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On theta series and the splitting of S,(Iy(q))

By

Ken-ichi SHIOTA*

Introduction

Let ¢ be a prime number, and ©@ be a maximal order in the (g, oo)-quaternion
algebra 9 over the rational number field @. The class number H of © is equal to
the dimension of the space M,(I'¢(g)) of modular forms on [',(qg) of weight 2, and
there is associated to ©, a system of theta series {9:}i<i.5sn In Mo(I"o(q)) (see §1).
Let W;=<9:;, s, -, $u;>c denote the C-linear span of the j-th column of {9i}ic jsm-

In 1935, E. Hecke [He] observed for small levels ¢ that:

O dimW;,=H for each 7,

and conjectured that (I) might be valid for any prime ¢. If (I) is true, we can of
course conclude that

In {9i5} 151,551 spans My(l74(g)).

As is well known, M. Eichler proved (II) by means of trace formula ([Eil]), and there
have been much development along this line. While Hecke’s original conjecture (I)
has its own significance—linear independence of some natural family of theta series,
it can not be true literally. Because, for some j, W; lies apriori in the (—1)-eigen-
space of the Atkin-Lehner involution, of which dimension is given by the type number
T of 9 (see Theorem 1.8). Thus arranging the numbering of columns properly, it is
naturally asked whether the following (I’) holds or not.

dimW ;=T for 1<;<2T—H;
(9]
dimW;,=H for 2T—H<j<H.

For this problem, A. Pizer [Pi3] made an algorithm to compute 9;;’s and a table
of them up to ¢=97. Examining Pizer's table, M. Ohta found a degeneration (i.e.
dimW,=dimW,=5<H) at ¢=67, where H=6 and T=4, which was the only one
known example (one, since W,=W, in fact).

It is worthwhile to study those degenerations of W,’s more extensively :

(i) if the degenerations occurs very rarely, it must characterize the prime ¢ in

some way ;
(ii) if the degeneration occurs rather commonly, it should be useful to get a
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splitting of M,(I"«(g)) (and the space of cusp forms S.(I"y(q))) as a Hecke
algebra module over Q.

Using Pizer’s algorithm with some modification (cf. §9), the author have computed
Y;’s up to ¢=997, and it turned out that the latter (ii) is the case. The purpose of
this paper is to report a few remarkable facts on such splittings of S.(I"«(g)) and some
new examples obtained in the way.

Denoting by S3(I"(g)) the (+1)-eigenspaces of the Atkin-Lehner involution, we
define the obedientness for an irreducible component (we call it a factor) of S.(I«(q))
as a @Q-rational Hecke algebra module:

(a) a factor F of S§(I"«(q)) is said to be obedient if FEW, for all 2T—H<j<H,

disobedient otherwise;

(b) a factor F of Sz(I'y(g)) is said to be obedient if FEW; for all 1<j<H,
disobedient otherwise.

That all factors in Sy(I"«(q)) are obedient is nothing but (I’), however, with this

terminology we can state the following facts holding for all our examples:

(0) For any disobedient factor F of S(I"(q)), there exist two indices j and % such
that W;=F&®W,.

(1) S#(I«(q)) has a 1-dimensional obedient factor if and only if SF(I"«(q)) itself is
1-dimensional.

(2) A l-dimensional factor of Sz(I"«(q)) is obedient if and only if the strong Weil
curve parametrized by it has a rational division point (see §6).

(3) A factor of Sz(I"y(q)) is obedient if and only if a common eigenform f of
all Hecke operators in it satisfies the congruence a(f, n)=a(E, n) mod! for
all n=1. Here a(f, n) denotes the n-th Fourier coefficient of f, E the
Eisenstein series, and [ a prime ideal in the field of Fourier coefficients of f
(see §7).

Also we found some interesting examples:

(4) For ¢=151, we have the relation & .= 10, Which gives a first (as far as
we know) example of a pair of mutally inequivalent quadratic form of rank
4 over Z, belonging to the same spinor genus, and associating to the same
theta series (see §4).

(5) For ¢=307, we have dimW,<T for all 1<7<2T7--H and dimW;<H for all
2T —H<j<H, i.e. the conjecture of Hecke is not true even in its weakest
form (see §5).

Acknowledgements. The author would like to express his sincere thanks to
Professors H. Hijikata, H. Yoshida and H. Saito for their valuable advice and encour-
agement, and to Professor K. Doi for turning his attention to this subject.

§1. Notations and preliminaries

Notation 1.1. For a field K and a positive integer 7, K™ denotes the set of all
column vectors of size n with entries in K. The j-th entry of x€K" is denoted by
x;. Similarly, the (i, )-th entry of a matrix x is denoted by =x.;. The transposed



Theta series 911

matrix of a matrix x is writen by ‘x. The identity matrix of size n is written by 1,.

Notation 1.2. Throughout the paper, ¢ denotes an odd prime number. Denote
by My (I"(q)) (resp. Si«I"«(q))) the space of all elliptic modular (resp. cusp) forms of

a b
weight 2 with respect to I’ 0(q):{( )ESL(Z, Z)iczO mod q}, and by M#(I"(q)) (resp.

c

0—1
Si(I(q))) its (+1)-eigenspaces under the Atkin-Lehner involution f—f ‘( 0 ) The
Fourier expansion of f& M, (q)) is written as q

f2)= 3 a(f, me(nz),

where e(z)=exp(2r+—1z) for z&C such that Im(z)>0.

Put 9t the set of all the common eigenforms feM,(I (q)) of all Hecke operators
T(n) (n=1, 2, ---) normalized so that a(f, 1)=1, and R°=NNS,(["«(q)) the set of new-
forms. Then M=N,U{E} with the Eisenstein series

_a-l 5
E@=—g—+ 2 <o§%nd)e(“)'

For feN, put K,=Q(a(f, n)|n=0, 1, ---) which we view as a (totally real) subfield
of C.
The conjugate of f=N with respect to c=Aut(C) is an element of N defined by

fiz)= f‘, a(f, n)’e(nz). We fix a complete set N of representatives of conjugate
n=0

classes of M°. For fy, fq, =, [2ENRCU{E}, denote by <{f1, f» -, s the Q-rational
Hecke-submodule of My(I"(q)) generated by them, i.e. the C-vector subspace generated
by all the conjugates of them.

By a factor of My(I"(q)), we mean an irreducible component of My '(q)) as a
Q-rational Hecke-module. The set of all factors of Su(I"(¢)) is often identified with
N by the correspondence: {f Dy f.

Notation 1.3. Let 9 be the (¢, oo)-quaternion algebra over Q i.e. the one charac-
terized by

the unique division quaternion algebra over @, if [=q or oo;

DRQ z{
l M2, Q) otherwise,

where we understand Q.=R. The main involution of 9/Q is denoted by x—Z%, and
the norm map by x—N(x)=x-x.

For a Z-lattice a in 9@, the left (resp. right) order of a is the order {x&9|xaZa
(resp. ax&a)}. For an order © in 9, a Z-lattice a in @ is said to be a left (resp.
right) O-ideal if the left (resp. right) order of a is equal to ©. Two left ©-ideals a
and b are said to be equivalent if there exists an element x of 9> such that a=bx,
and then we write a~0. The number H of left O-ideal classes is equal for all
maximal orders © in @, and called the class number of ©.

When two maximal orders © and O’ in 9 are isomorphic as rings, or equivalently,
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when they are conjugate by an element in 9%, we write ©=0©’. The number T of
isomorphism classes of maximal orders in @ is called the type number of 9.

For two Z-lattices a and b such that the right order of a is equal to the left
order of b, denote by a-b the Z-lattice <xy|x=a, yb)z. The left (resp. right) order
of a-b is that of a (resp. b). The norm of a, written by N(a), is the positive generator
of the fractional ideal <N(x)|x€a)z in Q. If a and b are as above we have N(a-b)=
N(a)N(b). The inverse of a, written by a™!, is the Z-lattice {x&D|axaSa}. Then we
have

(1.1) the left (resp. right) order of a~'=the right (resp. left) order of it,
(1.2) a=N(a)a™ !,

(1.3) a~'-a (resp. a-a"')=the right (resp. left) order of a.

Notation 1.4. Hereafter we fix a maximal order © in 9 and a complete set

{ai, as, ---, ag} of representatives of left O-ideal classes, and put a;;=aj'-a;, ©;=ay;
and e;=#0; for each 1</, j<H. Then ©; is the right order of a;, any maximal
order in & is isomorphic to some @, and {a,j, as;, ---, ay;} gives a complete set of

left ©;-ideal classes. For ¢=5, ¢; is 2, 4 or 6, more precisely,

. 0, if ¢g=1mod4;

(1.4) #1J le;=4}={
1, if g=3mod4,
) 0, if ¢g=1mod3;

(1.5) #{j lej=6}={
1, if g=2mod3,

Recall the mass formula of Eichler-Deuring :
(1.6) =

Put the theta series associated to a;; as

If)=— 3 e( ) )

¢j z€aij N(aij)z
and denote by @ the HXH-matrix with the (7, j)-th entry 9;;, Define the Brandt
matrices B(n)eM(2, Q) by 6= 3 B(n)e(nz). Note that

1 1
e enm
(L7) BO)=| : |, B(=la,
1 1

and that all the entries of B(n) with n=1 are non-negative integers.
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The Basis Problem, together with the theory of newforms of Atkin-Lehner, tells

Theorem 1.5 (Eichler). We have

1 gijEMz(ro(Q))y

(2) My (q)=<9:;11=4, j<H)e,

(3) H=dimcMyI'«(q)),

4) (941 T(ngi, 5sa=B(n)O, for all nz=1,

(5) B(n)s (n=0, 1, ---) are simultaneously diagonalizable.

Notation 1.6. The main object in this article is
Wj:<191j, 19zj, Tty "9Hj>C (]'=1, 2, H),
which is a Q-rational Hecke-submodule of My(I"(g)) by Theorem 1.5.(4).

In order to state one of properties of W, one requires

Definition 1.7. For a maximal order @’ in 9, a two-sided O’-ideal is a left ©O’-
ideal whose right order is also ©’. A principal two-sided ©’-ideal is one in the form
©’x with some x€9*. We say that @’ is of type I (resp. type 1) if there exists no
(resp. just one) class of non-principal two-sided ©’-ideals. Any maximal order @’ in @
is either of type I or II, and it is of type I (resp. type II) if and only if #{j|0'=0;}=1
(resp. 2). If we write ©;=0,, we understand that ©; is of type Il and j+k.

Theorem 1.8 (Eichler [Eil, p. 169], or cf. [Po], [Pi2]). Assume that ©; is of type
1. Then we have

(1) if O:=0y, then ;=34

(2) 9;€M5(I'(@) for all 1<i<H,

(3) T=dimcM3(I"(q)),

4 g<T§H', and T=H if and only if ¢=<31 or ¢=41, 47, 59, or 71.

Thus W; is a vector subspace of H-dimensional vector space My(["(g)) with H
generators, and if further ©; is of type I, it is a vector subspace of T-dimensional
vector space M3(I'((g)) with essentially T generators. From this and numerical
examples for small levels, it was conjectured that W; is trivial in the sense that each
W; is equal to Mz(I"«(q)) or My(I"«(q)) according as ©; is of type I or of type II ([He,
Satz 53], [Pi78]). But it is false in general, and what is more important, several
Q-rational Hecke-submodules of My(I"4(¢)) are obtained as W,.

Definition 1.9. For a factor F of S, ',(g)), we say that F is obedient if the
following condition is satisfied, or disobedient otherwise:

(1) in the case FES;(I"y(q)), FEW, for all 1<;<H;

(2) in the case FSS#("«(q)), FEW; for all j such that ©; is of type IL
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To understand the meaning of it, we see the following example which is first
noticed by M. Ohta (see [HPS]).
Example 1.10. In the case ¢=67, we have
H=6, T=4,
N°={f4, f5 fc},
S @)= wa,  Sil'(g)=<f5 feu,
dime<f>a=2, dime(fpa=1, dimelfeda=2,
and with a suitable numbering,
O, and O, are of type I, O0,=0,, 0;=0,,
W =W,=Mz(I"(9)), W=W.=}E, fa, feda, Ws=W=MyI"i(q)).

Thus the factor {fz)« is disobedient, and the splitting of Si(I'¢(¢)) can be explained
by the theta series.

The problem we will consider is

Problem 1.11. How many factors of S,(I"(q)) are disobedient ? Can we find some
tendency for the obedientness ?

§2. Table I

2.1. Table I lists the following data for all prime levels ¢<1000 such that H=1.

The first three columns indicate the level ¢, the class number H=dim¢M(I «(q)),
the type number T =dim¢M3z(I'«(¢g)). The fourth and the fifth columns describe the
splitting of SF(I"o(¢)) and of S3(I'«(q)) respectively, by the dimensions of factors.
The factors with the dimension in brackets [ ] are obedient ones, while the others
are disobedient. For the last column, see §7.

Observation 2.2. In the range of this table, any disobedient factor F can be
expressed as W,;=F@W, with suitable two indices ; and A.

§3. Eigenvectors of Brandt matrices

In this section, following the idea of Prof. H. Saito, we describe a method to
determine the factors belonging to each W; from the diagonalization of @. This
clarifies the situation, and enables us to save much run time of computing.

At first, we recall some fundamental relations between the theta series.
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Table I
q H | T S3(I'o(q)) Sz(I'(q)) L
11 2 2 (1] 5
17 2 2 [1] 2
19 2 [1] 3
23 3 3 [2] 11
29 3 3 (2] 7
31 3 3 [2] 5
37 3 2 (1] (1] 3
41 4 4 [3] 2,5
43 4 3 [1] (2] 7
47 5 5 4] 23
53 5 4 [ [3] 13
59 6 6 [5] 29
61 5 4 [13 [3] 5
67 6 4 2] 1+[2] no /11
71 7 7 [3+3] 5/17
73 6 4 2] [1+2] 2/3
79 7 6 (1] (5] 13
83 8 7 [ (6] 41
89 8 7 [1] [1+5] 2/11
97 8 5 [3] (4] 2
101 9 8 (1] [7] 5
103 9 7 [2] [6] 17
107 | 10 8 2] (7] 53
109 9 6 [3] 1+[4] no/3
113 | 10 7 [3] [142+3] 2/2/7
127 | 11 8 [3] (7] 3,7
13 | 12 | 11 1 [10] 5,13
137 | 12 8 [4] (7] 2,17
139 | 12 9 [3] 1+[7] no /23
149 | 13 | 10 (3] (9] 37
151 | 13 | 10 (3] 3+[6] no/5
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Table I (continued)

q H | T S3(I'(q)) Sz(Io(g) l

157 | 13 8 [5] (7] 13
163 | 14 8 1+[5] A 3
167 | 15 | 13 [2] [12] 83
173 | 15 | 11 [4] [10] 43
179 | 16 | 13 [3] 14+[11] no / 89
181 | 15 | 10 (5] (9] 3,5
191 | 17 | 15 [2] [14] 5,19
193 | 16 9 2+[5] (8] 2
197 | 17 | 11 14+[5] [10] 7
199 | 17 | 13 [4] 24[10] no/3,11
211 | 18 | 12 3+[3] [249] 5/7
223 | 19 | 13 2+4[4] [12] 37
227 | 20 | 15 [2+43] 2424107 no/no /113
229 | 19 | 12 14+[6] [11] 19
233 | 20 | 13 71 [1411] 2/29
239 | 21 | 18 [3] [17] 7,17
241 | 20 | 13 [7] [12] 2,5
2651 | 22 | 18 [4] [17] 5
257 | 22 | 15 (7] [14] 2
263 | 23 | 18 (5] [17] 131
269 | 23 | 17 14+[5] [16] 67
271 | 23 | 17 [6] [16] 3,5
277 | 23 | 13 14+[9] 3+[9] no / 23
281 | 24 | 17 (7] [16] 2,5,7
283 | 24 | 15 [9] [14] 47
293 | 25 | 17 (8] [16] 73
307 | 26 | 16 [10] 14+14+14+14+[249] no/no/no/no/3/17
311 | 27 | 23 [4] [22] 5,31
313 | 26 | 15 [11] 2+[12] no /2,13
317 | 27 | 16 [11] [15] 79
331 | 28 | 17 14-[347] [16] 5,11
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Table I (continued)

q H| T SE(Io(q)) Sz(o(q)) 4

337 | 28 | 16 [12] [15] 2,7

347 | 30 | 20 142+[7] [19] 173

349 | 29 | 18 [11] [17] 29

353 | 30 | 19 [11] [143+14] 2/2/211
359 | 31 | 25 1414[4] [24] 179

367 | 31 | 20 [11] [19] 61

373 | 31 | 18 . 14+[12] [17] 31

379 | 32 | 19 [13] [18] 3,7

383 | 33 | 25 2+[6] [24] 191

389 | 33 | 22 24[3+6] 14-[20] no / 97
397 | 33 | 18 24[13] 2+[5410] no/11/3
401 | 34 | 22 [12] [21] 2,5

409 | 34 | 21 [13] [20] 2,17

419 | 36 | 27 [9] [26] 11,19
421 | 35 | 20 [15] [19] 5,7

431 | 37 | 29 144+[3] 143+[24] no/no /5,43
433 | 36 | 21 [15] 143+[16] no/no /2,3
439 | 37 | 26 249] [25] 73

443 | 38 | 24 14+1+4[12] 14[22] no /13,17
49 | 38 | 24 [14] [23] 2,7

457 | 38 | 21 2+[15] [20] 2,19

461 | 39 | 27 2+3+[7] [26] 5,23

463 | 39 | 23 [16] [22] 7,11

467 | 40 | 27 14-[12] [26] 233

479 | 41 | 33 (8] [32] 239

487 | 41 | 24 [17] 2+3+[2416] no/no/3/3
491 | 42 | 30 24-[10] [29] 5,7

499 | 42 | 24 2+[16] [23] 83

503 | 43 | 32 14+[10] 14+1434[26] 10/ no / no / 251
509 | 43 | 29 [14] [28] 127

521 | 44 | 30 [14] [29] 2,5,13

917
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Table I (continued)

q H | T S$(r'o(q)) Sz (I'o(9)) l
523 | 44 | 27 2+[15] [26] 3,29
541 | 45 | 25 [20] [24] 3,5
547 | 46 | 26 2+[18] [25] 7,13
557 | 47 | 28 14[18] 14+[26] no /139
563 | 48 | 33 3+[3+9] 14[31] no / 281
569 | 48 | 32 [16] [31] 2,71
571 | 48 | 29 34-[6410] 14-14-24-24+4+[18] |no/no/no/no/no/5,19
577 | 48 | 26 [22] 24+3+[2418] no/no/3/2
587 | 50 | 32 5+[13] [31] 293
593 | 50 | 31 14[18] 2+[14277 no/2/ (27,37
599 | 51 | 38 24117 [37] 13,23
601 | 50 | 30 [20] [29] 2,5
607 | 51 | 32 54+74[7] [31] 101
613 | 51 | 28 [5+18] [27] 3,17
617 | 52 | 29 [23] [28] 2,7,11
619 | 52 | 31 [21] [30] 103
631 | 53 | 33 [20] [32] 3,5,7
641 | 54 | 34 [20] [33] 2,5
643 | 54 | 30 [24] 14[28] no / 107
647 | 55 | 39 24-[14] [38] 17,19
653 | 55 | 31 7+[17] [30] 163
659 | 56 | 39 14[16] 14[37] no /7,47
661 | 55 | 32 [23] 24[29] no /5,11
673 | 56 | 31 [25] 2+[4+24] no/7/2
677 | 57 | 36 14-24-18] [35] 13
683 | 58 | 34 [24] 2+[31] no /11,31
691 | 58 | 34 [24] [33] 5,23
701 | 59 | 38 [21] 14[36] no/5,7
709 | 59 | 32 [27] 14307 no / 59
719 | 61 | 46 [5+10] [45] 359
727 | 61 | 37 [24] [36] 11
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Table I (continued)
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q H | T S3(I'e(q)) Sz2(I'(q)) [
733 | 61 | 34 24-[25] 1+[32] no / 61
739 62 36 3+4123] 1+4[34] no/ 3,41
743 | 63 | 42 [21] [41] 7,53
751 | 63 | 39 [24] [38] 5
757 | 63 | 34 [29] [33] 3,7
761 | 64 | 42 2+[20] [41] 2,5,19
769 | 64 | 37 [27] [36] 2
773 | 65 | 39 24+[24] [38] 193
787 | 66 | 38 [28] [37] 131
797 | 67 | 41 14[25] 24+[38] no /199
809 | 68 | 42 2-+[24] [41] 2,101
811 | 68 | 41 14[26] [40] 3,5
821 | 69 | 42 [27] [41] 5,41
823 | 69 | 39 [30] [38] 137
827 | 70 | 42 143+[24] [41] 7,59
820 | 69 | 40 1+ 28] [39] 3,23
839 | 71 | 52 [19] [51] 419
853 | 71 | 38 [33] [37] 71
857 | 72 | 44 [28] [43] 2,107
859 | 72 | 43 [29] [42] 11,13
863 | 73 | 47 4+4[22] [467 431
877 | 73 | 39 2+[32] [38] 73
88l | 74 | 47 [27] [46] 2,5,11
883 | 74 | 40 [34] [39] 3,7
887 | 75 | 52 24217 [51] 443
907 | 76 | 41 [35] [40] 151
911 77 54 9+4[14] [53] 57,13
919 | 77 | 48 2+[27] [47] 3,17
929 78 48 2+4[28] [47] 2,29
937 | 78 | 44 [34] [43] 2,3,13
941 | 79 | 51 [28] [50] 5,47
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Table I (continued)

q H| T ST(Io(q)) Sz('e(q)) l

947 | 80 | 45 [35] [44] 11,43
953 | 80 | 48 [32] [47] 2,7,17
967 | 81 | 46 [35] [45] 7,23
971 | 82 | 56 [26] [55] 5,97
977 | 82 | 46 [36] [45] 2,61
983 | 83 | 55 (28] [54] 491
991 | 83 | 50 [33] [49] 3,5,11
997 | 83 | 45 | 14445+[5+23] 14+1+4[42) no / no/ 83

Proposition 3.1. We have
1) ejlgij=ei79ji f07’ each 14, ]'éH,

H
(2) X 9:i;=E for each 1=i<H,
j=1
H
3) ]gl 31‘;':%1%](,
4) Zf 0;=0; and O, =0, then 191),:19,1.
Proof. (1) is the simplist case of [Ei2, II, Theorem 2]. That the left hand side
of (2) is independent of 7 is shown in [Pi3, Lemma 2.18], therefore we denote it by
H
g. We see easily that ng(n)=(ZlB(n)ij)g for all n=1 by Theorem 1.5.(4), and that
£
H
a(g, 0)=j21%>0 and a(g, 1)=1 by (1.7). Hence g=FE. (3) is immediate from
=1 ¢

Theorem 1.5.(5). By [Pil, Lemma 2.18], we may assume that O;=0; and ©,=0,.
Then {az, G2k, -+, aue} is also a complete set of representatives for left O;-ideal
classes, hence, considering the right orders of them, we see that there are two
possibilities :

(a) aip~a; and a;~aj; or (b) azr~ay and a;~aj;.

Note that e;=e¢;—=e,=e¢;=2. The case (a) is obvious (cf. [Pi2, Lemma 2.7]), therefore
we treat the case (b). Then we have 9;,=9; and §;,=9;;. Interchanging z, ; with
k, !, we have also that 9,;=9,; or 9;;, The latter case is also obvious, while in the
former, $ir=94:=%;=%;,=9;; holds. qg.e.d.

Notation 3.2. For each f&M° and 1<j<H, denote u(f, j) the element of C¥

with the /-th entry % where <, > denotes the Petersson inner product. Note
that ’

1 24 Y4,
@3.1) 9= E+ 3 S fog

€; —q——T sen? <f:f>
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Proposition 3.3. We have

1) Ouf, H=S-uf, 1)

(2) for each fEN®, there exists an index j such that v(f, /)#0, i.e., v(f, j) is an
eigenvector of O corresponding to f,

3) v(f°, N=v(f, j)for all e Aut(C), especially v(f, j)=(K ) .

Proof. (1) is immediate from Theorem 1.5.(4). From Proposition 3.1.(3), we get

é%%zl, and this implies (2). (3) is derived from the Q-rationality of ¥;; and

E and the uniqueness of the expression (3.1). q.e.d.

Notation 3.4. From the above, we can take and fix a system {v(f)} eno Of
eigenvectors of @ so that

1) Ou(f)=f-v(f),

(2) each v(f, j) is a constant (in K }) multiple of v(f),

3) v(fo)=v(f)° for all s=Aut(C).
Further, we put v(E)=%1, 1, ---, 1). Then Theorem 3.1.(2) is read as Ouv(E)=FE -v(E),
which is (1) for f=FE. Thus, numbering N={f,, f. -, fu} and putting
Q=w(f1), v(fa), -, v(fx)), we get the diagonalization of @ as

fa
(3.2) Q'eQ=| . .
fu

Note that {v(f)} en is a basis of C¥.

H
Definition 3.5. An element »rC¥ is called a relation for W, if Z‘,lri'lgjizo holds.
Note that W;=<39;1, 9js, ---, Y;u>c by Proposition 3.1.(1), and we use J,; in this defini-
tion. The vector space over C consisting of all relations for W; is denoted by R;.

Lemma 3.6. We have

1) R=w(NH|feNR such that v(f);=0>c,
(2) dimcW;=#{feR|v(f);+0},

3) W,={feR|uv(f);#0c.

Proof. That u(f)eR; is immediate from Remark 3.4.(1). Write r=R; as
r:fEmc,v(f) with ¢,eC. Then
€

i=1

0= 2 e, =(Or),= Zcu NS,

hence ¢;=0 for all f such that v(f);#0. (2)is derived from (1). Being a Hecke-
submodule, W; has a basis consisting of elements of R. If v(f);=0, then <I;;, f>=0
for all 1</<H, hence f&W; Therefore W,S<{feR|v(f);#0>c, and the equality
holds by (2). q.e.d.
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Remark 3.7. For each f=%, two Q-rational bases of <w(f)°|o=Aut(C)y¢ are
obtained as follows. Taking arbitrary basis {w,, @, -+, @,} of K,;/Q where g=[K,:Q],

g ) . . ; .
{Trg ;ro(@wi(f Nhsis, is one. Writing v(f)= 3 w0 with v¥eQ¥, {v™®},<, is another.
i=1

The former is useful for numerical computation, the latter for explanation (cf.
Example 4.1, 9.4).

§4. The case ¢=151
Let us apply the method described in §3 to
Example 4.1. In the case ¢=151, we have
H=13, T=10,
Oy, Oy, -+, Os and O, are of type I,
0:=205, 010=011, 012=0,,
e,;=4, e¢;=2 for 2<;<13,
S @)=<f s, Sel'(@)=S5, feou,

dime{fa>a=3, dime{fpra=3, dime(feda=6,
0

and

o
o
S
[wn]
(=]

B(2)=

O OO OO OO OO O
OO OO OO O O O
OO OO - = OO OO - O
O = = O O OO o O =O

_H O O, O O O O - OO

O O O O - O = O O OO
= = O O - OO O O O O

O O O OO OO OO O N
OO O O H O O O = O O
—_ O O O -H O O O O = O O O
O H 2 OO O O = OO O O
O OO OO RO OO O
—_ O O - O O - O O O O O

(=]
(]
(=]
o
(=]
(=]
o

The irreducible decomposition of the characteristic polynomial of B(2) over Q is
(X—3)FAX)Fy(X)Fo(X) where

FX)=X°4+2X?—X—-1, FpX)=X*-5X43,
Fo(X)=X*+2X°"—6X*—8X°+11X°4+2X--3.
&=a(f4, 2) is a root of F4, and
v(f 4)=(&2+£&—1)40,0,0,0,0,0,0,0,0,1, —1,0,0)
+£%0,0,0,0,0,0,0,0,0,0,0, 1, —1)
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+40,0,0,0,0,0,1, —1,0,0,0,0, 0).
Thus the relations between the theta series caused by f4 are
Gy =%,
910;=9;,  for j=1,2,--,6 and 9,
S12; =35,

which are already known by Theorem 1.8(1). f.=W; if and only if =7, 8, 10, 11, 12, 13,
hence f, is obedient.

n=a(fp, 2) is a root of Fg, and
u(f5)=(9*—2)40,0,0,1, —1,0,0,0,0,0,0,0, 0)
+(n—1)%0,1, -1,0, —1,0,1,1, —1,0,0, 0, 0)
+42,0,-1,0, -1, -1,0,0,0,0,0, 1, 1).
Thus the relations between the theta series caused by fjp are
F4;=Fs;,
o491+ 95;=35;+95;+ 555, for j=10, 11.
Qi+ ey =Fa5+Fs5+ 55,

Since fpEW; for j=10, 11, fp is disobedient.
That all the entries of v(f¢) are non-zero is known by their approximate values,

hence f¢ is obedient.

Remark 4.2. The relation 9, ,,=395 1, is an example of inequivalent two rational
quadratic forms of rank 4, belonging to the same spinor genus, and associating to the
same theta series. The Minkowski-reduced matrices corresponding to the norm forms
of a, 1, and a5 ,, are

6 2 —1 1 6 0 —2 —3
2 12 5 4 0 12 3 4
15166 | ™| 23 14 2
1 4 6 28 34 2 28

respectively.
That those norm forms are inequivalent over Z is also derived from the well-known

Proposition 4.3. Let B a division quaternion algebra over a field k of characteristic
+2. Viewing (B, Ng,) as a quadraic space over k of rank 4, its orthogonal group
O(8, Ng,) is generated by the canonical involution of B/k and the subgroup

{x—axB'la, B&B* such that Ng,;,(a)=Ng,(B)}
of index 2.

By virtue of [Pi2, Lemma 2.7] and since N(9*)=@Q3, we may assume N(a;;)=1 for

all 7, 7. Then the norm form —IiI\I(—((:—)):N(x) (x€ay;) just corresponds to the lattice a;;
ij
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in (9, N). Suppose that there exists an isometry in O(®, N) which maps a, ;, onto
as,10. Then either a,;, or a,;,, must be written as aa; 8 with some a, fED".
Comparing the right orders, by (1.1-2) we have O,=0; or 0,,=0;, both of which are
impossible.

Further, in the adelic language (cf. [Pi77, §2], and § 8 below), we can take each
a; so that a;=0y; with some y,=9j; such that N(y;)=1. This and Proposition 4.3
implies that the norm forms of all a;; belong to the same spinor genus (cf. [OM]).
Thus our example is different from the ones mentioned in [SP, Remark 1].

§5. A conjecture of Hecke

A conjecture of Hecke [He, Satz 53], stating that all W;'s are equal to M,(I«(q)),
has been weakened gradually as seen in §1. As the last version of it, one can ask

Problem 5.1. Is there at least one index j such that W, is trivial in the sense
in §1°?

But we found a counter example even to this:

Example 5.2. Let ¢=307. Then H=26, T=16. Denoting @:Q[l, J1=Q -1+
Q- 1+Q-J4+Q-K with I’'=—1, J*=-307, K=1-J=—]-1, we can take a complete set
of representatives of left ©-ideal classes ay, as, -+, ap; Wwith the maximal order

O:%al as in Table II.

There are four @Q-rational newforms fjz, f¢, fp, f£ in Sz(Iy(¢)), and for each j,
at least one of the j-th entries of v(fg), v(f¢), v(fp) or v(fg) is zero, hence all W,s
are non-trivial.

§6. Observation on the 1-dimensional factors

First recall the following fact on elliptic curves:

Theorem 6.1 (Setzer [Se], Miyawaki [Mi]). For an odd prime number q=11 and
a positive integer n=2, assume that there exists an elliptic curve defined over Q of g-
power conductor having a Q-rational division point of order n. Then (q, n)=(11,5),
17, 2), (17, 4), (19, 3), (37, 3) or (64+4u?, 2) with some usZ.

In the last case, there exist just two such curves (called Setzer-Neumann curves), one
of which is of conductor q, the other of ¢

One should notice that, in Table I, an obedient 1-dimensional factor appears only
at the levels ¢ listed in Theorem 6.1 and the levels where S$(I4(¢)) is of dimension 1.
More precisely, together with the table of Mestre [Me], we see that
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Table II
j generators of @ N(ay) | v(£B)s | v(fe); | v(fp); | v(fE);
1 147 I+ K 27, 2K 4 0 2 2 2
2 1+J42K, I4+2J+K, 4], 4K 8 —1 1 1
3 1+J+6K, I4+2]J+K, 8/, 8K 16 0 —1 0 0
T4 | 14J42K,  I+6J4K, 8/, 8K 16 0| -1 0 0
5 1+ J+14K, I1+2]J+K, 16/, 16K 32 1 1 0 —1
6 1+J+6K, I+10J+ K, 16/, 16K 32 —1 0 —1 0
7 1+/4+10K, I+6J+K, 16/, 16K 32 —1 0 —1 0
8 1+J42K, I+14 ]+ K, 16/, 16K 32 1 1 0 —1
9 1+J+14K, I+18J+K, 32J], 32K 64 0 0 0 —1
10 1417 J+22K, I+10J+17K, 32J, 32K 64 0 1 —1 0
11 1+17J+10K, I+22]+17K, 32J, 32K 64 0 1 —1 0
12 1+ /+18K, I+14J+ K, 32/, 32K 64 0 0 0 —1
13 14+33/+46K, I+18J+433K, 64], 64K 128 —1 —1 0 —1
14 1+33/+14K, I+50/+433K, 64/, 64K 128 0 0 0 0
15 14+17J+54K, I+10J+17K, 64], 64K 128 1 —1 0 0
16 1+17J+10K, I+54J4+17K, 64/, 64K 128 1 —1 0 0
17 1+33/+50K, I+14]433K, 64], 64K 128 0 0 0 0
18 1497 J4110K, I+18/+97K, 128], 128K 256 —1 0 0 0
19 1+33/+78K, [I+50/+33K, 128], 128K 256 0 0 1 0
20 1+33/+14K, [I+114J4+33K, 128], 128K 256 0 0 —1 1
21 1+81/+118K, I+10/+81K, 128), 128K 256 0 0 1 0
22 1+81 /410K, [+118J+81K, 128], 128K 256 0 0 1 0
23 1433/+114K, [I+14]+433K, 128], 128K 256 0 0 —1 1
24 14-33/+50K, I+78]+433K, 128], 128K 256 0 0 1 0
25 1497 J4238K, I+18]+97K, 256], 256K 512 —1 1 1 0
26 1497 J4+110K, [+4+146J+97K, 256], 256K 512 1 0 -1 1

Observation 6.2.

Weil curve parametrized by it is one of those in Theorem 6.1.

For all prime levels ¢<1000, the

following facts hold.
(1) A l-dimensional factor of S§(I'(q)) is obedient if and only if S#(I'|(q)) itself
is 1-dimensional.
(2) A l-dimensional factor of S3;(I'«(¢)) is obedient if and only if the strong
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Remark 6.3. Note that, if ¢, n and {f)« are as in (2) above, we get the con-
gruence 1—a(f, p)+p=0modn for all prime numbers p+#q.

The calculation was done also for the levels ¢=1153, 1289, 1433, 1913, 2089 and
2273, for which a Setzer-Neumann curve of conductor ¢ exists. The facts stated in
Observation 6.2 still holds for these levels, and further we notice

Observation 6.4. For a Q-rational newform f&Nf level ¢ (¢<2273) corresponding
v(f);
¢;

to a Setzer-Neumann curve, we can take v(f) so that is a small odd integer for

all 1<j<H. For example,

(U(—f)]> :t(l’ 1’ —1’ —1’ 1' _3’ _'3’ lr 1’ lr 1: 1» 1, 1» —L —1; 3, _1, —37 l)
e; 1sjsH
when ¢=233. For other cases we get

{1} if ¢=73, 89, 113,

{£1, -3} if ¢=353,

) +1, +3 if ¢=593, 1153,
{Lf)f|1§jgﬂ}: { } v
¢ {+1, £3, 5} if ¢=1289, 1433,
{1, £3, +5, 7} if ¢=1913, 2273,
{

, +3, =5} if ¢=2089.

1
For a meaning of this, see Remark 8.4.

§7. Observation on the factors of S,(I'4(q))

In view of Remark 6.3, an observation on a congruence for Ng o(1—a(f, p)+p)
(p: prime) is suggested by Prof. H. Yoshida.

At first, recall the congruence of Brumer-Doi in the case of weight 2 ([DM,
Theorem 7.5.4], see also [Ma, Theorem 1, Theorem 4 and Table]).

Lemma 7.1. Let [ be a prime number dividing the numerator of ql_zl . Then, for

each 1<j<H such that W;#<{E)¢, there exist f€W ,\N° and a prime ideal | in K, over
! such that

(7.1) a(f, n)=a(E, n) mod! for all n=1.

Note that
I+p if p+#gq,

1 if p=gq,

for a prime number p, hence (7.1) implies

a(E, p)={

(7.2) Ng 1q(1—a(f, p)+p)=0 mod/ for all prime number p+#gq

Proof. Take 9;; which is not a constant multiple of E. By (3.1), we have
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( ezj )(—qi;zl—)Sisz—g with some g&W;NS(I"(g)). All the Fourier coefficients of g

are [-integers in @, and from the assumption, we have a(g, n)=a(E, n)mod! for all
n=1. Further, by Theorem 1.5.(5), we see that a(g|T(p), n)=a(E, p)a(g, n)mod!
holds for all prime numbers p and n=1. Thus gmod!/ is a common eigenform mod!
of all Hecke operators, hence the existence of f and ! as above follows from [DS,
Lemma 6.11]. q.e.d.

7.2. Though we may state Lemma 7.1 with —2—2—4—
of such !’s is the same by (1.4-5).

. q
e; instead of 1

, the set of

Observation 7.3. In the range of Table I, the following facts hold.

(1) A congruence of type (7.1) (hence of type (7.2)) holds for a factor F=(f)>4 in
Sz:(l«(q)) if and only if F is obedient.

(2) For the factors {f>« in S$(I"(g)) of dimension <10, it is checked that any
congruence of type (7.2) does not hold.

7.4. The sixth column of Table I lists the prime numbers / such that a congru-
ence of type (7.1) holds for a factor {fd« in Sz(I'«(¢)) and a prime ideal ! in K, over
l. When Sz(I"«(¢q)) has at least two factors, those !’s are separated by slash /in the
same order as factors. For example, in the case ¢=199, no such congruence holds for
the factor of dimension 2, while it holds for the factor of dimension 10 with (=3 and
also with [=11.

The possible /’s can be calculated from the numerical data at least for the factors
of small dimension, thus all the no’s in Table I are proved. Then most of the congru-
ences listed in Table I are shown by Lemma 7.1, but in some cases, further discussion
(e.g. [DO, Lemma 2.1]) is needed. For the 27-dimensional factor in S3(1((593)), (=2
seems possible, but is not proved. Note that we are not saying that those /’s are all.

§8. Automorphic forms on 9}
We recall a proposition in [Yol, §7].

Notation 8.1. Denote by 9} the adelization of 9%, and put X,=(0RZ,)* for
each prime number p, K=IIX,xH”, where H is the Hamiltonian quaternion. An
p

automorphic form ¢ on 9} is defined to be a C-valued function on 95 which is left
9D*-, right K-invariant, and we denote the space of all such ¢’s by S. For a prime
number p+#q, the Hecke operator T’(p) acting on S is defined by

Lol T (P)I(x)=Zg(x hs)

p0
where J<p(0 I)Jcpzks)hsJCp is the coset decomposition under the fixed identification

DRQ,=M(2, Q,). We have dim¢S=H, and we can take a basis {¢i, ¢, -, ont of S
consisting of common eigenfunctions of all Hecke operators T'(p) (p: prime, #q).

H
Let 9= jk;jlg)"yiJC be the double coset decomposition with y,€9} such that N(y;)=1,
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and put

Fuy= 3 (0ly ) (G=1,2 -, H).

Then we have

Proposition 8.2 (Yoshida).

(1) FyeM((9).

(2) Fi| T(p)=2{p)Fi; where 2p) is the eigenvalue of ¢; with respect to T'(p).
(3) a(Fij;, )=0i«(y,), hence Fi;#0 if and only if ¢i(y;)#0.

(4) dimcW;=dimc{Fi; | 1Si<He=#{i|p«y;)#0}.

1
]

Note that our 9;; is 9;; in [Yol].
Remark 8.3. Taking ¢, to be a constant function, we get another proof of
Proposition 3.1.(2) with (1.6).

Remark 8.4. If we replace ¢; with its suitable constant multiple, we get
ey=v(fe);  for all 1<i, j<H
with a suitable numbering R=1{f., f2 -, fu}.

In fact, by Proposition 8.2(2-3), each F;; (1=7<H) is a constant multiple of one
element in M, say f; and we can put Fy;=c;;f: with some ¢;;&C. Denote by @
(resp. C) the HxH-matrix with the (7, j)-th entry ¢y;) (resp. ¢;;) and by D the
Hx H-diagonal matrix with the i-th diagonal entry f,. Then we have @'0=DC,
hence @'Q*D=DC*'Q"! by (3.2). The linear independence of f,’s over C implies that
@'Q"! is a diagonal matrix, therefore the assertion follows.

Thus »(f) plays an important role in constructing a newform f from theta series:

@.1) r=(55) E( U,

where j is any index such that »(f);#0.

§9. Remarks on the computation

In the computation of Brandt matrices, the author basically applied the algorithm
given by A. Pizer [Pi3], except for

Theorem 9.1 (Hijikata). For a given maximal order © in 9D, one can get a complete
set of representatives of left O-ideal classes in the following manner.

Fix arbitrary prime number l#q. Define a sequence X,, Xi, --- of sets of left O-
ideals inductively so that

1 Xe={o},
(2) X, consists of left O-ideals b such that
N(b)=(",
9.1)
b is a sublattice of some asX,_,,
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n
(3) any left O-ideal b satisfying (9.1) is equivalent to some element in \J X,
1=0
4) any two elements in _\onXi are inequivalent.

n

Repeat this procedure until Xno1=@, then UlXi gives a completet set of representatives
7

of left O-ideal classes.

Remark 9.2. If a and b are as in Theorem 9.1.(2), then the exponent of the
additive group a/b is / (but [a:b]#/ in general). All sublattices b of a with the
quotient group of exponent / are obtained in the same manner as in [Pi3, p. 369].
Such b is a left ©-ideal if and only if ©6=b, and then N(b) is calculated by use of
(1.1-2). Thus all b satisfying (9.1) can be determined.

9.3. In order to diagonalize O, it is enough to diagonalize one B(n), or certain
(R-) linear combination of B(n)’'s, whose eigenvalues are all distinct. Putting U=

Ve
( o ) we see that U 'B(n)U is a real symmetric matrix by Proposition
en

3.1.(1), hence its diagonalization can be computed by “Jacobi method”.

It is convenient to normalize the eigenvectors of @ so that, for each of them, the
non-zero entry with minimal index is 1. Then they give the approximate values of
{v(f)} ren.

In order to apply Lemma 3.6, it is necessary to prove that each entry of eigen-
vectors with approximate value 0 is exactly 0. This is achieved by Remark 3.8 and

Remark 9.4. For f&%° take an integer n such that K,=Q(a(f, n))i.e. a(g, n)’s
are distinct for all conjugates g of f. Let F(X) be the minimal polynomial of a(f, n)
over @, then we have

(f)leeAut(Ce={x=C?|F(B(n)x=0}.

9.5. If 0;=0,, then we have

9.2) U(f)j: Folf e

according as f=S5(I"y(q)) (see [Pil, Theorem 3.2]). The types of O,s are determined
by this.

9.6. The representation matrices of the Hecke operators acting on Si(I'4(g)) are
computed by use of Proposition 3.1.(1, 4) and the above remark. The characteristic
polynomials of them are computed by “Frame method”, and factorizing them over @
we know the splitting of S(7 o(q)).

9.7. We can also calculate the values of s f,ijz%”—f};—)

. 2 1 - .
In fact, putting c={§17(v(f)i)2} 1, Prop. 3.1 implies that s,,i,:eiv(f)iv(f)j.
=1 ¢; j

(at least approximately).

Note that a9i,-—19,,,~=f§tos,f with s;=s; ;;—S; ;. By the same argument as in

Lemma 7.1, some prime ideals ! in K, dividing the denominator of s, can be congru-
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ence primes in the sense of [DO]. For instance, in Table I, /=3 for ¢=487 is proved
with this argument.

Added in proof: By K. Hashimoto [Ha], the linear dependence of 9,;’s (1<;<H)
and of theta series attached to two other kinds of lattice in D is studied, and certain
relations among them are observed.
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