category) can
be proven in  a  natural w a y .  By way o f illustration exac t G-categories are  explained
in § 5. Fundamental process is similar fo r symmetric m onoidal G-categories and
simplicial G-categories which a re  not dealt with in  this paper.

It is show n in  §  6  that fo r finite G  a fibered category over G  induces a  Mackey
functor in  representation theory. By means o f  th e  n o tio n  o f  th e  new representation
category in  §  3  our form ulation such a s  Mackey property and projection form ula
becomes much simpler. T h is  result generalizes th e  work of Dress-Kuku [3].

I n  § 7  w e shall d iscuss a b o u t  th e  connection between G-categories and ° G

categories. T h e  la tte r  is  th e  other notion like a  G-category. A n  0 G -category is the
o n e  given a  category f o r  each subgroup H  o f  G  in a com patible manner and  it is  a
main question to rediscover them up to homotopy a s  th e  H-fixed category of a certain
G-category. T h is  shall be done parallel to t h e  work of E lm endorf [4] about the
relation between G-spaces an d  0 G -spaces. T h e  classifying space o f  our construction
U  from 0 0 -categories to split G-categories reduces to the Elmendorf construction C.

In  th e  last section we shall study adjo in t re la tions between func tors connecting
various notions of G-categories. This resarch seems to become useful for applications
o f  G-categories.

F inally n o te  that I establish definite re la tions between all G-categories which
appeared o r  u n a p p e a re d  in  papers subject to equivariant algebraic K -th e o ry . Our
theory o f  G-categories provides a  comprehensive a n d  natural treatment o f  categories
with group a c tio n s . It is expected that this theory is used not only for the equivariant
theory o f algebraic K-theory, b u t also fo r many fields pertaining to group actions on
categories. B u t  i t  i s  th e  p o in t  a t  issue to face  a  difficult problem called homotopy
lim it problem  by R. Thomason [24] when we a re  going to use  rich tools in  algebraic
topology. T h is  is one of the  most important questions following this paper i n  theory
o f  G-categories.

Fix some n o ta tio n s . L e t G  be a  g r o u p . We can regard  G  a s  a  category, denoted
t h e  sam e letter G .  T h e  category G  has only one object •  and the m orphism s of G
a re  elements o f th e  group G .  F or two elements s, t o f  G  the  com position  of s  with
t  is denoted by ts. The opposite category G°P in  which the composition of s  with t  is
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s t  is equivalent to G  by th e  correspondence .34,

Acknowledgement : I would like to thank Professors H. Toda and N . Shimada for
many helpful suggestions.

§ 2. Categoric s  with G-descent d a ta  and fibered categories over G

Regarding a  group G  a s  a  category G  with only one object •  a n d  with elements
o f  G  a s  morphisms, w e can  th ink o f  a  G-category (=a category with a  G-descent
datum) in  § 1 a s  a  pseudo functor from G  to th e  2-category C at o f  small categories.
Then by the classical relation between pseudo functors and fibered categories following
Grothendieck (Cf. SGA [211) a  G-category provides a  fibered category over G .  The
notion of fibered categories is fruitful and  becomes a  key stone o f  th e  development of
our theory. Further we show  that G-functors are correspondent to cartesian functors
of fibered categories. Since our interest is in  descent theory, it is m ore  im portan t to
establish th e  correspondence between those limit categories ;  th e  descended category of
a  G-category and  the  representation category of a fibered category over G .  The notion
o f  representation categories is a  generalization o f that o f categories o f representation
modules and is  due to F . Freihlich-C. T. C . W all [6].

Since a  group is a  groupoid (=a category whose morphisms a re  all isomorphisms)
a s  a  category, t h e  isomorphism o f  categories between G  and  G "  given by s<-,

gives u s  th e  t r a n s it io n  o f  th e  discusion below to pseudo opfunctor a n d  cofibered
categories and all the argum ents become equivalent.

Definition 2.1 (SGA [21]). For a category F over E ,  : F->E, a  morphism m :
Y  of F  is said to be a  cartesian morphism if  fo r  any object Z  over 7r(X ) th e  assigment
q — mo q provides a bijection

HomF.id(Z• X)=HomF,-(m)(Z, Y)

where i d  denotes the identity morphism o f  7(m) and

HomF , g (X, Y)=.1f c-HomF(X, Y); 7r(f)=g} •

Note that every isomorphism is obviously a  cartesian morphism.
A  category F  is prefibered over E  i f  f o r  an y  morphism g: e--->7) o f  E  a n d  any

object Y  o f  F  over y) there a re  a n  object X  o f F over e  a n d  a  cartesian morphism
f : X - ->Y o f  F over g .

F or : F->E is said to be a  fibered category over E  i f  it is prefibered over E  and
the compositions of cartesian morphisms a re  cartesian.

Definition 2 .2 .  Given two fibered categories over E ,  : F -> E  and p r ' :  F '-> E , a
functor u :  F -> F ' is said to be a  cartesian functor over E  i f  it is  a  functor over E i .  e.

u and it sends cartesian morphisms o f F  to cartesian morphisms o f  F'. Note
that i f  F  is a  groupoid the latter condition is unneccesary.

CartE ( F , F ') denotes t h e  category of cartesian functors from F  to F ' over E  and
natural transformations t : u -n t ' satisfying

7 / ( t  )= x )
for any object X  in  F.
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Given a fibered category 7r : F->E and an object e of E  the fiber 7c- 1 (e) of i t  a t  e
is  d e f in e d  to  b e  a category whose objects are objects X  of F  su ch  th a t r (X )= e  and
whose morphisms are morphisms f  of F such that  i t ( f ) = r i d .  C o n s id e r  the correspond-
ence w hich  specifies the f ib e r  7- 1 (e ) for an object e of E  and the functor 7,7 - 1 ( )->
7 - 1 (e) determined by the prefiberedness of F  for a morphism E-÷7) of E .  T h e n  it
follows from the fiberedness of F  th a t th e re  is  a natural isomorphism satisfying certain
coherence conditions between that functor correspondent to the composition of morphisms
o f E  and the composition of those functors. Thus w e obtain  a pseudo functor from
E°P to  Cat. (Such datum is called a cleavage in SGA [21 1. )  Conversely the Grothendieck
construction makes a fibered category over E  from  a pseudo functor E° 2 ->Cat.

W e w ill observe precisely on these details in the case of E=G.

Definition 2.3 (Frohlich-Wall [6 ] ) .  Take a fibered category r :  D -> G  o v e r  G. A
morphism f  o f D  s u c h  th a t  r (f )= s  (s E G ) is called a morphism of grade s. Ker D
denotes the unique fiber r ' ( • )  of r. This category is equivalent to Cart G(1. D ) where
1 denotes the ponctuai ca tegory  (=the category with only one object and one morphism).
T o  b e  more precise  the objects o f  Ker D are e q u a l to  the objec ts o f D  and the
morphisms of Ker D are morphisms of D  of grade e w here  e is  the identity element
of G .  Let (7's, c s , t )  be the normalized cleavage defined by the fibered structure of r
(cf. [21 ]). Explicitly for every  sEG  the re  is  an equivalence of categories

TS Ker D --> Ker D

such that re=idKed D and for e v e ry  pair s , tE G  t h e r e  i s  a  natural isom orphism  of
grade e

Cs. t 7t°78 Tst
such that

drs=Ce,s (sEG)

c3,t..(c5,.*rs)= .-cst,..(7u*e5,t) (s, t, u G).

A set of morphisms of transport { s , , y }  is given as fo llo w s . For an object X  of D and
sEG  one has a cartesian morphism of grade s

es, X Ts X X

corresponding to a morphism of grade e id : r g X ->r,,X . And they satisfy the following
properties.
a) For any object X  of D

ee.x=idx.

b) For any  morphism y :  X -> X ' of Ker D and sŒ G

v x =e8, x , 07.,(v).

c) For any object X  of D  and s, tEG

C3. x°et,r s x-est,.x.(cg,t)x •
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N ote in general that fo r  a  category F  o v e r  E  a  fibered s tru c tu re  determ ines a
normalized cleavage a n d  a  se t o f  morphisms of transport, and conversely that one of a
normalized cleavage a n d  a  se t o f  morphisms of transport determines t h e  o th e r  a n d  a
fibered category  structure. T h e  correpondence between pseudo functors and fibered
categories is w ell-know n, b u t  in  o rd e r  to  d e sc rib e  t h e  equivalence betw een lim it
categories cartesian morphisms es , x 's  turn to be useful.

Definition 2 .4  (Fr6hlich-Wall [6 1). T h e  lim it  c a te g o ry  o f  a  fibered category
r : D--->G is g iven  by  th e  category o f cartesian sections ;

R ep D (=R ep (G, D))=CartG(G, D).

T his is called th e  representation category o f  a  fibered category D over G .  T h e  termi-
nology comes from th e  following f a c t .  W hen r (or D ) is  triv ia l i.e . r=p r i : D =G x C

RepD., -- Fun (G, C)

w here Fun(G, C) is  th e  functor category from  G to  C  whose objects a r e  G-represent-
ations in  C.

L e t  u s  w rite  d o w n  exp lic itly  th e  category R ep D . A n object o f  R epD is  a pair
(X, w) w here X  is  an  object o f  D a n d  yo i s  a  g ro u p  homomorphism G-421utD X  such
t h a t  ÇD(s) is  an  automorphism of grade s  fo r any  sE G .  A  morphism (X, w)--(X ', w ')
o f R epD is g iven by a  morphism f : X ->X ' o f D of grade e  such that

w'(s). f = f ow(s) (s G).

Under those definitions we have

Theorem 2 .5 .  ( 1 )  Let C  be category  w ith a  G-descent datum (ce,, a,, t ) ( = a  G-
category  in  §1). Then there is a f ibered category  D over G satisfying equivalences of
categories

K e rD C ,

(2) I f r: D .-G  is  a f ibered category over G then K er D has a  G-descent datum satis-
fying an equivalence

ZIGKer Rep D

P ro o f . ( 1 )  W e w ill construct a  category D  w ith  t h e  d esired  p ro p ertie s . T ak e
ob D=ob C. For two objects X, Y

H om p(X , Y )= Horn ! )  ,(X, Y )
sEG '

Homp, s(X, Y)=Hom c (X, a,-,Y) (the morphisms of g rade  s).

The composition of morphisms

Horn ! ) , s( X , Y ) x Homp, Z) —> Hom G , t ,(X , Z), ( f , g .  f

is defined a s  fo llo w s. For f :  X-4a 8 - iir  and g:Y ->cr,-,Z
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a 8 -i(g )
go f : X  — > a3 -1Y > a 8 -ice 8 -1Z ---> a8-18-12-=a ( ts)-1Z.

Thus one has a  category D  over G.
N ext id e Homc (a s -1X, a 8 -1X ) defines a  morphism of grade s in  D

Cs, X  a 8 -1X — >  X

and it is easily shown that a  se t  {Cs . x } satisfies the conditions sim ilar to (a)--, (c) which
are satisfied by { x } in  Definition 2.3.

So put
r s - = C e s - i ,  C 3 , 8 = ( a 8 - 1 , 8 - 1 )  1

,  es.x=-Cs,x

then  it is verified  tha t ( i „  c3 , 8 )  is  a  normalized cleavage of D  and {C , X } i s  a  s e t  o f
morphisms of transport. I t  is  c le a r  th a t C =K er D.

T o  co n stru c t a n  equivalence betw een ZID C  and Rep D  tak e  an  object (X, (28)) of
ZIGC. For s E G  put

ço(s)-=es,x°28-1

then yo(s) is  an automorphism of X  of grade s  and ço: G—>AutD X  i s  a  g ro u p  homo-
morphism as follows :

(A S O — eat, X ° 2 (80 - 1

=
e s t .  X ( c s , t ) X ° (es,

= C s. X 'e t ,r,X * (a1 - 1,8 - 1)X ° 21-13-1

X ° L,T s X ° at-1 (2 ,-1 ) . A t-1

=
CS, x ° 2 8- ''e t ,  X ° 2 t-1

= W (.3) 0  T ( t)

T hus w e have an object (X, go) of Rep D. A s  re g a rd s  morphisms i f  (X, (AO), (X ', (2 ))
are objects of GIG C  and v: X—>X' is  a  morphism of grade e  such that

20v=as(v).2, (s E  G),

putting
ço(s) (resP. ço'(s))=e8,x.28-1 (resP. es,1 2;-1)

w e have
yo'(s)ov=e s .x , o2-iov

= C s . r o r s ( v ) 0 2 3 — i

=v oEs, x. 4-1

= v o (s ).

Thus w e obtain a  functor LIG C-->RepD. I t  is  possible to  follow  up the converse of
the above construction and so  w e  have an equivalence of categories

Rep Dr-zZIDC
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( 2 )  Given a  fibered category r: D-->G with a  normalized cleavage (r„ cs,t) put

as=rs-i, as,t= (ct-i,s-i) 1

then one has a  G-descent datum (a s , a,, t )  o n  Ker D .  I n  th is  c a se  a n  equivalence
between 4 0 Ker D and R epD goes through as in  (1). q. e. d.

W e shall now show  th a t G-functors correspond to cartesian functors under the
correspondence between G-categories and fibered categories over G in  Theorem 2.5.

Theorem 2 .6 .  ( 1 )  Let b: B -+G a category  ov er G. A  cartesian functor

P: (7 : D — > G) — > (7' : D' G)

of f ibered categories over G induces naturally a functor

CartG(B , P):Cart G (B, D) — > Cart G (B , D').

In particular we have natural functors

Ker P: K er D  --> K er D ' and

Rep P: Rep D —> Rep D' .

(2) When providing a G-descent datum on Ker D (resp. Ker D') by Theorem 2.5 (2), Ker P
of (1) turns to be a G-functor of G-categories.
(3) Given a G-functor

F:(C ; a,, a8 ,3)--> (C ' ; a, a's.3)

of G-categories, F extends to a cartesian functor

P : (7 : D — > G) — > (7' : D' — > G)

where 7: D->G (resp. : D'-4G) is a f ibered category  over G associated to (C; a 3 ,  a " )
(resp. (C' ; a ,  a 's , t )) by Theorem 2.5.

P ro o f . ( 1 )  The functor Cart G (B , P) is given by

P p
(B - - >  D ') .

Take B=1 (resp. G), and the result for K er (resp. Rep) follows.
(2) We can write down the conditions of being a  cartesian functor by using the cleav-
ages o f  fibered categories in  theory of fibered cotegories (C f. Gray [9 ] p  3 3 ). This
implies that the restriction of a cartesian functor to the  fibers K er satisfies th e  condi-
tions of the definition o f  a  G-functor.
(3) L e t  u s  construct a  cartesian functor P: D->D' from a  G-functor F: C -> C '.  For
an object X  of D  put PX=FX. If m : X->Y is a  morphism of grade s  in  D  there is
a  morphism n : X->a s _ iY  o f  C . Let Pm : Px-> P Y  be a  morphism of grade s  of D'
correspondent to the following composition in C'

Fn (723-1)x
F X  --> Foa,,Y >
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It follows easily from the conditions of the definition o f a  G-functor and the fact used
in (2) that the functor P defined above becomes a  cartesian f unctor. q. e. d.

Fib(G) denotes the  2-category of fibered categories and cartesian functors together
with 2-arrows which are defined to correspond to 2-arrows of Des(G) in  § 1 under the
correspondence o f  Theorems 2.5, 2.6. Then Fib(G) is 2-equivalent to Des(G) and we
may identify the  two 2-categories.

§ 3. C hange of groups

In this section I  sh a ll g iv e  th e  definitions a n d  properties o f  th e  representation
categories f o r  a  group H  exchanged from G .  A t  first w e state  the  definition of
Rep(H, D) given by Frohlich-W all [6]. But this is inconvenient from th e  lack  of
functoriality. So we adopt a  new definition of the representation categories

Rep(H, D)=CartG(G/H, D).

For H=G, Rep(G, D)=Rep((G, D) and for general H there is an  equivalence

Rep(H, D),-, --,Rep(H, D).

For H= {e} this equivalence has the  form

Ker D,=--:CartG ( G/e, D).

and plays an important role in  the  next section.

Lemma and D efinition 3.1. (1 )  For a fibered category r: D—>G over G  with a
normalized cleavage (re, ce , t )  and a group homomorphism h : H—*G the category over H

pr,: Hx G D H

is a fibered category over H and

Rep (Hx G D),--:-„Cart G (H, D)

holds. This category is denoted by Rep(H, D).
(2 )  For a G-category ( C; a„ (2 8 ,1 ) and homomorphism h: H-->G (C; an(8), a n ( S) h ( 1)) is
a H-category. The descended category of this is denoted by ZIH C.

P ro o f .  (1) We shall discribe in  term of cleavages. We may take (r h (s ), C  M s ) , h ( t ) )

a s  a  normalized cleavage f o r  H XG D -41. T o show  the latter category equivalence
consider the  diagram

HxGD * D
„ vr ir

H   G
h
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The correspondence between functors

g :H — > D  a n d  R .:11--->Hx 0 D

such that g(•)=(•, g(.)), g(s)=(s, g(s)) gives the desired equivalence.
( 2 )  Trivial. q. e. d.

Theorems 2.5, 2.6 in  the  previous section can be immediately generalized to the
present case . L e t H  be a  subgroup of G.

Proposition 3 .2 .  (1) W hen a  G-category (C; a 3 , as ,t ) and a fibered category D—>G
over G  are under the correspondence in  Theorem 2.5 there is an equivalence

4HC Rep(H, D).

( 2 )  A  cartesian functor P: D -4D ' ov er G  o f  fibered categories ov er G (resp. a  G-
functor F: C—>C') induces functors in  a natural way

Rep(H, P): Rep(H, D)---> Rep(H, D')

(resp. 4 H F: 4 H C—>4H C').

We shall here provide some notations of categories which occur from a  group G.
These categories play a central role from now on.

Definition 3 .3 .  For a (left) G-set S the  category S has elements o f  S  a s  objects
a n d  th e  morphisms o f  S  from  x  to x ' are elements a  o f G  such that ax — x '; i.e .
ob S=S, ?nor S= G X S .  There is a  functor

a  S  -->  G

on objects a(x)=- for xES=ob.S

(a, x)
on m orphism s a(x  ax)=----a for xES, aEG.

Thus have a category over G . (Not fibered !) We often u s e  th e  categories GI H fo r
subgroups H  of G .  In special cases

G/ G= G

Gle=•/G (=the comma category o f G under • ).

The latter is also equal to the one called the  translation category o f G.

We use these notions to define a  new representation category.

Lemma and Definition 3 .4 .  For a fibered category r : D—>G over G and a (lef t) G-set
S there is an equivalence

CartG(S, D)=Cart Sec(Sx G D)

where Cart Sec(Sx G D ) i s  th e  category  o f  cartesian sec tio n s  o f  a fibered category
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pr i : S x G D -6 . D efine for S=G/H

Rep(H, D)=Cart G ( G/H, D).

P r o o f .  Similar to Lemma 3.1.

Since GIG , G w e  have Rep(G, D)=Rep(G, D). In  general we will show Rep(H, D)
';---Rep(H, D).

Theorem3.5. For a  fibered ca t e g o r y  r: D—>G o v e r  G and a subgroup  H of G th ere
i s  an equ iva len ce of ca tego r ies

Cart G ( G/H, D ) C a rt G (H, D)

Rep(H, D) Rep(H, D).

P r o o f .  We shall first define a  canonical functor

9: CartG(G/H, D) -->C art G (H, D).
Assign on objects

ço(k)
(G I HD  )  9  ( H - D

/
G G

k(eH)
(p (k ): Ik (h , eH)

k(eH)

where (h, eH): eHœ->heH=eH for /z EH. Also on morphisms

\ I w(k) \

G/H 12 D 1---+ H 19(2) D

k' I 9(k') I

W(2 )=411: k(eH)----> k'(eH).

On the other side a  functor

çl' : CartG(H, D)--->CartG(G/H, D)

is not canonical. T h is  is determ ined fo r  each choice o f  representatives Ig i l, E ,  of
G ill. A s s ig n  on objects
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u
H D )  s b

G

(  g iH  \
1g

\ g ,H
0(u):

w here (g, g i H ): g i H-->gg i H =g ; 11, hence g y 'g g i E H  a n d  th e  m o rp h ism  0(u)(g , g i H ):
7g i _iu(•) — I g i _iu(•) is determ ined by the  following commutative square

  

e g j - I , u ( • )

   

accomplished by th e  fac t th a t e g 3 - 1 , 1 1 ( . )  is  a  cartesian  m orphism . Assign on morphisms

  

0(u)
GIH 1 0 (te) D

  

0

   

\ 0(u')

  

w here fo r each g i l lE o b G /H

0(1-1)g i 11=7 g iu(•)•

T h en  it is  c lea r th a t ç000=icica rt G (H .D ). A lso there  is a  natura l transformation

IdcartG(GIH,D) — > Çb0ÇD.

For (G/H— *D)EobCartG(G/H, D) a morphism

k  --> 0 .ço(k )

of Cart e (G /H , D) is g iven a s  fo llo w s. For g i HEob  G/H

(77k)g i H: k (g i H ) - - > r 9 ,_ i k(eH)=-- (0.ya(k))(g i H )

is defined by the commutative triangle

k (giH ) g iH )

k (eH)

T R ,  i k ( e i ) g i - l . k ( e H )

obtained by the cartesianness of e g E_1, k (e11)•

Since k (g P, g i H )  is  a n  isomorphism 72k i s  a n  isomorphism fo r a n y  k. The natu-
ra lity  o f 72 is show n from  the follow ing commutative diagram



k

G/e 1 2  D
/ k(e))

12
k'(e)

1 k'
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k(g e g t - 1
k(g i H ) k(eI-1)

j, Ê„ ,
k'(g i H) k '(en  <

r g i _,k(eH)

j r„,(2e)=00S0 (2 )
r g i _i k'(eH)

deduced from any morphism A: k --4 ' of CartG(G/H, D).
Note that since (7)k )ex=id the image of 72 by ço is  the identity and that 72 i s  the

identity on the image of 0 .  These show that ço is left adjoint to 0 .  Further as 72 is
a natural isomorphism go is quasi-inverse to 0 .  Therefore we have the desired equiv-
alence of categories, q. e. d.

It is more important when H = e .  Though it is a special case of the above theorem
we shall here renote it to take advantage in the next section.

Corollary 3 .6 .  Let (C ; as, as, ) be a G-category and r :  D—>G the associated fibered
category over G. Then there exists an equivalence of categories

CartG( G/e, D)--> C.

P ro o f. We shall write explicitly the functor 0 and the quasi-inverse functor 0 in
spite of a special case of the theorem. The functor

ço:CartG( G/e, D)--> C
is given by

and the functor

is given by
0: C --> Cart G(G/e, D)

 

(

izyt t ) ,_ +  G  e

Y

0(X)

10(P) D

çb(Y)

 

where
a ra_iX (r a _ iY  ) )

0 (X ) (resp. 0 (Y )):(1g)I--> - ( ) (resP.
ga ra_,g_iY

Sb(P). = Ta -1(P)

Remark that the choice of representatives does not occur, hence 0  is also canonical.
The rest of the proof is as in Theorem 3.5. q. e. d.
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§  4 .  S p lit G-categories

I mentioned in § 2 th a t  a  G-category was considered a s  a  p seudo  func to r from  G
t o  Cat. 2-f unctors f ro m  a  category  to  a  2-category a re  classified primarily to three
classes—lax, pseudo and strict functors by m eans of conditions relative to compositions
( e .g .  a s , t i n  a  G -c a te g o ry ) . I t  is  a  m ain  object in  th is  section to  g ive the relations
between those notions of 2-f unctors of G .  F irs t it is  sh o w n  th a t a  lax colimit o f  a  G-
category is equivalent to th e  descended category. A nd w e sha ll sta te  th e  re la tio n  o f
G-categories with split G-categories (=strict functors from G  to  C a t). For this w e m ay
use the Giraud construction (Giraud [7]) which associates a  s tr ic t  fu n c to r  o n  G  with
a  f ib e re d  ca tegory  over G. R em ark that applied to  a  pseudo functor the one called
the S treet first construction or Kleisli rec tifica tion  w hich  sends lax  func tors to  strict
functors is  e q u iv a le n t to  the  G iraud  construc tion . A  split G-category has two kinds
o f limit categories ; th e  descended category considered a s  a  pseudo G-category and the
category  w hich  consists o f  G-fixed objects and G-fixed m orphism s. It is also shown
that those a re  equivalent only fo r the  G-category deduced from a fibered category over
G .  We begin by defining various 2-f unctors.

Definition 4 .1 .  F o r  a  category E and 2-category C , a  lax  fu n cto r

a : E C

is  a  p a ir  o f functions which assign an  object a (a ) o f  C  to each object a o f E  an d  an
1-arrow  a(t): a(a)—>a(b) o f  C  to each morphism  t :  a—>b o f E  together with 2-arrows
o f C

ta : a(id a ) — > idaca)

a(sot)--->  a(s)°a(t)
t s

for each identity morphism tid a : a—>a o f E  and each composition a—>b—>c of morphisms
o f E  such  that th e  following diagrams o f  1-arrows o f  C  commute ;

Pt.id
a(id b ) .a ( t )   a ( t )   a ( t ) .a ( id a )

a(t)

a (v o s o t )  

1,Pv“ t

a(v  s ).a (t)

 

P V. So t r. a (v)°a (so t)

a(v)*fit, t

 a (v)0 a (s).a (t).

 

Pv,s*a(t)

  

Further a  lax functor a  is called a  pseudo fu n c to r  if  ca id f o r  any object a  o f  E  and
p s . t i s  a n  isomorphism fo r every composable pair (s , t)  of morphisms of E .  A n d  also
a  pseudo functor a  is called a  strict fu n c to r  i f  ,us = id  fo r any composable pair (s, t)
of morphisms of E .  Regarding th e  2-category C  a s  a  ca teg o ry  b y  fo rg e ttin g  the  2 -
arrow s th is tu rns to  be  a n  usual functor from  E  to C.
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Now Cat denotes a  2-category in  which objects a re  small categories, 1-arrows are
functors and 2-arrows a re  natural transformations.

Definition 4 .2 .  A  G-category was a  pseudo functor from G to C a t .  A  lax functor
G—*Cat is  ca lled  a  lax G-category a n d  a  s t r ic t  functor G—>Cat is called a  split G-
category. A stric t functor satisfying a(s)=id for a ll se-G is called a  trivial G-category.

Then
a  tr iv ia l G-category  a  split G-category

 a  G-category   a  lax G-category

and further by th e  result o f § 2

a  G-category f= >  a  fibered category over G.

Now we will define various G-functors. Though they correspond to lax natural
transformations, pseudo natural transformations and (usual) natural transformations we
write down explicitly

Definition 4 .3 .  L e t  a, a' : G—>Cat be tw o  lax  G -catego ries. A  lax G-functor
t: a—>a' is a  functor

F = t . :a (• ) - ->  a '( . )

o f categories together with a  natural transformation

72, : Foa (s )-->  a '(s ).F

to each seG  a n d  a  natural transformation

F*e. —>(c:*F).72,

such that th e  following diagrams of functors commute ;

F*p s , 77,*a(t)
Foa(sot) ' ) Foct(s)0a(t) > a'(s).F.a(t)

1. 7)st la'(s)*.72t
l-fs,t*Fa'(sot). F a'(s)- a'(t)0 F.

When i = id  an d  )7,, is a  natural isomorphism fo r every sEG, such functor was called a
G-functor (Cf . § 1). Further when ri s = id  fo r every sEG, it is called a split G-functor.
T h is  is a  (usual) natural transformation between (usual) functors from G to Cat.

A t first we shall see that t h e  limit categories f o r  la x  a n d  pseudo G-categories
coincide.

Theorem 4 .4 .  L et a: G—*Cat be a pseudo functor i. e. putting a(•)=C, a(s)=a s  and
ps,t=a ,t (C ; a ,, a , , t )  is a G-category. Then we have an equivalence

laxG limit a  40C
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where 210C is the descended category of a G-category  C.

P ro o f .  Consider the  forgetful functor

j 4 G C C , (X, (23))1- - > X.

Then for each tE G  a  natural isomorphism

1(0: ato i - - - >j ,  i ( t )C X ,(2 8 )) = 2T 1

is defined and the following a), b) hold.

a) j(e) , --- id ;

b) j(tu ).(d t,. - '*1)=1(t).(at*i(u))
a) is followed by A =id . b )  is deduced from the facts ;

(at,u)x
{ i(tn).(at,. - 1 *.i)}(x.(2,))-=.-(atauX > a t „X

2t.-1
> X )

at(2. - ') At-1
{ i(t).(at*.i(u))}  (x ,(2,»=(atai,X > a t X  X )

and the conditions w ith  respect to  (As )  in  the  definition of 40C  (see 1.8).

a8(20.23=(a3 t)x .21t.

N ow  given any category C ' and a functor k: C'— *C toge ther w ith  a  natural iso-
morphism

k (t): a s . k k

to each tE G  such  that conditions

a) k (e)=id k

b) k(tu).(at,12 - 1 4 , k )=k (t).(at*k (u))

are satisfied . Then define a  functor

1: C' --> Z I G C

on objects 1(Y )=(k(Y ), (k(s) y
- 1 )), Y o b  C'

on morphisms 1(Y  — > Y  ')= k(g), gem or C'
then one has

k =jo l

k(s) , j(s)*1.

These facts show th a t the  descended category J G C  i s  a  la x  l im it  f o r  a  la x  functor
a: G—>Cat. g. e. d.

W e sha ll no w  d esc rib e  the relation between G-categories (or equivalently fibered
categories over G in  the view  of § 2) and split G -categories. This is  the  m ain  theme
of th is  section.
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Let Split(G) (resp. Pseudo(G)) denotes the category o f  split G-categories (resp. G-
categories) a n d  split G-functors (resp. G-functors). W e  w i l l  regard the 2-category
Fib(G) in § 2 (resp. Des(G) in § 1) as a category by forgetting the  2-arrows. We know

Pseudo(G)=Des(G) a n d  Split(G)cPseudo(G).

We verified in § 2
Des(G)'.z.,' Fib(G).

Remark that the equivalence Des(G)—>Fib(G) constructed essentially in  2 .5 , 2 .6  is go t
f ro m  t h e  usua l Grothendieck construction Pseudo(G")—>Fib(G) by exchanging the
compositions G ° i — *  G .  Restricting this functor to Split(G) w e have a functor

0 : Split(G)---> Fib(G).

An object of the essential image of 0  is called a  sp lit fibered category  ov er G . (All
c, , are identities. C f. § 2 )  We shall construct a functor opposite to  0 .

Begin w ith  a  G-category (C ; a„ a,,,) or equivalently a  pseudo functor a: G—>Cat
such that a (•)=C , a (s )=a ,. This corresponds to  a fibered category 7 : D—>G w ith  a
normalized cleavage (r„ cs, t ) by  T heorem  2 .5 . R ecall tha t r s =a 8 -1, c,,, , (a,-1, s -1)

Define
C"=Cart G (Gle, D)

a "  :  G Cat

on objects a"( • )= C s P

77'
on m orphism s a"(s ): (G/ e (G/ eD )

77' : ( 1
au
.(ci, u))1--->( 121(22u(s21, us))

n(aus)

for a morphism (a, u):u—>au o f G/e.

Take another G-category ( C' ; and the associated fibered category 7' :
For a cartesian functor P: D—>D' over G a functor F s P  :  Cs P - - >C " P is defined by taking
the composition w ith P. Then

L em m a 4.5. a "  is a strict functor, hence (C "; as(s )) is a split G-category and F "
is a split G-functor.

P ro o f . For any s,tEG , any k: G/e—>D and uEobG/e

(a"(st)k)(u)=k(ust)=(asP(t)k)(us)

=fasP(s)(a"(t)k)}(u)
hence

a"(st)k=a"(s)(a"(t)k ).

Further the actions on morphisms are similar, therefore

where
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asP(st)=asP(s)oasP(t).

On the other hand for (k : G/e–+D)Eob Cs P  an d  an y  s G

a'sP(s). F 5 P(k)=a"P(s)(P. k)= k(s)= FsP(k(s))

=F s". asP(s)( k )

which implies F s P  i s  a  split G-functor. q. e. d.

Therefore one has a  functor

S: Fib(G) --> Split(G)

on objects S(r : D --> G)=(CsP; asP(s))

on morphisms S(P: D —> D')=(FsP : Cs " ---> C ' s P ).

Also Ts P  : D"'–+G denotes the  (split) fibered category over G associated to th e  s p li t  G-
category (CsP ; asP(s)) by Theorem  2.5.

Definition 4.6. Cs ", a " ,  7 5 P : D 5 P -4 G  a n d  F s P  : C s P C ' s P  a r e  called respectively
the split version of C, a, r: D–>G and F: C -4C ' w here F  is  the restriction of P  to the
fibers.

For those objects the follow ing theorem  is fundam ental. This is essentially due to
Giraud [7]. H ere w e shall use the results of § 3 to give another proof over the base
G.

Theorem 4 .7 .  (1) T here is a functor

0 .S (D )= D " - ->  D

which is fiber equivalence over G.
(2 )  S  is right adjoint to  0.

P ro o f . (1 ) Consider the equivalence çc, in  th e  proof of Corollary 3.6.

,---
CsP=CartG ( G le , D )-->  C.

ça

Put rs =a s -i : G-->G a n d  s =asP(s - i ):  C "--> G ". For any object (k : G/ e–>D) o f Cs P  one

has
î w (k)=î,k(e)

wof8 (k )= k (s ') .

However there are morphisms of D

es, k (s) :  r s k (e ) - - ›  k(e)

k(s, k(s-1) —> k(e)
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which are isomorphisms. Since Cs, k  (e) is a  cartesian morphism there is an isomorphism

Cs, k k(s -1 ) - - > r s k(e).

To verify that C s , k 's  define a  natural isomorphism

rs°40 ---> çols

take a  m orphism  : k—>k' o f CsP=Cart a (G/e, D ) and see the assignements by rs oyo and

Sol s
Îs °  (A)=(1 82e : n k (e ) - -> rs ki(e))

g"rs( 2 )=( 2 8-1: kr(s-1))•

Then it follows from the commutative diagram

r,k (e )  k (e) k (s-')

12e
128-1

r s k'(e) k '(e) k '(s-i)

that C s i s  a  natural transformation.
Thus (ço, Cs )  is  a  G-functor fro m  C s P  t o  C. It follow s from  Theorem  2 .6  that

there is a  cartesian functor
Ç:6 : D s P  - - >  D.

But the restriction  o f 'çb t o  the fibers is ça which is an  equivalence of categories by
Corollary 3 .6 .  It follows from [21] Proposition 6.10 that the  cartesian functorç''5. i s  a
fiber equivalence.
(2 ) (1 ) implies that there is a  natural transformation

0°S - - >IC IFib C G )

which is denoted by the same letter fo.
Consider 0  in  the  proof of Corollary 3.6. T a k e  rs a n d

assume tha t C  (or a ) is  sp lit. T ha t is

T s t = r t q s •

For any object X  o f C  and any u obG/e

fs°0(x)=(u — r o . ) , x )

sbors(x)=(u---)-ru_irs_,x).

Similarily for morphisms. So

Is a s  i n  (1). Here we

78.0=0.78.

Thus we have a natural transformation

idspz it(G)-->

All that rem ains is to show the commutativity of the following two triangles
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0 .S .0

id
0  » 0

S.00S
gb4: , ' \ . * „ ..S*Çz,

Id
S  > S .

Both of them  are obtained from the fact

yo.0=/d C ---> C

by reducing the problem  to that on fibers. q. e. d.

Corollary 4 .8 .  Let the notations be as above. There are equivalences

CS C

4GCs P =ZIGC

Rep(G, DsP)=Rep(G, D).

P ro o f .  Theorem 4.7 (1) implies

(rsP) - 1 ( • ) ,-- , r  i ( • )

Cart Sec(G, D"),-----CartSec(G, D).
However we know

C sP = K e rD sP = (rsP )i(• )

C=Ker D = r - - , ( • )

4GC"., --, Rep (G, DsP)=CartSec(G, DsP)

D)=CartSec(G, D).

These show the desired results. q. e. d.

N ext w e shall sta te  the results for subgroups H of G .  T o  do th is  for a s p li t  G-
category (C ; a s ) I .  e .  a  functor a: G—>Cat, a(.)=C, a(s)=a, we define another limit
category different from the descended category 40 C.

Definition 4 .9 .  For a split G-category (C ; a s ) and a subgroup H of G the H-fixed
category CH is defined to  be a category which consists of H-fixed objects and H-fixed
morphisms of C.

A  key result is following.

Proposition 4 .1 0 . For a fibered category 7: D—>G over G and a subgroup H of G
the natural functor

CartG(G/ H, Carto(G/e, D)
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induced by the natural projection G/e-->G/H provides an isomorphism o f categories

CartG(GIH, D)----> Cart G ( Gle, D )" .

P ro o f .  It is clear from the definitions.

Corollary 4 .1 1 . Let (C ; as, as , s ) be a (not necessarily split) G-category and r :  D-->G
be the associated fibered category over G. C ", a ", D " and  7.1) denote as above. T h e n
there are equivalences o f categories for a  subgroup H of G

Z H C =(C")H , , ( C " ) .

P ro o f .  It follows from Proposition 3.2, Theorem 3.5 and Proposition 4.10 that

LIH C-„zRep(H, R (H , D )=C art G ( G/H, D)

On the other side since so : D"-->D was a  fiber equivalence we have

Cart G (H, D");---Cart G (H, D)

which implies as in Corollary 4.8

4 Hc5 J„ c. q. e. d.

Remark 4 .1 2 . Even though ( C ; a s , as ,t ) is split an equivalence

CH

does not hold generally, because ço CS P - C does not become a  sp lit G-functor. The
above corollary show s if a split G-category C cornes from a  fibered category over G
j. e. C=Cart G ( G/e, D ) an equivalence

JR C  C "

holds.

§  5 . Exact G-categories

We have considered actions of G on any categories until th e  la s t  section. T h e
definition of G-categories for categories with certain additional structures is as follows.

As a G-category is regarded as a  pseudo functor from G  to Cat, w e m ay replace
only Cat b y  an  adquate 2-category consisting o f categories with certain additional
structures, functors and natural transformations preserving th e  additional structures.
Other objects which we don't handle in this paper, but which are important for alge-
braic K-theory ; symmetric monoidal G-categories, simplicial G-categories and categories
with actions of two kinds of groups etc.••• all are done well by this method. In  this
section w e dea l in  exact G-categories and state the commutativity of Quillen's Q-
construction with descended categories as a main result.
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Definition 5 .1 .  A G-category (C;  a„ a s ,  t )  is  an additive (rasp. abelian  rasp. exact)
G-category if  C  is  an additive (rasp. abelian rasp. exact) category and for e v e ry  s c G
a s i s  an additive (resp. exact rasp. exact) functor.

T hen an old  lim it ca tegory  o f  a  G -category taken in  C at is  a ls o  a  new  lim it
category taken in the 2-category of categories with certain additional structures.

Proposition 5.2. Let (C ; a s , a s , c )  be an additive (resp . abe lian  resp . exact) G-
category, 7: D—>G be the f ibered category over G associated to (C ; a s , a s , t ) by Theorem
2.5 and e: E--->G be any groupoid over G . Then Cart G (E , D )  turns to be an additive
(rasp. abelian  rasp. exact) category in the natural manner.

P r o o f .  T he category  Cart G (E , D ) h a s  a s  objects functors E— >D satisfying
ro22= 6  an d  as  morphisms natural transformations t: 77-4)7' of grade e  between those
functors.

T o  show th a t Cart G (E , D ) becomes an additive or abelian category according to
D  additive or abelian, w e  have to  check the abelian group structure of hom sets, the
existence of a 0-object and coproducts, the existence of k ern e ls  and cokernels, an
isomorphism of coimage w ith  image and so on. T he definitions of the desired objects
m a y  w o rk  in  obvious way by applying the correspondent constructions to the images
of E .  This procedure of proof is long but routine, so  w e w ill omit the details.

W ith respect to  an exact G-category C  our proof is as fo llow s. E m bed C  in to  A
(=the category of le ft exact functors on C°P  t o  the category Ab of abelian groups) as
a full subca tegory . T hen  A  has a  G-descent datum which is an extension of the one
o f  C . B—>G denotes the fibered category over G associated to the G-category A .  The
former results show Cart G (E , B )  is  an abelian c a te g o r y . F u r th e r  i t  is  e a s y  to  show
the existence o f an embedding

Cart G (E , D )--> C art G (E, B )

and th a t the category in the left side is closed under extensions in the category in the
righ t s id e . It follows from Quillen [17] th a t CartG(E, D ) is  an exact c a te g o ry , q. e. d.

B y the results of § 4 w e have easily

Corollary 5 .3 .  Let (C; a 3 , a,, t ) be an additive (rasp. abelian rasp. exact) G-category,
D--->G be the associated .f ibered category over G and H be a subgroup o f G . Then

various limit categories

ZInC, ReP(H, D), ReP(H, D), (CsP)H and ZIH CsP

are all additive (rasp. abelian  rasp. exact) categories in natural manners.

N ow  w e shall state the relation w ith Q uillen's Q-construction for exact categories.

Theorem 5 .4 .  Let (C ; a s , a s , t )  be an exact G-category, 7: D—>G be the associated
f ibered category over G  by means o f  Theorem 2.5 and e : E— >G be any groupoid over
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G . T hen
(1) The category QC has a natural structure of a G-category.
(2) I f  : Q f D—>G denotes the f ibered category over G associated to the G-category QC,
then there exists an equivalence o f categories

QCart G (E, Q f D).

P ro o f . (1 ) W e shall define a  natura l G -descen t da tum  (a s , a s , t )  o n  Q C .  Note
t h a t  th e  category  Q C  h a s  th e  sam e objects a s  C  and morphisms X—>X' in  QC are
isomorphism classes of (X*4--Z>—>X'), w h e re  —›* (re sp . >—*) d en o tes  an admissible
epimorphism (resp. an admissible mononorphism). Here define an  endofunctor for each
sEEG

: Q C — >Q C

whose function on objects is the  sam e as a s an d  w hich sends a  morphism

.7
an  isomorphism class of (X Z X ')

of QC to  a  morphism
as(l) as(i)

an  isomorphism class of (a 8 .7( * <- - a s Z >— >a s X ')

of Q C . W e should rem ark that as a ,  is  an exact functor f o r  e v e ry  s e G  the image
by  a s of an admissible epi (resp. an admissible mono) is  so. Also for s, tE G

(as,t)x :astX — > a s (a t X )

on X cobQ C  is  g iven  by  an  isomorphism class of

a s , t

(a s a - K - -  a s a > - - >  a s (a t X ))

and it is seen im m ediately that ã , , 's  sa tis fy  the conditions of a G-descent datum.
(2 ) The objects of the category QCart G(E , D ) a r e  functors 7): E— >D o v e r  G  and  a
morphism t :  n--+72/ of QCart G (E , D ) is  an  isomorphism class of

. . . , - c > _ > ? 2, )

in  CartG(E, D) namely for each object a of E  an isomorphism class of diagrams

( (a) —  (a)>-----  n '( 0 )

such that for any  morphism m a—>b of E  a  diagram

v(a) C(a)

in(m) IC(m)

v(b) C (b ) ) - - - -- >  72'(b)

is  commutative. On the other hand the objects o f CartG(E, Q f D )  consist o f  functors
)7): E-42 f D .  T h e  objects o f  Qf D  are same as the objects of D  and an isomorphism
in  Q f D  reduces to an  isomorphism in  D .  A s E  is  a  groupoid the  functor )7) i s  identi-
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fled with a  functor E-->D.
N ext le t  u s  consider a  morphism 1 :  ï2. --»-2 '  o f  CartG(E, Q f D ) .  This consists of

morphisms of QC
1(a): i (a) -->  iy (a )

for a ll aEobE, which are compatible for every morphism of E .  T h a t is  to  say  it is
given by an  isomorphism class of diagrams

(52(a) <<— XI(a) >—> C a ))

for each aEob E such that a  diagram

i"(a) X ia ) 
ii2(m) I (m )

5-2(b) X I (b )  

is commutative for every morphism m :  a—>b of E .  Since E  is a groupoid the morphisms
which appeared above are all isomorphisms, hence we can use ilfi ca , 's  to make a  functor
X: E—>D such that X(a)=Xi ( a )  for any aEob E .  Thus the morphisms of CartG (E, Q f D)
reduce to morphisms o f QCartG(E, D ), too. The desired equivalence of categories will
follow, q. e. d.

From this theorem we deduce th e  com m utativity o f  Q-construction with taking
various limit categories o f various G-categories considered so far.

Corollary 5 .5 . Let (C ; as, as, t), 7: D—>G, QC an d  rf  : Q f D—+G be as  in  Theorem
5.4. I f  H  is a  subgroup o f  G  then

(1) Q Rep(H, Q f  D)

(2) C24HC,, -- --AHQC

(3) Q Rep(H, Q f D)

(4) (QCsP)H Q(CsP)H

P ro o f. ( 1 )  Take E = H  in  Theorem 5.4.
(2) follows from equivalence 4H C--z-lRep(H, D ) and (1).
(3) Take E=GIH  in  Theorem 5.4.

( 4 )  From (3), Proposition 4.10 and Theorem 4.12 we obtain

(QCsP)H=(Q Cart G ( G/e, D))"

,, ---(Cart a (G/e, Q f D))H

 Q f  D)

QCartG(G/H, D)

:- -=:QCartG(G/e, D)H

=Q(C 5 P)H q. e. d.
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§ 6 .  Induction theory deduced from a  G-category

The representation category Rep(H, D) considered in § 3 w as an analogue to  the
category of H-representation in  Ker D .  So we can chase the analogous formulation of
representation theory of finite groups.

We can proceed with the arguments by defining restriction and induction functors
fo r  Rep(H, D). The approach of Fralich-W all [6] was in  such manner. B ut in this
approach the definitions depend on choices of representatives of cosets with respect to
subgroups, hence it is troublesome to check naturality. Therefore we will use

Rep(H, D) , CartG( G/H, D).

This makes the argument functorial and formal.
We shall only refer to Mackey property and projection formula which a r e  funda-

mental tools in  representation theory. These results generalize the  results for trivial
G-categories of Dress-Kuku [3] to general G-categories which is not neccesarily split.

In this section we assume the group G is finite or profinite. We consider the category
o f  finite G -sets and G-maps. To an  object S of S.6" j. e. a  finite G-set S, we

assign a  category S  whose objects are  e lem etns o f S  a n d  whose morphisms x—÷y
(x , yE S ) a r e  represented by pa irs  (g, x )  such that g x = y  as in §4 . F urther to  a
morphism (a G-map) 0 : S—>T of S6 1 n we assign a functor

: S --> Ts'

( xj, (g , x)) 1-->( ° ( x ),t (g, 0(x)) )
x' (b(x')

where gx= x' hence g 0(x)=0(gx)-=0(x 1).
Let (C ; a„ a,,,) be an exact G-category and r :  D—>G the associated fibered category

over G  by means of Theorem 2 .5 .  Extend the definition o f  Rep(H, D ) fo r  subgroups
H  of G to objects of 56 i n

Rep(S, D)=Cart G(S, D).

It follows from Proposition 5.2 that the category Rep(S, D )  i s  a n  e x a c t  category for
any S .  We shall now define restriction and induction functors between them.

Definition 6 . 1 .  F or a  m orph ism  : S—*T of S.b i n there are exact functors between
Rep(S, D) and Rep(T, D)

95*
Re (T, D) — >  Rep(S, D)

95*

95* (T _ --)7 >  D )= (S  72'15" >D)

namely

0* (T —11> D): (1 (g, x ))1 --> ( 7" f, x)7)()g, 0(x)))
x' 7)(0(x9)
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where x, x 'ES and gE G  such that gx=x'.

ED C(x)xE0-i(u)
0 * (S  --C > D) y))1—> 1 (g, x)

y' cco
where y, y 'E T  and gE G  such that g y = y '.  We can take x, x 'ES  such that gx=x '
by exchanging appropriately an  order of e if  neccesary . Hence 0*  is determined up
to a  natural isomorphism.

We note that 0 *  (resp. 0*) is corresponding to restriction (rasp. induction).

Proposition 6 . 2 .  (1 )  For a composition S—>T—>U of morphisms o f S61 n

(0°S6)*=-95*.0*

(0° 95)* = 0* ° 0* •

(2) I f  SILT denotes the coproduct ( =disjoint union) of S and T  in  S 6 ' there  is an
equivalence

Rep(SLT, D)xRep(T, D).

(3) If  a  morphism 0: S--T is  an isomorphism o f  S6" 0 *  induces an isomorphism of
categories

95*: Rep(T, D)--> Rep(S, D).

P ro o f .  (1 )  is clear.
(2) The assignment

(72 :  SILT -- >  D)i--).(721S: D, 72IT :T ---> D)

gives the desired equivalence.

(3) follows from the first formula of (1). q. e. d.

Proposition 6.3 (Pull-Back Form ula). L e t S i , S2 a n d  T  be objects o f  S 6 "  and
01:S1 - 4T and Ø : be  m aps of 5 6 " .  Make a pull-back diagram

c ( P 2 c
Si X TO2 

10201 

S i >  T

where S1X T S2 = {(a, b)laESi, b S2, 01(a )=952(b)}

: SI X T S 2 - - >  ,  (a, b)'—>a

02: SIXTS2 — › S 2 , (a, b) * b.

Then there is a natural isomorphism

(02)*0(01)*.-= '(0 2 )* .(0 i )*
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of functors f rom  ReP(Si, D) to ReP(S2, D). In other words the diagram

ReP(S1X T S2, D)

1(01)*

Rep(S,, D) 

 

 Rep(S2, D)

1(02)*

Rep(T, D)

  

is commutative up to natural isomorphism.

  

P ro o f . For g E G , y, y'GS 2 such that gy=y ' and (S,—>D)EobRep(S,, D) two kinds
of assignments are gives as follows ;

(y x.ocioev»
((02)*.(sbi)*Xsi — › D): y))E---->7 )7(g x77)( X )

y ‘
x 'Ev 51-1p2(le » 72( f ) /

e 77(0 i(z))\
No*.coo*xs, .±.2> ( g ,  y ) )1 - - ) .  z G ° 2 1-,1

77
( (g , 2 )

\z ,  e ç b ) 7 ) ( 0 1 ( z ' ) ) /

Now for yES 2

xe01 - 1 (çb2(Y))(= )0 1 (x )= 0 2 (3 )

hence there is a  natural isomorphism

(x, y)ESIXTS2( zE02-1(Y)

v(x)—. ED Ygçbi(z)).
x E 0 , - - i ( 0 2 ( 0 ) z E ib 2 - i ( y )

Remark 6 .4 .  Propositions 6.2 and 6.3 show th a t the functor

Rep(—, D): S.6" Exact categories

induces a  Mackey functor.

If subgroups H, K  o f G satisfy

H<K, (K : H )<00

and a G-map 0 : G/H—>G1K is  the  natural projection then w e w rite

res (H, K )= 0 *

ind (H, K )= 0 * .
Also if

0=conjugation b y  s: G/(sHs - ') - - >  G/H

w e  w r i te  c8 =0*.
Under these notations w e  have

q. e. d.

Corollary 6.5 (Double Coset Formula). I f  :H , K  are subgroups o f  f inite index  in
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G then there is an isomorphism of functors

res(H, G)oind(K, G) ind(sKs - inH, H)oc s .res(K ns - iHs, K )

w here s varies on a set of representatives of double cosets o f H \G /K .

P ro o f .  W e m ay only apply Proposition 6.3 to  the following pull-back diagram

G /H x 0 I G G/K  - - >  G/H

G/K >G/G

in which
G /H X  G /G G /K = I L  GA sKs — in H ) .

SEH\GIK

Finally w e shall express the projection formula. For 2, 3 le t Ci  b e  an exact
G-category and ri : D i —)G be the associated fibered category over G .  An exact pairing

C 1 X C 2  - >  C 3

compatible w ith  the respective G-descent data defines a  fiber pairing over G

D 2 x G D2 --> D 2

which induces an exact pairing

Rep(S, Di)XReP(S, D2) — > ReP(S, Da)

for each object S  of .5 6 " . Then

Proposition 6.6 (Projection Form ula). For any  m orphism S --+T  of  S -6" the
following diagram commutes up to natural isomorphism

q. e. d.

Rep(T, DI)X ReP(S, D2)

Di ) x ReP(T , D2)

) ReP(S, D i )X ReP(S, D2)
'pa iring

Rep(S,

Ifb *
pairing

> Rep(T, D 3 ) .

0 4, x id

P ro o f .  (X, Y )—>XOY denotes the p a ir in g s . T h e n  w e  m a y  express the  induced
pairing as

Rep(S, DOXReP(S, — * ReP(S, Da)

(e :S — > D 1 , 72:S --> >Da)

C :(
x (e(x)0)2(x)
1.(g, x) e(g, x )Ori(g, x ))

x ' C(x')(3)7(x')
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where g E G  x , x 'E S  such that gx , x'.
Now f o r  a n  object ( E :  T—>D i , : S—>D2 )  of Rep(T, DOXRep(S, D 2 )  le t  Ci : T—>D3

(resp. C 2 : T—>D3 )  denotes the  result of left round (resp. right round) in the diagram of

(E, 17). Then C I , C2 are described as follows ;

/ E ( y ) 0  CB, 7)(x))\xeo--(y)
C i: (T (g ,  y)) ,

y' \$(31')(8)x,E0q(y,)77(x'))1

I ED, (E(95(0 0 12(x))
c2:(

.1(g, sEo__(,)

y'J \x,Epi(y,)(e(95(x'))077(x/))1

for a  morphism ( g ,  y ) :  y—>y' of T .  But it follows from the  bilinearity of the pairings
that there is a  natural isomorphism from CI to C2. q. e. d.

§ 7 .  0G-categories

We shall consider in  this section the last notion of G-categories which we should
handle. T h e  o n e  providing a  category fo r  each subgroup H  of G  in a compatible
manner, which is called an  0 G -category, is also related with various notions of G-
categories studied in  § 1— § 4. A  fundamental problem is to construct from given 0 G--

category p  a  split G-category C  such that th e  H-fixed category CH i s  homotopy
equivalent to the given category (G/H) on G/H . This construction from 0G-categories
is sent by the classfying space functor B  to Elmendorf construction which is a functor
from 0 G-spaces to G-spaces with analogous properties (C f .  [4]).

Definition 7 .1  ( [4 ] ) .  The category O G  of canonical orbits has as objects canonical
orbits G IH  where H varies o n  subgroups o f  G  a n d  a s  m orphism s G-maps between
them . A  morphism

0: G /H — > G /K  (H , K <G )

corresponds to an  element f K E (G /K )"  1. e.

Hom 0 0 (G/H, G/K)=(GIK)H

By an  0G-category we shall mean a (strict) functor

OG °P - - >  Cat.

An OG-functor o f  0G-categories is a  natural transformation of fu nc to rs  OG°P Cat.

0 0 -Cat denotes th e  category o f  0 0 -categories a n d  OG -functors. When we want to
consider Fib(G), Split(G) etc.' •• as categories we should forget the  2-arrows of them.

0G-categories can be obtained as follows.

Definition 7 .2 .  We define a  functor

Fib(G) —> OG-Cat
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as follows; for an object r : D—>G of Fib(G) an object

W(7): O a" ----> Gat
of 0 0 -Cat is given by

on objects G/ H Rep(H, D)=Cart 0 ( G111, D)

( G/H) rep(H , D ))
I- F- - - ÷ T 0*

G/K Rep(K, D)

w here 0 * i s  the restriction functor of Definition 6.1

C° 0
q5* ( G/K --> D)=(G1H >D)

explicitly if  0(aH)=afK then  0* (C)(aH)=C(afK). Since the restriction functors 0 * are
natural w ith  respect to  cartesian functors of fibered categories over G w e can  ge t the
correspondence on morphisms of W . F u r th e r  L  denotes the composition of functors

L=Wo0 : Split(G)--> 0 0 -Cat.

W e have also another 00-categories from split G-categories.

Definition 7 .3 .  Define a functor

1: Split(G) —> 00-Cat .

For a (strict) functor a: G—>Cat a n  0 G -category

1(a): O G"  - - >  Cat
is g iven as follows ;

on objects G / H I--(a (• ))"= th e  H-fixed category of a( .)

(G/1H0 \ (cry in
on morphisms

(a)(0)\

\G/K/ ce(.)K

w here the functor 1(a)(95) assigns

(
Y

2 1[ 4 — >  ( a ( f, ) Cr(f)tt)
a (f)Y .

Note th a t f EG is  g iven  by  q5(aH)=afK, hence f  is determ ined modulo K , b u t  since
objects and morphisms of a(•)K  are K-fixed the functor 1(a)(0) does not depend on a
choice of representative f. F urther for any  K-fixed object or m orphism  x  a n  object
or morphism a (f)x  is H-fixed as follows;

a(h)a(f)x=a(hf)x-=a(f k)x=a(f)a(k)x=a(f)x

w here hEH and k  (E K ) is  g iven  by  f 'H f c K .
W e obtain by Corollary 3.6 an equivalence

yo:CartG(G/e, 0(a)) —> a(.)

on morph isms
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and by Proposition 4.10

CartG (G/H, 0(a))—:-L'CartG(Gle, 0(a)) 11 •

But as q) is not a  split G-functor the functor / is different from the  functor L=W.O.

Next we shall consider to construct split G-categories from 0 G -categories.

Definition 7 .4 .  Given a n  0 G -category

: 0 , 0 P Cat.
Since one has

HomoG(G/e, G/e) , (G/e)e , G

the category 13(G/e) has a structure of a split G-category. Thus we have a functor

K: 0 G -Cat --> Split(G)

K(j9)=(P(G le ); P(s)).
The functor

KoW : Fib(G) —> split(c)

is nothing but the modified Giraud construction S  (see § 4). I n  spite o f  very nice
properties of the functor S the  solitary K  does not go well through. For instance

K( 13 ) "  and /3(G/ H)

have no relations. So we need another functor from OG-Cat to sp lit (G ) . I constructed
a  functor from Fib(G) to Split(G) different from the Giraud construction S in  my ealier
paper [16 ] §  3 . T h is  w as th e  o n e  which factorizes through 0 G -Cat. We will use
the modified one to construct the  desired functor.

Definition 7 .5 .  A  f unctor
U: O G -Cat --> Split(G)

is defined as follows. Given a  0 0 -category

j9: O G °P Cat
take a  functor

G
°

 PC a t

where ejc=(G/e)/OG is  the comma category of OG  under G/e,

p : (G/e)/OG  -->  O G is  the  fogetful functor and

ig is the composition pp°P: 60°P--). 0 0  — .C at

and a lax  colimit over ÔG °P
U p=lax colmit j .

GO P

Note that there is a fibered category Up over I5 G  associated to the  functor 6 G °9 —>Cat
by Grothendioeck construction. We shall write down explicitly the  split G-category
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U(P)=(U p; 5,).

The category Up h a s  as objects triples (X, G/H, x) where G/HEob OG, X E G /1 1  (A pair

(G/H, x) represents an object o f O s such that G/e-->G/H, g5(a)=ax.) and XEobP(G/H).
A  morphism

(X , G/H, x) —>(Y, G/K, y)

of Up is given by a  pair (a, q) where o :  G/H—>G/K is a  m orphism  o f  OG such that
a(x)=y (Such a provides a  morphism of Os .)  and

q: X — *  p(a)Y

is a  morphism of the category /3(G/H). The action 58 on U  (SEC) is given as follows ;

(X, G/H, x)) ((X , G/H, s'x)
as : (a, g) q)

(Y, G/K, y) (Y, G/K,

The assignment on morphisms of the functor U  is defined in obvious manner by means
of the naturality of lax colimits.

The functor U  provides the desired homotopy property.

Theorem 7 .6 .  For an Oc -category P: 0 0 °P—*Cat and a subgroup  H  of G  th e r e  i s  a
homotopy equ iva len ce of ca tego r ie s

(U p)" p(G / H).

P r o o f .  W e shall first define a  subcategory V H  o f  (U p ) " .  T h e  objects of V ,,
consist o f tr ip le s  (X, G/H, e l l )  where XEob 13(G/H) and the morphism of V ,, consist
of pairs (idG /H , q ) where q : X—>Y is a  morphism of p(G/ H). Then it is clear that the
category V H  is isom orphic to  p(G/H) and we identify VH  w ith  /3(G/H). We shall
next construct a  right adjoint functor

k:(U p )" — >V H =p(G/H)
to  the inclusion functor

i :  p(G/ H)=V H  - - - > (Un ) " .

Let (X , G1K, y ) be any object of (Up)". S in c e  XEob p(G/K) and

y (E( G/K )H ,  Homs G (G /H , G/K)
we have

P(v5y)Xob P(G/H)

where Ø,: G/H—>G/K is a  morphism of O G  corresponding to y .  Hence define

k(X, G/K, y)=(j3(95,)X, G/H, eH).

Then it's clear k o i= ld . Also there is a  natural transformation

7): iok - ->  Id

27(x,Giii.y)=(071 , id fi(0)x):(19(0 7i )X, G/H, eH)--> (X , G/K, y)
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It is easily verified that k  is right adjoint to i. Thus we have  the  desired homotopy

equivalence, q. e. d.

Finally we shall note the relation with the work of Elmendorf [4].
Consider the classifying space functor

B : C at --> Top

where Top denotes the category of certain nice topological spaces as usual.

Proposition 7 .7 .  Suppose G is  a f inite group.
(1) The classifying space functor B  sends a split G-category (resp. an 0 G -category) to a
G-space (resp. an 0 G -space), hence there is a functor

B : Split(G)--> G- spaces (resp. B : 0-Cat— O-spaces).

(2) The im age of  our J (Tes p .
 K , resp . U ) by  the classifying space functor B is Elmen-

dorf 's 0  (resp. D, resp. C), hence there are  commutative diagrams (up to homotopy f or
U)

S p li t (G )  K  00-Cat

IB
0 

G-spaces D 0G-spaces.

P ro o f .  (1) and the statement for K  of (2) a re  tr iv ia l. Since

B(CH)=(BC)"

for any split G-category C  and any subgroup H  of G, one has the  statement f o r  /  of
(2). The remaining fact that U  becomes a  categorical Elmendorf construction i. e.

1341 - CoB

is verified as follows. By Thomason's Homotopy Colimit Theorem [23]

B(U p).- - ---_'hocolimB(P(G/H))
60P

because U f4 is given by a  lax  colimit over 6 G O P . O n  th e  other hand Elmendorf's defi-
nition o f C  using the two-sided bar construction is show to be nothing but a  homotopy
colimit over ÔG °P on simplicial sets level. Since taking a  hom otopy colim it commutes
the geometric realization functor by Bousfield-Kan [1] the  result will follow, q. e. d.

§  8 .  Properties o f functors connecting various notions of G-categories

In this last section we are going to study properties especially adjoint properties
of functors providing the relations between various notions of G-categories which have



1058 Masahiko Niwa

been treated with until the  preceeding sections.
Since Des(G) and Pseudo(G) are equivalent to Fib(G) it  is  su ff ic ie n t to  s tu d y  the

following triangle ;

Fib(G)

OG-Cat

    

spiit(G ).

                

Recall the functors

0 =the modified Grothendieck construction
(see § 4 and Theorem 2.5)

S=Ko r=---the modified Giraud construction (see § 4)

: (D L  G)I— >-(G/Hi--*Cart G (G/H, D )  (see §4)
L = T 0 0

a
I :(G Cat) — (G / H ---+ a (• )')( s e e  § 7)

K:(0G°P--->Cat)i-->.(P(G/e); ,e(s)) (see § 7)

U : (o G oP Cat)1-0 -(U  p ; as ), Up—lax colimit 'g (see § 7).eiG op

First w e note that the functor S  is right adjoint t o  th e  fu n c to r  0  a s  show n in
Theorem 4.7 (2). Next we shall show that the functor K  is left adjoint and left inverse
to the functor

Proposition 8 .1 .  ( 1 )  Kol=ldsplit(G)
(2) There is a natural transformation

p : /d 0 0 .c a t  --->  I .K .

(3) The functor K is left adjoint to the functor I.

P ro o f. ( 1 )  Trivial.
(2) For an  Os -category j9: O G °P--Cat the  functor

p (p H ): p (G /H )--->  p(G/e)

correspondent to the natural projection p H : Gle—>G/H, p l l (a )=aH  induces a  functor

13(G1H)--> 19(G/e)ff

which is natural for GIHGob OG °P. Thus we have a natural transformation

I .K .

(3) It follows from the definition of pcur tha t pc/e=idp(Gie), hence
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KAT=id K .

On the other hand if 13=1(a) for a split G-category a: G—>Cat then

PG IH = id : a(.) H  --->  a( .) l l

hence
p*I= id i .

These facts imply that K  is left adjoint to I. q. e. d.

Putting two adjoint properties together we obtain

Proposition 8 .2 .  (1) T here is a natural isomorphism

of functors f rom  Fib(G) to  0 0 -Cat.
( 2 )  The composed functor 0.K  is  le f t adjoint to the functor T.

P ro o f .  ( 1 )  Let r :  D—>G be an object of F ib (G ). It follows from Proposition 4.10
that there is an isomorphism in Cat

W(7) ---> I°S(7')

which is natural for 1 o b F ib (G ).  The result follows.
( 2 )  Consider the composition of two kinds of adjoint functors

0

Fib(G) I  S p lit (G ) I  0 0 -Cat
- - >

which imply that 0 .K  is left adjoint to / .S .  Together with (1) we obtain the result.
q. e. d.

We shall now state the properties relating to the functor U  which are obtained
from Theorem 7.6.

Proposition 8 .3 .  ( 1 )  T here is a natural transformation

72:10U --> Id0 G .cat•

(2) There is a natural transformation

V G le: U  -->  K.

(3) There is a natural transformation

C :U .I - ->  Id s n iit(a)•

(4) 7)*1=/*C: /4/./ /.
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P ro o f .  (1 )  Consider a  functor

k:(I1 13)ff —> ,8(G/H)

in  the proof of Theorem  7.6, which sends an object (Y, G/H, y ) o f (Up)H to  an  object
p(95,)Y o f  I3(G/H) w h e re  0,:G IH -->G/K i s  th e  m orphism  o f  O G  corresponding to
y E (G IK ) H . P utting  k=r2 G ,H ,  it is  easily  seen  tha t )7G1H is  na tu ra l for G/Heob OG °P,
hence w e have a natural transformation

77: I ° U  - - >  I d 0 G -Cat •

(2) 72G / e =K*77 : U = K o loU  -->  K.

(3) C=K*27*./ : U .I= K o loU .1 -->  K o ld o l , K ol= ld .

( 4 )  Consider
1 * 77 G le : 1 4 1  - >  1 0K

w hich is of the form

((1*7)ale)p)alif:(Up) 11 --->  (G /e ) l l

for pEob0G-Cat and G/Hcob O G , it  is  c lea r  th a t if 1S=1(a) for aEobSp/it(G) then

((/*1)o/e)p)a/u-7)Gin •

This implies the result, q. e. d.
W e note here  tha t the re  are no adjoint relations containing the  functor U  such as

th e  fu nc to r K  in Propositions 8.1 and 8.3. W e need  to  tu rn  to  the arguments up to
hom otopy. W e shall finally state a part of outline of homotopy theory of G-categories.

T h e  ca tegory  0G-Cat h a s  a  structure  of 2-category . Let 18, P' be  0 G -categories

OG °P— > Cat and t, t' be O G - fu n c to rs  f ro m  p  to  p '. A  2-arrow :  t—q' o f  OG-Cat is

defined as follow s; To each object G/H of O G  and each object X  of [3(G/H) assign a
morphism

A G /H I :  IG /11( X ) - > G H ( X )

of p '(G / H ). They satisfy  the  following conditions. F o r  an y  m o rph ism  u  : X --Y  of
13(G/H)

G II(U)°,1G1H, X = 2 G/11,1 , 0 tG / I I ( U )

and for a n y  m o rp h ism  :  G/K—>G/H of O G  a  diagram

48 '(¢)( 2 ain. x)
PW )to/u(X )  PW )tetu(X)

II■I diGiu,p(ox
tailiP(0)(X )  te / 0 (0 )(X )

commutes.
W hen regarding the categories Fib(G), Split(G) and 0 G -Cat as 2-categories one has

the following facts about 2-arrows.

Lemma 8.4. T he functors 0, gf, S, L, I , K  an d  U  preserve th e respective 2-arrows.
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Suppose the group G  is f inite from now on.
Let t, t' be morphisms from a  to a ' o f  Split(G) (resp. o f  0 0 -C at) , t  is said to be

G-homotopic (resp. O G -homotopic) to t ' if  B t  is G-homotopic (resp. OG -homotopic) to Bt'.
[a , a '] 0  (resP. Ca, a '] 0 , )  denotes the  se t o f G -hom otopy  c lasses (resp. 0 0 -homotopy
classes) of morphisms from a  to a ' o f Split(G) (resp. o f 00-Cat).

Lemma 8 .5 .  ( 1 )  The functors I, K and U  preserve G- or O G -homotopies.
( 2 )  A morphism A: a—>a' o f S p lit(G ) i s  a G-homotopy equivalence i f  a n d  only  if
1(2): 1(a)--->l(a') is  a 0 0 -homotopy equivalence.

P ro o f .  (1) is obtained from Proposition 7.7 and [4].
(2) is obtained from th e  well-known fact that a  G-map f  of certa in  nice G-spaces is a
G-homotopy equivalence if  and  only if  th e  re s tr ic tio n  f"  o f  f  to th e  H-fixed spaces is
a homotopy equivalence fo r each H<G. q .  e .  d.

Proposition 8 .6 .  ( 1 )  For any object a  o f split(G) a morphism

Ca  : U 1(a) — > a

of Split(G) is a G-homotopy equivalence.
(2) For any object )3 o f  0 0 -Cat two morphisms

(U*7)),s, (*U) 13 : uolou(p) - - - > U( 13)

of Split(G) are G-homotopic.
(3) There is a bijection

Ca, U (P )io -C 1 (a), 13 10G

for a w  ob Split(G) and Peob 0 0 -Cat.

P ro o f . (1) is obtained from Proposition 7.7, Proposition 8.3 (4) and Lemma 8.5 (2).
(2) is obtained from (1), Theorem 7.6 , Proposition 7.7 and Proposition 8.3 (4).
(3) can be verified a s  in  [4 ]  Theorem 2  by using (1), (2), Proposition 8.3 (4) and Lemma
8.5 (1). q. e. d.

L et t, t' be morphisms (i. e. cartesian morphisms) from r to 7 ' o f  F ib (G ). t is said
to be f iber homotoPic to t '  over G  if  B t is fiber homotopic to Bt' over BC.

By th e  classifying space functor B  a fibered category r: D—>G over G  provides a
D old fibration (=a map fiber homotopic to a Hurewicz libration)

Br :BD — >BG

(see [15] IV 2 ) ,  hence th e  fu n c to r  0  preserves hom otopies. B ut in  general ?If and  S
don't preserve homotopies because BCart G ( G/H, D ) is not homotopy equivalent to the
space of fiber maps from B(G/H) to BD over BC. (Thomason's Homotopy Limit Problem
[ 2 4 ] )  Therefore o n  th e  present stage w e h a v e  n o  m o re  statements about homotopy
theory o f Fib(G).
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