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A parametrix at noninvolutively
crossing characteristic points

By
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§0. Introduction

In this paper, we construct a parametrix for hyperbolic equations near a very
plain double characteristics, namely, at a neighborhood of singular points of two non-
involutively crossing hypersurfaces. From general discussion, we can reduce the
problem to constructing a parametrix for the following simple equation of second
order. Therefore, we shall consider only about it.

P=0,0,—iA(z, x, D)+a(z, x, D)+c(z, x, D)+d(z, x, D),

where the principal part p, is —({—A){. We assume following conditions for the

symbol of this operator.

1) a, b,c, A are classical pseudo-differential operators in (x, & with the smooth
parameter z belonging to S, S%.o, Si,, and St}, respectively.

2) /A is real and positively homogeneous order 1 in &.

3) 0.4+0 at the points such that 4=0.
(Here, we assume 0,/4>0 in proof.)

4) 0,[c/0.41=0 near A=0.

In this case the characteristics is the union of {{=0} and {{—A4=0}. which are
crossing non-involutively on the common set, {{, {—A}=—0d,4#0. So, we are
interested in the construction of parametrix only near the set {A4=0}.

V. Ya. Ivrii [2] studied this type of operator to show well-posedness. For this
hyperbolic operator, the singularities of solutions may bifurcate when they pass
through the singular points {4=0}. The parametrix, we construct, makes the order
of singularity after bifurcating clear. The typical model case was considered by K.
Taniguchi and Y. Tozaki [3]. This example shows us the prototype of the bifurcation
of singularity. We can also show the same fenomena, as it, occars in our cases except
for the special ones of the first order term ¢, where the singularity may not bifurcate.
Related works exist in N. Hanges [1] and M. Taylor [4].

We devide characteristics of P to four parts. A,, A, B, and B, are {{=0, 4A>0},
{{—A=0, 4>0}, {{=0, 4<0} and {{—A=0, A<0}, respectively. We shall construt
a parametrix of null solution of P whose singularity has a given asymptotic behavior
on one of A,, A, or B,, however, is smooth on B, (has no singularity on B,) The
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singularity of such null solution has same order on two points of A, and B, which
are on the same bicharacteristic curve of {=0. The difference between orders of
singularity at two points P, and P, on A, and A,, resp., is given by

order at P,—order at P,=Re(c,/iA,)P)—1/2,

where P; is a point on {A4=0}, P; and P, are on a bicharacteristic curve of {— =0,
and, P; and P, on one of {=0. ¢, is the principal symbol of ¢. ¢,—i4,/2 is the sub-
principal symbol of P. We here use the Wyle symbol of pseudo-differential operators.
(See (1.12).)

§1. A phase function and operators

Here we define a phase function, we use, and note some properties of it.
{—A(s, X) is a part of product principal symbol, where X=(x, &). We take a function
¢ which satisfies the equation

0p/0s— A(s, X+27'JV¢p)=0,
(1.1)

@'s:t:O-

The existence of ¢ is well known and ¢ is necessarily homogeneous of order 1 in &.
For conveniently expressing the parametrix, we put it as

(1.2) Yz, )=¢(z, z—1),
where it naturally depends on the variable X. Then ¥(z, t) is a solution of the equation
(1.3) 0,400 —A(z, X+27'JV¥)=0.
The initial condition is
(1.4) ¥(z, 0)=0,
therefore,
0.¥(z, 0)=0,
(1.5) V¥ (z, 0)=0,
oNY(z, 0)=0.
Using the equation,
(L.6) 0.¥(z, 0)=A(z, X)
and

0.0.¥(z, 0)=—0¥(z, 0)=A.(z, X)=(0:4)(z, X)).

We shall construct the symbol of parametrix by the sum of the following Fourier
integral operators’ ones @(a, k, f).

.7 d(a, k, f)=S:°e“”‘”>t““(logt)" f(z, Ddt
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(D(a, /)=D(e, 0, f)),

where « and f are smooth functions in (z, ¢, X), the support of f is bounded with
respect to f, and k is a non-negative integer. We assume that a belongs to S?, and
fto S,,in X. (We call f an amplitude.) If Rea>0, then @ is well defined. For
general a, it is defined by the analytic extension in @ except for non-positive integers
by using the relation that

(L.3) Oa, k, ¥ )+ P(a—1 k, fla—))+P(a—1, k—1, kf)
+@(ar kr ft)_l"@(ar k"l'ly fat)zor

where @(a, k, f)=0 if £<0, and where ¥, @, and f, mean the derivatives in ¢ of
¥, «a and f, respectively.

Lemma 1.1.
(1.9) 0.9, k, )=0(a, k, i¥.f)+D(a, k, [)+P(a, k+1, fa,).
(1.10) 0.9(a, k, )—D(a, k,idf)

=P(a—1, k, fla—1)+P(a—1, k-1, fk)

+O@(a, k, (0,4+0))+P(a, k+1, f(0,+0)a).
Here

(1.11) A=Az, X+271JIY)

Proof. We consider it under the assumption Rea—1>0. The first one is the
differentiation under integral. The second one is obtained by applying (1.3) to (1.8)
and taking integral by parts. The analytic extension in a assures them for general
a. q.e.d.

The operator @(a, k, f, D) with the symbol @(a, %, f) is defined as if a pseudo-
differential operator p(x, D) with a Wyle symbol p(x, &) is. It is formally written as

(1.12) P(a, k, f, D)u

=@ay| , et aretamnoige t (it y)2, 8

0

X e b @201 og )k u(y)dtd ydE,

which is regorously verified for any a=S},, and f&S,, by the oscillatory integral
with the phase function

[(x—3)%+¥(z, t, (x+)/2, &)]

in (§, y) and by the analytic extension in a. Therefore the integrals in ¢ and in (¢, y)
are commutative in their order.
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Lemma 1.2.
(1.13) iA(z, x, D)D(a, k, f, D)
~@(a, b, iAf, D)+D(a, k, Lsf, D)+P(a, k+1, f LYya, D)
+terms with lower order amplitudes,

where A is (1.11) and where LY and L, with a scalor term w(A) of order 0, are the
first order operators such that

(1.14) L91=%MZI}=1[A‘“’(2, X+27 V)0 — Acar(z, X+271JVT)9E]

and
L= LY4u().

Remark. The lower terms are denoted as sum of @(a, k+I+1, g), (=—1,0,1, ---)
because « does not change. The amplitude functions g have their order such that
order g<order f—{! if /=1, or order g=<order f—1 if /=—1, 0.

Proof. Expand asymptoticly the product of two Fourier integral operators as
usually, and take the first two terms in the order of amplitudes. q.e.d.

We assume beforehand that

(1.17.1) 0,a=0  at t=0,

(1.17.2) 0,+0,— LY)a=0 on >0,
(1.17.3) id(z, X)Ya—1)+c=0  at t=0.
(1.17.4) (a—Da,,+ LYa=0 at t=0.

Here ¢ is a given function. «a at t=0 is defined by (1.17.3). The condition (1.17.1) needs
an assumption for ¢; (0/0z)[¢/A.]=0. We have here assumed it. If we get a solution
of the equation (1.17.2) with the initial condition « at t=0, then (1.17.4) is automati-
cally satisfied.

Let us consider an operator,

(1.18) P=0,(0,—iA(z, x, D)+a(z, x, D))+c(z, x, D)+d(z, x, D),

where 4 and ¢ belong to Si,, a to SY, and d to Sij.
Then we obtain Lemma 1.3.

Lemma 1.3.
P®(a, k, f, D)
~@(a—1, k, (a—1)f,, D)
+P(a+1, k, it ,0,+9,— L, +a+b)f, D)
+@(a—1, k-1, kf,, D)
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+D(a, k—1,it"'T .k f, D)
+lower terms,
where the lower terms mean one of D(a, k+I1+1, g, D) such that
(order g)<min [(order f)—{, (order /)—17,
or O(a+1, k+I+1, g, D) such that
(order g)<min[(order f)—(+1, (order /)],
for all |Z2—(k+1), and Lyhere the function b is defined by the relation that

it™ ¥ (a—1)+¢=iT,b.

§2. Construction of asymptotic solutions

Lemma 1.3 will be used for constructing an asymptotic solution,
(2.1) . F"\J kgo @(a, k, f(k))-

We first write down the relation making inductively the order of remainders lower.
We here note the total order of @(a, k, f, D) as operators is at most the maximum
of order f and —Rea+order f except for k-power of logalithmic order.

2.2.1) (a—1)0,f+g,=0 at t=0,
(2.2.2) kG )f+g.,=0 at t=0 and ¥,(=A)=0,
(2.2.3) it Y,0,+0,— L+a+b)f+g,=0 on t>0,

where (order g,)=(order g,)—1=(order g;)—1.

At the first, we give f«y. We assume k=0, so (2.2.2) is free. We can choose
any function f, of order 0 such that d,f,=0 at =0, and solve

(0,40, — Ls+a+b)f «,=0

with the given initial condition f, at ¢=0. Then, the remainded terms are
@(a, I+1, g, D) with (order g)<min[—/, —1], or @(a+1, [+1, g, D) with (order g)<
min[—/+1, 0] for [=—1.

Secondly, we choose f(, of order —1 with 2=2 as the term @(a+1, 2, g,, D)
with order g;=0 vanishes by the equation (2.2.3), where it may be possible that
fw=0 at t=0. Then the remainded terms are @(a,[+1, g, D) with (orderg)<
min[—!I, —1], or @(a+1, {+1, g, D) with (order g)Smin[—{+1, —1] for /=—1, except
for @(a, 0, g,, D) with order g,=0, @(a+1,0, g, D) and P(a+1, 1, g, D) with
order g§>=0.

Next we remove the terms @(e, 0, g,, D) and @(a+1, 0, g{¥, D) by taking suitably
D(a, 1, fay, D) with order f,y,=—1. The transport equations are that on {t=0},

(a—l)a,f(m:l
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feret+ g6t ¥,) =0 at ¥',=0,
and on {t>0},
(az+at—LA+d+5)f(nz+g:§l)(it_lwz)_120.

If we take such a solution f(,, then

Pla—1, 1, (@—1)0.f e, D)=P(a, 1, g2¢1y, D)
with order g,;,=—1, and

Da, 1, @t"V,)f it g. D)=0(a, 0, i¥.k, D)

with order i=—1. The last term ®(a, 0, i¥,A, D) is passed to next steps by using
the lemma.

Lemma 2.1.
O(a, k—1, ik, D)+Pa—1, k—1, (a—1)i, D)
+P(a—1, k=2, (k—1)k, D)+P(a, k—1, h,, D)
+9(a, k, ha,, D)=0.

Therefore all remainded terms are lower ones except for @(a—1, 0, (a—1)i, D)
and @(a+1,0, g, D). These terms are removed by @(a, 0, f(ys, D) in which f .y,
is any solution of the equations

(@—1)0,f uys+(@—1)k=0  on ¢=0,
and
040, — La+a+Db)f (s+g§”@t"¥,)'=0  on t>0.
Therefore
P[@(a, 0, f(o)» DH’@(% 2, f(n)» D)

+@(a7 ly f(l)Zy D)+@((1, O’ f(l)Sr D)]

is the sum of lower terms such that @(a, (+1, g, D) with (order g)<min[—/, —1], or
d(a+1, [+1, g, D) with (order g)<min[—{+1, —1] for [=--1.

Proceeding in this way inductively with respect to order of remainders and the
exponent k£ of logalithm, we can decrease the order of remainders to any lower one.
So we can construct the parametrix.

Theorem 1. For any natural number N, there exist f,eSTH**P/? k=0, ---, 2N,

such that

P{ :ﬁo Da, k. [ D)}

is equal modulo smoothing operators to the sum of lower terms, which are @(a, [+1, g, D)
with (order g)<min[—{, —NJ], or @(a+1,(+1, g, D) with (order g)<min[—{+1, —N]
for {=z—1, where the principal part of f» is able to be any solution €S53, of (2.2.1)
and (2.2.3) with g;=0.
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§3. Asymptotic expansions of parametrix

We may consider only two cases. The first one is that the phase function Z'(z, s)
has no singular point with respect to s, namely, 0,%(z, s)#0 (s=0). The other one
is that ¥(z, s) has a discrete singular point with respect to s inside of s>0, because
by the definition of ¥(z, s), (0,)¥(z, 0)=--0,0,¥ (2, 0)=0,4(z, X)=+0, if 9,¥(z, 0)=
A(z, X)=0, so that near s=0, it holds that (3,)*¥(z, s)+0 if 9,¥(z, s)=0. The omited
case (0;¥=0 at s=0) is, however, important because it is the asymptotic expansion
on the double characteristics of the original operator. Only the first case appears on
{(z, X); A(z, X)<0}. The first case and the second one appear exactly on
{(z, X); A(z, X)>0}. In fact, the solution s=7(z, X) of 9,¥=0 is negative on
{A(z, X)<0} and positive on {A(z, X)>0} because 9,9=—0,0,¥/0:¥3,4>0 on
{A(z, X)=0}={0,¥ =s=0}.

3.1. The first case.

Let us define I ((a, k, o) as

o0

I'(a, k, a):SOe s9sa~Ylog s)¥ f(s)ds,

for Rea>0 and Re¢ =0, where f is a smooth function in s&[0, o) such that the
support of d,f is compact in (0, o), and lim,..f=0 if Re¢6=0, and where % is one of
natural numbers including zero. We extend to meromorphic functions for the whole
acC as well as the ['-function by the relation that

ol j(a, b, o)=(a—DI j(a—1, k, o)+ I (a—1, k—1, o)+ (a, k, o).
We denote I";(a, k, 1) with f=1 by ['(a, k).

Lemma 3.1.

I'y(a, k, 1)=f(0)0“'§‘3 Cjrlog(l/ay (@, k—j)+0(—o) as |g]—oo,

except for a=0, —1, —2, -+, where the support of f is compact in [0, o).

For the purpose of this section it suffices to get the asymptotic behavior of
D(a, k, f):S:eiw“'“f(z, s)s* Ylog s)*ds.

We consider the case that 9,%(s)<0, (namely, on {A(z, X)<0}). Then, we put
t=—U(s)|&|"". We can write s=p@)=ta{), (at)>0). Then the integral @(a, &, f) is

Ola, b, =\ e 8 FeXp)*log )t p'dt.

By using the Taylor expansion in ¢ and tlogt, we get, asymptoticly,
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Da, k, )

~ (e Fopam - log 1y a0 @)X (1) dt

* Ezp]z>Swe-“IEIt&(O)_'(IOEf)’l“(tIogt)bCule(t)dt,

0
where the parameters (a, b, [) of 3>} vary on
{0£i<k,0Za,0<b and a+b+k—1+#0},

X(@) is a cut off function near 0 and C,, are symbols of pseudo-differential operators
with the same order as f has.

Lemma 3.2.

D(a, k, f)=S:eiw“'”f(2, s)s* '(log s)*ds.

~bol&17*(log 1/1£ )"
t & el €170 (log 1/ 1§D ((log 1/1€1)/161)",

where the variables (a, b, [) of 3} are on
{0=<I<k, 0=a, 0=b and a+b+k—1+0},
be=(1€1/i )% f(0)

and by has the same order as b, has.

Remark. In case of 9, >0, namely, on {4>0}, the same type of expansion holds
with the same principal symbol b,.

3.2. The second case. This case has a singular point 0, =0 inside of the integral
domain s€[0, o). The singularity is the simplest case that 0¥ <0 at 9,¢'=0, and
also the integrands are smooth. Therefore it has the asymptotic expansion near the
singular points 9, =0 as

D(a, k, eI (1/2)e” (=T (a)™H?

X [bo+b:1& 7+ - by 1E1 74 -],
where
bo=(0)“"(log 0)* f(a),

and b; are symbols of pseudo-differential operators with the same order as b,, namely,
f, and where s=0d(z, X) is a solution of

0,¥(s)=0,
so that it is a symbol of pseudo-differential operator of order 0 and ¢=¥(s) satisfies

0,0—A(z, X+27' JV¢)=0,
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¢=0  on A=0.
This fact is important. The phase function ¢ is one for {—4=0 starting at 4=0.
3.3. The conclusion. In constructing the parametrix E=3.9(a, k, f), D) at

Theorem 1, we take the principal amplitude function f, of f, as f, is an elliptic
symbol being a constant in z (9,/°=0) at s=0 and extend it on s>0 by

0.,+0,— Ls+a+b)f,=0
by following the process of construction.
2X(the order of f,—the order of f»)+4
never exceed zero. Then the parametrix has the asymptotic behavior as follows.
Theorem 2. 1) On {(z, X); A(z, X)<0}, E is asymptoticly expanded as I,.
2) On {(z, X); A(z, X)>0}, E is asymptoticly expanded as the sum of I, and I,.
Ii~a,lé|""+ _m§)e aimn &7 ™(log 1/1€1)((log 1/161)/1ED)",

l K

(K={0£1Z2m, 0€m, 0n and 3m+n—I[%=0}),

To~eteT(1/2)e™114( 53 b16177711),

where
ao=(&1/iA)*fo#0
and
bo=(0.1£| 4.(0))"2a% fo(a)#0.

a; and b; have the same order as f, has.
Remarks. 1) a=1—c(GA,)".
2) ¢ is a solution of the equation
0,0— Az, X427 JV¢)=0,
=0 on Az, X)=0.

Then (0,9, Vo)=0 on A(z, X)=0.
3) o is a solution of the equation

A(z—0, X+271]9¢)=0,

so that
(00— Lo =1,
and
=0 on A=0,
where

1
L?ua):?l‘;:l[/l‘“’(z, X427 V@050 + Acar(z, X427 V@) ].
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4) A,(0) and a(s) are solutions of the equation
0.— L%4>)g=0,

with the initial conditions
glae=4. and a (=go),
respectively. Namely,
g=gyz—0, X+27'JV¢p).

5) fo(a) are solutions of
(0.— L g¢or+a(a)+b(a))g=0,

with the initial condition
gl a=0="/fo,
where
L scor=LY%s>+v(A(a)),

y(A(a)) is a scalor term depending on the phase function ¢, and (), b(s) are scalor
terms appearing in the construction of parametrix.
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