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1. Introduction

Consider an m x m  system of differential equations

aua u=  A,at ax,
where u is  an m-vector and A, are real constant m x m matrix coefficients. F o r  sim-
plicity, we further assume any nontrivial linear combination of A i  is not equal to  the
zero matrix or the identity. O therwise, the system (1.1) can  be  reduced  to  the one
with a smaller n .  (See the comments between Definition 2.3 and 2.4.)

A ccording to Garding [1], (1.1) is  ca lled  a  hyperbolic system if the real linear
combination of A ,:

has only real eigenvalues for any choice of e i , e2 , ••• , e„ER• I t  is  e a sy  to  se e  th a t
some special classes of systems (1.1) satisfy this criterion. One example is the case
when all A, are simultaneously upper-triagular. A nother exam ple is the case when
all A, are simultaneously symmetric. However, few attempts have been made to find
out all the canonical forms o f  hyperbolic systems (1.1). It is  perhaps because  the
above criterion  is sta ted  in  te rm s of the linear combinations of Ai , A 2 ,  ' • •  A„ and
seem s d ifficu lt to  verify  d irec tly . The on ly  exception i s  the case of m=2 (2x2
system s). In fact, Strang [5 ] proved that every hyperbolic 2X2 system can be reduced
to either

or

However, concerning the case m 3 , very little has been known.
In the previous paper [4], w e fu lly  stud ied  a  special subclass o f  3 x 3  systems

(m=3) where each  E ,  A, is  s im ila r to  a real diagonal m a tr ix . The purpose of this
paper is to classify the remaining subclass of 3 x 3  system s, tha t is, the one where
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some of Ee 1 z4i  a re  not diagonalizable.
A ll th e  resu lts o f  this paper shall be summarized in  the  last section in term s of

matrix families.

2 .  Definitions

Throughout this paper, we consider only real square (actually 3 x 3 )  matrices and
their linear com binations w ith real coefficients. A lthough m ost o f  th e  definitions
below are the same as in  the  previous paper [4 ] , we write them  for this paper to be
self-contained.

Definition 2 . 1 .  The set of all linear combinations

A (e)=A (el, e2 , ••• en)= (e1, e2, , EnER )

of the m X m m atrices A ,, A 2 ,  •  • •  A n  is  s a id  to  b e  th e  m atrix fam ily spanned by
A 1 ,  A 2 ,  • • , a n d  is denoted by <A 1, A 2 ,  • • •  An>.

We are now able to define the objects of our consideration.

Definition 2 .2 .  A  matrix family < A 1 y  A 2 ,  • • •  A ,,> is said to have only real eigen-
values if  each of its members has only real e igenvalues. In  addition, Equation (1.1)
with such A, is called a  hyperbolic system.

In the previous paper [4 ] , we considered a special class of matrix families, namely,
real-diagonalizable fam ilies defined  just be low . So, in this paper, we shall consider
the remaining class, namely, nondiagonalizable matrix families with only real eigenvalues.

Definition 2 .3 .  A  m atrix  fam ily  <A 1, A 2 ,  • • •  A .>  is called real-diagonalizable if
fo r every A(C)<A1, A 2 ,  •  • •  A n > , th e re  ex is ts  a  nonsingular m atrix S(e) (called a
diagonalizer) such that

S(e)- ',4(e)S(e)

is  a  real diagonal m atrix . S im ilarly  <A ,, A 2 , ••• , A n >  is  ca lled  non-diagonalizable if
some A (e) is not similar to any diagonal matrix.

L e t  u s  now consider what equivalence relation should be introduced for matrix
fam ilies. It is easy to  see the  following three operations <A „ • •• , A„>—><B 1 , ••• , Bn>
do not affect the real-eigenvalue property of matrix families.

a )  Change of basis.
••• +min An

.13-2, --- m2,A .11-m22A2+ +M2r/An,

B . „=m,,.1 241- kmn. 2A2 + ± m,:n An

where M=---(m 2 ,) is a  nonsingular n xn  real matrix.
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b) Addition of  scalar multiples of  identity.

B i=A 1 +p il

B 2  
=

A 2  +/221

.13. .= A. .+ t e .. I

where / is the  identity matrix and pi  ( l i n) are reals.
c) Similarity transformation.

B i = T 'A i T

B 2 =T - 1 A 2 T

13. „=T - 1 A. „T

where T  is a  nonsingular m X m real matrix arbitrarily fixed.
It is perhaps worth noting how the above three operations tranform the original

differential equation (1.1). First, a) corresponds to the change of space variables :

• • • )T = M (X ly  x 2 /  • • •  XOT  •

Second, b) corresponds to the change of time-space variables of the type :

Note that if  some space variables disappear from (1.1) by these operations, they can
beiregarded as parameters for the solution of the reduced equation. Finally, c) corre-
sponds to the change of unknowns :

U2 ,  ..•  2 7 7 0 T - - - - T  i ( u i ,  /92, u m )T •

Combining the  above a), b) and c), we are led to the following definition.

Definition 2 .4 .  Matrix families < A l y  A 2 y  • • •  A.> and <B„ B 2 , ••• , B. , > a r e  called
equivalent if  there exist a  nonsingular matrix T  and p ,E R  ( j= 1 , 2, ••• n )  such that

A i T — , A 2 T — p2 1, • ••, A n T — itt n l>

=<B1, B 2 y  • • •  B .•>.

And we denote this equivalence relation by

<A1 , A 2 y  •  • •  y  A.> <B1, B 2 /  • • •

By using the  above a) and b), it is easy to see that any matrix family is equivalent
to some <B i , ••• , B„> where B „  B „  • • ,  B . are linearly independent and none of their
nonzero linear combinations is equal to any scalar multiple of iden tity . L e t u s  define
a  word indicating this property.

Definition 2.5. A  matrix family <AI/ A 2 y  •  • •  y  An> is  c a lled  nondegenerate if
/, A l y  A 2 y  •  • •  y A n  are linearly independent over reals.

Although the  definitions above are valid also for families of m atrices of arbitrary
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size, we shall consider only 3x3 matrix families from now on. Moreover, we shall
treat our problem  purely as tha t of matrix theory and refer the differential equation
(1.1) no more.

3 .  Preliminaries

By straightforward calculations, it is easy to verify that the following (3.1), (3.1'),
(3.2), (3.2') have only real eigenvalues.

1 00 0 10 0 0 1 0 0 0 0 0 0
(3.1) < 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 >,

0 0 0 0 0 0 0 0 0 0 0 —1 0 1 0 

(3.1') the transposition of (3.1),

1 00 0 10 0 0 1 0 0 0 0 0 0
(3.2) 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 >,

0 0 0 0 0 0 0 0 0 0 0 —1 0 0 0

(3.2') the transposition of (3.2).

Relating to this fact, w e have the following lemma.

Lemma 3 . 1 .  Let <A1, A 2 ,  •  • •  A n> be a m atrix  f am ily  w ith only  real eigenvalues.
I f  all o f A i  are 3 x 3  matrices whose (2, 1)- and (3, 1)-entries both vanish than <A 1, A2, •-• ,
A n > is equiv alent to a subf am ily  o f  (3.1) o r  (3.2). Sim ilarly , i f  all of A i  a re 3 x 3
matrices whose (1, 2)- and (1, 3)- entries both vanish then <A1 , A 2 ,  • • •  A n > is equivalent to
a subfamily  of (3.1') or (3.2').

P ro o f .  W e have only to prove the former half because the latter is merely the
transposition of the former. From the assumption, all Ai  have  the  form

-

*  *  *
0  *  *
0  *  *

-
where each * stands for a certain real num ber. So th e  right-lower 2x2  submatrices
A , o f  A , form  a  fam ily of 2 x 2  m a trix  fam ily  w h ich  h as  o n ly  rea l eigenvalues.
Proceeding as in  Appendix of Strang [5], w e know  there  ex ists a  nonsingular 2x2
matrix t  such that

t-.142fil;

are simultaneously either symmetric or upper-triangular. Thus by the similarity trans-
formation with

1 0  0
T =  0

0
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t h e  fa m ily  < A l y  A 2 y  • • •  A n >  is  e q u iv a le n t  to  a  subfam ily o f  e ith e r  (3.1) o r  (3.2).
(Recall that w e can add appropriate scalar m ultiples of iden tity  to  a ll A z .) E l

L et us g ive a characterization o f (3.1), (3.1'), (3.2) and (3.2').

Lemma 3 .2 . I f  <Az, A2, ••• , An> is equivalent to a  subfamily o f  either (3.1) or
(3.2) then all members o f <A z , A 2 ,  " • *  y  A.> have a common right eigenvector. Similarly,
if <Ai, A 2 y  y An> is equivalent to a subfamily of (3.1') or (3.2') then all of its members
have a common left eigenvector.

P ro o f. W e have only to  prove the form er half because th e  la t t e r  is  m e re ly  the
transposition of the form er. Let us begin w ith th e  special case w here  <A z , A 2, ••, An>
is  ju st a  subfamily o f e ither (3.1) o r (3.2). Then

- -
1
O

0

is clearly th e  desired common right eigenvector. In  th e  g e n e ra l c a se , th e re  e x is t  a
ce rta in  similar transformation :  A—*T 'A T  which reduces <A1, A2, ••• , An > to  a  sub-
family o f  either (3.1) o r (3.2). In  th is  case the common right eigenvector becomes

- 1 -
T O

0
T he proof is com plete . 0

L et us gather here  som e properties o f  spec ia l k inds o f  cu b ic  eq u a tio ns w ith  a
(real) param eter w hich w ill appear a s  characteristic equations o f  3x3  matrix family.

Lemma 3 .3 . Let f (2, $) be a cubic polynomial of the form

f (1, e) -="23 +a12 2 +a22+a3d-e(b02 2 +612+62)--Fc$ 2

where az, a 2 ,  (23, bo, b1, b2, c#0 are real constants and $ is a real parameter. Then the
cubic equation

f(2, e)=0
has imaginary roots fo r  some eeR .

P ro o f. W ithout losing th e  genera lity , w e  m ay  assum e c> 0  because, otherwise,
it suffices to  consider f ( - 2 ,  e)=0 in s te a d . L et us p lo t the  graph  o f f (2, e)=0 in  the
2, e-plane. F or this purpose, it is convenient to solve Ail, e)=0 w ith  respect to  e.

1
e-= c  [  1)022 —612 — b2± {(b022 +b 12+6 2 )2 —4c(23+ a i 2 2 +  a 2 2 +  a 3 ) } 1 1 2 1

2

From  F ig . 1, w e know  tha t f (2, e)=0 h as  o n ly  o n e  r e a l  s im ple  ro o t a n d  a  p a ir  o f
complex conjugate roots fo r e  near co (resp. co) when b,>0 (resp. b0 0).
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' Lemma 3.4. Let f(2, $) be a cubic polynomial of the form

f (2, E)=-23 -ka 122 + a22+ a 3- ke(b12 -  b2)

w here al, a 2 ,  a 3 ,  b l ,  b2 a re  re al constants satisf y ing  1b1H -lb2 I>0  and  $  i s  a  real
param eter. T hen the cubic equation

f (2 , e)=0
has imaginary roots fo r  some EER.

P ro o f . We begin with the case b1 # 0 . Renaming M as e, we may assume b1 =1.
Let us plot the graph of f(2, e)=0 by the  form

23 4-a122 d-a 2 2-ka 3$-=

From Fig. 2, it is clear that f (2 ,  )=0 has only o n e  rea l sim ple root a n d  a  p a ir  o f
complex conjugate ones for e near +co.

W e now g o  o n  to  th e  c a se  b1 = 0 . From the assumption of the present lemma,
b2 # 0. So  the  graph is reduced to that of

1 
e= (23+ a 122 + a 22+ a 3)•b2

Therefore, it is clear that f(2, e)= 0 has only o n e  rea l simple root a n d  a  p a ir  o f
complex conjugate ones for e near ± co (see Fig. 3).

Lemma 3.5. L et f(2, e) be a cubic pol3inomial of the form

f (2 ,  e).23 + a122 - F avid- a3-1- $(b022 +1)12±b2)

where a l ,  a2 , c/a, b0#0, 61, b2 are real constants and $  is a real param eter. T hen the
cubic equation

  

A

   

F ig . 1 . b 0 >0. Fig. 2.
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f(2 ,

has only  real roots fo r  any  e R  if and only i f

23 --Fai 2z±a 2 2-Fa 3 -=0
and

b022-kb12d-b2=--0

have only  real roots, say, a 1 a 2 ce3 for the f irst equation and ,31 ,8 2  fo r  th e  second,
and the inequality

P i a 2 _P2 .1< a 3
holds.

P ro o f .  W e notice first that w e m ay assume b0 =1 by renaming bo e as E. N ow
let us consider all possible cases one by one.

First we look into the case where

23 -kai22 +a22-ka 3 -- =0

has imaginary roots. In  this case, f (2, e)=0 has imaginary roots for E=0.
Next we look into the case where

22 +b i 2+6 2
, ---0

has imaginary roots, or equivalently, the case where

22 ±b 1 2+b2>0 for all EER.

Let us plot the graph of f (2, E)=0 by the form

Às -I- a 22 + a 2 2+ a,
12 --1- bi2+b2

From Fig. 4, it is clear that f (2, e)-----0 has only one rea l sim ple root a n d  a  p a ir  o f

F ig . 4.
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complex conjugate ones for e near ± c0.
We now go on to  the case where both

23+ a i 22 +a,2 +a,=0
and

b0 22 -kb 1 2d-b2 =0

has only real roots (a i -Lza 2 :< a, and p,_‹,e2). We will plot the graph of f (2, )=-.0 again
by solving it with respect to  e. For simplicity, we consider here only typical cases.

Let us look into the case ce1 <i3 1 <a 2 <f32<a3. From Fig . 5, it is clear that f (2,
=0 has only real roots for any eER .

L e t  u s  now consider th e  c a se  A1<a1<a2<132<a3. From Fig. 6, it follows that
f (2, e)=0 has only one real simple root an d  a  p a ir  o f  complex conjugate ones f o r  e
near +00.

Proceeding in  this w ay, we can complete the p ro o f . E

Let us go back to our original problem to classify non-diagonalizable 3 x 3  m a tr ix
fam ilies w ith  only  real eigenvalues. By a change of basis, we may assume A i  i s  a
non-diagonalizable m atrix  w ith  on ly  rea l eigenvalues. B y  th e  a d d itio n  o f  a  scalar
m ultiple of identity a n d  b y  a  sim ilar tranformation, we may further assume A i  is
equal to either

0  1  0
0 0 0 ,
0  0  0

0  1  0
0 0 1
0  0  0

2 2

Fig. 5. Fig. 6.
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or
a  0  0
0 0 1
0  0  0

where a* 0  is  a certain r e a l .  In addition, by the similarity tranformation with

1 0 0
T =  0  1  0

0  0  a

the third matrix becomes a  scalar multiple of

1  0  0
0 0 1
0  0  0 -

In  short, we may restrict ourselves to consider such matrix families <A1, A 2 7  • • •  An>
where

0 1 0
A i = 0 0 0

0 0 0

0 1 0
A 1 = 0 0 1

0 0 0
or

1 0 0
A 1 = 0 0 1

0 0 0

holds. W e shall consider each case separately in the sequel.

4 .  Families with triple eigenvalues

In this section, we consider matrix families, say, < A 1 ,  A 2 ,  • • •  A n > with

0 1 0 0 1 0
A i = 0 0 0 or 0 0 1

0 0 0 0 0 0

Let us begin with the first case.

Lemma 4 .1 .  Suppose that the matrix family <A 1 , A 2 ,  • • •  ,  A n > with
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0  1  0  -
A 1 =  0  0  0

0 0 0

has only  real eigenv alues. Then either of the following holds.
a) The (2, 1)- and (3, 1)-entries of all A„: simultaneously vanish.
b) The ( 2 ,  1)- and (2, 3)-entries of all A i  simultaneously vanish.

Pro o f . Let

b1 1  b12 b13
b2 1  622 b 23

b 3 1  b 3 2  b 3 3

be an arbitrary linear combination of A 2 ,  A 3 ,  •  •  •  ,  A .  Let us first show

(4.1) b21 - 0 , b23b31-0•

B ecause 241 ± B  has only real eigenvalues w ith all e E R , we can apply Lemma 3.41to
the characteristic equation

det(eA 1 d-B-21)= 0 ,

det(B-2/)+$021(2—b33)+1)23631}=0.

In this way, w e must have (4.1).
From the fact that (4.1) holds for any linear combination o f A 2 ,  1 1 3 ,  • • •  ,  A., follows

the claim of the present lemma.

From the last lemma, we obtain the following proposition.

Proposition 4 .2 .  Suppose that the m atrix  fam ily  <A1, A2, ••• , A .> satisfying

0  1  0
A l =  0  0  0

0  0  0

has only  real eigenv alues. Then the fam ily  <A 1 , A 2 , ••• , A n > is equivalent to a subfamily
of (3.1), (3.1'), (3.2) or (3.2').

P ro o f .  We can apply the preceding Lemma 4 .1 .  When a ) o f Lemma 4 .1  occurs,
the conclusion follows directly from Lemma 3 .1 .  When b) of Lemma 4.1 occurs, we
use the similarity transformation with

0  1  0
T =  1  0  0

0 0 . 1

B =
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to  <A 1 , A 2 , ••• An >. Then Lemma 3 .1  becomes applicable aga in  and w e ob ta in  the
conclusion. D

Let us now consider another type of matrix families with triple eigenvalues.

Lemma 4.3. Suppose that the m atrix  fam ily  <A, B > spanned by

0 1 0 b11 b12 1)13
A= 0 0 1 ,  B = h h- 21 - 22 h- 23 *0

0 0 0 b31 b32 b3

has only  real eigenv alues. Then either of the following a), b )  holds.

a) b31=b21=b32=0.

b) b21 = 0 , b 2 1 = — b 3 2 0  b li= b 3 3 .

P ro o f . Let us consider under what condition eA -I-B  has only real e igen va lue  with
any $ E R .  So we can apply Lemma 3 .3  and Lemma 3 .4  successively to the character-
istic equation:

d e t($ 1 1 + B -2 1 )= 0 ,

det(B - 2/)±e{b21(2—b33)+6,2(2 — bii) - Fbai(biz+b23)} +b21$ 2 , 0

Therefore we have

which are equivalent to

621=0,

b2 1 ± b 3 2 - 0 ,

—b21b33—b32b11±b31(b12+623)=0

b3 1 0 , b32= — b21 bzi(bii — b33)=-- 0

From this, the conclusion directly follow s. 0

Let us investigate the case where

0 1 0
0 0 1
0 0 0

Lemma 4 .4 .  Suppose that <A 1 , A 2 , ••• , An> with

0  1  0

141 =  0  0  1

0 0 0

111 =
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has only real eigenvalues. Suppose also that at least on e  o f A2, • • • , A n  is not upper-
triangular. Then each A i  (i=2, ••• , n) satisfies

a) [A1]31=0,

b) [A 1 ]3 2 = [ A i ]2 1

c) [A1]11= [A1]23

where [A ] k i  denotes the (k ,1)-entry  of A .

P ro o f. Without loss o f  genera lity , w e m ay assum e A 2  is  n o t  upper-triagu lar.
Then, choosing s>0  small enough, none of

A 2 -FsA 1( i > = _3)

is upper-triangular. Notice th a t  <A1, A2>, < A lf  A2-i-sAi> (i 3) have only real eigen-
values a s  subfamilies of <A 1, A 2 , •••, An>. From this fact and  the  above Lemma 4.3,
we obtain

CA212i=o ,

(4.2) CA2722-f-CA2121-0,

CA2] ii — CA212,=0
and

[A2H-sAi]31=-CA2i21+6[A1]31=0,

(4.3) [A2-PsA1]22+CA24-sA1i21= [A 2 ]32+  [ 112]2 1

+  (  [A t ]  32 + [ A i ] 21)
= 0 ,

[ 212±S  A i] 11 E A 2 + S A il 3 3 =  [A2]11 — EA033

+  < A i ]  11 [Ai] 23)=0

for i 3. S ub trac ting  (4 .2 ) from (4 .3 ), w e have

CAii31-=0,

[Ai] 32 +  [ A i ] 21
= 0

[ i l 1] 11—CAii33=0

for These and (4 .2 ) are  the desired equalities. E

From this lemma and by a certain change of basis, we may assume

CA2721— 1 y  L14032— 1 ,

[A i]21 =  EA032
= 0  ( i 3 )

and
[Ai]31.-=0,

[ A ] n = [A i]33

By an appropriate addition of scalar multiples of identity, the last equality becomes
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Proposition 4 . 5 .  The matrix family <A 1 , A2> spanned by

0 1
_

0
_ 0

a2 a3
A 1 = 0 0 1 , /12 -- = — 1 a, 0

0 0 0 0 1 0

has only real eigenualues if  and  only i f  there exist three reals, cr i a o - cro such that

a1=a1+a2+a3,

a2=a1a2H-a2a3+a3a1,

a 3 = — a l a o tro

P ro o f .  Since A , has only real eigenvalues, it suffices to obtain the condition for
$111-PA 2 t o  have  only real eigenvalues for all e e l ? .  A nd the characteristic equation
of e./11 -1-.42 tu rns out to be

det(E.A1d-A2-2/)=0,

—23 -ka 122 —a 22—a 3 =0.

Denoting by oz,, az , a 3 th e  three roots of this characteristic equation, we have

a1=a1d-a2-Pa 3,

a 3 = — a i a 2 a o

Thus the conclusion immediately follows. El

By the last lemma, we can specify A2 of the matrix family <A1, AY, 143> spanned
by three matrices.

Proposition 4.6. Suppose that the matrix family <A 1, A2, .43> is spanned by

A i =

0 1 0
0 0 1
0 0 0

0  a 1a 2 -Pa 2a 3 -Pa 3a 1 —a 1a 2a 3

A 2 =  —1 a1d-a2+«3 0
0 1 0

4 3 =
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where ce1 ce2 <a 3 , bo , b1 , b, are real constants. T h e n  <A 1 , A,, A 2 > has only real eigenvalues
i f  and only if

bo#0

and there ex ist two reals 43 1 _ ,e 2  such that

oi,41<a2-P2<a3,

b1=b0(P1d-P2),

b2 = —b0 91 32 .

P ro o f .  Since any linear combination o f  A , and  A , has on ly real eigenvalues, it
suffices to investigate th e  condition for

7)A3

to have only real eigenvalues fo r all e, nE R .  Calculating th e  characteristic equation,

det(eil 1 d-A 2 ±)7A 3 -2/)= 0,

—(2—a1)(2—a2)(2—a3)+ )7(b 0 22 -1) 12 -6 2 )=0.

Regarding )7 a s  a  parameter, Lemma 3.4 and Lemma 3.5 are applicable. A nd we have

bo #0,

61=601 - F192) ,

b2=-14131P2

where ph 1 3 2  a re  two roots of
b022—b12—b2=0.

Thus the conclusion immediately follows. E

Remark. Plotting a  graph o f  det(11 2 ±)7A 3 -2 1 )= 0  o n  2, )7-plane, we see easily
that the m iddle eigenvalue o f  A2 +)7A 3 is equal to (191+132)/2 fo r some 17E R.

L et us also consider th e  matrix families spanned by four or m ore matrices.

Proposition 4 .7 .  Suppose that a  nondegenerate 3x3 m atrix  fam ily  <A 1 , A 2 ,  •  y  An>
(n>.4) with

0  1  0
A l =  0  0  1

0  0  0

has only  real eigenvalues. Then <A1, A 2 ,  •  • •  y  A n> is equivalent to a subfamily o f  (3.1),
(3.1'), (3.2) or (3.2').

P ro o f . A ssum e the contrary. Note that we may also assume
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0 a1a2d-a2a3-1-a3a1 —a 1a 2a 3

A 2 = —1 a1d-a2±a3 0
0 1 0

0 ,81+182  — 491182

A s= 0 1 0
0 0 0

where cy,, a2 , a 3 , j3 , 132 a re  real. (See Propositions 4.5 and 4.6). By a change of basis,
we may further assume

0 c1 C2

A 4— 0 0 0
0 0 0

However <A 1, A2, A4>C<AI, A2, • • • y A.> cannot have only real eigenvalues from Propo-
sition 4.6. We are thus led to a contradiction. D

Before concluding this section, we write down another fact that the  above matrix
families are completely of different nature from (3.1), (3.1'), (3.2) and (3.2').

Proposition 4.8. Let

ro 1  0 -

A 1 =  0  0  1
0 0 0

0  a 1 a2 d-a 2 a2 +a 3 a 1 —a 1a 2 a3

A 2 =  —1 a1±a2±a3 0
0 1 0

0 --1.-)82 --481)82

0 1 0
0 0 0

Then neither <A 1 , A2> nor <A 1 , A2, .42> i s  equivalent to any subfamily o f  (3.1), (3.1'),
(3.2) or (3.2').

P ro o f. It suffices to consider the case of <A 1 , A 2 > . As •is easily verified, there
are no common eigenvectors for A, and A 2 . Therefore Lemma 3.2 i s  applicable and
the conclusion follows.

5 .  Families with double eigenvalues

Throughout this section, we consider the  matrix families which contain

A 3 =
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1  0  0
0 0 1
0  0  0

-
and have only real e igen va lu es . We denote this specific matrix by

A ,  o r  A

until the end of this sec tion . Since we have fully discussed th e  fam ilies w ith  triple
eigenvalues in  th e  previous section, we chiefly consider families with at most double
eigenvalues.

Lemma 5 . 1 .  Suppose that a nondegenerate matrix family <A 1 ,  A2, An> (n 2)
satisfies

1  0  0

0  0  1
0 0 0

and has only real eigenv alues. Then fo r any 13=--(b1i)E<A 2 , ••• , An>, we have

b22--=0
and the quadratic equation

(2—b22)(2-1)33)+1)12b31 -=- 0
has only real roots.

P ro o f .  Let B=(1), 1 )E<I12 , ••• , A n > be arb itrary . T hen  the characteristic equation
for ei'l l + B  turns out to be

d e t(-2 + A i+ B )-- ,0 ,
(5.1)

d e t (  21+ B)-ke {  — 1)32(6 ii+b23)4-(2 —  622)(2 b32)+1)121)31}  h 2 e 2 —0 .

Applying Lemma 3.3 , w e have
b22 - 0 .

Hence, from Lemma 3.5 , we see

(2-1)22)(2—N0+ b 1263 =0

has only real roots. Q .E.D.

Lemma 5 .2 .  Let the assumptions be the same a s  in  Lemma 5.1. Then either of
the following 1), 2) holds.

1) <A 1 , A 2, ••• , An> is equivalent to a subfamily o f (3.1), (3.1'), (3 .2 )  or (3.2').
2) There exists B=(b15)G<A 2, ••• , An> such that

b l2b31 #
0

.

And in the case 2), < A 1, A 2, •-• , A n > cannot be equivalent to any subfamily o f  (3.1),
(3.1'), (3 .2 )  or (3 .2 ') .
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P ro o f. L et us begin by proving that 1) occurs if  2) does n o t .  So let us assume

b12b31-0 for all (bi1)E<A2, , An>.

This condition means either

b12 =0 for all (b1)E<A2, ••• An>
or

1)31= 0 for all (bij)e<A2, ••• , An>.

From Lemma 5.1, w e have
b32=0 for all (th,)

in  both cases. In  the  first case where

61 2 =1)3 2 =0 for all (bi1)e<A2, ••• , A,,>,
the similarity transformation with

0  1  0  -
T =  1  0  0

0 0 1

reduces <AI , 2 4 2 , •••  , A,,> to  a  subfamily of (3.1) or (3.2). In the second case where

th i =b 3 2 =0 for all ( b 5 ) e < A 2 ,  • • •  A,,>,
the similarity transformation with

0  0  1
T =  0  1  0

1 0 0

reduces the matrix family to a  subfamily of (3.1') or (3.2').
Let us now prove that if

b i2b3,*0

for some
B-= .- (b i l)E < A ly  A 2 , •• • ,

then th is m atrix  fam ily  is not equivalent to  any subfam ily  o f  (3.1), (3.1'), (3.2) or
(3.2'). By Lemma 3.2, it suffices to show no (left or right) eigenvector of A, coincides
with any of B .  This can be done by a  straightforward caculation. Now the proof is
com plete. D

Let us rewrite Lemma 3.5 in more convenient forms.

Lemma 5 .3 .  Given a matrix family <A, B> spanned by

1 0 0
A = 0  0  1  ,

0 0 0
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where
b3 2 =0.

Let the polynomials c(2) and q(2) be as

c(2)-=det(-21+B ),

q(2)=(2—b22)(2-633)+b12b31•

Suppose that the quadratic equation
q(2)=0

has real distinct roots p1<p2. Then the following three conditions are equivalent.
1) The matrix family <A, B> has only real eigenvalues at most double.
2) The matrix family <A, B> has only real eigenvalues.
3) c(/31)5.0, c(P2)--0.

P ro o f .  1 )4  2 )  is clear. Let us prove 2 ) 4  3 ) .  In this case, Lemma 3.5 is applicable
for the characteristic equation of

det(-21-1-eA + B )= 0,

c(2)+eq(2)=0.
Thus we obtain

c(2)=-0

has three real roots cr1 a 2 a 3 satisfying

a l 13

From this, c(2) ----(2— a 1 )(2—a 2 )(2—a 3 ) and

c(P1)=—(pi—aoo,—a2X, 13 1— a3 )0 ,

c(P2)=---(192—a1)(132—a2)(P2—a3) 0.

Let us now show 3 ) 4  1 ) .  For this purpose, we need only plot the graph of

d et(-2 I-feA ± B )= c(2 )-F q (2 )= 0

just as in  the proof of Lemma 3.5. Note tha t A itself has clearly only real eigenvalues
at m ost double.

Lemma 5 .4 .  Given a matrix family <A, B> spanned by

1 0 0 b11 b12 b13
A= 0 0 1 , B 4 b21 b22 b23

0 0 0 ] 631 b32 633

where
b3 •2 = 0.

Let the polynomials c(2) and q(2) be as
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c(2) d e t(-2 I+ B ),

9(2)=- (2—b22)(2— b33)±b„b„.

Suppose that the quadratic equation
q(2)=0

has a real repeated root p. Then <A, B> has only  real eigenvalues at m o s t double if
and only i f

c(P)=-0, c i(p)> O.

P ro o f . W e begin with the necessity. W e can apply Lemma 3.5 to

det(-21-1-$41±B):c(2)+eq(2)=0.
Thus we know

c(2)=0

has three real roots w ith cr2 = 3 because

We also have a 1 < 48<a 3 because otherwise (a 1 = P  or a 3 -- =P)

c(2)±eq(2)=0

would have triple roots for some EE R as an  easy calculation sh o w s. From these, we
obtain

c(2)-='—(2—ai)(2—P)(2--a3).
Therefore

c(p)=0,

c'(9)=—(P—ai)(48—a3)>0.

A s for the sufficiency, we need only plot the graph o f c(2)-Fq(2)=0 as usual.

From the above Lemma 5 .2 , we may assume [A2]12[A2]31#0 in  th e  sequel. Let
us now reduce A 2 .

Lemma

1) A 1 =

2) [A 3 2 =0

3) [A212#0,

5.5.

1 0
0 0
0 0

Suppose

0
1
0

for

[A 2 ] 31 *O.

that a nondegenerate fam ily  <A 1 , A2, ••• , A n > (ti_ . 2) satisfies

all i=2, ••• , n,

Then there exists a sim ilarity  transformation with nonsingular T  of the form

1 0 0 
T = 0 1 k (k : a certain real)

0 0 1
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such that
1  0  0

T - V11 T =A 1 =  0 0  1
0 0 0

ET - i A2T113  _CT - 1 A2T1 
[T - iA 2 T] 1 2 [ T - 1 A2T]33 •

P ro o f .  We put

   

A2 = B =
611 b,, 171 3

b2 1  b 2 2  b 2 3

b31 b 3 2 b3 3

From the assumptions,

  

bi 2 =0 , th i *O.

So we can find two numbers c1 , c2 such that

b 1 3  b12 (C 1—

b21=b3 i(ci-Fc2).
Then

1  0 0
T =  0 1 c 2

0 0 1
is the desired matrix.

Let us investigate families spanned by two matrices.

Proposition 5.6. A given nondegenerate matrix family <A ,, .11. 2 > with

1 0 0
A 1 =  0 0  1

0 0 0

has only  real eigenvalues at most d o u b le  i f  and only  i f  it is equivalent to either

1
-

0 0
 -

a+1 (a+l)p
1) < 0 0 1 , (a -1)p a 0

where
0 0 0_ _  a-1 0 —a

lal# 1 , (a 2 -1)(2/3+1)-0, 171 12/3+11
Or

1 0 0 0 1 p
2) < 0 0 1 , p 1 0 >

0 0 0 1 0 —1
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where
2/3+1>0

Or

3 )  a subfam ily of (3.1), (3.1'), (3.2) or (3.2').

P r o o f .  From Lemma 5.1, 5.2 and 5.5, we may assume A 2 is  as follows:

7 a2
(5.2) A 2= tr i p  a  3

a i 0  —a

where al*O , a 2 # 0 . Again from Lemma 5.1, the  quadratic equation

(5.3) (2—a)(2+a)-Fa1a2=0,

22 —a2 -fa 1a 2 =0

has only real roots, that is , real distinct roots o r a  real repeated roo t. In  the  fo rm er
situation, replacing A 2 by its appropriate scalar multiple, we may assume these roots
a re  + 1 . So we obtain from (5.3),

cr1a2 =(a -1 )(a+1 ).

Now applying a  similarity transformation with T  of the form

k  0  0
T =  0  1  0 (k*0 ),

0 0 1
a 1 #0 and a 2 * 0  become

(5.4) a 1 = a - 1 ,  a2 =a+1.

On the other hand, in the situation where (5.3) has a  repeated root,

a i a z =a 2 .

So replacing A2 by its appropriate scalar multiple, we may assume a= 1  (recall tr i O,
a 2 #0 mean a * 0 ) .  Now applying a  similarity transformation with T  of the form

k  0  0
T =  0  1  0 (k *0 ),

0 0 1
a 1 #0, a 2 * 0  become to a=1 :

(5.5) a1=a2=a=1.

So we may assume either (5.4) with a* 4-1 or (5.5) for the  matrix (5.2). We may
also assume

6=0
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in (5.2) after using a change of basis of <A1 , A2>.
Let us first consider the case (5.4) w ith a # ± 1 .  Then w e can apply Lem m a 5.3

to  <A1, A2> and we obtain
(ce2 -1 )( —r+2,9+1)o,

Combining these, we have

—(a 2 -1)(2/3+1)(a 2 -1)7- .5(a 2 -1 x2,8 +1).
From this, we obtain the first of the desired families.

Let us now consider the case (5.5). In this case, Lemma 5.4 is  applicable. Thus
we obtain

1= 0 ,  213 +1 >0 .
The proof is completed.

Let us now investigate families spanned by three m atrices. For this purpose, we
prepare some lemmas.

Lemma 5.7. Suppose that a matrix family <A, B> is spanned by

1 0 0 cr o p 

A = 0 0 1 B= Id 0 r
0 0 0 43 u 0

where jS, p, y, a, r, 0 are real constants. Suppose also that <A, B> has only real eigen-
values. Then — a A-FB has zero as a triple eigenvalue.

P ro o f .  From Lemma 5.1, we see

,12 -kp2 =0

has only real eigenvalues. This implies

S=0.

Again from Lemma 5.1, we also have

u=0.

Now it is easy to show — aA ± B  has zero as a triple eigenvalue.

We can specify our matrix families by the following lemma.

Lemma 5.8. Suppose that a  nondegenerate matrix family <A1 , A2, A3> with

1 0  0
.41 =  0  0  1

0  0  0
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has only  real eigenvalues at m ost double. Suppose also that it is not equivalent ta any sub-
fam ily  of (3.1), (3.1'), (3.2) or (3.2'). Then <A1, A 2 ,  A 3 >  is equivalent to a fam ily  of the
form

1 0 0 p 1 —a a  p p

< 0 0 1 a 0 0 , v i 0 >
0 0 0 —1 0 0 p  0 —1

where a, p, p, y ,  p, a are real constants satisfying

Remark. Without loss of generality, we may put

p = î+ 5 ,  v=r-6 .

And the calculation below becomes easier if  we further put

P ro o f . By adding approriate scalar multiple of identity to A 2  a n d  A2 ,  we may
assume

(5.6)

for any

(5.7)

and

[N]22±[N]33=0

NE<A,, A 2 , A ,> . Using a change of basis, we may further assume

CA2122---- CA2133=0

[A3122= — E,4 3i33
0  o r  =0.

On the other hand, from the  assumption that <A1 , A 2 ,  A 3 >  is not equivalent to any
subfamily o f  (3.1), (3.1'), (3.2) o r  (3 .2 '), a n d  from Lemma 5.2, there is a  member of
<A 1 , A2, A 3 >  whose (1, 2)- a n d  (3 , 1)-entries d o  not vanish. We denote one of such
matrices by

(5.8) M =
M 1 1  M 1 2  M 1 3

M 2 1  M 2 2  M 2 3

M 3 1  M 3 2  M 3 3

( M 1 2 1  M 3 1 =
0

,  M 3 3
=

 M 2 2 )  •

    

Fixing 72 arbitrarily, the  matrix family

<A 1 , 72A2-1-M >  ( C < A 1 , A 2 , A3>)

has only real eigenvalues. Applying Lemma 5.1 to this family, we know

22 —m22 2 ±(77 [A 2I 2 +m i2)( 72CA 2121+ m2i) = 0

has only real roots. So

—m222+(n [A 2 ] 12+M 12 )07 [A 2181+M 21 )0
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where m12 #0, m 3 1 * 0  (see (5.8)). Because th e  last inequality holds f o r  a n  arbitarily
fixed 77E R , we obtain

[A 2] 1212,12731 < 0

or
1/12712=CA2i31=0

However, the second case cannot occur because of (5.7) and Lemma 5 .7 .  So multiplying
A y  by a  scalar and then using a  similarity transformation w ith  T  of the form

T =
k
0
0

0
1
0

0 -
0
1

(k #0),

w e have
(5.9) [A2]12 =1 , [ A 2]3 1 -  -  1  .

Then using Lemma 5.5, we may further assume

(5.10) [Az]13= —a, [ A 2 ] 21 = a

for some real a .  From Lemma 5.1,

(5.11) [A 2 ]3 2 -0  •

Replacing A 2  by A2d-cA 1 with appropriate c , we may also have

(5.12) CA2]23 - 0 •

From (5.7), (5.9), (5.10), (5.11) and (5.12), we may specify A 2  as

1 —a

(5.13) A y = a 0 0
—1 0 0

where a, p  are real constants.
Let us now consider A 3 .  Replacing A 3  by A3 +c 1 ,4 1 -1-c2 A2 with appropriate cs and

C2, w e  m ay  assume

(5.14) [243]12—CA311, [ A 3 ] 2 3 = 0 .

From Lemma 5.1, we also have

(5.15)[ A 3 ] 3 2 = 0 .

From (5.14) and (5.15) and from (5.6) which holds also for A s ,  we may specify A s a s

Here 04, 0 holds because 0= 0 would imply that —a A s+A s m u st h av e  a  tr ip le  eigen-
value by virtue of Lemma 5 .7 .  So multiplying A s b y  a  scalar, 0  becomes 1:
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—

C  1
8t e

A s =  21 1  0

p  0 —1
We may assume

Po
in the last matrix because otherwise we need only consider

<T 'A 1 T ,T - 1 A 2 T ,T - 1 .113 T>
with

— 1 0 0
T =  0 1  0

0 0  1

Finally, applying Lemma 5.1 to this <A 1 , A 3 >, we see

22 -1-132 -1=0

has real roots where This implies

0/3_51.

We have thus completed the proof. 0

In order to investigate the matrix family indicated in  th e  preceding Lemma 5.8,
the next lemma is also a  convenient tool.

Lemma 5.9. Let
- -

1 0 0 p 1 —a a IS —3
A ,= 0 0 1 , A 2 = a 0 0 , A 3 = r +6 1 0

0 0 0
-

—1
-

0 0 i3 0 —1

where a, p, r, 6, p, a are real constants satisfying

T h en  <A1, A g, A g> h as  o n ly  re al eigenvalues at  m o s t  double i f  and only  i f  any
<A 1 , vil2--FA 3 > w ith arbitrarily  f ix ed ,)ER  has the same property.

P ro o f .  The necessity is clear. For the proof of the sufficiency, it is enough to
prove

EA,±A 2

with any e R has only real eigenvalues at most double. From the assumption.

1$A14--(17A2+As)

has only real eigenvalues for any yi E R . T ak ing  72-400, we see that
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EA1-1-A3

has only real eigenvalues. The multiplicity of its eigenvalues turns out to be at most
double by virtue of Lemma 5.3. Q. E. D.

L e t  u s  sp lit th e  c a se  into 0 p < 1  and 1S = 1 .  H ere p is the one in A 3 o f  our
matrix family <A1, A2, 113> mentioned in Lemma 5.9.

Lemma 5.10. Let

1 0 0 p 1 —a P
A i = 0 0 1 , A2= a 0 0 , r + a  1 o

0 0 0_ —1 0 0 13 0 —1
where

Then <A 1 , A2, A3> has only real eigenvalues at most double if and only i f

P(v),—_-(v2 -132 +1)1(2a-1)v 2 +24+13 2 +2$71 2

— {(722 - 132 )(pn+a)+2(aP+r)72+219a1 2 - 0
and

Q(v)=-(2a-1 )ed-2(377+/32 +2,87>__O
hold fo r  any V E R .

P ro o f. From Lemma 5.9, it suffices to consider the condition where <A1, nA 2 d-A3>
h as o n ly  rea l eigenvalues a t m ost double . Now Lemma 5.3 is applicable because in
the present situation,

172(2)_. 22 n 2+ 152_1 ,

c,(2) - det( —  21+7 2 A2+ A3)

and the quadratic equation q,(2)=0 has real distinct ro o ts  ± (n 2  192+ 1 "  because of
o p < i .  So we obtain the condition :

c,(—( n 2—,(32+1 )1 0) 0

hold for any aribtrarily fixed n e R . These inequalities are, in  turn , equivalent to

/3( 7)..— c ,( 0 22- 132+ 1)1/2),,(-072— p 2 + 1 )io )o ,

(( ,2_4 3 2+ 1 ) ,12) c v ( —
(

22_ ,(32+ 1 ) „2)  > 0 .
(207)-= (722_132+1) 1, 2

Here P(72) is the  polynomial of 8ixth order and Q(32) is the quadratic polynomial. They
are what we have been looking for. El

We can consider the case /3=1 similarly.
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Lemma 5.11. Let
_ _

1 0 0 P 1 —a a 1  r—a -

A 1 = 0 0 1 , A2= a 0 0 , A s = 7+a 1 o
0 0 0_ _ —1 0 0 _ _ 1 o —1 _

Let also
c(A) ----=det(-21-EyA2+A3)•

Then <A1, A2, A3> has only real eigenvalues at most double i f  and only i f

c ( 7)>=0 ,  cv(-- 77) 0 fo r  any y>0,

c ( 7) 0 ,  c,(--72)_0 fo r  any ri<O,
and

c (0)>0.

P ro o f. From Lemma 5.9, it suffices to consider the condition where <A I , 72 A 2 -1-A 3 >
has only real eigenvalues at most double.

If  y=0, Lemma 5.3 is applicable because in  the  present situation,

q ,7 (2)--22_ 7) 2 ,

ci,(2) ----det(-2/-kyA2-EA3)

and the quadratic equation q,(2)=0 has real distinct roots ±1 y1 . So we obtain the
condition :

c>,( 1721)>=0

c (—  117 I ) 0
for any y=0.

If  y=0, Lemma 5.4 is applicable because the  quadratic equation q0 (2)=0 has zero
as a  repeated r o o t .  So we have

c( 0)>0.
The proof is complete. 0

Let us first settle down the case )3=1 by using Lemma 5.11 just obtained.

Proposition 5.12. Let th e  assumptions be the same a s  in  Lemma 5.11. Then
<A,, A2, A3> has only real eigenvalues at most double if and only i f  it is equivalent to

1 0 0 2a-1 1 —a _ 23 1 7-5
< 0 0 1 , a 0 0 , r+3 1 0 >
_ 0 0 0 _ _ —1 0 0 _ _ 1 0 —1

where
2a-1  - 0,

2r-1-1>0,
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32 _<(2a-1)(27H-1).

P ro o f . In this case, we obtain

(5.16) c,,(72)-(p+2a-1)773+(a+26)222+(—p+2a+47+1)72—(a-23)

(5.17) cv(-7))=(7)2-1){(p —2a+1)7H-a-23 }

(5.18) c(0)=4-1-1

Because c(0)>0 (see Lemma 5.11), we have

(5.19) 21+1>0 .
From (5.17) and the property of c(-72 ) mentioned in  Lemma 5.11, we also have

(5.20) p -2 a + 1 = 0  , a -2 3 = 0 .

Substituting p=2a -1 , (1=23 in  (5.16),

c,(77) -- 272{(2a-1)77 2 +23)2+21+11.

From the property of c (n )  (see Lemma 5.11), w e have

(5.21) 62 (2a-1)(2T+1).

Combining (5.19), (5.20) and (5.21), we obtain the conclusion.

Let us now settle down the case p=0.

Proposition 5.13. Let

1 0 0 p 1 —a - a 0  r -5
A1= 0 0 1 A3= a 0 0 , A s= r+3 1 0

0 0 0 —1 0 0 _ _ O0 —1

Then <A 1 , A2, A3> has only  real eigenvalues at m ost double if and only if it is equivalent
to

1 0 0 p 1 —a a 0 0
< 0 0 1 , a 0 0 , 0 1 0 >

0 0 0 —1 0 0 0 0 —1
where

p2 -1-a (2a-1) 2 .

P ro o f  We can apply Lemma 5.10 w ith p= 0 and w e have

(5.22) P(77)---722(712+1){(2a-1)77-1-23}2-722{72(pii-Fa)±2r}2 0,

(5.23) Q(72)-=-(2a-1))22+2372 0

for any  77 R .  Because (5.23) holds for any 72, w e must have
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(5.24)

(5.25) 3-=0.

Substituting 5=0 in  (5.22), we see

P(72) - - (2a-1) 2 724 ( 22 +1)-72 2 07(pn+a)±271 2 _ 0

holds fo r an y  72. B ut th is  is  u n tru e  fo r sm all n if  T * 0 .  So w e must have

(5.26) r=0

and
P(n)-774{(2a-1

)2
( i

2 2 + 1 ) _ ( p 7 2 + 6 ) 2 } > 0

fo r any  22. Considering the discrim inant of the quadratic po lynom ial in  the  brackets,
we obtain

(5.27) p2-1-62 (2a-1)2.

Combining (5.24), (5.25), (5.26) and (5.27), w e obtain the  conc lusion . 111

Now le t u s  w ork on  the  case  0</3<1.

Lemma 5.14. Suppose

A 1=

that

1 0 0
0 0 1
0 0 0 

the

,42 .=

matrix family

-p 1  —a
a 0 0

—1 0 0

<A1, A2,

, .A3 =

A3> spanned

ig 7.--5 -

r+3 1 0
13 0 —1

by

where
0<g<1

has only real eigenvalues at most double. Then one of the following 1), 2), 3), 4) holds.

111) p = ( 1  )rd-ap+—
a  

- -
1  

a -4 3 ± — )5 .p2 P

2) 6 = c 0 d - r ,  a=-2a132+2a+2fI7-13p-1.

3) ô=—a/3—y, a = - 2 a p 2 - 2 a - 2 19 r+p p +1 .

4) 1, - 4 ,  3=0.

P ro o f .  A ll w e  h a v e  t o  d o  is  to  sh a rp e n  L e m m a  5.10. B y  a  straightforward
ca lcu la tion , w e  know  P(n) is  divisible b y  722 /32 . So  there  ex ists a polynomial f3 (77)
o f fourth order such that

P(n)--.=-(n2—P2)P(n).
Because P(72).0 fo r a ll rjeR , P(v ) m ust also be divisible b y  (n2-192), th a t is,

P(p)=P(—A)=o

m u st h o ld . These equalities turns ou t to be
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13 (j3)=4(7+3+0){-13 2 p—iga+(P 2 - 1)7±(132 +1)6+0 3 + 0 - 131=0,

P(-13)=4(7-5+a13){-15 2 ,o+pg±(p 2 -1)r—(19 2 +1)6+ap 3 +4— pl=o .

Hence we obtain 1) o f th e  present lemma from

de2p
 j9

"2çp +1)3+4 3 +4—J(3=0
and _p2p +p o.+02 - 1)r (j.1 +1)5+ay+ce13-19=0,
2) from

and

3) from

and

finally 4) from

— P2 P —le q  +0 2 - 1 )r+ (j92 +1 )3 +4 3 + ad9 P=0

7 - 5 + 4 = 0 ,

7+6+0=0

--132 p-I-P6r - F(P2 - 1)7— (j32 + 1 )6 + 4 2 +60 - 13= 0 ,

7. -Fad-ap=0 a n d  r-5-Eap=0.

T hus th e  proof is complete.

L et us consider 1), 2), 3), 4) o f Lemma 5.14 separately.

Lemma 5.15. Let the matrices A 1 , /12 , A, be as

1 0 0 - p 1 —a a ,(3
.A1= 0 0 1 a 0 0 A3 = 7+3 1 0

0 0 0 —1 0 0 /3 0 —1
where

0<P<1
and

/ 1 \ a 1p=çl c=(15±-3)6./32 )7 + 0 + R
Then <A1 , 112 , A 3 > has only real eigenvalues at most double if and only i f

— 02+0 -13  
 < < 

 02+ap— p 
1+/3 =7= 1—p

162 
T—

api2++7313 p r+  a p2+5 , ‹  1 1

—  2

P ro o f .  Substituting th e  g iven p, a  in  P(72) of Lemma 5.10, w e have

1 P2

P(72)= ( 27) — 13
2

 )2 P( 72)- 0

134
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or equivalently

(5.28) 13(72)>__O

where

—a,82 +a13-13} .{ ai32-1-43—p P(7))-=(1—P2)-fr 7+1+ p 1— p

+2133{(192 + 1 )7 + 0 3 - 60+18}77

+ p2i pz)32±(p+2r)21

We also have (see Lemma 5.10)

(5.29) Q(72)-(2a-1)772+2672+,8(48±27).0.

The discriminants of P(71) and Q( 2) are

D p .- -- 4 1 9 4 ( 1 3 ± 2 r ) 2 [ 6
2 1-132  IT 

—aP2 -kaPœp ai32+0—P r+/32 1-HS

DQ -m-4{62 -13(2a-1)(2r-1- 48)} .

Note that the following inequality holds between the expressions inside th e  brackets
of the discriminants.

1 —p r — a / 3  21++ ap p-  p   H r  +  a132  1+ag—s 

1_13g
-, -- P(2a-1)(27+P) (1 aP+p)

132
[3(2a —1 )(27.)

Recall that P(ri) is always nonnegative i f  a n d  only i f  it is either a  nonnegative
constant or has a  nonpositive discriminant and a positive coefficient for the quadratic
te rm . T h e  same holds also fo r Q(72). Using these, we obtain the  required result. D

T he  cases 2), 3), 4) o f  Lemma 5.14 can be reduced to special subcases of 1) as
follows.

Lemma 5.16. Suppose that the matrix family '<A l , A2, A 3 >  is spanned by

1 0 1 a 13 r-3
A i = 0 01 A 2 = a 0 0 A 3 - r+a 1 0

0 0 0 —1 0 0 p 0 —1
where

0<p<1,

3=a,8+7

a = 2 4 2 -1-2a+2,87. — pp-1.
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Suppose also that <A 1 , A 2 , A 3 > has only real eigenvalues at most double. Then

1   \ a  1 / 1\
P -=-- ( 12  ) r + a P a = 0 + — )

P
aP P 

are satisfied.

P ro o f. Substituting

6=ale+r, u=2a/32 ±2a+2 13T—pp--1

in  P(72) in  Lemma 5.10, we obtain
p( 72 )_(.)72 p2 ) 2p( o > 0

or equivalently
P(77) 0

where
{ — p2 ±(2a —1 )2 }722 +2(p —2ap — 2r)(pp — 2a +1 )72

— /32 (p —20 —211-2(g-F21)(p —20 —21)

—(j8+2r )2.

Similarly, we have also

Q( 77)=- (2 a —1)772 + 2(r±a43 )724-13(2T+13) 0.

The discriminants of P(n) and Q(72) are

Dp=4(p-2043-1-P) Z I —p2 +(2a —1)2 +(p —2r-24) 2 k

DQ =4(r —apd-p )2 .
Because D/,<0, we get either

p=(2a—l )13
or

p=± (2a --1 )=20+2r

Here we have used the fact that the coefficient of 772 o f  P(72), j. e.,

—p2 -1-(2a-1)2

is nonnegative. Furthermore, because DQ 50, we get also

From these and the nonnegativity of P(n), we obtain

a - 0<13<1,  r , (a -4  ,  p , (2a—l)13— 2 '

and hence
----(2a —1)/3 , -=(2a —1)(132+1).

Now, it is easy to verify
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a  1 / 1 \p , (1 1 ) 7 + 4 -1- -p - - - -
is , a-0+-0

are satisfied. D

Lemma 5 .17 . Suppose that the matrix family <A1, A2, A3> is spanned by
_ _

1 0 0 p 1 —a p r-3
A 3-= 0 0 1 ,43-= a 0 0 ï+ 61 0

0 0 0 _ - 1 0 0 130 - 1
where

o<p<1,
3= — (4+7),

7=— (2ap 1-1-2a+2,8r—i3p-1).

Suppose also that <A 1, A 2 1  A3> has only real eigenvalues at most double. Then

1 p=
9 2  ) r 

a IS 
± 19

—
a

— —
1  

'  a =(p + 1 )3
i R

are satisfied.

P ro o f. Substituting

3= —(a13+7), a= —(2a/32 +2a +2,87-13p

in  P(n) in Lemma 5.10, we obtain
p( 12 ) , - _ (

i2
2 192)2p

( i2
) › .  0

or equivalently
P(72). 0

where
P(2). {— p 2 +(2a —1)2 }722 —2(p-24 —2r)(gp-2a+1»7

- 132 p2 - 14(1- p2 )r - 40 2 +2131p

+4(1- 1612 )72 +84(1-13 2 )1-13 2 (4a 2
132 -4 a+ 1 ).

Similarly, we have also

Q(2)(2a-1)72 2 -2(7-1-4)72+ 18(2r±g)>= 0.

Furthermore P(-72) and Q(-7)) turn out to  be P(v ) and Q(n) in  the  proof o f  Lemma
5 .16 . So the same calculation is valid and w e have

1 0< ,6< 1 , 7=(a , p=(2a-1)j3
— 2 '

and hence
3= —(2a —1)/3, a=—(2a-1)(482+1).

Now, it is easy to verify
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11p =(1  ) 7 + 0 4 - - 1  c = ( , 8 + - ) (3P P
are satisfied. I=1

Lemma 5.18. Suppose that the matrix family <A1, A z , Ag> is spanned by

1 0 0 p 1 —a - a p  7-3
A i = 0 0 1 a 0 0 , A3= r + 3  1 0

0 0 0 - 1 0 0 p 0 —1
where

0<$<1,

1= - 4 ,  3 = 0 .

Suppose also that <A 1 , Ag, Ag> has only real eigenvalues at most double. Then

/ 1   \p=V.— ) 7 + 4 + 6 1 - 1 , 6 =(P+ 170 3pz
P

are satisfied.

P ro o f. Substituting
r , - - a 13 ,  3=0

in  P(72) in  Lemma 5.10, we obtain
p ( 77) - ( 722_ p 2 )2 p ( 72)> 0

or equivalently

P(77)=.{—p 2 +(2a-1) 2 }772 -2par7—a 2 ±(2a-1) 2 (1— p2)>=0
We also have

Q(77)-(2a-1)(722 -132)__ 0.

Because Q(.72) 0 (0<p<1), we get
1a=-2-.

So the  inequality P(77)_0 turns out to be

P(72)_7=- -(pri+3) 2 . 0
and w e must have

p=a=0.

1Summing up, w e have obtained (recall a=-y
,  

r = -a p  and 6=0)

1 1a = y , 0<p<1, 3 = 0 , p=0, (7=0.

Therefore



1 0 0 _p 1
A i = 0 0 1 a 0

0 0 0 _ _ —1 0

—a a  p 7-6
0 ,  A 3 =  7 + 5  1  0
0 /3 0  — 1_
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1p , (1 )7-1-0 ± —
a

- -
1

, 61-4 3 + 1 )5
131 3  g g

are satisfied. I=1

Combining Lemma 5.14 to  5.18, we obtain the following Proposition.

Proposition 5 .1 9 .  Let the matrices A 1 , A2, A , be as

where
0<13<1.

Then <A 1 , A2, A3> has only  real eigenvalues at m ost double if and only i f

2a —1 0 ,
_02± a13_ 13 <  <  a ig 2d_a p—p

1-+ —7— 1-43

52 1—p?21 2  +-Fal II 7 +  4 2 +1 1 —

P= 0-  13j-2 )r+Ct13+5A- - -k,

a=(
1

PH - - )a

P ro o f .  W e begin with the necessity. Applying Lemma 5.14, we know one of the
four mentioned cases 1), 2), 3), 4) occurs. H o w e v e r , b y  v ir tu e  of Lemma 5.16, 5.17,
5.18, the last three of these cases, 2), 3), 4) turn out to be special subcases of the first
case 1), tha t is,

11p=(1 )r+ap+—
a

- -
I 

a= ($+--)3.
P

Therefore Lemma 5.15 is always applicable and the proof of the necessity is complete.
The sufficiency is clear again from Lemma 5.15. El

Let us now investigate families spanned by four or more matrices.

Proposition 5 .2 0 . Suppose th a t  a  nondegenerate m atrix  f am ily  <A 1, A2, •• • , A n >
(n 4) with

1 0  0  - -
0 0 1
0  0  0

A i=

has only  real eigenvalues. Then <A 1 , A2, An> zs equivalent to a subfam ily  o f  (3.1),



1018 Yorimasa Oshime

(3 .1 '), (3 .2 ) or (3.2 ').

P ro o f. By addition of scalar multiple of identity and by change of the basis, we
may assume

(5.30) CA212—CA•213-0,

(5.31) [A3]22— [A3]33-0

while
CA412—  — CA4i330 o r  = 0 .

Let us show by contradiction that

Ce/12+77/13]12=e[A2]i2+72[A012=0 ,
(5.32)

[CA2+ 03]31=-$CA2131+ 72[A3] 31= 0

for some (e , 7 ))E R 2 \ {(0, 0) }. Assum e the contrary. T h e n  th e re  w o u ld  e x is t  (e, 72)
such that

[C A 2+ 72A 3].= e[A 2112+ 72 [A 3 ]„= 1 ,

E e A 2 + 0 3 1 3 i= e [A 2 ]3 ,+ 7 2 [A 3 ] ,1 .

These equalities together w ith (5 .3 0 )  a n d  (5 .3 1 )  le ad s  to  a contradiction, applying
Lemma 5 .1  to <A I , eA2-Fnils>.

Renaming e l l 2 + 0 3 satisfying (5 .32 ) as A2, we may assume also

(5.33) CA2]12— H12181-0 •

In addition, again from Lemma 5.1,

(5.34) [A 032= 0 .

Summing up, we may assume A2 has the following form.

* 0  *

* 0  *

0 0 0

By addition of an appropriate scalar m ulitp le of A 1 , A 2  may be further assumed to be as

0  0  *

* 0  *

0 0 0

This A, has zero as a triple e ig en v a lu e  and is similar to either
- -

0  1  0

0 0 0

-

0  0  0
 -

A2=



Non-diagonalizable hyperbolic systems 1019

or
0  1  0
0  0  1
0  0  0

-
In the first case, the claim follows from Proposition 4.2. And in the second case, the
claim follows from Proposition 4.7. Thus the proof is complete. El

6 . Summary

Let us summarize all the  facts proved in this paper. F o r convenience, we repro-
duce (3.1), (3.1'), (3.2) and (3.2') as (6.1), ••• , etc.

1 0 0 0 1 0 0 0 1 0 0 0 0 0 0
(6.1) < 0 0 0 , 0 0 0 , 0 0 0 , 0 1 0 , 0 0 1 >,

0 0 0_ _00 0_ _0 0 0 0 0 —1 _ _0 0 0

(6.1') transposition of (6.1),

1 0 0 0 1 0 0 0 1 0 0 0 0 0 0
(6.2) < 0 0 0 , 0 0 0 , 0 0 0 , 0 1 0 0 01 

0 0 0_ 0 0 0_ 0 0 0 0 0 —1 0 1 0 

(6.2') transposition of (6.2).

First of all, combining Propositions 4.2, 4.7, 5.20, we obtain the following theorem.

Theorem 6.1. Suppose that a nondegenerate non-diagonalizable 3x3 m atrix  fam ily
<A 1 , 242 , ••• A n > (71_ 4) has only  real eigenvalues. Then it is equivalent to a subfam ily
of (6.1), (6.1'), (6.2) or (6.2').

Combining Propositions 4.2, 4.5, 4.6, we have the following theorem.

Theorem 6.2. Given a nondegenerate non-diagonalizable 3X 3 m atrix  fam ily  w ith
only  real eigenvalues. Suppose that one of its nonzero members has a triple eigenvalue.
Then it is equivalent to either

0 1
_

0
_

0 cr1a2d-a2a3d-a3a1 —cr1a2a3
0 0 1 , —1 cr1-l-a2d-a 0 >
0 0 0_ _ 0 1 0

with

Or
tri a2: a3

0 1 0 0 a1a2+a2a3-i-a 3 a 1 a 2 a2cr 3 O P 1 + 2

< 0 0 1 , —1 ald-a2d-a3 O , O1 0 >
0 0 0_ _ 0 1 0 0 0 0



1 0 0 -
0 0 1
0 0 0

Ta + 1  ( a + 1 ) i 9

(a - 1 )P a
a - 1 0 —a

1) <
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with

unless it is equivalent to a subfamily of (6.1), (6.1'), (6.2) or (6.2').

Finally, combining Propositions 5.6, 5.12, 5.13, 5.19, we obtain the following theorem.

Theorem 6 .3 .  Given a nondegenerate non-diagonalizable 3X 3 m atrix  fam ily  w ith
only real eigenvalues. Suppose that each of its nonzero members has eigenvalues at most
double. Then it is equivalent to one of the following 1), 2), 3), 4), 5) unless it is equivalent
to a subfamily of (6.1), (6.1'), (6.2) or (6.2').

where

are satisfied.

1 0 0 0 1 is

lal*1, (a 2 -1)(2P+1 0, 171512pH-1i

2) < 0 0 1 , jS 1 0
0 0 0 1 0 —1

where
2p+1>o

is satisfied.

1 0 0 2a-1 1 —a 23 1 r-5 -
3) < 0 0 1 , a 0 0 7"-ka 1 0

0 0 0 —1 0 0 1 0 —1

where
2 a - 1 O ,

27+1>0,

t 2 . (2a-1 )(2 +1 )+1)
are satisfied.

1 0 0 p 1 —a a 0 0
4) < 0 0 1 , a 0 0 , 0 1 0 >

0 0 0 —1 0 0 0 0 —1

where

p 2 + (72 5(2a —1)2
are satisfied.
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5) <

1 0  0 1 —a
0 0 1 ,   a  0 0
0  0  0  _ - 1  0  0_  

î—ô
7 + 5  0  0  >
p  o

  

where

o<p<i,
— 0 2 +4 - 1 3   <  < 0 2 +4-43 

1+/3 —7— 1—p

6 , < 1. - 2  I T — a/3 2 + 4 -1 3   1 {  7+   ap2 -kap—i3 
— P2 1 1+13 1—le I'

(=
p,( 1 a  1

1 )7+4±"Vj

1
19 ± W)3

are satisfied.

T h u s w e  have listed  up  a ll the canonical forms o f non-diagonalizable 3x3 matrix
fam ilies w ith only real eigenvalues.

A cknow ledgem ents. T h e  a u th o r  w is h e s  t o  express h is  s in c e re  gratitude to
Professor Masaya Yamaguti o f Ryukoku University and Professor Takaaki Nishida of
Kyoto University who encouraged the author to publish the present paper.

CURRENTLY,
JUNIOR COLLEGE OF ECONOMICS FACULTY OF ENGINEERING
WAKAYAMA UNIVERSITY DOSHISHA UNIVERSITY

References

L. G a r d in g ,  L inear hyperbolic  partial differentia l equations with constant coefficients, Acta
Math., 85 (1951), 1-62.
P. D. L a x , Differential equations, difference equations and  m atrix theory, Comm. Pure
Appl. Math., 11 (1958), 175-194.
S . M izohata , Some remarks on the Cauchy problem, J. Math. Kyoto Univ., 1 (1961), 109-
127.
Y . O shim e, Canonical forms of 3 x 3 strongly hyperbolic systems with real constant coeffi-
cients, in  this volume.
G. Strang, O n strong hyperbolicity, J .  Math. Kyoto Univ., 6 (1967), 397-417.
M. Yam aguti, K. K asah ara , Sur l e  systèm e hyperbolique A coefficients constants, Proc.
Japan Acad., 35 (1959), 547-550.


