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Theory of G-categories toward equivariant

algebraic K-theory

By

Masahiko NiwA*

The notion of a G-category —a category with an action of a group G— was needed

to make algebraic K-theory equivariant one.
so far, the relations with them have not been explained explicitly yet.

Though various notions have been used

Beginning by

introducing the notion of a G-category from point of view of Galois descent in linear
categories, I deal comprehensively with various notions of G-categories and establish

the comparison in the complete form.
the limit categories together with G-categories and G-functors.

in text are as follows.

It is important for us to study simultaneously

The objects to appear

G-category

G-functor

limit category

a category C with a
G-descent datum

a morphism of Galois
descent data

a pseudo functor

a: G—Cat

a pseudo nat. transf.
—_
G | Cat
E—

descended category
uC

a fibered category over
G

7:D-G

a cartesian functor over
. D — > D/

N

’

representation category
Carte(H, D) or
Carts(G/H, D)

a lax functor

a lax nat. transf.

lax limit over G

a (strict) functor

a: G—Cat

a nat. transf.
_
G | Cat
—_—

dga(-) or a(-)¥

an Og°P-category

‘8 : Og%—Cat

a nat. transf.
—

OGOP .L Cat
—_

B(G/H)

§1. Introduction:

The notion of G-categories

In order to introduce the notion of G-categories 7.e. categories on which the group

G acts, I think, we are asked to fit it to the following problems.

One of them is the
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problem of Galois descent. Let B/A be a Galois extension of rings (or a Galois
covering B— A of schemes) of Galois group G. I shall consider the notion of a linear
category with a Galois descent datum of Galois group G originated in A. Grothendieck
(see N.S. Rivano [18]). Let L be an A-linear category and Ly denotes the B-linear
category deduced from L by extension of scalars from A to B. In the Galois case the
usual datum of descent on Lp relative to B/A reduces to the following datum by using
the isomorphism B®ABEI‘;IB-

For each s G there is an equivalence of categories
as: Lg—> Lg
and for each pair s, tG there is a natural isomorphism
Qs ¢: Agg —> Az
satisfying coherence conditions
(ag*a;, u)oas, cu=(as, *KAy)o gy, y

for any s, t, u=G. Further the usual descended category can be rewritten in the
following form by the Galois descent datum (a,, as.) on Lz, The descended category
4dgLp has as objects the pairs (X, (4;)see) Where X is an object of Ly and 1, : X—a,X
is an isomorphism of Ly for each s€G such that

A.=idy (e—=the identity element of G)
a(A)eAs=(as 1)x° Ast.

The morphisms of 4s;Lp are defined to be morphisms of Lz commuting all 4,. It is
shown that the descended category 4gzLp is an A-linear category which is equivalent
to the original L. ([18])

Watching these data we find the fact that the descent situation may be formulated
in the form independent of the ring extension B/A and of the linearity of the
categories. So leaving theory of linear categories we interpret abstractly the descent
data as the data concerning any categories and any groups, and then we reach the
notion of a category with a G-descent datum (or a G-category). This is the starting
point of our theory of G-categories. However when we give the definition we had
better normalize the data so that the equivalences and the natural isomorphisms cor-
responding to the identity element e of G are the identities.

Definition 1.1. Let G be a fixed group whose identity element is denoted by e
and let C be a category. A datum (a;, as,:) is called a G-descent datum on C if for
each element s of G a; is an equivalence of categories

a;:C— C
and for each pair s, t of elements of G a; . is a natural isomorphism

As ¢ Qg —> Ag° Ay

satisfying
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a,=Id. (=the identity functor of C)
Qe s=1da,=0s,c (seG)
(@s*a¢, )0 A5, 00=(as, 1¥Ay)° s, u (s, t, ueG)
where id., denotes the identity natural transformation of the functor a;.

Then we call (C; as, as,.) a category with a G-descent datum or a G-category.

The notion of G-functors is obtained by applying the notion of morphisms of data
of descent to the Galois descent case. Together with the notion of G-natural trans-
formations between them as 2-arrows we have a 2-category denoted by Des(G).

Definition 1.2, A G-functor of G-categories
(F, 15):(C; as, as5,0) —> (C'; as, ag,¢)

consists of a functor F: C—C’ of the underlying categories and a natural isomorphism
for every seG
Nt Feas—> aje F

such that

ﬂe:idi‘

(as, % F)ops=(apn)o(sxa)(Fxas,) (s, t€G)
where /dr denots the identity morphism of the functor F.

A G-natural transformation of G-functors

t:(F, ms) —> (F', 13)
is defined to be a natural transformation ¢: F—»F’ of functors satisfying the conditions

(agxt)eps=mni-(txas)  (s€G).

We can also define the descended category 4¢C only from the datum in Definition
1.1.

Definition 1.3. For a category with a G-descent datum (a G-category) (C; as, as,¢)
the descended category 4gzC is defined as follows; An object of 4zC is a pair
(X, (As)see) consisting of an object X of C and for every s=G an isomorphism of C

As: X —> a, X
such that
).e:idx

ag(Ae)oAs=(as, t)x°Ast (s, teG).
A morphism of 4;C
fi(X, () —> (X7, (45))

is a morphism f: X—X’ of C such that for any s€G
e f=as(f)eds.
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Thus we have got an abstract formulation for Galois descent.

Another problem required for theory of G-categories is that of representation
theory. For a ring A what relations are there between a category C of A-modules
and a category C of module over the group ring A[G] of a group G over A? Under
certain a nice circumstance C turns to be the functor category Fun(G, C). On the
other side when the G-descent datum (as, as,.) of a G-category C is trivial say

a's:]dc

for any s=G, the descended category 4sC is equivalent to the functor category
Fun(G, C). Thus this second problem is reduced as a special case to the first problem
about Galois descent. At the same time theory of G-categories gets some advantage
from the techniques in theory of representations. For instance induction theory
(=abstract formalism of representation theory) will be generalized to theory of G-
categories for finite G in §6.

The other problem is about an usual G-category C i.e. a group G actig on C as
a strict functor. We call it a split G-category in order to distinguish it from the
notion of our G-category in which G acts on C as a pseudo functor. As a split
G-category provides a G-space under the classfying space functor this notion of G-
categories has been treated so far by many authors in equivariant algebraic K-theory.
(5], [11], [19] etc. ---.

I shall give in §4 the procedure of constructing a split G-category from our
(pseudo) G-category. This is carried out by using the Giraud construction [7] through
the notion of fibered categories over G. (The resulting one is called the split version.)
This construction makes G-categories the ones to which theory of G-spaces in algebraic
topology can be used effectively. [ must note that even though we are handling split
G-categories from the first it is important to apply the above construction to them by
thinking of them as our G-categories. Because the subject of theory of G-categories
is not the relation of a G-category C with the H-fixed category C¥ for a subgroup H
of G, but it is that of C with the descended category 4;C. 1 will show also in §4
that for C°P the split version of C the both categories 4;CSP and (CSP)” are equivalent
to the original descended category 45C. The usefulness of such procedure is found
for instance in the work of Shimakawa [19] about the construction of infinite G-
deloopings of symmetric monoidal (split) G-categories.

I shall now give the organization of this paper. First we will show in §2 that
the notions of our G-categories and G-functors are equivalent to those of fibered cate-
gories over G and cartesian functors over G. The idea of using fibered categories
over G in equivariant algebraic K-theory is due to Frohlich-Wall [6][26]° They used
the term of stable G-graded categories. But I think that to formulate G-categories in
theory of fibered categories is appropriate for the nature of the theory. Moreover
when a fibered category D over G is associated with a G-category (C; as, as,.) it is
shown that the representation category Rep(G, D) of Frohlich-Wall (¢bid.) is equivalent
to our descended category 4gC.

If the situation is exchanged to a subgroup H of G, the above representation cate-
gories (relative to H) become delicate to deal with. In particular this is the case when
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applied to induction theory. So I introduce in §3 a new representation category which
is natural. It is shown that this new representation category is equivalent to the old
one. This result turns out to be important later. (§4, §8)

G-categories could be interpreted as pseudo functors from the category G to the
2-category Cat of small categories. We get the notions of lax G-categories and split
G-categories by replacing the pseudo functors by weaker lax functor and by stronger
(strict) functors. After noting that the descended category of a G-category is equiv-
alent to a lax limit over G, I investigate the relation of G-categories with split G-
categories. The content is such as mentioned in the above third problem. (§4)

As a next topic we shall study G-categories with further structures. The equiv-
ariant version of a category with some structures (e.g. an exact G-category) goes
through in the simple and natural form in our theory of G-categories. For a pseudo
functor we may only exchange the target Cat with relevant 2-category. The inherit-
ance of structure in question to the limit categories (e.g. the descended category) can
be proven in a natural way. By way of illustration exact G-categories are explained
in §5. Fundamental process is similar for symmetric monoidal G-categories and
simplicial G-categories which are not dealt with in this paper.

It is shown in §6 that for finite G a fibered category over G induces a Mackey
functor in representation theory. By means of the notion of the new representation
category in §3 our formulation such as Mackey property and projection formula
becomes much simpler. This result generalizes the work of Dress-Kuku [3].

In §7 we shall discuss about the connection between G-categories and Og-
categories. The latter is the other notion like a G-category. An Og-category is the
one given a category for each subgroup H of G in a compatible manner and it is a
main question to rediscover them up to homotopy as the H-fixed category of a certain
G-category. This shall be done parallel to the work of Elmendorf [4] about the
relation between G-spaces and Og-spaces. The classifying space of our construction
U from Og-categories to split G-categories reduces to the Elmendorf construction C.

In the last section we shall study adjoint relations between functors connecting
various notions of G-categories. This resarch seems to become useful for applications
of G-categories.

Finally note that I establish definite relations between all G-categories which
appeared or unappeared in papers subject to equivariant algebraic K-theory. Our
theory of G-categories provides a comprehensive and natural treatment of categories
with group actions. It is expected that this theory is used not only for the equivariant
theory of algebraic K-theory, but also for many fields pertaining to group actions on
categories. But it is the point at issue to face a difficult problem called homotopy
limit problem by R. Thomason [24] when we are going to use rich tools in algebraic
topology. This is one of the most important questions following this paper in theory
of G-categories.

Fix some notations. Let G be a group. We can regard G as a category, denoted
the same letter G. The category G has only one object - and the morphisms of G
are elements of the group G. For two elements s, { of G the composition of s with
t is denoted by ts. The opposite category G°P in which the composition of s with ¢ is
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st is equivalent to G by the correspondence s« s~
Acknowledgement : I would like to thank Professors H. Toda and N. Shimada for
many helpful suggestions.

§2. Categories with G-descent data and fibered categories over G

Regarding a group G as a category G with only one object - and with elements
of G as morphisms, we can think of a G-category (=a category with a G-descent
datum) in §1 as a pseudo functor from G to the 2-category Cat of small categories.
Then by the classical relation between pseudo functors and fibered categories following
Grothendieck (Cf. SGA [21]) a G-category provides a fibered category over G. The
notion of fibered categories is fruitful and becomes a key stone of the development of
our theory. Further we show that G-functors are correspondent to cartesian functors
of fibered categories. Since our interest is in descent theory, it is more important to
establish the correspondence between those limit categories; the descended category of
a G-category and the representation category of a fibered category over G. The notion
of representation categories is a generalization of that of categories of representation
modules and is due to F. Frohlich-C. T.C. Wall [6].

Since a group is a groupoid (=a category whose morphisms are all isomorphisms)
as a category, the isomorphism of categories between G and G°P given by s« s™*
gives us the transition of the discusion below to pseudo opfunctor and cofibered
categories and all the arguments become equivalent.

Definition 2.1 (SGA [21]). For a category F over E, n: F—E, a morphism m: X—
Y of F is said to be a cartesian morphism if for any object Z over n(X) the assigment
g—meq provides a bijection

Hompy, ;4(Z, X)=Homp .mx(Z,Y)
where 7d denotes the identity morphism of z(m) and

Homp, (X, V)={f€Hom«(X, Y); n(f)=g}.

Note that every isomorphism is obviously a cartesian morphism.

A category F is prefibered over E if for any morphism g:&—%n of E and any
object ¥ of F over 3 there are an object X of F over & and a cartesian morphism
f: X-Y of Fover g.

For m: F-E is said to be a fibered category over E if it is prefibered over E and
the compositions of cartesian morphisms are cartesian.

Definition 2.2. Given two fibered categories over E, r: F»E and n’: F'—E, a
functor u: F—F" is said to be a cartesian functor over E if it is a functor over E i.e.
w=n’ou and it sends cartesian morphisms of F to cartesian morphisms of F’. Note
that if F is a groupoid the latter condition is unneccesary.

Cartp(F, F’) denotes the category of cartesian functors from F to F’ over E and
natural transformations ¢: u—u’ satisfying

n'(tx)=id x>
for any object X in F.
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Given a fibered category n: F—FE and an object £ of E the fiber z~'(&) of = at §
is defined to be a category whose objects are objects X of F such that n(X)=£ and
whose morphisms are morphisms f of F such that n(f)=id.. Consider the correspond-
ence which specifies the fiber n7'(§) for an object & of E and the functor = '()—
7~%(&) determined by the prefiberedness of F for a morphism §—% of E. Then it
follows from the fiberedness of F that there is a natural isomorphism satisfying certain
coherence conditions between that functor correspondent to the composition of morphisms
of E and the composition of those functors. Thus we obtain a pseudo functor from
E°? to Cat. (Such datum is called a cleavage in SGA [21].) Conversely the Grothendieck
construction makes a fibered category over FE from a pseudo functor E°*—Cat.

We will observe precisely on these details in the case of E=G.

Definition 2.3 (Frohlich-Wall [6]). Take a fibered category y: D—G over G. A
morphism f of D such that y(f)=s (s&G) is called a morphism of grade s. Ker D
denotes the unique fiber y7'(-) of y. This category is equivalent to Cartgs(l. D) where
1 denotes the ponctual category (=the category with only one object and one morphism).
To be more precise the objects of Ker D are equal to the objects of D and the
morphisms of Ker D are morphisms of D of grade ¢ where e is the identity element
of G. Let (7, ¢s.:) be the normalized cleavage defined by the fibered structure of 7
(Cf. [21]). Explicitly for every s=G there is an equivalence of categories

7s: Ker D —> Ker D

such that y.=Idk.qp and for every pair s,t&G there is a natural isomorphism of
grade e
Cs,et Teols —> Tt
such that
Cs,e=idy,=Ces (seG)

s, 1u(Ce, u*Ts)=Cs1, u°(T u¥Cs.1) (s, t, ueG).

A set of morphisms of transport {&s x} is given as follows. For an object X of D and
se G one has a cartesian morphism of grade s

Sg'ersX—%X

corresponding to a morphism of grade e id:y,X—7,X. And they satisfy the following
properties.
a) For any object X of D

se.le.dX-

b) For any morphism v: X—X’ of Ker D and s=G

vebs x=E&; x o75(v).

¢) For any object X of D and s, teG

&s, X°§t,r,X:§st‘ x°(Ce,t)x .
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Note in general that for a category F over E a fibered structure determines a
normalized cleavage and a set of morphisms of transport, and conversely that one of a
normalized cleavage and a set of morphisms of transport determines the other and a
fibered category structure. The correpondence between pseudo functors and fibered
categories is well-known, but in order to describe the equivalence between limit
categories cartesian morphisms & x’s turn to be useful.

Definition 2.4 (Frohlich-Wall [6]). The limit category of a fibered category
7:D—G is given by the category of cartesian sections;
Rep D (=Rep (G, D))=Carts(G, D).

This is called the representation category of a fibered category D over G. The termi-
nology comes from the following fact. When 7 (or D) is trivial i.e. y=pr,: D=GXC
-G,

RepD=Fun (G, C)
where Fun(G, C) is the functor category from G to C whose objects are G-represent-
ations in C.

Let us write down explicitly the category RepD. An object of RepD is a pair
(X, ¢) where X is an object of D and ¢ is a group homomorphism G—AutpX such
that ¢(s) is an automorphism of grade s for any s&G. A morphism (X, ¢)—(X’, ¢’)
of RepD is given by a morphism f: X—X’ of D of grade ¢ such that

©'(8)ef=fop(s) (s€G).
Under those definitions we have
Theorem 2.5. (1) Let C be category with a G-descent datum (as, as,.) (=a G-

category in §1). Then there is a fibered category D over G satisfying equivalences of

categories
Ker D=C, RepD=dsD.

2) If v:D—G is a fibered category over G then Ker D has a G-descent datum satis-

fying an equivalence
AdeKer D=RepD.

Proof. (1) We will construct a category D with the desired properties. Take
obD=0bC. For two objects X, YV

Homp( X, Y)zs_él_aHomD, (X, Y)

Homp (X, Y)=Hom¢(X, a;-1Y) (the morphisms of grade s).

The composition of morphisms
Homp, (X, Y)xHomp, (Y, Z) —> Homp (X, Z), (f, §)—>&-f

is defined as follows. For f: X—a,-1V and g:Y—a,-1Z
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as-1(g) (@s-1,¢-1)7"
gof : X—> as;-1Y ——— as-1a-1 —> As-11-1Z=Ausy-1Z .

Thus one has a category D over G.
Next id =Home(as-1 X, as-1X) defines a morphism of grade s in D

CS,X . as—IX_* X

and it is easily shown that a set {{; x} satisfies the conditions similar to (a)~(c) which
are satisfied by {&; x} in Definition 2.3.
So put

Ts=—as-, cs,l:(at-l,s-l)—ly Es. x=0s. x

then it is verified that (7s, ¢s,.) is a normalized cleavage of D and {& x} is a set of
morphisms of transport. It is clear that C=Ker D.

To construct an equivalence between 4sC and RepD take an object (X, (1)) of
4:C. For s€G put

o(s)=&s, x°4s-1

then ¢(s) is an automorphism of X of grade s and ¢:G—AutpX is a group homo-
morphism as follows:

e(st)=&st, x° Acsty-1
=&, x°(Cs,)x°(Ce,1)x"° Ae-10-1
=& x°6trx°(Ar-1,5-1)x°At-15-1
=&, x°5:.rsx°dz—1(la-1)°3c—1
=& xoAs-1°80, x° A1
=@(s)o@(t).

Thus we have an object (X, ¢) of RepD. As regards morphisms if (X, (4,)), (X, (4}))
are objects of 44C and v: X— X’ is a morphism of grade e such that

Aev=asv)eds  (sEG),
putting

o(s) (resp. @'(s))=&s, x°As-1 (resp. &s x1°25-1)
we have

@' (s)ov=Es, xroAi-1ov
=&, xoTs(v) A1
=ve&;, xoAs-1
=veog(s).

Thus we obtain a functor 4¢,C—RepD. It is possible to follow up the converse of
the above construction and so we have an equivalence of categories

RepDzAGC .
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(2) Given a fibered category y: D—G with a normalized cleavage (7, cs,.) put
As=7s-1, Q5,1 =(Cs-1,5-1)""

then one has a G-descent datum (as, as:) on KerD. In this case an equivalence
between d¢Ker D and Rep D goes through as in (1). g.e.d.

We shall now show that G-functors correspond to cartesian functors under the
correspondence between G-categories and fibered categories over G in Theorem 2.5.

Theorem 2.6. (1) Let b: B—G a category over G. A cartesian functor
F:r:D—G)—@G¢': D' —G)
of fibered categories over G induces naturally a functor
Carte(B, F): Carto(B, D) —> Carta(B, D).
In particular we have natural functors
Ker F': Ker D —> Ker D' and
Rep F: Rep D —> Rep D' .

(2) When providing a G-descent datum on Ker D (resp. Ker D') by Theorem 2.5 (2), Ker F
of (1) turns to be a G-functor of G-categories.
3) Given a G-functor

F:(C; as, as,:) —> (C'; ay, as,1)
of G-categories, F extends to a cartesian functor
F:(y:D—G)—(7': D' —> G)

where 7: D—-G (resp. v : D'—G) is a fibered category over G associated to (C; as, as.:)
(resp. (C'; a3, asb)) by Theorem 2.5.

Proof. (1) The functor Carts(B, Fyis given by
o Fep
(B—> D)— (B ———> D’).
Take B=1 (resp. G), and the result for Ker (resp. Rep) follows.
(2) We can write down the conditions of being a cartesian functor by using the cleav-
ages of fibered categories in theory of fibered cotegories (Cf. Gray [9] p 33). This
implies that the restriction of a cartesian functor to the fibers Ker satisfies the condi-
tions of the definition of a G-functor.
(3) Let us construct a cartesian functor £: D—D’ from a G-functor F: C—C’. For
an object X of D put FX=FX. If m: X—Y is a morphism of grade s in D there is
a morphism 7n: X—a,-1Y of C. Let Fm:FX—>FY be a morphism of grade s of D’
correspondent to the following composition in C’

n (9s-Ux
FX— Foas-1Y —> a;-1°FY .
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It follows easily from the conditions of the definition of a G-functor and the fact used
in (2) that the functor F defined above becomes a cartesian functor. g.e.d.

Fib(G) denotes the 2-category of fibered categories and cartesian functors together
with 2-arrows which are defined to correspond to 2-arrows of Des(G) in §1 under the
correspondence of Theorems 2.5, 2.6. Then Fib(G) is 2-equivalent to Des(G) and we
may identify the two 2-categories.

§3. Change of groups

In this section I shall give the definitions and properties of the representation
categories for a group H exchanged from G. At first we state the definition of
Rep(H, D) given by Frohlich-Wall [6]. But this is inconvenient from the lack of
functoriality. So we adopt a new definition of the representation categories

Rep(H, D)=Carte(G/H, D).
For H=G, Rep(G, D)=Rep((G, D) and for general H there is an equivalence
M(H, D)=Rep(H, D).
For H={e} this equivalence has the form
Ker D=Carts(G/e, D).

and plays an important role in the next section.

Lemma and Definition 3.1. (1) For a fibered category 7y:D—G over G with a
normalized cleavage (7s, ¢s..) and a group homomorphism h: H—G the category over H
pri: HXgD — H

is a fibered category over H and
Rep (HXeD)=Carte(H, D)

holds. This category is denoted by Rep(H, D).
(2) For a G-category (C; as, as.:) and homomorphism h: H-G (C; anesy, Qresy.ncy) 1S
a H-category. The descended category of this is denoted by 4dyC.

Proof. (1) We shall discribe in term of cleavages. We may take (7icsy» Chesy.nc)
as a normalized cleavage for HXgsD—H. To show the latter category equivalence
consider the diagram
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The correspondence between functors
g:H—> D and g:H—> HXgD

such that g(-)=(-, g(-)), 8(s)=(s, g(s)) gives the desired equivalence.
(2) Trivial. g.e.d.

Theorems 2.5, 2.6 in the previous section can be immediately generalized to the
present case. Let H be a subgroup of G.

Proposition 3.2. (1) When a G-category (C; as, as..) and a fibered category D—G
over G are under the correspondence in Theorem 2.5 there is an equivalence

AuC=Rep(H, D).

(2) A cartesian functor F:D-D" over G of fibered categories over G (resp. a G-
functor F: C—C’) induces functors in a natural way

Rep(H, F): Rep(H, D) —> Rep(H, D)
(TQSP. AHF: A]{C"’AHC').

We shall here provide some notations of categories which occur from a group G.
These categories play a central role from now on.

Definition 3.3. For a (left) G-set S the category S has elements of S as objects
and the morphisms of S from x to x’ are elements a of G such that ax=x’; 7.e.
0bS=S, mor S=GXS. There is a functor

c:S— G

195}

on objects o(x)="- for xeS=0bS

(a, x)
on morphisms ¢(x —> ax)=a for x&S, asG.

Thus have a category over G. (Not fibered!) We often use the categories G/H for
subgroups H of G. In special cases

G/G=G
G/e=-/G (=the comma category of G under -).

The latter is also equal to the one called the translation category of G.
We use these notions to define a new representation category.

Lemma and Definition 3.4. For a fibered category v : D—G over G and a (left) G-set
S there is an equivalence
Carte(S, D)=Cart Sec(S X ¢D)

where CartSec(SXeD) is the category of cartesian sections of a fibered category
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pri:SXeD—S. Define for S=G/H

Rep(H, D)=Carts(G/H, D).
Proof. Similar to Lemma 3.1.

Since G/G=G we have Rep(G, D)=Rep(G, D). In general we will show Rep(H, D)
~Tep(H, D).

Theorem3.5. For a fibered category v: D—G over G and a subgroup H of G there
is an equivalence of categories

Carts(G/H, D) = Cartg(H, D)
Il I
Rep(H, D) Rep(H, D).

Proof. We shall first define a canonical functor

¢: Carte(G/H, D)— Carte(H, D).
Assign on objects

. k(eH)
o(k): <lh> +———>< lk(h, eH)>
. k(eH)

where (1, eH): eH—heH=eH for heH. Also on morphisms

k o(k)
G/H |2 D 2, H le2) D
k' (k")

O(A)=2n: k(eH)—> k'(eH).
On the other side a functor
¢: Carte(H, D) —> Cartes(G/H, D)

is not canonical. This is determined for each choice of representatives {g;}:e; oOf
G/H. Assign on objects
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u
H?D ¢ C#—[ ------- >D
G

giH rgi-lu(')
H(u): lg —
g]H rgj-lu(')
where (g, g;:H): g/ H—>gg;H=g;H, hence gj'gg;=H and the morphism ¢(u)g, g:H):
Vg 1u(- )27 g -au() is determined by the following commutative square

€---

Egimtiuce
Tapru(s) — u(-)
| lu(g,—‘ggi)
v Egj—l.u(-)
rgj-lu(') u(')

accomplished by the fact that §;, ; 4, is a cartesian morphism. Assign on morphisms

u p d(u)
H g D|—>|G/H |¢(z) D
u’ o(u’)

where for each g, HcobG/H
Sb(ﬂ)gi}l:rgi—l(#): Tgi—lu(')'—> rgi—lu(')‘
Then it is clear that ¢e¢p=Idcerigm. 0. Also there is a natural transformation

n: ]dCartg(gl__L{.D) B ¢°¢

For (Q_/=H—k>D)EobCartG(_G;H, D) a morphism
Ntk —> Pogplk)
of Carts(G/H, D) is given as follows. For g;HeobG/H
()egn  R(GH) —> T s k(eH)=(dop(k)Xg:H)
is defined by the commutative triangle
k(g:H) k(g;', g:H)
k(eH)

/E'
Tgi-lk(eH) gi-1.k(eH)

€-————

obtained by the cartesianness of &, i ecemn>.
Since k(g7!, g:H) is an isomorphism 7, is an isomorphism for any k. The natu-
rality of 5 is shown from the following commutative diagram
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k(gi-1
k(gH) — 2, k(eH) oo ak(eH)

llull lleﬂ e lrg,;-l('zeﬂ):(/"'ﬁo(l)
k'(g:H) ) k'(eH) SR Vgi-1k'(eH)

§gim
————

k’(gg-x

deduced from any morphism 4: k—k’ of Carte(G/H, D).

Note that since (%:).x=id the image of 7 by ¢ is the identity and that % is the
identity on the image of ¢. These show that ¢ is left adjoint to ¢. Further as % is
a natural isomorphism ¢ is quasi-inverse to ¢. Therefore we have the desired equiv-
alence of categories. g.e.d.

It is more important when H=e¢. Though it is a special case of the above theorem
we shall here renote it to take advantage in the next section.

Corollary 3.6. Let (C; as, as.;) be a G-category and y: D—G the associated fibered
category over G. Then there exists an equivalence of categories

¢: Carto(Gle, D)—> C.

Proof. We shall write explicitly the functor ¢ and the quasi-inverse functor ¢ in
spite of a special case of the theorem. The functor

¢: Carte(G/e, D)—> C

is given by
k
— k(e)
/e 17 0| (12 )
s #e

and the functor
¢:C—> Carte(G/e, D)

is given by
X
X & ))
(l)g)'—> Gle \p) D
oY)
where
a Ta-1X Ta-1Y
d(X) (resp. ¢(Y)):( lg)'—>( ! ) (resp.( i ))
ga Ta-1g-1 Ta—lg—ly

¢(ﬂ)a:7a—l(ﬂ) .

Remark that the choice of representatives does not occur, hence ¢ is also canonical.
The rest of the proof is as in Theorem 3.5. g.e.d.
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§4. Split G-categories

I mentioned in §2 that a G-category was considered as a pseudo functor from G
to Cat. 2-functors from a category to a 2-category are classified primarily to three
classes—Ilax, pseudo and strict functors by means of conditions relative to compositions
(e.g. as. in a G-category). It is a main object in this section to give the relations
between those notions of 2-functors of G. First it is shown that a lax colimit of a G-
category is equivalent to the descended category. And we shall state the relation of
G-categories with split G-categories (=strict functors from G to Cat). For this we may
use the Giraud construction (Giraud [7]) which associates a strict functor on G with
a fibered category over G. Remark that applied to a pseudo functor the one called
the Street first construction or Kleisli rectification which sends lax functors to strict
functors is equivalent to the Giraud construction. A split G-category has two kinds
of limit categories; the descended category considered as a pseudo G-category and the
category which consists of G-fixed objects and G-fixed morphisms. It is also shown
that those are equivalent only for the G-category deduced from a fibered category over
G. We begin by defining various 2-functors.

Definition 4.1. For a category E and 2-category C, a lax functor
a:E—C

is a pair of functions which assign an object a(a) of C to each object a of E and an
l-arrow a(t): a(a)—a(b) of C to each morphism ¢: a—b of E together with 2-arrows
of C

lg - a(z'da) e ida(a)

s, a(set) —> a(s)a(t)

t s
for each identity morphism 7d,: a—a of E and each composition a—b—c¢ of morphisms

of E such that the following diagrams of l-arrows of C commute;

alidy)ea(t) Bt o) — B a(tyeatida)

Wx l—_-e%(l')”‘fa

a(t)

a(vesot) Fo ot av)oalst)

llluu.l la(v)*pt,.t
awes)ealt) —0 DL yeals)a).

Further a lax functor « is called a pseudo functor if ¢, =id for any object a of E and
#s.: is an isomorphism for every composable pair (s, t) of morphisms of E. And also
a pseudo functor «a is called a strict functor if p, .,=id for any composable pair (s, t)
of morphisms of E. Regarding the 2-category C as a category by forgetting the 2-
arrows this turns to be an usual functor from E to C.
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Now Cat denotes a 2-category in which objects are small categories, l-arrows are
functors and 2-arrows are natural transformations.

Definition 4.2. A G-category was a pseudo functor from G to Cat. A lax functor
G—Cat is called a lax G-category and a strict functor G—Cat is called a split G-
category. A strict functor satisfying a(s)=:id for all seG is called a trivial G-category.

Then

a trivial G-category == a split G-category

= a G-category == a lax G-category
and further by the result of §2

a G-category & a fibered category over G.

Now we will define various G-functors. Though they correspond to lax natural
transformations, pseudo natural transformations and (usual) natural transformations we
write down explicitly

Definition 4.3. Let a, a’:G—Cat be two lax G-categories. A lax G-functor
t:a—a’ is a functor
F=t.:a(-)— a'(+)

of categories together with a natural transformation
N5t Foa(s) —> a’(s)-F
to each s=G and a natural transformation
i1 Fxe. —> ((xF)ey,

such that the following diagrams of functors commute;

Fea(sot) —H50 ) Fug(s)eatt) 10l sy Featt)

lﬂst

a’(sot) F

la’(S)*m

texF > a'(s)ea’(t)-F.

When 7=id and 7, is a natural isomorphism for every s&G, such functor was called a
G-functor (Cf. §1). Further when %,=:id for every s=G, it is called a split G-functor.
This is a (usual) natural transformation between (usual) functors from G to Cat.

At first we shall see that the limit categories for lax and pseudo G-categories
coincide.

Theorem 4.4. Let a:G—Cat be a pseudo functor i.e. putting a(-)=C, a(s)=a; and
s, e=0s,: (C; as, as,.) is a G-category. Then we have an equivalence

laxylimita=A4cC
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where AgC s the descended category of a G-category C.

Proof. Consider the forgetful functor
7:46C— C, (X, (A)— X.
Then for each t=G a natural isomorphism
I®:arej —>7, jB)x ="
is defined and the following a), b) hold.
a) j(e)=id;
b)  j(tu)e(as, ™ %7)=7()(axj(u))
a) is followed by A,=id. b) is deduced from the facts;

. . (@e,)x”" Aeu?
{itu)(ac v %)} x. ap=(a1a, X — a;, X X)

) ) a(A,7Y) At
{i®)(axj(u}cx. apr=(a@. X a: X X)

and the conditions with respect to (4;) in the definition of 4;C (see 1.8).
as(zt)°zs:<as,t)X°xst-

Now given any category C’ and a functor %k: C’'—C together with a natural iso-
morphism
k(t): asek —> kb
to each =G such that conditions
a) k(e)=id,
b)  k(tu)e(as, o 'xk)=Fk()-(axk(u))
are satisfied. Then define a functor
[:C'— 4sC
on objects {(Y)=(k(Y), (k(s)y™")), Yeobl’

g
on morphisms (Y — Y')=k(g), gemor C’
then one has
k=7l
k(s)=7(s)*l .

These facts show that the descended category 4;C is a lax limit for a lax functor
a: G—Cat. g.e.d.

We shall now describe the relation between G-categories (or equivalently fibered
categories over G in the view of §2) and split G-categories. This is the main theme
of this section.
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Let Split(G) (resp. Pseudo(G)) denotes the category of split G-categories (resp. G-
categories) and split G-functors (resp. G-functors). We will regard the 2-category
Fib(G) in §2 (resp. Des(G) in §1) as a category by forgetting the 2-arrows. We know

Pseudo(G)=Des(G) and Split(G)C Pseudo(G).

We verified in §2
Des(G)= Fib(G).

Remark that the equivalence Des(G):Fz'b(G) constructed essentially in 2.5, 2.6 is got
from the usual Grothendieck construction Pseudo(G°?)—Fib(G) by exchanging the
compositions G°P? > G. Restricting this functor to Split(G) we have a functor

D : Split(G) —> Fib(G).

An object of the essential image of @ is called a split fibered category over G. (All
¢s.: are identities. Cf. §2) We shall construct a functor opposite to Q.

Begin with a G-category (C; as, as,.) or equivalently a pseudo functor a:G—Cat
such that a(-)=C, a(s)=a;. This corresponds to a fibered category y:D—G with a
normalized cleavage (7, ¢s.;) by Theorem 2.5. Recall that 7s=a;-1, ¢5,e=(ar-1,5-1)7"
Define

C*=Carts(G/e, D)

a’?: G —> Cat

on objects asP()=C®?

on morphisms a°®P(s): (E—Zf —L D)l—>(G=/e —> D)
u n(us)
where 2':| [(a, u) )l—» In(a, us))
au n(aus)
for a morphism (a, u): u—au of G/e.

Take another G-category (C’; ai, a; .) and the associated fibered category 7':D’'—G.
For a cartesian functor F: DD’ over G a functor FP: C*—C’*® is defined by taking
the composition with £ Then

Lemma 4.5. a°? is a strict functor, hence (C3°; asP(s)) is a split G-category and F*P
is a split G-functor.
Proof. For any s, t€G, any k: G/e—D and ucobG/e
(a®P(st)ke X u)=k(ust)=(a®™(t)k)Xus)
={a®P(sXa*P(t)k)}(u)

hence
a®P(st)k=a?(s)a®P(t)k).

Further the actions on morphisms are similar, therefore
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aSP(st)=asP(s)oasP(t).
On the other hand for (k: _G_l_g—»D)eob C*? and any seG
a’*(s)e F*(k)=a'*(s) ' k)= F k(s)=F(k(s))
=F%Poq®P(s)(k)
which implies F? is a split G-functor. g.e.d.
Therefore one has a functor

S Fib(G) —> Split(G)

on objects S(y: D — G)=(C®?; a®?(s))

on morphisms S(F: D —> D')=(F%: C® —> C'*?).

Also 7°?: D?P—G denotes the (split) fibered category over G associated to the split G-
category (C®P; a®P(s)) by Theorem 2.5.

Definition 4.6. CSP, a®?, y°P: D*—-G and FSP: C%*—(C’SP are called respectively
the split version of C, @, v: D—G and F: C—C’ where F is the restriction of F to the
fibers.

For those objects the following theorem is fundamental. This is essentially due to
Giraud [7]. Here we shall use the results of § 3 to give another proof over the base
G.

Theorem 4.7. (1) There is a functor

@:Q-S(D)=D*® —> D

which is fiber equivalence over G.
(2) S is right adjoint to @.

Proof. (1) Consider the equivalence ¢ in the proof of Corollary 3.6.
C®=Carte(G/e, D)—> C.
¢

Put 7,=a;-1: C—C and 7;=a*(s™'): C**—=C**. For any object (k: ﬁ—»D)of C*P one
has
Ts°§0(k)=7'xk(e)

poT(R)=k(s™).
However there are morphisms of D
&5 keer : Tsk(e) —> k(e)
k(s, sV k(s™Y) —> k(e)
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which are isomorphisms. Since s 1 is a cartesian morphism there is an isomorphism
Cs.n k(™) —> 1sk(e).

To verify that {; .’s define a natural isomorphism
Cs:Tsep—>0°Ts
take a morphism A: k—k’ of C*=Carts(G/e, D) and see the assignements by 7s°¢ and
@7y o
Tse@(A)=(1s4e  Tsk(e) —> 7sk'(e))
@o7s(A)=(As-1: k(s™") —> R'(s™")).

Then it follows from the commutative diagram

Tsk(e) ——— k(e) «—— k(s™")

17326 lze lz

Tsk'(e) —— k'(e) «———— k'(s™)

that {, is a natural transformation.

Thus (¢, {) is a G-functor from C** to C. It follows from Theorem 2.6 that
there is a cartesian functor

¢: D% —D.

But the restriction of ¢ to the fibers is ¢ which is an equivalence of categories by

Corollary 3.6. It follows from [21] Proposition 6.10 that the cartesian functor ¢ is a
fiber equivalence.

(2) (1) implies that there is a natural transformation
@S —> 1drivces

which is denoted by the same letter ¢.

Consider ¢ in the proof of Corollary 3.6. Take 7 and 7; as in (1). Here we
assume that C (or a) is split. That is

Tse=T1°Ts-
For any object X of C and any ucobG/e
Tso(X)=(u — Tsur-1.X)
Goro(X)=(u > Tu-175-1X).
Similarily for morphisms. So
Tsep=o7s.
Thus we have a natural transformation
ldspritcey —> So@.

All that remains is to show the commutativity of the following two triangles
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Q-S-@
o 5D
o >
Se@-S

S(p*S/v d \S*;bs

Both of them are obtained from the fact

pod=1d:C —> C

by reducing the problem to that on fibers.

Corollary 4.8. Let the notations be as above. There are equivalences
CP=C
AGCszAGC
Rep(G, D*®)=Rep(G, D).

Proof. Theorem 4.7 (1) implies
(re)y (=717

Cart Sec(G, D**)=Cart Sec(G, D).
However we know
CsP=Ker D*=(7°)"(+)

C=KerD=77'(+)
AcC*=Rep (G, D®)=Cart Sec(G, D*P)
4cC=Rep(G, D)=Cart Sec(G, D).

These show the desired results.

Next we shall state the results for subgroups H of G. To do this for a split G-
category (C; a;) i.e. a functor a:G—Cat, a(-)=C, a(s)=a; we define another limit

category different from the descended category 4.C.

Definition 4.9. For a split G-category (C; a;) and a subgroup H of G the H-fixed
category CH¥ is defined to be a category which consists of H-fixed objects and H-fixed

morphisms of C.

A key result is following.

Proposition 4.10. For a fibered category v: D—G over G and a subgroup H of G

the natural functor
- Carte(G/H, D) — Carts(G/e, D)

g.e.d.

g.e.d.
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induced by the natural projection G/e—G/H provides an isomorphism of categories

Carte(G/H, D)—> Carto(G/e, DY".
Proof. 1t is clear from the definitions.

Corollary 4.11. Let (C; as, as..) be a (not necessarily split) G-category and v: D—G
be the associated fibered category over G. C®°°, a®?, D°® and y°P denote as above. Then
there are equivalences of categories for a subgroup H of G

A C=(C%) =4u(C*P).
Proof. It follows from Proposition 3.2, Theorem 3.5 and Proposition 4.10 that

4yC=Rep(H, D)=Rep(H, D)=Cart«(G/H, D)
=(CsP)H
On the other side since ¢: D**—D was a fiber equivalence we have
Carte(H, D*®?)=Carte(H, D)
which implies as in Corollary 4.8

AHCSPzA”C. q.e.d.

Remark 4.12. Even though (C; as, a;..) is split an equivalence
A}[C;:—"C”

does not hold generally, because ¢: C*—C does not become a split G-functor. The
above corollary shows if a split G-category C comes from a fibered category over G
i.e. C=Carta(_GT/_e, D) an equivalence

A][ C= C”
holds.

§5. Exact G-categories

We have considered actions of G on any categories until the last section. The
definition of G-categories for categories with certain additional structures is as follows.

As a G-category is regarded as a pseudo functor from G to Cat, we may replace
only Cat by an adquate 2-category consisting of categories with certain additional
structures, functors and natural transformations preserving the additional structures.
Other objects which we don’t handle in this paper, but which are important for alge-
braic K-theory; symmetric monoidal G-categories, simplicial G-categories and categories
with actions of two kinds of groups etc.--- all are done well by this method. In this
section we deal in exact G-categories and state the commutativity of Quillen’s Q-
construction with descended categories as a main result.
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Definition 5.1. A G-category (C; as, as,.) is an additive (resp. abelian resp. exact)
G-category if C is an additive (resp. abelian resp. exact) category and for every s=G
as is an additive (resp. exact resp. exact) functor.

Then an old limit category of a G-category taken in Cat is also a new limit
category taken in the 2-category of categories with certain additional structures.

Proposition 5.2. Let (C; as, as,.) be an additive (resp. abelian resp. exact) G-
category, 7. D—G be the fibered category over G associated to (C; as, as,;) by Theorem
2.5 and ¢: E—G be any groupoid over G. Then Carte(E, D) turns to be an additive
(resp. abelian resp. exact) category in the natural manner.

Proof. The category Carte(E, D) has as objects functors 7: E—D satisfying
7vep=¢ and as morphisms natural transformations ¢: »—»’ of grade e¢ between those
functors.

To show that Carte(E, D) becomes an additive or abelian category according to
D additive or abelian, we have to check the abelian group structure of hom sets, the
existence of a 0-object and coproducts, the existence of kernels and cokernels, an
isomorphism of coimage with image and so on. The definitions of the desired objects
may work in obvious way by applying the correspondent constructions to the images
of E. This procedure of proof is long but routine, so we will omit the details.

With respect to an exact G-category C our proof is as follows. Embed C into A
(=the category of left exact functors on C°P to the category Ab of abelian groups) as
a full subcategory. Then A has a G-descent datum which is an extension of the one
of C. B—G denotes the fibered category over G associated to the G-category A. The
former results show Carte(E, B) is an abelian category. Further it is easy to show
the existence of an embedding

Cartg(E, D) —> Carte(E, B)

and that the category in the left side is closed under extensions in the category in the
right side. It follows from Quillen [17] that Carts(E, D) is an exact category. gq.e.d.

By the results of §4 we have easily

Corollary 5.3. Let (C; as, as,.) be an additive (rvesp. abelian resp. exact) G-category,
7:D—G be the associated fibered category over G and H be a subgroup of G. Then
various limit categories

AHC} Rep(Hx D)r M(Hy D)r (Csp)H and AHCSP

are all additive (resp. abelian resp. exact) categories in natural manners.

Now we shall state the relation with Quillen’s Q-construction for exact categories.

Theorem 5.4. Let (C; as, as.) be an exact G-category, y: D—G be the associated
fibered category over G by means of Theorem 2.5 and e: E—G be any groupoid over
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G. Then
(1) The category QC has a natural structure of a G-category.

(2) If 7: QsD—G denotes the fibered category over G associated to the G-category QC,
then there exists an equivalence of categories

Q Carto(E, D)=Carte(E, QD).
Proof. (1) We shall define a natural G-descent datum (as, as.) on QC. Note
that the category QC has the same objects as C and morphisms X—X’ in QC are
isomorphism classes of (X«—Z>—X’), where —» (resp. >—) denotes an admissible

epimorphism (resp. an admissible mononorphism). Here define an endofunctor for each
seG

a:QC— QC

whose function on objects is the same as a; and which sends a morphism

J i
an isomorphism class of (X <«— Z >—> X)
of QC to a morphism
. . as(J) as(7)
an isomorphism class of (a;X <<— a;Z>—> a,X’)

of QC. We should remark that as a; is an exact functor for every s=G the image
by as of an admissible epi (resp. an admissible mono) is so. Also for s, teG

(@s,0)x : A X —> as(a X)

on XcobQC is given by an isomorphism class of

= as,
(s X <=— astX>;t> ala; X))

and it is seen immediately that 4 ,’s satisfy the conditions of a G-descent datum.
(2) The objects of the category QCarte(E, D) are functors 7n: E—D over G and a
morphism ¢: p—7’ of QCarts(E, D) is an isomorphism class of

(g <=— 4 >—>1n')
in Carte(E, D) namely for each object a of E an isomorphism class of diagrams
(n(a) <=—{(a)>—> p'(a))

such that for any morphism m: a—b of E a diagram

n(a) « {(a) —7'(a)
ln(m) lC(m) lr)’(m)
n(b) L(b) 7'(b)

is commutative. On the other hand the objects of Carts(E, Q;D) consist of functors
7: E—=Q;D. The objects of QD are same as the objects of D and an isomorphism
in Q;D reduces to an isomorphism in D. As E is a groupoid the functor 7 is identi-
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fied with a functor E—D.
Next let us consider a morphism f:35—3" of Carto(E, Q;D). This consists of
morphisms of QC
i(a): 7(a) —> 7'(a)

for all acob E, which are compatible for every morphism of E. That is to say it is
given by an isomorphism class of diagrams

(7(a) <=— Xica >—> 7'(a))
for each a<obE such that a diagram

7(a) «—— Xiw, ™ 3'(a)
1’7("1) 1 lﬁ’(m)
(b)) «—— Xiy >—— 7'(b)
is commutative for every morphism m: a—b of E. Since E is a groupoid the morphisms
which appeared above are all isomorphisms, hence we can use Xj.,’s to make a functor
X: E—D such that X(a)=Xic» for any a€obE. Thus the morphisms of Carts(E, QD)

reduce to morphisms of QCarts(E, D), too. The desired equivalence of categories will
follow. g.e.d.

From this theorem we deduce the commutativity of @Q-construction with taking
various limit categories of various G-categories considered so far.

Corollary 5.5. Let (C; as, as,.), 7: D—G, QC and 7;: Q;D—G be as in Theorem
5.4. If His a subgroup of G then
(1) QRep(H, D)=Rep(H, Q;D)
(2) Q4sC=44QC
(3) QRep(H, D)=Rep(H, Q,D)
(4) (QC=)=Q(CP) .
Proof. (1) Take E=H in Theorem 5.4.

(2) follows from equivalence 4y C=Rep(H, D) and (1).
(3) Take E=G/H in Theorem 5.4,

(4) From (3), Proposition 4.10 and Theorem 4.12 we obtain
(QC*™)*=(Q Carts(G/e, D)?
~(Carts(G/e, Q;D)¥
gCartG(ﬂ, QD)
~QCarte(G/H, D)
=Q Carte(G/e, D)
=Q(CsP)H, g.e.d.
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§6. Induction theory deduced from a G-category

The representation category Rep(H, D) considered in § 3 was an analogue to the
category of H-representation in Ker D. So we can chase the analogous formulation of
representation theory of finite groups.

We can proceed with the arguments by defining restriction and induction functors
for Rep(H, D). The approach of Frohlich-Wall [6] was in such manner. But in this
approach the definitions depend on choices of representatives of cosets with respect to
subgroups, hence it is troublesome to check naturality. Therefore we will use

Rep(H, D)=Cart«(G/H, D).

This makes the argument functorial and formal.

We shall only refer to Mackey property and projection formula which are funda-
mental tools in representation theory. These results generalize the results for trivial
G-categories of Dress-Kuku [3] to general G-categories which is not neccesarily split.

In this section we assume the group G is finite or profinite. We consider the category
S&* of finite G-sets and G-maps. To an object S of S£*" i.e. a finite G-set S, we
assign a category S whose objects are elemetns of S and whose morphisms x—y
(x, yeS) are represented by pairs (g, x) such that gx=y as in §4. Further to a
morphism (a G-map) ¢: S—T of S§'™ we assign a functor
6:S—> I/‘

x o(x)
(l(g, x)) — (g ¢(x)))
x’ o(x’)

where gx=x' hence g¢(x)=¢(gx)=¢(x’).

Let (C; as, as,.) be an exact G-category and 7 : D—G the associated fibered category
over G by means of Theorem 2.5. Extend the definition of Rep(H, D) for subgroups
H of G to objects of S§&i*

Rep(S, D)=Cartu(S, D).

It follows from Proposition 5.2 that the category Rep(S, D) is an exact category for
any S. We shall now define restriction and induction functors between them.

Definition 6.1. For a morphism ¢:S—T of S{‘" there are exact functors between
Rep(S, D) and Rep(T, D)
D«
Rep(T, D) __ Rep(S, D)

¢*
T > Dy=(s 2, by

namely

i x (@(x))
6:(T —> D): (l(g, x)) — ( e, ¢(x>>)
x’ 7(P(x"))
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where x, x'€S and geG such that gx=x".

C y zeq&e—alw)C(x)
¢S —> D): ( 1(g, y)) — 1 g, x)
Y r'Ggﬁe‘al(y')C(x )

where v, y'eT and geG such that gy=y'. We can take x, x’=S such that gx=x’
by exchanging appropriately an order of @ if neccesary. Hence ¢* is determined up
to a natural isomorphism.

We note that ¢y (resp. ¢*) is corresponding to restriction (resp. induction).

Proposition 6.2. (1) For a composition SﬂTﬁU of morphisms of S
(¢°¢)*:¢*°¢*
(o) =*-*.

(2) If SILT denotes the coproduct (=disjoint union) of S and T in S§™ there is an
equivalence

Rep(SLLT, D)=Rep(S, D)X Rep(T, D).

(3) If a morphism ¢:S—T is an isomorphism of SE™ ¢« induces an isomorphism of
categories

¢ Rep(T, D)—> Rek(S, D).
Proof. (1) is clear.
(2) The assignment
(:SUT —D)—|S:S— D, 9|T:T —> D)
gives the desired equivalence.

(3) follows from the first formula of (1). g.e.d.

Proposition 6.3 (Pull-Back Formula). Let S,, S, and T be objects of S§™ and
é.: S:—>T and ¢:: S:—T be maps of SE™. Make a pull-back diagram

S\ X728, — S,

| , |#:

S —th s T

where S1X7S,= {(G, b)l(lESn beS,, ¢1(a):¢2(b)}

¢1:31XTSZ’—>SI, (a, b)'_>a
(/)z: Si1XrS; —> S,, (a, b)y—b.

Then there is a natural isomorphism

(@o)xo(@)* =(Pe)*(Pr)x
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of functors from Rep(Si, D) to Rep(S,, D). In other words the diagram

Rep(S1x 250, D)— P | BoB(s. D)
T ) ](«;52)*
Reb(Ss, D) — 2" Ren(T, D)

is commutative up to natural isomorphism.

Ui .
Proof. For g€G, y, y'ES, such that gy=y" and (S,—~D)<ob Rep(S,, D) two Kinds
of assignments are gives as follows;

/

D 7(x)
i y z€41-Uga(y)
($o)e($1)*XS, —> D): (1,<g, y))h—»( "IRE, 9 )
y

z'€¢~T(pay'

7 y et D, 77(¢1(Z))
(@o)* ()X Ss —> D):| 1 (g, y)) — l g, 2)
y ; E¢ D, ., 1(P:zD)

Now for yeS,
1EG H(PA9) E2 Pux)=6x(¥) &= (x, Y)ES1 X 1S, & x=¢i(2), zE¢, ()

hence there is a natural isomorphism

~

7(x) —> ze¢§_9l(y)7}(¢1(z))- g.e.d.

zed ~1(gaCy))

Remark 6.4. Propositions 6.2 and 6.3 show that the functor

Rep(—, D): S{'™ —> Exact categories

induces a Mackey functor.

If subgroups H, K of G satisfy
H<K, (K: H)<o
and a G-map ¢: G/H—G/K is the natural projection then we write
res (H, K)=¢x«

ind (H, K)=¢*.
Also if
¢=conjugation by s: G/(sHs™')— G/H

we write c;=¢*.
Under these notations we have

Corollary 6.5 (Double Coset Formula). IfH, K are subgroups of finite index in
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G then there is an isomorphism of functors

res(H, G)eind(K, G)EE?z’nd(sKs".’\H, H)ocsores(KNs™*Hs, K)

where s varies on a set of representatives of double cosets of H\G/K.

Proof. We may only apply Proposition 6.3 to the following pull-back diagram

G/H X(;/(;G/]( _— G/H

| l

G/ K —G/G
in which
G/HXG/GG/KZsG-U-/KG/(SKS_IHH)' g.e.d.

H\G

Finally we shall express the projection formula. For ;=1, 2, 3 let C; be an exact
G-category and 7;: D;,—G be the associated fibered category over G. An exact pairing

 CiXCy—> C,
compatible with the respective G-descenf data defines a fiber pairing over G
D,XeD: —> D,
which induces an exact pairing
Rep(S, D1)XRep(S, Ds) —> Rep(S, Ds)

for each object S of S§i". Then

Proposition 6.6 (Projection Formula). For any morphism ¢:S—T of SE&* the
following diagram commutes up to natural isomorphism

— - o« Xid I —
Rep(T, D)X Rep(S, D,) Rep(S, D)X Rep(S, D,)
1pairing
id X ¢* Rep(S, D,)
|
pairing

> Rep(T, D).

Rep(T, D)X Rep(T, D)

Proof. (X, Y)>XQY denotes the pairings. Then we may express the induced
pairing as
Rep(S, Dy)XRep(S, D;) —> Rep(S, Ds)
(:S— Dy, p:S—> Dy)—(:S—> D)

¢ (’f( )) ( T ))
. y X —_ y X g, b
M PO e
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where g€G x, x’€S such that gx=x'.

Now for an object (§: T—D,, n:S—D,) of Rep(T, D)X Rep(S, D,) let & : T—D;
(resp. & T—D;) denotes the result of left round (resp. right round) in the diagram of
(&, ). Then &, {, are described as follows;

) D, n(x))

z€-1(y)

EHNQ D plx")

z'Ed-1(y")

D (E(P(xNQIn(x))

ze¢-1(y)

IECIRGCED=UED)

¥
G ( (g y)) —
y

y
Co ( (g, y)) —
y

for a morphism (g, y): y—3' of T. But it follows from the bilinearity of the pairings

that there is a natural isomorphism from {, to .. g.e.d.

§7. Og-categories

We shall consider in this section the last notion of G-categories which we should
handle. The one providing a category for each subgroup H of G in a compatible
manner, which is called an Og-category, is also related with various notions of G-
categories studied in § 1~§4. A fundamental problem is to construct from given Og¢-
category B a split G-category C such that the H-fixed category C¥ is homotopy
equivalent to the given category B(G/H)on G/H. This construction from Og-categories
is sent by the classfying space functor B to Elmendorf construction which is a functor
from Og-spaces to G-spaces with analogous properties (Cf. [4]).

Definition 7.1 ([4]). The category O¢ of canonical orbits has as objects canonical
orbits G/H where H varies on subgroups of G and as morphisms G-maps between
them. A morphism

¢:G/H— G/K (H, K<G)
corresponds to an element fKe(G/K) i.e.
Hom, (G/H, G/K)=(G/K)".

By an Og-category we shall mean a (strict) functor

0¢°® —> Cat.
—

An Og-functor of Og-categories is a natural transformation of functors 0¢°° | Cat.
—_

Og-Cat denotes the category of Og-categories and Og-functors. When we want to
consider Fib(G), Split(G) etc.--- as categories we should forget the 2-arrows of them.

Og-categories can be obtained as follows.

Definition 7.2. We define a functor
U : Fib(G) —> Os-Cat
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as follows; for an object y: D—G of Fib(G) an object

¥(7): 06°° —> Cat
of Os-Cat is given by

on objects G/H+— Rep(H, D)=Carts(G/H, D)

G/H Rep(H, D)
on morphisms ( l¢)r——+ (__ T Dx )
G/K Rep(K, D)

where ¢4 is the restriction functor of Definition 6.1

4 Log
$«(G/K —> D)=(G/H —=—> D)

explicitly if ¢(aH)=afK then ¢«({)XaH)={(afK). Since the restriction functors ¢, are
natural with respect to cartesian functors of fibered categories over G we can get the
correspondence on morphisms of ¥. Further L denotes the composition of functors

L=T-]: Split(G) —> Os-Cat.
We have also another Og-categories from split G-categories.

Definition 7.3. Define a functor
1: Split(G) —> Ogs-Cat.
For a (strict) functor a: G—Cat an Og-category

I(a): Os°° —> Cat
is given as follows;

on objects G/Hv+— (a(-))"=the H-fixed category of a(-)
G/H a( )

on morphisms ( ! ¢) — ( ) 1(a)(¢))

G/K a()¥

where the functor I(a)¢) assigns
X a(f)X
( lu)'——*( la(f)u)
Y a(f)Y .

Note that f€G is given by ¢(aH)=afK, hence f is determined modulo K, but since
objects and morphisms of a(-)* are K-fixed the functor I(a)(¢) does not depend on a
choice of representative f. Further for any K-fixed object or morphism x an object
or morphism a(f)x is H-fixed as follows;

a(h)a(f)x=alhflx=a(fR)x=a(fla(k)x=a(f)x

where heH and k (€K) is given by f'HfCK.
We obtain by Corollary 3.6 an equivalence

¢ Carte(Gle, D)) —> a-)
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and by Proposition 4.10
Cart(G/H, 9(a))=Carts(G/e, D(a))¥ .

But as ¢ is not a split G-functor the functor / is different from the functor L=¥-9.
Next we shall consider to construct split G-categories from Og-categories.

Definition 7.4. Given an Og-category

‘B : OGop — Cat.
Since one has
Homy (G/e, G/e)=(G/e)*=G

the category B(G/e) has a structure of a split G-category. Thus we have a functor
K: Og-Cat —> Split(G)
K(B)=(B(G/e); B(s)).

The functor
KU : Fib(G) —> Split(G)

is nothing but the modified Giraud construction S (see §4). In spite of very nice
properties of the functor S the solitary K does not go well through. For instance

K(B)* and B(G/H)

have no relations. So we need another functor from Og-Cat to Split(G). 1 constructed
a functor from Fib(G) to Split(G) different from the Giraud construction S in my ealier
paper [16] §3. This was the one which factorizes through Og-Cat. We will use
the modified one to construct the desired functor.

Definition 7.5. A functor
U: Og-Cat —> Split(G)

is defined as follows. Given a Og-category

[9 . OG°p — Cat
take a functor
‘3. . 0~00p —> Cat

where Og=(G/e)/O¢s is the comma category of O¢ under G/e,
p:(G/e)/O¢ —> Og¢ is the fogetful functor and
j is the composition Bep°: 0% —> 0 —>Cat

and a lax colimit over Og°P

Ug=lax colmit §.
p=tax colm: B

Note that there is a fibered category Uj over O associated to the functor B: Os*—Cat
by Grothendioeck construction. We shall write down explicitly the split G-category
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UB)=WUyg; ds).

The category Uy has as objects triples (X, G/H, x) where G/Heob Og, x&G/H (A pair
. [

(G/H, x) represents an object of O¢ such that G/e—G/H, ¢(a)=ax.) and X<obB(G/H).

A morphism
(Xr G/H’ x)_>(}" G/K! y)

of Uy is given by a pair (¢, ¢) where ¢ : G/H—G/K is a morphism of Og such that
o(x)=y (Such ¢ provides a morphism of Og.) and

g: X— B(a)Y
is a morphism of the category B(G/H). The action J; on Uy (s€G) is given as follows;
(X, G/H, x) (X, G/H, s7'x)
0s: (o, q)) — {(a, q) )
Y, G/K, y) (Y, G/K, s7'y)/.

The assignment on morphisms of the functor U is defined in obvious manner by means
of the naturality of lax colimits.

The functor U provides the desired homotopy property.

Theorem 7.6. For an Og-category B: Oc®—Cat and a subgroup H of G there is a
homotopy equivalence of categories

(Up)"=p(G/H).

Proof. We shall first define a subcategory Vg of (Up)”. The objects of Vg
consist of triples (X, G/H, eH) where Xco0b(G/H) and the morphism of Vy consist
of pairs ({dg/u, ¢) where ¢: X—Y is a morphism of B(G/H). Then it is clear that the
category Vjp is isomorphic to B(G/H) and we identify V5 with S(G/H). We shall
next construct a right adjoint functor

k:(Ug — Vy=B(G/H)
to the inclusion functor
1: B(G/H)=V g —> (Up)”.

Let (X, G/K, y) be any object of (Ug)”. Since Xeobp(G/K) and

ye(G/K)*=Hom,(G/H, G/K)
we have
B(@,)X<E0bB(G/H)

where ¢,: G/H—G/K is a morphism of O corresponding to y. Hence define
k(X, G/K, y)=(B(¢,)X, G/H, eH).
Then it’s clear kei=Id. Also there is a natural transformation
piick —>Id
7}(X.G/H,y>=(¢w idﬁwy)X) : (.B(¢y)X’ G/H, eH)—> (X, G/K, y)
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It is easily verified that 2 is right adjoint to 7. Thus we have the desired homotopy
equivalence. g.e.d.

Finally we shall note the relation with the work of Elmendorf [4].
Consider the classifying space functor

B: Cat — Top
where Top denotes the category of certain nice topological spaces as usual.
Proposition 7.7. Suppose G is a finite group.

(1) The classifying space functor B sends a split G-category (resp. an Og-category) to a
G-space (resp. an Og-space), hence there is a functor

B: Split(G) —> G-spaces (resp. B: Og-Cat—Og-spaces).

(2) The image of our I (vesp. K, resp. U) by the classifying space functor Bis Elmen-

dorf’s @ (resp. D, resp. C), hence there are commutative diagrams (up to homotopy for
U

Split(G) Og-Cat

P b

SIEYEe

G-spaces Og-spaces .

i

Proof. (1) and the statement for K of (2) are trivial. Since
B(CH)=(BC)*

for any split G-category C and any subgroup H of G, one has the statement for I of
(2). The remaining fact that U becomes a categorical Elmendorf construction ¢.e.

B-U=C-B
is verified as follows. By Thomason’s Homotopy Colimit Theorem [23]

B(U g)=hocolim B((G/H))
0g°P

because Uy is given by a lax colimit over Og°®. On the other hand Elmendorf’s defi-
nition of C using the two-sided bar construction is show to be nothing but a homotopy
colimit over Og° on simplicial sets level. Since taking a homotopy colimit commutes
the geometric realization functor by Bousfield-Kan [1] the result will follow. g.e.d.

§ 8. Properties of functors connecting various notions of G-categories

In this last section we are going to study properties especially adjoint properties
of functors providing the relations between various notions of G-categories which have
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been treated with until the preceeding sections.
Since Des(G) and Pseudo(G) are equivalent to Fib(G) it is sufficient to study the
following triangle;

Fib(G)
[} [/
/ ., \
1
O¢-Cat « K Split(G) .
U

Recall the functors

@ =the modified Grothendieck construction
(see §4 and Theorem 2.5)
S=K-¥=the modified Giraud construction (see §4)

7
U.(D— G)—(G/H—> Carts(G/H, D) (see §4)

L=YU-0
1:(G—a>Cat)l—>(G/H'—>a(-)”) (see §7)
K:(Og® —‘i Cat)—>(B(G/e); B(s)) (see §7)

8 _
U:(0¢® —> Caty—> (Up; 0s), Ug=lax colimit § (see §7).
GgoP

First we note that the functor S is right adjoint to the functor @ as shown in
Theorem 4.7 (2). Next we shall show that the functor K is left adjoint and left inverse
to the functor I.

Proposition 8.1. (1) Kel=Idspiit
(2) There is a natural transformation
p:ldogcar—> I°K.
(3) The functor K is left adjoint to the functor I.
Proof. (1) Trivial.
(2) For an Og-category B: Og*—Cat the functor
B(px): B(G/H) —> B(G/e)
correspondent to the natural projection pg:G/e—G/H, pu(a)=aeH induces a functor
tern: B(G/H) —> B(G/e)*
which is natural for G/H=0bQs°*. Thus we have a natural transformation
prldogcar—> I°K.

(3) It follows from the definition of pe,n that pe,.=idgcsse, hence
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Kxp=idg.
On the other hand if B=I(a) for a split G-category a: G—Cat then

Morg=id: a(- ) — a(-)?
hence
pxl=id;.

These facts imply that K is left adjoint to /1. g.e.d.
Putting two adjoint properties together we obtain

Proposition 8.2. (1) There is a natural isomorphism

¥ ].S
of functors from Fib(G) to Og-Cat.
(2) The composed functor @-K is left adjoint to the functor .

Proof. (1) Let 7: D—G be an object of Fib(G). It follows from Proposition 4.10
that there is an isomorphism in Cat

Y(r)— 1-5(1)

which is natural for y=ob Fib(G). The result follows.
(2) Consider the composition of two kinds of adjoint functors

0 K

<« <«
Fib(G) 1 Split(G) L Og-Cat

— —>

S 1

which imply that @-K is left adjoint to I-S. Together with (1) we obtain the result.
g.e.d.

We shall now state the properties relating to the functor U which are obtained
from Theorem 7.6.

Proposition 8.3. (1) There is a natural transformation
n:ileU—>ldogca:.
(2) There is a natural transformation
Nee: U —> K.
(B) There is a natural transformation

L:Uel —> ldspritee -

@) prl=Ix{:1-Ue1 ] I
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Proof. (1) Consider a functor
k:(Ug¥ — B(G/H)

in the proof of Theorem 7.6, which sends an object (Y, G/H, y) of (Ug)" to an object
B(¢,)Y of B(G/H) where ¢,: G/H—G/K is the morphism of O corresponding to
ye(G/K)*. Putting k=mg/u, it is easily seen that ng,» is natural for G/HE0b 04,
hence we have a natural transformation

nileU —> ldog.car-
(2) nee=Kxn:U=K-I-U —> K.
Q) {=Kipxl:Uesl=KeloUo]l —> Keldel=K-I=1d.
(4) Consider

Ixngre: 1oU —> 1K
which is of the form

((I¥961e)p)orn : (U )" —> B(G/e)*

for B€obOs-Cat and G/Heob Og, it is clear that if f=1(a) for a<obSplit(G) then

((I* NG1e)g)eIH=NGIH -

This implies the result. g.e.d.
We note here that there are no adjoint relations containing the functor U such as

the functor K in Propositions 8.1 and 8.3. We need to turn to the arguments up to

homotopy. We shall finally state a part of outline of homotopy theory of G-categories.
The category Og-Cat has a structure of 2-category. Let B, B’ be Og-categories

Oc‘“’:Cat and ¢, ¢’ be Og-functors from 8 to 8. A 2-arrow A:t—t’ of Og-Cat is

defined as follows; To each object G/H of O and each object X of B(G/H) assign a
morphism
Acim, x tei(X) —> toa(X)

of B'(G/H). They satisfy the following conditicns. For any morphism u: X—Y of
B(G/H)

torn(u)edeim, x=2¢rm.volorn(u)

and for any morphism ¢: G/K—G/H of O¢ a diagram
B($X2c/m. x)
B(orn(X) —— % B @) u(X)

il Acim, pesrx I
teiuB(PXX) ——— ek B(PNX)

commutes.
When regarding the categories Fib(G), Split(G) and Og-Cat as 2-categories one has
the following facts about 2-arrows.

Lemma 8.4. The functors @, ¥, S, L, I, K and U preserve the respective 2-arrows.
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Suppose the group G is finite from now on.

Let ¢, t’ be morphisms from a to &’ of Split(G) (resp. of Og-Cat). t is said to be
G-homotopic (resp. Og-homotopic) to ' if Bt is G-homotopic (resp. Og-homotopic) to Bt'.
La, a']e (resp. [a, a’]y,;) denotes the set of G-homotopy classes (resp. Og-homotopy
classes) of morphisms from a to a’ of Split(G) (resp. of Og-Cat).

Lemma 8.5. (1) The functors 1, K and U preserve G- or Og-homotopies.
(2) A morphism A:a—a’ of Split(G) is a G-homotopy equivalence if and only if
1(A): I(a)—=1(a’) is a Og-homotopy equivalence.

Proof. (1) is obtained from Proposition 7.7 and [4].
(2) is obtained from the well-known fact that a G-map f of certain nice G-spaces is a
G-homotopy equivalence if and only if the restriction f# of f to the H-fixed spaces is
a homotopy equivalence for each H<G. g.e.d.

Proposition 8.6. (1) For any object a of Split(G) a morphism
(a:Uell@d)— a

of Split(G) is a G-homotopy equivalence.
(2) For any object B of Og-Cat two morphisms

(Uxn)s, (CxU)g: U-1-UB) 2 U(B)
of Split(G) are G-homotopic.
(3) There is a bijection
[a, UB)le=[l(a), Blog

for acobSplit(G) and B<ob Og-Cat.

Proof. (1) is obtained from Proposition 7.7, Proposition 8.3 (4) and Lemma 8.5 (2).
(2) is obtained from (1), Theorem 7.6, Proposition 7.7 and Proposition 8.3 (4).
(3) can be verified as in [4] Theorem 2 by using (1), (2), Proposition 8.3 (4) and Lemma
8.5 (1). g.e.d.

Let ¢, ¢’ be morphisms (¢.e. cartesian morphisms) from 7 to 7’ of Fib(G). t is said
to be fiber homotopic to t' over G if Bt is fiber homotopic to Bt’ over BG.

By the classifying space functor B a fibered category y: D—G over G provides a
Dold fibration (=a map fiber homotopic to a Hurewicz fibration)

Br:BD — BG

(see [15] IV2), hence the functor @ preserves homotopies. But in general ¥ and S
don’t preserve homotopies because BCarts(G/H, D) is not homotopy equivalent to the
space of fiber maps from B(G/H) to BD over BG. (Thomason’s Homotopy Limit Problem

[24]) Therefore on the present stage we have no more statements about homotopy
theory of F:b(G).
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