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1. Introduction

Consider an mXm system of differential equations
(L.1) L

where u is an m-vector and A; are real constant m Xm matrix coefficients. For sim-
plicity, we further assume any nontrivial linear combination of A; is not equal to the
zero matrix or the identity. Otherwise, the system (1.1) can be reduced to the one
with a smaller n. (See the comments between Definition 2.3 and 2.4.)

According to Garding [17], (1.1) is called a hyperbolic system if the real linear
combination of A;:

26 A

has only real eigenvalues for any choice of &, &, -+, é,€R. It is easy to see that
some special classes of systems (1.1) satisfy this criterion. One example is the case
when all A; are simultaneously upper-triagular. Another example is the case when
all A; are simultaneously symmetric. However, few attempts have been made to find
out all the canonical forms of hyperbolic systems (1.1). It is perhaps because the
above criterion is stated in terms of the linear combinations of A,, A4, ---, A, and
seems difficult to verify directly. The only exception is the case of m=2 (2x2
systems). In fact, Strang [5] proved that every hyperbolic 2X2 system can be reduced

to either
ou _[1 00w [0 1]
at - 0 -1 axl 1 0 axg

ou [1 0O 6u+01 du
3t_0_1 0x, 0 0]0x:’

However, concerning the case m=3, very little has been known.
In the previous paper [4], we fully studied a special subclass of 3X3 systems

(m=3) where each 3}&;A; is similar to a real diagonal matrix. The purpose of this
paper is to classify the remaining subclass of 3x3 systems, that is, the one where
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some of >3&;A; are not diagonalizable.

All the results of this paper shall be summarized in the last section in terms of
matrix families.

2. Definitions

Throughout this paper, we consider only real square (actually 3xX3) matrices and
their linear combinations with real coefficients. Although most of the definitions

below are the same as in the previous paper [4], we write them for this paper to be
self-contained.

Definition 2.1. The set of all linear combinations
A($)=A(Eu &2’ ttty én)z.EEJA] (Sly 52; sty enER)

of the mXm matrices A,, A,, -+, A, is said to be the matrix family spanned by
A, A, -+, A, and is denoted by <A,, A, -, An).

We are now able to define the objects of our consideration.

Definition 2.2. A matrix family <(A4,, A,, ---, A,) is said to have only real eigen-
values if each of its members-has only real eigenvalues. In addition, Equation (1.1)
with such A; is called a hyperbolic system.

In the previous paper [4], we considered a special class of matrix families, namely,
real-diagonalizable families defined just below. So, in this paper, we shall consider
the remaining class, namely, nondiagonalizable matrix families with only real eigenvalues.

Definition 2.3. A matrix family (A4, 4, -, As)> is called real-diagonalizable.if
for every A(§)e<A,, A, -+, A,>, there exists a nonsingular matrix S(§) (called a
diagonalizer) such that '

SEAESE)

is a real diagonal matrix. Similarly <A4,, 4, ---, A,) is ‘called non-diagonalizable if
some A(&) is not similar to any diagonal matrix.

Let us now consider what equivalence relation should be introduced for matrix
families. It is easy to see the following three operations <A, :--, A.>—<B,, -+, Bx>
do not affect the real-eigenvalue property of matrix families.

a) Change of basis. '

Bi=mn Ay +mpAe+ - +min 4y
Bo=mg Ay +mapAs+ - +ManAn
Bo=mn Ai+MasAst - +Manda

where M=(m;;) is a nonsingular nXn real matrix.
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b) Addition of scalar multiples of identity.

Bl =A1 +ﬂ11
B,=A, +ﬂ21

where / is the identity matrix and g; (1<7/<n) are reals.
c) Similarity transformation.

B,=T-A,T
B, =T~ A,T
B,=T-1A4,T

where T is a nonsingular m Xm real matrix arbitrarily fixed.
It is perhaps worth noting how the above three operations tranform the original
differential equation (1.1). First, a) corresponds to the change of space variables:
(}l; 'xVZy Tty in)’rz'lw(xh KXoy **ty xn)T-
Second, b) corresponds to the change of time-space variables of the type:

Xi=x—pit (1=i<n).

Note that if some space variables disappear from (1.1) by these operations, they can
belregarded as parameters for the solution of the reduced equation. Finally, c) corre-
sponds to the change of unknowns:

(ﬁl) a?y Tty ﬁm)T:T—l(ub Ugy ***y uﬂ;)T~
Combining the above a), b) and ¢), we are led to the following definition.

Definition 2.4. Matrix families (A4;, A,, -+, A.) and <(B,, B,, ---, B,) are called
equivalent if there exist a nonsingular matrix T and g;,eR (=1, 2, -+, n) such that

KTHAT—pd, T AT —pel, -, T AT —pa D>
=(B,, By, -+, Bn'>.
And we denote this equivalence relation by
{Ay, As, -+, Any ~ (B, B, -+, Buo).
By using the above a) and b), it is easy to see that any matrix family is equivalent
to some <{B,, ---, B,) where B,, B,, ---, B, are linearly independent and none of their

nonzero linear combinations is equal to any scalar multiple of identity. Let us define
a word indicating this property.

Definition 2.5. A matrix family <A, A, ---, A,) is called nondegenerate if
1, A,, A,, -+, A, are linearly independent over reals.

Although the definitions above are valid also for families of matrices of arbitrary
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size, we shall consider only 3X3 matrix families from now on. Moreover, we shall
treat our problem purely as that of matrix theory and refer the differential equation
(1.1) no more.

3. Preliminaries

By straightforward calculations, it is easy to verify that the following (3.1), (3.1),
(3.2), (3.2’) have only real eigenvalues.

10 01[0 1 OTO 0 1}’0 0 0 ([0 0 0]
(3.1) o o oflloooffoooffo1 o001,

00 0[{000f000J00 —1|[010]
3.1 the transposition of (3.1),

(1 0 0][o 1 0o o0 1][0 0 1Mo 0|
(3.2) qo o0 o0floo0o0flo 01 1D,

100 0[ 00000000 —1]f 0|
3.2 the transposition of (3.2).

Relating to this fact, we have the following lemma.

Lemma 3.1. Let <A,, A, -, Az) be a matrix family with only real eigenvalues.
If all of A; are 3X3 matrices whose (2, 1)- and (3, 1)-entries both vanish then {A,, A,, -+,
A.> is equivalent to a subfamily of (3.1) or (3.2). Similarly, if all of A; are 3X3
matrices whose (1, 2)- and (1, 3)- entries both vanish then (A, As, -, An) is equivalent to
a subfamily of (3.1') or (3.2").

Proof. We have only to prove the former half because the latter is merely the
transposition of the former. From the assumption, all A; have the form

where each * stands for a certain real number. So the right-lower 2X2 submatrices
A7,- of A; form a family of 2X2 matrix family which has only real eigenvalues.
Proceeding as in Appendix of Strang [5], we know there exists a nonsingular 2X2
matrix 7 such that

T_lAiT
are simultaneously either symmetric or upper-triangular. Thus by the similarity trans-
formation with

100

T=| 0 ,
o T



Non-diagonalizable hyperbolic systems 987

the family <A,, A, ---, A,> is equivalent to a subfamily of either (3.1) or (3.2).
(Recall that we can add appropriate scalar multiples of identity to all A;.) O

Let us give a characterization of (3.1), (3.1’), (3.2) and (3.2").

Lemma 3.2. If (A, A, -+, Az) is equivalent to a subfamily of either (3.1) or
(3.2) then all members of {A,, A, -, An) have a common right eigenvector. Similarly,
if <Ay, Ay, -+, An) is equivalent to a subfamily of (3.1') or (3.2') then all of its members
have a common left eigenvector.

Proof. We have only to prove the former half because the latter is merely the
transposition of the former. Let us begin with the special case where (A,, A,, -+, An>
is just a subfamily of either (3.1) or (3.2). Then

1
0
0

is clearly the desired common right eigenvector. In the general case, there exist a
certain similar transformation: A—T 'AT which reduces {(A,, A, ---, A,) to a sub-
family of either (3.1) or (3.2). In this case the common right eigenvector becomes

~
O O =

The proof is complete. [

Let us gather here some properties of special kinds of cubic equations with a
(real) parameter which will appear as characteristic equations of 33 matrix family.

Lemma 3.3. Let f(4, &) be a cubic polynomial of the form
fQ2, §)=24a 2 +a:2+ a3 +8(boA*+b1A+by)+ &

where ai, Gs, as, by, by, by, c#0 are real constants and & is a real parameter. Then the
cubic equation
f(2, 6)=0

has imaginary roots for some £ R.

Proof. Without losing the generality, we may assume c¢>0 because, otherwise,
it suffices to consider f(—4, §)=0 instead. Let us plot the graph of f(4, §)=0 in the
A, &-plane. For this purpose, it is convenient to solve f(4, £)=0 with respect to &.

Ezzl_c[_bolz—bxl—bzi {(bol2+b1A4b2) —4c(AP+ 0, 22+ a.2+aq)} ]

From Fig. 1, we know that f(4, §)=0 has only one real simple root and a pair of
complex conjugate roots for £ near +oo (resp. —oo) when b,>0 (resp. 5,<0). [
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Lemma 3.4. Let f(4, &) be a cubic polynomial of the form
f(a, ‘S)Exa‘i'0122+021+03+5(b12+b2)

where ay, as, as, by, by are real constants satisfying |b|41b,|>0 and & is a real
parameter. Then the cubic equation

f(4, 6€)=0

has imaginary roots for some £€R.

Proof. We begin with the case b,#0. Renaming b,& as & we may assume b,=1.
Let us plot the graph of f(2, £)=0 by the form

_ A4a, 2+ ad+a,
A-+b,

E:

From Fig. 2, it is clear that f(4, §)=0 has only one real simple root and a pair of
complex conjugate ones for & near +oo.

We now go on to the case b,=0. From the assumption of the present lemma,
b,#0. So the graph is reduced to that of

1

f=—p

(B+a,A%+aA+as).

Therefore, it is clear that f(4, £§)=0 has only one real simple root and a pair of
complex conjugate ones for & near +oo (see Fig. 3). [

Lemma 3.5. Let f(2, &) be a cubic polynomial of the form
f('z, &)5234‘0122+azz+aa+§(boxz+b12+bz)

where ai, a,, as; by#0, by, b, are real constants and & is a real parameter. Then the
cubic equation ‘

Fig. 1. bo>0. ' - Fig. 2.
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f(, §)=0
has only real roots for any E€ R if and only if

23“}‘0122"‘ 022+03:0
and
b022+b,1+b2=0

have only real roots, say, a\<a,<a, for the first equation and B.,<P. for the second,
and the inequality
a1§ﬁ1§azsﬁzgaa

holds.

Proof. We notice first that we may assume b,=1 by renaming b as & Now
let us consider all possible cases one by one.
First we look into the case where

Zs+allz+a21+03:0

has imaginary roots. In this case, f(4, £)=0 has imaginary roots for £=0.
Next we look into the case where

24+b,A+b,=0
has imaginary roots, or equivalently, the case where
A24+-b,A+b,>0 for all é€R.
Let us plot the graph of f(4, £)=0 by the form

_ A+al+adtas
A2+biA+b,

E:

From Fig. 4, it is clear that f(4, £)=0 has only one real simple root and a pair of

Fig. 3. Fig. 4.
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complex conjugate ones for & near + oo,
We now go on to the case where both

13+0122+azz+03:0

and
b022+b12+b2:0

has only real roots (a;<a,<a, and B,=B.). We will plot the graph of f(4, £)=0 again
by solving it with respect to & For simplicity, we consider here only typical cases.

Let us look into the case a,<f:<a,<B.<as. From Fig. 5, it is clear that f(2, &)
=0 has only real roots for any £ R.

Let us now consider the case B,<a;<a,<f.<a;. From Fig. 6, it follows that
f(4, £)=0 has only one real simple root and a pair of complex conjugate ones for &
near oo,

Proceeding in this way, we can complete the proof. O

Let us go back to our original problem to classify non-diagonalizable 33 matrix
families with only real eigenvalues. By a change of basis, we may assume A, is a
non-diagonalizable matrix with only real eigenvalues. By the addition of a scalar
multiple of identity and by a similar tranformation, we may further assume A4, is
equal to either

Fig. 5. Fig. 6.
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or

S O !
o O O
S = O

where a+#0 is a certain real. In addition, by the similarity tranformation with

~

I
O O
oS = O
Q O O

the third matrix becomes a scalar multiple of

S O =
o O O
S = O

In short, we may restrict ourselves to consider such matrix families <{A,, A;, -, An)
where

or

A1:0 O
00

holds. We shall consider each case separately in the sequel.

4. Families with triple eigenvalues

In this section, we consider matrix families, say, (A, A, -+, A,> with
010 010
A=[0 0 0| or [0 O 1
000 000

Let us begin with the first case.

Lemma 4.1. Suppose that the matrix family {A,, A,, -+, An)> with
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has only real eigenvalues. Then either of the following holds.
a) The (2, 1)- and (3, 1)-entries of all A; simultaneously vanish.
b) The (2, 1)- and (2, 3)-eniries of all A; simultaneously vanish.

Proof. Let
bll blZ b13
B= b21 bzz bza
b31 b32 b38
be an arbitrary linear combination of A,, A, ---, A,. Let us first show
(4~1) b21:0, bzabm:o.

Because £A,+B has only real eigenvalues with all £ R, we can apply Lemma 3.47to
the characteristic equation

det(¢A,+B—A1)=0,
det(B—AD4-£{bay(A—bss)+basbsi } =0.

In this way, we must have (4.1).
From the fact that (4.1) holds for any linear combination of A,, A,, -+, A, follows
the claim of the present lemma. [

From the last lemma, we obtain the following proposition.

Proposition 4.2. Suppose that the matrix family (A, A, -, An)> satisfying

has only real eigenvalues. Then the family {Ai, A, -, Ay) is equivalent to a subfamily
of (3.1), (3.1), (3.2) or (3.2"). '

Proof. We can apply the preceding Lemma 4.1. When a) of Lemma 4.1 occurs,
the conclusion follows directly from Lemma 3.1. When b) of Lemma 4.1 occurs, we
use the similarity transformation with

~

I
o = O
o o -
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to (A,, A, -+, A,>. Then Lemma 3.1 becomes applicable again and we obtain the
conclusion. [

Let us now consider another type of matrix families with triple eigenvalues.

Lemma 4.3. Suppose that the matrix family (A, B) spanned by

0 1 0 bll b12 bl~3 s
A: 0 0 1 y B: bzl bzz bza 9&0
00 0 byt byy bys

has only real eigenvalues. Then either of the following a), b) holds.
a) by=bs=b3=0.
b) bu=0, by=—bs+0 b11==by;.

Proof. Let us consider under what condition €4+ B has only real eigenvalue with
any é=R. So we can apply Lemma 3.3 and Lemma 3.4 successively to the character-
istic equation :

det(éA+B—21)=0,
det(B—2I)4-&{bsy(A—bss)+b3s(A—b11)+bs1(b1z+bas)} +bs1E7=0.

Therefore we have
by =0,
bo1+b3=0,
—ba1bss—basb11+bsi(bia+b23)=0
which are equivalent to
b5:=0, byp=—bs1, ba(bi1—bs)=0,

From this, the conclusion directly follows. [J

Let us investigate the case where

A|=

S O O
S O =
S = O

Lemma 4.4. Suppose that {A,, A, -+, An> with

A1:

[==Ra e i -
S O =
(=3 =
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has only real eigenvalues. Suppose also that at least one of A, -+, A, is not upper-
triangular. Then each A; (i=2, ---, n) satisfies

a) [Ai]a=0,
b) [Aile=—[Ailu,
¢) [Adu=[Ails
where [Ai]w; denotes the (k, l)-entry of A.

Proof. Without loss of generality, we may assume A, is not upper-triagular.
Then, choosing ¢>0 small enough, none of

Aeteds (23)

is upper-triangular. Notice that <(A,, A,), (A,, A.,+¢eA;> (:=3) have only real eigen-
values as subfamilies of <(A4,, A,, ---, A,>. From this fact and the above Lemma 4.3,
we obtain

[A.]:=0,
4.2) [A:]se+[A:]2=0,

[Az]u_ [A2:|33=0
and

[As+eAda=[A:Ju+e[A:]u=0,
4.3) [AzteAiden+[As+ediln=[4:]ut[A:]n
+e([Ailse+[A:e1)=0,
[AeteAi]n—[AeteAiden=[A:]11—[As]ss
+e([A:Ju—[Ailee)=0
for :=3. Subtracting (4.2) from (4.3), we have
[Ai]u=0,
[Aidse+[Aila=0,
[A:diu—[A:]s=0
for 7=3. These and (4.2) are the desired equalities. [

From this lemma and by a certain change of basis, we may assume
[Az]u:—‘ly [Azjsz-_—"l,

[Ad=[A:ls=0 (=3)
and
[A]a=0, [A:d»s=0 (=2),

[Aidu=[Aids (22).

By an appropriate addition of scalar multiples of identity, the last equality becomes
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995

Proposition 4.5. The matrix family {A,, A:> spanned by

010 0 a;as
A|: 0 0 1 y A2= —1 a; 0
0 00 0 10

has only real eigenualues if and only if there exist three reals, a\<a,<a; such that
a,=a;t+a+as,
Q=010+ Q205+ asa

A3=—— Q1003 .

Proof. Since A, has only real eigenvalues, it suffices to obtain the condition for

&A,+ A, to have only real eigenvalues for all £ R. And the characteristic equation
of £A,+ A, turns out to be

det(¢A,+ A,—21)=0,
— 24+ a,l2—a,A—a,=0.
Denoting by ai, a,, a; the three roots of this characteristic equation, we have
a,=a;t+ast+as,
a=a,a+aa3+asa;,

A3——A1AA3.
Thus the conclusion immediately follows. [

By the last lemma, we can specify A, of the matrix family <{A;, A,, A;> spanned
by three matrices.

Proposition 4.6. Suppose that the matrix family {(A,, A, As) is spanned by

10
0 )
0

[0
Alz O 1
_0 0

0 aiataastasa; —aaza;

A2= "‘1 a1+a2+a3 0 ,
0 1 0
[0 b, b,

A3= 0 bo O

000
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where a,Sa,Za, b, by, b, ave veal constants.  Then (A,, A, As> has only real eigenvalues
if and only if
by#0

and there exist two reals B,<f, such that

a1§ﬂ1§dz§ﬁz§a3:
bxzbo(ﬂl‘l'ﬁz),
b2="‘bo,8v1,82 .

Proof. Since any linear combination of A, and A, has only real eigenvalues, it
suffices to investigate the condition for

§A+As+ A,
to have only real eigenvalues for all & n=R. Calculating the characteristic equation,
det(€A;+ A+ A;— D=0,
—(A—a ) A—a X A—ay)+ (b A2 — b, A—b3)=0.
Regarding 7 as a parameter, Lemma 3.4 and Lemma 3.5 are applicable. And we have
bo#0,
b =bo(f:1+B:),
by=—0,f3:8-

where B,, 8: are two roots of
bozz_bll_bzzo.

Thus the conclusion immediately follows. O

Remark. Plotting a graph of det(A,+7A;—A)=0 on 2, p-plane, we see easily
that the middle eigenvalue of A,+7A, is equal to (8,+p:)/2 for some nER.

Let us also consider the matrix families spanned by four or more matrices.

Proposition 4.7. Suppose that a nondegenerate 3X3 matrix family {A,, As, -+, Az>
(n=4) with

0
A= 0
0

has only real eigenvalues. Then (A, A,, -+, An> is equivalent to a subfamily of (3.1),
(3.1"), (3.2) or (3.2)).

Proof. Assume the contrary. Note that we may also assume
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[0 awataastaa; —aiaa
A,=| —1 ataztas 0 ,
0 1 0

[0 BitB. —Bi
As=| 0 1 0
0 0 0

where a;, a,, a;, Bi, B, are real. (See Propositions 4.5 and 4.6). By a change of basis,
we may further assume

0 ¢ ¢
A= 0 0 0 |#0.
000

However <A;, As, A)CT{A:, A, -+, An> cannot have only real eigenvalues from Propo-
sition 4.6. We are thus led to a contradiction. [

Before concluding this section, we write down another fact that the above matrix
families are completely of different nature from (3.1), (3.1"), (3.2) and (3.2).

Proposition 4.8. Let

010
A=0 0 1],
0 00
i 0 aiatasastasa, —aa.a;
A= —1 a;ta,+as 0 ,

0 1 0

[0 Bi4+B. —BiB:
A3: 0 1 O
0 0 0

Then neither {A,, As> nor {Ai, A, As)> is equivalent to any subfamily of (3.1), (3.1'),
(3.2) or (3.2').

Proof. It suffices to consider the case of (A,, A,>. As is easily verified, there
are no common eigenvectors for A, and A,. Therefore Lemma 3.2 is applicable and
the conclusion follows. []

5. Families with double eigenvalues

Throughout this section, we consider the matrix families which contain
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S O =
S O O
O = O

and have only real eigenvalues. We denote this specific matrix by
A, or A

until the end of this section. Since we have fully discussed the families with triple
eigenvalues in the previous section, we chiefly consider families with at most double
eigenvalues.

Lemma 5.1. Suppose that a nondegenerate matrix family (A, A, -, A (n=2)
satisfies

S O O
=

and has only real eigenvalues. Then for any B=(b;;)€<{A,, ---, Arn)>, we have

b3 =0
and the quadratic equation
(Z—bzexz—bas)‘l‘bxzbuzo
has only real roots.

Proof. Let B=(b;;)e{A,, -+, A,> be arbitrary. Then the characteristic equation
for £A,+B turns out to be

det(—A+£A,+B)=0,
det(—AI+ B)+&{—bas(b11+b23)+(A—b2a X A—bas)+-b1abar } — b2 =0.

(5.1)

Applying Lemma 3.3, we have
b32=0.
Hence, from Lemma 3.5, we see

(Z—bzle—b33)+blzbax=0
has only real roots. Q.E.D. 0O
Lemma 5.2. Let the assumptions be the same as in Lemma 5.1. Then either of
the following 1), 2) holds.

1) <A, A, -, An)> is equivalent to a subfamily of (3.1), (3.1"), (3.2) or (3.2').
2) There exists B=(b;;)E{A;, -++, An)> such that

blzbu;éo .

And in the case 2), {A,, A, -, A, cannot be equivalent to any subfamily of (3.1),
(3.1"), (3.2) or (3.2').
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Proof. Let us begin by proving that 1) occurs if 2) does not. So let us assume
bbb =0  for all (bi)e(A,, -+, And.
This condition means either

b12=0 for all (bij)E<A2: Sty An>
or .
bm:O f0r a“ (b{])E(Ag, ey, 44n>.

From Lemma 5.1, we have
bs,=0 for all (btj)

in both cases. In the first case where
b1s=b3=0 for all (by)e<As, -+, And,

the similarity transformation with

010
T=|10 0
001

reduces <A,, A,, -+, A, to a subfamily of (3.1) or (3.2). In the second case where
b31=b32=0 for all (btj)E(Az, ceey An>,

the similarity transformation with

T=

—_ o O
S = O

1
0
0

reduces the matrix family to a subfamily of (3.1) or (3.2").
Let us now prove that if
biobs#0
for some
B=(bi)e<{A;, As -+, An)

then this matrix family is not equivalent to any subfamily of (3.1), (3.1’), (3.2) or
(3.2"). By Lemma 3.2, it suffices to show no (left or right) eigenvector of A, coincides
with any of B. This can be done by a straightforward caculation. Now the proof is
complete. [

Let us rewrite Lemma 3.5 in more convenient forms.
Lemma 5.3. Given a matrix family (A, B) spanned by

100 bu bis bys
A: 0 0 1 A B= bzl bzz bza
0 0 0 b81 b82‘ b33
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where
bazzo.

Let the polynomials c¢(2) and q(A) be as
c(A)=det(—Al+B),
g(A)=(A—b22XA—Dbs3)4b1sbs1.

Suppose that the quadratic equation
g(2)=0

has real distinct roots B1<B.. Then the following three conditions are equivalent.
1) The matrix family <A, B> has only real eigenvalues at most double.
2) The matrix family {A, B) has only real eigenvalues.
3) C(,Bl)§0, C(ﬁz)go-

Proof. 1)=2) is clear. Let us prove 2)=3). In this case, Lemma 3.5 is applicable
for the characteristic equation of £A+B:

det(—AI+£A+B)=0,

c(A)+Eq(4)=0.
Thus we obtain
c(A)=0

has three real roots a;<a,<a; satisfying
a1 =g Sa,<B.<as.

From this, ¢(A)=—(A—a ;XA—a,)A—as) and
c(B=—(Bi—a:fBr—a:Xfr1—as)=0,
c(B)=—(Bo—ar)Bo—aXBe—a:)20.

Let us now show 3)=1). For this purpose, we need only plot the graph of

det(—AI+§A+B)=c()+£9(A)=0

just -as in the proof of Lemma 3.5. Note that A itself has clearly .only real eigenvalues
at most double. [0

Lemma 5.4. Given a matrix family <A, B) spanned by

10 0} by bis by
A=|0 0 1|, B=| by by by
0 00 | b31 bss bsg |
where
ba=0.

Let the polynomials c(2) and g(R) be as



Non-diagonalizable hyperbolic systems 1001

c(A)=det(—Ail+B),
G(A)=(A—b22 X A—bs3)+b12bs; .

Suppose that the quadratic equation
q()=0

has a real repeated root B. Then (A, B) has only real eigenvalues at most double if
and only if
c(B)=0, ¢'(B)>0.
Proof. We begin with the necessity. We can apply Lemma 3.5 to

det(—AI+£A+B)=c(A)+&q(2)=0.
Thus we know
¢(2)=0

has three real roots a,<a,<as; with a,=f because
a,Spz=a,sf<as.
We also have a,<f<a; because otherwise (a;=8 or a;=p3)
c(A)+E9()=0

would have triple roots for some £ R as an easy calculation shows. From these, we
obtain

c(A)=—(A—a;X(A—BYi—as).
Therefore

«(B)=0,

¢'(B)=—(B—a:XB—as)>0.
As for the sufficiency, we need only plot the graph of ¢(2)+£&¢(2)=0 as usual. O

From the above Lemma 5.2, we may assume [A,];,[A;]s#0 in the sequel. Let
us now reduce A,.

Lemma 5.5. Suppose that a nondegenerate family {A,, A,, -+, A (n=2) satisfies

100
) A=/00 1]

000
2) [Ads=0 for all =2, -, n,
3) [Ad12#0, [AJs#0.

Then there exists a similarity transformation with nonsingular T of the form

(k: a certain real)

~

Il
S O =
S = O
- o o
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such that
1 00
T''AT=A=/0 0 1],
0 00

[T 'A,T1is _T7AT]n
[TAT]. [T'AT1s

Proof. We put
by bye bys
As=B=| byy by by,
b3l bSZ b83
From the assumptions,
b12#0, bg#0.

So we can find two numbers c¢,, ¢, such that
bis=b1(c,—¢s),

ba1=bsy(c14c2).
Then

1 00
T={01 ¢
001
is the desired matrix. O

Let us investigate families spanned by two matrices.

Proposition 5.6. A given nondegenerate matrix family {A,, A,> with

has only real eigenvalues at most double if and only if it is equivalent to either

100 7 a+1l (a+1)B
Do 01|18 e 0o D
00O a—1 0 —a
where
lal#1, (@®—1)28+1)=0, [r|=128+1]
or
100][01 B
2) 00 1L,{p1 0D
000 1 0 —1
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where
28+1>0
or

3) a subfamily of (3.1), (3.1), (3.2) or (3.2").

Proof. From Lemma 5.1, 5.2 and 5.5, we may assume A, is as follows:

T a; axB
(5.2) . A2: a|‘8 [44 1)
a, 0 —a

where a,#0, a,#0. Again from Lemma 5.1, the quadratic equation
(5.3) (A—a)Xit+a)+aia,=0,
A—a’4a,a,=0

has only real roots, that is, real distinct roots or a real repeated root. In the former
situation, replacing A, by its appropriate scalar multiple, we may assume these roots
are +1. So we obtain from (5.3),

a,a;=(a—1Xa+1).

Now applying a similarity transformation with T of the form

k00
T={ 01 0 (k#0),
001
a,;#+0 and a,#0 become
(5.4) a,=a—1, a,=a+l.

On the other hand, in the situation where (5.3) has a repeated root,

a1a2=az.

So replacing A, by its appropriate scalar multiple, we may assume a=1 (recall a,+0,
a,#0 mean a+#0). Now applying a similarity transformation with T of the form

k0 0
T=| 01 0 (k0),
001
a,#0, a,#0 become to a=1:
(5.5) a;=a,=a=1.

So we may assume either (5.4) with a==+1 or (5.5) for the matrix (5.2). We may
also assume

0=0
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in (5.2) after using a change of basis of <A,, A,>.

Let us first consider the case (5.4) with a#+1. Then we can apply Lemma 5.3
to (A,, A,> and we obtain

(@®—1)—r+28+1)=0,
(@*~1X—7r—28—-1)<0.
Combining these, we have
—(a*—1)X2B+1)=(a*—1)r <(a®*~1X28+1).

From this, we obtain the first of the desired families.
Let us now consider the case (5.5). In this case, Lemma 5.4 is applicable. Thus
we obtain
r=0, 28+1>0.
The proof is completed. [

Let us now investigate families spanned by three matrices. For this purpose, we
prepare some lemmas.

Lemma 5.7. Suppose that a matrix family <A, B) is spanned by

1 00 g B p
A=0 0 1|,B=|v 0 =
000 B v O

where 8, p, v, g, T, v are real constants. Suppose also that {A, B> has only real eigen-
values. Then —a A+B has zero as a triple eigenvalue.

Proof. From Lemma 5.1, we see

2+62=0
has only real eigenvalues. This implies
B=0.
Again from Lemma 5.1, we also have
v=0.

Now it is easy to show —gA+B has zero as a triple eigenvalue. 0O
We can specify our matrix families by the following lemma.

Lemma 5.8. Suppose that a nondegenerate matrix family {A,, A. A with
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has only real eigenvalues at most double. Suppose also that it is not equivalent to any sub-
family of (3.1), (3.17), (3.2) or (3.2"). Then {Ai, A,, As> is equivalent to a family of the
form

1 00 p 1 —a g B p
g0 01| « 0 0 L,|v 1 0 p
0 00| -10 0 g 0o —1

where a, B, p#, v, p, ¢ are real constants satisfying
0=B<l1.
Remark. Without loss of generality, we may put
p=r+0, v=r—o.
And the calculation below becomes easier if we further put
r=r'"—ap.

Proof. By adding approriate scalar multiple of identity to A, and A;, we may
assume

(5.6) [Nz2e+[N]ss=0

for any Ned(A,, A,, A;>. Using a change of basis, we may further assume
(5.7 [A:]ee=[A:]5:=0

and

I:Aa:lzz:_[A:;]ss:#O or =0.

On the other hand, from the assumption that <{A,, A,, 4;> is not equivalent to any
subfamily of (3.1), (3.1’), (3.2) or (3.2"), and from Lemma 5.2, there is a member of
(A, A,, A;> whose (1, 2)- and (3, 1)-entries do not vanish. We denote one of such
matrices by

My Mz My
(5.8) M=| ma; My Mg (M1, My 70, Myg=—n32).

Mgy Ms3e Mag

Fixing 7 arbitrarily, the matrix family
CAy At My (CLA,, Ay A)
has only real eigenvalues. Applying Lemma 5.1 to this family, we know
B—ma® +(nL A e+ M) L Aedsr+ma)=0
has only real roots. So

—"m222+(7}[Az'.] 12+ )Y Az]er+ms1) <0
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where my,#0, m;,#0 (see (5.8)). Because the last inequality holds for an arbitarily
fixed n€ R, we obtain
[A2]12[A2]31<0
or
[A2112=[A2:|31=0-

However, the second case cannot occur because of (5.7) and Lemma 5.7. So multiplying
A, by a scalar and then using a similarity transformation with T of the form

R 00
T={ 0 1 0 (k#0),
001
we have
(5-9) [A2]12=1 y [A2]31= —1.
Then using Lemma 5.5, we may further assume
(5.10) I:Az]m:—a y [A2]21=a
for some real «. From Lemma 5.1,
(5.11) [A;]5.=0.
Replacing A, by A,+cA; with appropriate ¢, we may also have
(5.12) [A2]23=0.
From (5.7), (56.9), (5.10), (5.11) and (5.12), we may specify A, as

o 1 —a
(5.13) A= a« 0 0
-1 0 0

where a, p are real constants.
Let us now consider A;. Replacing A; by As+c,A+c.A, with appropriate ¢, and
¢,, W€ may assume

(5.14) [As]ie=[As]s1, [As]3=0.

From Lemma 5.1, we also have

(5.15) [A]:.=0.

From (5.14) and (5.15) and from (5.6) which holds also for A;, we may specify A, as

o B p
A3= v 0 0
B 0 —40

Here 60 holds because §=0 would imply that —o A,;+As; must have a triple eigen-
value by virtue of Lemma 5.7. So multiplying A, by a scalar, § becomes 1:
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o B
A= v 1 0
B 0 —1
We may assume
B8=0

in the last matrix because otherwise we need only consider
(T *A,T, T'A,T, T'A.T>
with
-1 0 0
T=| 0 1 0
0 01
Finally, applying Lemma 5.1 to this (A4,, 4;>, we see
2+p—1=0
has real roots where §=0. This implies
0<p<1.

We have thus completed the proof. [J

In order to investigate the matrix family indicated in the preceding Lemma 5.8,
the next lemma is also a convenient tool.

Lemma 5.9. Let

1 00 o 1 —a g B r—o
A=0 0 1|,A4A:= &« 0 0 |, Ay=|7r+61 O
0 0 0 -1 0 0 B 0 —1

where a, B, 1, 8, p, 6 are real constants satisfying
0<B<1.

Then <A, A,, Asy has only real eigenvalues at most double if and only if any
(A1, A+ A with arbitrarily fixed <R has the same property.

Proof. The necessity is clear. For the proof of the sufficiency, it is enough to

prove
§A+A.

with any §= R has only real eigenvalues at most double. From the assumption.
1
$A1+;7‘(7)A2+A3)

has only real eigenvalues for any y=R. Taking p—o, we see that
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EA+As

has only real eigenvalues. The multiplicity of its eigenvalues turns out to be at most
double by virtue of Lemma 5.3. Q.E.D. O

Let us split the case into 0<B<1 and B=I1. Here B is the one in A, of our
matrix family <A,, A,, A;> mentioned in Lemma 5.9.

Lemma 5.10. Lot

100 p 1 —a g B r—o
A=|0 0 1|, A= «a 0 0 | A=7+61 0
0 0 0 -1 0 0 B 0 —1
where
0=B<1.

Then {Ai, A,, As) has only real eigenvalues at most double if and only if
P(m)=(n*— B+ {(2a—1)n*+20n+B*+2p7}*

—{(p*—B*Xen+o)+2AaB+r)n+2p0}*=0
and

QUM=C2a—1)n*+20n+p*+2p7=0
hold for any neR.

Proof. From Lemma 5.9, it suffices to consider the condition where {A4;, pA,+ A3
has only real eigenvalues at most double. Now Lemma 5.3 is applicable because in
the present situation,

g (D=2 41,

e (D=det(—AI+n A+ A;)

and the quadratic equation ¢,(2)=0 has real distinct roots =+(7°—pf%+1)"* because of
0<pB<1. So we obtain the condition:

cy((n°—B*+1)"")=0
co(—(p*—B*+1)"*)<0
hold for any aribtrarily fixed = R. These inequalities are;, in turn, equivalent to
P(p)=—cy((n* =B +1)"")c,(—(n°*—p*+1)*)20,

c(p* =B+ 1)) —c (—(p*—B°+1)"?) >0
(772_‘32+1)1/z =Y.

Here P(7) is the polynomial of sixth order and Q(%) is the quadratic polynomial. They
are what we have been looking for. [

Qn)=

We can consider the case =1 similarly.
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Lemma 5.11. Let

100 e 1 —a g 1 r—0
A=[0 0 1| A= a 0 0 || A={7+061 0
000 -1 0 0 1 0 —1

Let also
c(A)=det(—2A+9A,+ As).

Then {Ai, As, As> has only real eigenvalues at most double if and only if
¢ (M=0, cy(—m)=0  for any >0,

¢, (M=0, ¢, (—n)=0  for any <0,
and
¢(0)>0.

Proof. From Lemma 5.9, it suffices to consider the condition where {A,, 4.+ 4>
has only real eigenvalues at most double.
If 0, Lemma 5.3 is applicable because in the present situation,

g (D=2—7",
cy()=det(— A+ As+As)

and the quadratic equation ¢,(4)=0 has real distinct roots +|n|. So we obtain the
condition :

¢y(1n1)=0

cy(—171)=0
for any 7=+0.
If =0, Lemma 5.4 is applicable because the quadratic equation ¢«(4)=0 has zero
as a repeated root. So we have
c(0)>0.
The proof is complete. [

Let us first settle down the case §=1 by using Lemma 5.11 just obtained.

Proposition 5.12. Let the assumptions be the same as in Lemma 5.11. Then
(A Asy As> has only real eigenvalues at most double if and only if it is equivalent to

1 00 2a—1 1 —a 20 1 y—6
0 0 1] a 0 0 {74+ 1 0 D
000 -1 0 0 1 0 -1
where
2a—12=0,

2r+1>0,
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0*°<(a—1)2r+1).

Proof. In this case, we obtain

(5.16) c(m)=(p+2a—1)n°+(0+20)p*+(—p+2a+4r+1)n—(0 —20)
(5.17) c(—m=(*—Di(p —2a+1)n+0—25}
(5.18) ci(0)=27+1

Because ¢(0):>0 (see Lemma 5.11), we have
(5.19) 2r+1>0.
From (5.17) and the property of ¢,(—7) mentioned in Lemma 5.11, we also have
(5.20) p—2a+1=0, ¢—206=0.
Substituting p=2a—1, ¢=20 in (5.16),
¢(m)=2n{(2a—1)n"+209+2r+1}.
From the property of ¢,(7) (see Lemma 5.11), we have
(5.21) 20—120, 0°<(2a—1)2r+1).
Combining (5.19), (5.20) and (5.21), we obtain the conclusion. [

Let us now settle down the case §=0.

Proposition 5.13. Let

100 o 1 —a g 0 790
A1: 0 0 1 y A2= a 0 0 ’ AS': T+5 1 0
0 00 -1 0 0 0 0 —1

Then (A,, A,, Asy has only real eigenvalues at most double if and only if it is equivalent
to

1 00 o 1 —a g 0 O
o001}, a 0 O /O 1 0 P
000 -1 0 0 0 0 —1
where
2a—12=0,

o+ 0o?<(2a—1)".
Proof We can apply Lemma 5.10 with 8=0 and we have
(5.22) P(p)=n"(p*+1){2a—1)n+26}*—n*{n(pn+a)+27}°=0,
(5.23) Q(n)=Qa—1)p*+209=0

for any n=R. Because (5.23) holds for any 7, we must have
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(5.24) 2a—120,
(5.25) 0=0.
Substituting 6=0 in (5.22), we see

P()=Q2a—17n"(n*+1)—n*{n(pn+0)+2r}*=0

holds for any 5. But this is untrue for small 7 if y#0. So we must have
(5.26) r=0
and

P(m=n"{Ra—1Y(n"+1)—(on+0)} 20

for any 5. Considering the discriminant of the quadratic polynomial in the brackets,
we obtain

(5.27) o*+o’<(2a—1)>.
Combining (5.24), (5.25), (5.26) and (5.27), we obtain the conclusion. O

Now let us work on the case 0<8<1.

Lemma 5.14. Suppose that the matrix family (A, A, As) spanned by

10 0] o 1 —a g B 10
A=[0 0 1A= a 0 0 || A= 71461 0
000 —-10 0 g 0 —1
where
0<p<1

has only real eigenvalues at most double. Then one of the following 1), 2), 3), 4) holds.

a 1

1) p=0f"%rﬁ+aﬂ+ﬁ H o:(ﬂ+%ﬁ.
9 d=aBtr, o=2ap+2a-+287—Bo—1.

3) 0=—aB—1, o=—2ap"—2a—287+Bp+1.
4) r=—aB, 8=0.

Proof. All we have to do is to sharpen Lemma 5.10. By a straightforward

calculation, we know P(%) is divisible by »*—p% So there exists a polynomial 13(77)
of fourth order such that

P(p)=(*—BP(p).
Because P(%)=0 for all =R, ﬁ(r;) must also be divisible by (3*—f8?), that is,
P(g)=P(—B)=0

must hold. These equalities turns out to be
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P(B)=4(r+0+ap)l-—po—Po+(B*—1)r+(B*+1)+ap+af—B} =0,
P(—B)y=4(r—6+ap){— o+ Bo+(B— 1y —(B*+1)d+ap*+aB— B} =0.

Hence we obtain 1) of the present lemma from

—B*o—Bo+(B*—L)r+(B*+1)0+ap+af—B=0

and
—B*o+Ba+(B—r—(B*+1)5+ap+af—p=0,
2) from
—Bo—Ba+(B—L)r+(B*+1)Y0+af*+af—B=0
and
r—0+ap=0,
3) from
7+0+af=0
and

—Bo+Bo+(B-r—(B*+1)0+af’+af—p=0,
finally 4) from
7+0+af=0 and r—d+af=0.

Thus the proof is complete. [
Let us consider 1), 2), 3), 4) of Lemma 5.14 separately.

Lemma 5.15. Let the matrices A,, A, A, be as

1 00 o 1 —a o B r—0o
A= 0 0 1| A= a 0 0 || A=74+0 1 0
0 00 -1 0 0 g 0 —1
where
0<p<l
and

a

p:(l»—%)?’-i—aﬁ-i—ﬁ-‘%y a=(ﬂ+%)5~

Then (A,, A,, As> has only real eigenvalues at most double if and only if

2a—1=0,
~aptap—p _ _ af'+af—
S
s 1B —apf’+aBf—B af’+af—p
o é_ﬁz_{T' 1+8 Hor+ 1-8 2

Proof. Substituting the given p, ¢ in P(y) of Lemma 5.10, we have

P(p)z%ﬁ(nz—ﬁz)zﬁ(n)zo
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or equivalently

(5.28) P(n)=0
where
P(p=1—p")r— _aﬁli‘;ﬁ_ﬁ H-r+ aﬂzifg_ﬂ b

+2B0{(B*+1)r+af—af+B}y
+B8{—1—p%)0*+(B+2r7}.
We also have (see Lemma 5.10)
(5.29) Q(M=2a—1)n"+20n+p(B+2r)=0.
The discriminants of (%) and Q(7) are

Dp=4FYB+277 |57 1;432 {r- _“ﬁi:j;ﬁ—ﬁ Her+ aﬂszg_ﬂ H.

Do=410*—pa—1X2r+p)} .

Note that the following inequality holds between the expressions inside the brackets
of the discriminants.

O = B

=ﬁ<2a—1x2r+ﬁ>—1—gfi<r—aﬂ+ﬁ>2

<B2a—1)2r+8).

Recall that P(n) is always nonnegative if and only if it is either a nonnegative
constant or has a nonpositive discriminant and a positive coefficient for the quadratic
term. The same holds also for Q(»). Using these, we obtain the required result. [

The cases 2), 3),4) of Lemma 5.14 can be reduced to special subcases of 1) as
follows.

Lemma 5.16. Suppose that the matrix family {A,, A, As> is spanned by

1 00 p 1 —a g B r—0o
A=]0 0 1 A= a 0 0 [As=|74+01 0
0 0O -1 0 O B 0 —1
where .
0<p<1,
o=af+7,

g=2ap*+2a+28r—Bp—1.
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Suppose also that {A,, A,, As> has only real eigenvalues at most double.

p=(1—%)r+aﬁ+%—%, a:(ﬁ+%)5
are satisfied.

Proof. Substituting
o=af+r, o=2af*+2a+28r—Bp—1
in P(y) in Lemma 5.10, we obtain

P(p)=(9"—B*’P(1)20
or equivalently
P(9)=0
where
P(np)={—p*+Q2a—10}n*+2p—2aB—27XBp—2a+1)y
=B o—2aB—2r)—2B+2rXp—2af—27)
—(B+2r).

Similarly, we have also
QUM=C2a—1)n*+2r+ap)n+p2r+p)=0.
The discriminants of P(y) and Q(7) are
Dp=A(p—2a8+B){—p*+QRa—17+(0—2r —2aB)},
Do=4(r—aB+BY.

Because Ds<0, we get either
p=2a—1)p
or
o=+Qa—1)=2af+2r.

Here we have used the fact that the coefficient of »* of P(y), i.e.,
—0°+Q2a—1Y

is nonnegative. Furthermore, because Dy<0, we get also
r=(a—1)8.

From these and the nonnegativity of ]3(77), we obtain

1

az—,
=2

0<p<l, r=(a—1)B8, p=Q2a—1)B

and hence
0=2a—1)B, o=Q2a—-1)XF>+1).

Now, it is easy to verify

Then
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o=(1- ﬁz)r+ ﬁ+ﬁ ﬁ a=(ﬁ+%)5

are satisfied. J

Lemma 5.17. Suppose that the matrix family {A,, A, As) is spanned by

100 o 1 —a g B r—o
A=|0 0 1 A= a 0 0 [A=74+01 O
000 -1 0 0 B 0 —1
where
0<p<l,
b=—(ap+1),

=—(2af*+2a+2p7—Bo—1).
Suppose also that {Ai, A, As) has only real eigenvalues at most double. Then

o=(1- 5 )7’+aﬁ+ﬁ 7 o=(13+%)5

are satisfied.

Proof. Substituting
o=—(aB+7), 0=—2af*+2a+28r—Bpo—1)

in P(y) in Lemma 5.10, we obtain

P(n)=(n*— B2 P(1)=0
or equivalently
P(9)=0

where
P(p={—p*+Ca—10} 9’ —2p—2aB—2rXBp—2a+1)y

— B0 —{4(1—p*)r—4aB’+28}p

+4(1—Br*+8af(1—B%)r—p*(4a’*f*—4a+1).
Similarly, we have also

Qn)=(2a—1)n*—~2Ar+apy+p2r+p)z0.

Furthermore P(—n) and Q(—m) turn out to be 13(77) and Q(x) in the proof of Lemma
5.16. So the same calculation is valid and we have

az~, 0<B<Ll, r=(a—-1)B, p=(2a—1)B

Do =

and hence
0=—QQa—1)B, oc=—QCa—1)B*+1).

Now, it is easy to verify
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o=(1— ‘;)+aﬁ+ﬁ 5 a=(ﬂ+%)5

are satisfied. [

Lemma 5.18. Suppose that the matrix family <A, A, As) is spanned by

100 e 1 —a o B r—9o
A=0 0 1 ,A4= a 0 0 |,4A=7461 0
000 -1 0 0 B 0 -1
where
0<p<1,
r=—af, 0=0.

Suppose also that {A;, As, As)> has only real eigenvalues at most double. Then

o=(1— ﬁz)r+ ﬂ+ﬂ ﬁ az(ﬂ—l—%)ﬁ

are satisfied.

Proof. Substituting
r=—afB, 0=0

in P(y) in Lemma 5.10, we obtain

P(n)=(n*—B*»P()=0
or equivalently

P(p)={—p*+2a—1Y}n*—200n—o*+(2a—1)¥(1—B%)=0.

We also have
Q(n)=(2a—1)7n*—p*=0.
Because Q(%)=0 (0<p<1), we get
dZE.
So the inequality P(»)=0 turns out to be

P(n)=—(pp+a)=0
and we must have

o=0=0.
Summing up, we have obtained (recall a—% r=—af and d=0)
1 1
a=3, 0<p<l, r=— 3,8, 0=0, p=0, ¢=0.

Therefore
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1
o=(1-4 )t Bty ﬁ o=(p+4)0
are satisfied. [0
Combining Lemma 5.14 to 5.18, we obtain the following Proposition.

Proposition 5.19. Let the matrices A, A, A; be as

1 00 o 1 —a g B r—o
A=|0 0 1A= a 0 0 [As=|7+01 O
0 00 -1 0 0 B 0 -1
where
0<B<1.
Then {A,, As, As) has only real eigenvalues at most double if and only if
2a—1=0,
—ap'+aB—B _ _ af*+af—B
1rg /=" 1-8
1-g —af’+aB—B 4 @ftaf—p
V=g {r- I+8 }’{ 1-B b
p:(l 5 )T+ '8+ﬁ 19
=(ﬁ+§)5.

Proof. We begin with the necessity. Applying Lemma 5.14, we know one of the
four mentioned cases 1), 2), 3), 4) occurs. However, by virtue of Lemma 5.16, 5.17,
5.18, the last three of these cases, 2), 3), 4) turn out to be special subcases of the first
case 1), that is,

o=(1- pz)H ﬁ"’,s ,9 “:(BJ“%)a'

Therefore Lemma 5.15 is always applicable and the proof of the necessity is complete.
The sufficiency is clear again from Lemma 5.15. [0

Let us now investigate families spanned by four or more matrices.

Proposition 5.20. Suppose that a nondegenerate matrix family <{A,, A, -+, An)
(n=4) with

1
A1= O
0

:LOOO

has only real eigenvalues. Then (A,, A, -+, An) is equivalent to a subfamily of (3.1),
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(3.17), (3.2) or (3.2").

Proof. By addition of scalar multiple of identity and by change of the basis, we
may assume

(5-30) [A2]22=[A2:|33=0,
(5.31) [As]ee=[A3]5=0
while

[Adee=—[AJss#0 or =0.
Let us show by contradiction that
[§As+nAslie=6[AoJie+ 79[ Al =0,
[§A2+7As]a=E[A:Js1+ [ As]u=0

for some (§, )= R*\{(0, 0)}. Assume the contrary. Then there would exist (& %)
such that

(5.32)

[EA2+77A3:|12=$[A2]12+7)[A3]12=1 ,
[§A,+ 77Aa]31:E[A2131+7][A3]s1=1 .

These equalities together with (5.30) and (5.31) leads to a contradiction, applying
Lemma 5.1 to <A,, §A.+7nAs.
Renaming &A4,+7A, satisfying (5.32) as A,, we may assume also

(5.33) I:Az]lz:[Az]M:O.
In addition, again from Lemma 5.1,
(5-34) [A2]s2=0~

Summing up, we may assume A, has the following form.

* *

Agz

S O O

* *
0 0

By addition of an appropriate scalar mulitple of A4,, A, may be further assumed to be as
*
0

This A, has zero as a triple eigenvalue and is similar to either

oS O O
S O =
o O O
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or

[ e i )
S O =
oS = O

In the first case, the claim follows from Proposition 4.2. And in the second case, the
claim follows from Proposition 4.7. Thus the proof is complete. [

6. Summary

Let us summarize all the facts proved in this paper. For convenience, we repro-
duce (3.1), (3.17), (3.2) and (3.2") as (6.1), ---, etc.

1 00][0o1 0][o0o 01 0

6.1) g0 0 0,0 0 0|0 0 0 R
_0 0 0_ _0 0 0_ 0 —1

6.1") transposition of (6.1),
1 00][0 1 0] 0 0

(6.2) 0 0 0110 0 0]} 0 0 >
100 0]|0 00|00 -1

6.27) transposition of (6.2).

First of all, combining Propositions 4.2, 4.7, 5.20, we obtain the following theorem.

Theorem 6.1. Suppose that a nondegenerate non-diagonalizable 3X3 matrix family
(A, A, -+, And> (n24) has only real eigenvalues. Then it is equivalent to a subfamily
of (6.1), (6.1"), (6.2) or (6.2").

Combining Propositions 4.2, 4.5, 4.6, we have the following theorem.

Theorem 6.2. Given a nondegenerate non-diagonalizable 3X3 matrix family with
only real eigenvalues. Suppose that one of its nonzero members has a triple eigenvalue.
Then it is equivalent to either

010 0 a,a,taa;+asa, —aaa;
o 0 1}]| -1 ataz+a, 0 >
0 0 0 0 1 0
with
al_S_azéas
or

0 aastaastasa; —aazas| | 0 Bi+B: —Bife
—1 a,ta+a; 0 ,| 0 1 0 >
0 1 0 0 0 0

2\
S O O
[
o = O
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with
al§ﬁ1$a2§192§aa

unless it is equivalent to a subfamily of (6.1), (6.17), (6.2) or (6.2').
Finally, combining Propositions 5.6, 5.12, 5.13, 5.19, we obtain the following theorem.

Theorem 6.3. Given a nondegenerate non-diagonalizable 3X3 matrix family with
only real eigenvalues. Suppose that each of its nonzero members has eigenvalues at most
double. Then it is equivalent to one of the following 1), 2), 3), 4), 5) unless it is equivalent
to a subfamily of (6.1), (6.1"), (6.2) or (6.2').

100 7 a+l (a+1)B
1) 0 0 1})]|(a—1)B a 0 >
0 00 a—1 0 —a

where
lal#1, (@®—1)2B8+1)=0, |7|=128+1]
are satisfied.

1 00 01 B
2) ¢ 0 1,1 0 p
000 1 0 —1
where
28+1>0
is satisfied.
1 00 20—1 1 —a 20 1 r—0
3) ¢ 0 1 a 0 0 ||74061 0 P
000 -1 0 0 1 0 -1
where
2a—1=0,
2r+1>0,
0°=(2a—1)X2r+1)
are satisfied.
1 00 p 1 —a g 0 O
4) ¢g0 01| « 0 O |01 0 P
0 0 —1 0 0 00 —1

where
2a—12=0,

o*+ 0 <(2a—1)
are satisfied.
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100 p 1 —a o B r—o
5 <001, a 0 0 L7460 0 P
000([=10 0 B 0 —1
where
2a—120,
0<B<l1,
—af'+ap—p _, _ ap'+ap—p
e e
oo 1B, —aB’t+aB—P , ap’+af—p
V= {r- T+8 Hor+ =5 b
1 a 1
P=<1—F)T+aﬁ+§—ﬁ,
1
a:(,s+§)a

are satisfied.

Thus we have listed up all the canonical forms of non-diagonalizable 3X3 matrix
families with only real eigenvalues.
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