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On the unitarizability of principal series representations
of p-adic Chevalley groups
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Hiroyuki YOSHIDA

Introduction

In  this paper, we shall determine the unitarizability of unramified principal
series representations of p-adic Chevalley groups of classical ty p e .  To be precise,
le t k  b e  a non-archim edean local field and let G  b e  a  connected semi-simple
algebraic group which is defined and splits over k. Let T  be  a  maximal k-split
torus and  B  be  a B orel subgroup of G  defined over k  which contains T .  Let
N  b e  the unipotent radical of B .  Let I  b e  the  root system  and  A  be  the set
of simple roots determined by (G, B , T ). Let W be the W eyl group. Let G, T, B
a n d  N  s t a n d  f o r  t h e  g ro u p s  o f  k - r a t io n a l  p o in ts  o f  G , T , B  a n d  N
respectively. F o r  a  quasi-character x  o f  T , le t  PS (x ) denote th e  space o f  all
locally constant functions 9  o n  G which satisfy

9(tng)= 6 B (0 112x ( t )  p for every te T ,n e N ,g e G .

H ere SB d en o te s  th e  modular function o f  B .  Let ir(X) denote the admissible
representation of G realized on PS(x) by right transla tions. We call x unramified
if x is  trivial on the maximal compact subgroup o f  T  L e t  X  denote the set of
all unramified quasi-characters o f  T  I f  x  e  X , tr(x ) h a s  th e  u n iq u e  spherical
constituent w ith respect to  a standard maximal compact subgroup o f G, which
w e denote by ir;. Let P denote the set of all x e X for which tr,i, is unitarizable. It
is well known that P  is  a W-stable compact subset of X .  W e call x regular if
w x  x  for every w e W, w 1. S e t

X' = {xlx e X  a n d  x is regular}

= {x Ix  E X  a n d  m(x) is irreducible} .

In the notation above, our m ain results in  this paper determine PnX i w hen  G
is of classical type.

L e t u s  explain m ain  ideas o f the  p ro o f. F irs t w e  no te  the  following fact
(Lem m a 6.2). Let G  be of adjoint type and let :  G  be a central isogeny
defined over k. W e  d e f in e  I  fo r  d similarly a s  fo r  G .  T h e n  w e  have an
surjective homomorphism X n x =  x .  e I .  W e  s e e  th a t  74 is unitarizable
if  a n d  only  if  t ri  is un itarizable . B y th is fact, w e can  free ly  m ove from  the
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adjoint group to the  simply connected group. For w e W, set

X w = =

As is well known, if x e x r,  there exists a non-zero intertwining operator Tw from
PS(x) to  PS (w x ). First assume x e X' n X ' and assume tha t n(x) is unitarizable.
Then we have x e X„, for some w e W, w 2  =  1 . W e  se e  th a t 7r(x) is unitarizable
if and only if

(1) ((Pi, 92) = cf ( T ( 9 1))(g)(p 2 (g)dg, cp2e PS(x)
El\G

is  a positive definite hermitian form with a non-zero constant c. To determine
directly the positive definiteness of (1) in general is very difficult however.

Let 14)0 b e  the longest element of W  and w o  b e  an  element in the standard
maximal compact subgroup o f G which represents w 0 . S in c e  Bw o N  is  the big
cell, we see easily that for every E C (N ), there exists a unique cpEPS(x) such
tha t 0(n) = yo(coo n), n e N .  W e pu t cp  =  /,(0 ). Then

(2) T.,x(0) = TwO x ((1i))(0)0), Ïi eC  ( N )

defines a distribution on N . Suggested by Godement [11], 1.19, we shall show
tha t cT , x i s  of positive type if m (x )  is unitarizable and the converse holds if x
is in the absolutely convergent domain for Tm, (Lemma 5.4). Thus we are naturally
led  to  the study of distributions of positive type.

In  §2 , we shall prove that the positivity of distributions is preserved under
the direct image among nilpotent groups (Theorem 2.3). This result shall simplify
our arguments considerably.

F o r  a  subset J  of z l, let Z .  b e  the  root system generated by J  and W
the W eyl group attached to E f . Let w j  deno te  the  longest element o f W.,. If
m(x) is unitarizable, then ir(wx) is unitarizable for every w e W  B y this fact, we
m ay  assume x e X ,,  f o r  som e J c  A .  B y T heorem  2 .3 , w e can  reduce the
unitarizability p rob lem  to  the  case  where J  A  and w o = 14,4  a c t s  o n  A  by
multiplication by — 1 (cf. §8).

Let

X(T) = Hom (T, G.), X(T) = Horn (G m , T).

Set

V  X (T) C),R, =  X ( T ) ®  R

and  le t <  , >  be the canonical pairing between V and 17
* . L e t  i  be the inverse

root system of E  realized in 1/,. L e t  P (E )  a n d  Q(E) b e  the  lattices of weights
and  of root weights respectively. Assume tha t G  is  o f ad jo in t type . Then we
have X(T) = Q(E), X (T ) =  P ( ) .  A ssum e w o =  —  1 on A . Fix z e Q (E ) . For
v e V, we can define x (v )e x . by

(3 ) X(v)(fi(m)) = (— 1)<z ,fl>q<v,fl>, fl e P(i),
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where tu is a prime element and q  is the module of k. Every quasi-character in
X 0  i s  of this form . Set

=  {a e  I <v, a> 0  mod 21.

Let bz  b e  the family of hyperplanes in  V defined by <v, a> = 1 for a e i z . The
irreducibility criterion of K ato  [13] says that n(x(v)) is irreducible if and only if
v  b z (cf. Lemma 3.2). Let D  be a  connected component o f  V — $z . A simple
deformation argument shows th a t  if n(x(vo ) )  is  unitarizable fo r  a  p o in t vc, e D,
then n(x(v)) is  unitarizable for a ll v E D . By Theorem 2.3, w e see that if

(4) 0 0 , a> = 0 for some vo eD, a e t ,

then the unitarizability of n(x(vo )) can be reduced to that o f a  lower rank group
(Remark 8.3).

Suppose tha t w e cou ld  ob ta in  a  sufficiently sharp estimate o n  v eV  as a
necessary condition for unitarizability. Then we can determine the unitarizability
com pletely since, intuitively speaking, hyperplanes a t ta c h e d  to  a  e i z a r e
"crowded" in  narrow domains around the origin o f V so  that (4) holds for such
domains.

W e shall realize this idea in  § 9  § 1 1  for groups of classical type. In  fact,
to  p rove  (4) assuming a  su itab le  estim ate  is ra ther easy . T o  obta in  a  sharp
estimate for v u  V  such  that n(x(v)) is  unitarizable, we appeal to considerations
on composition series of n(x(v)) for r  on  the boundary of D .  A  result of Tadié
[2 6 ] , T heorem  2 .7  tells t h a t  i f  t h e  p o i n t s  o f  D  represen t unitarizable
representations, then all the composition factors of n(z(v)) for v e 15, th e  closure
of D, are unitarizable. By this fact, we can show tha t if  a  p o in t o n  D  satisfies
certain conditions, then  non-unitarizability follows (Lemmas 8.5 a n d  9.4). The
existence of such points, for those D  which are bounded and  do  not satisfy the
estimate, shall be shown by delicate combinatorial considerations o n  th e  shape
of D  and by raising up the dimension of D.

L et fei l be  the standard basis o f  V  as in  B ourbaki [ 7 ] .  For the adjoint
group of type B „ the final result is

Theorem B .  L e t  z e Q (E) a n d  l e t  v = aire  V. A s s u m e  n(x (v )) is
irreducible. T hen n(x (v )) is unitariz able if  and only  if

(5) — 1/2 < ai < 1/2, 1 < i < e.

For the adjoint group of type C1 ,  we obtain

Theorem C .  L et z  = 0  and y  = Ef= ar1 E V. A ssu m e  n(x(v)) is irreducible.
Then if  n(x(y)) is unitarizable, we have

(6) —  1 < ai < 1, 1 < i <e.

Although the estimate (6) is  no t a  sufficient condition for unitarizability, (6)
g u a ra n te e s  th a t  w e  c a n  a p p ly  (4). H e n c e  w e  c a n  e a s ily  d e te rm in e  the
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unitarizability inductively. (For the case z 0 and for type D „ see the text.)
W e shall briefly explain the contents of each sec tio n . § 1  reflects author's

p rev ious a ttem pts to  derive  good  estim ate  d irec tly  from  t h e  positivity of
distributions. W e have retained this section since it m ay be useful on future
occasions. The reader who is interested only in the unitarizability should skip
this section after confirming standard term inologies. In §2, we shall prove the
functorial properties of distributions of positive type sta ted  above . §3  and §4
are  preparations on semi-simple groups a n d  o n  intertwining operators. In §5,
we shall show  an explicit relation between the unitarizability of representations
and  the  positivity of distributions. In particular, w e shall prove that T  for

A  can be w ritten as a  d irec t im age . In  §6 , w e shall study the relation of
the unitarizability of 74 with the positive semi-definiteness of the hermitian form
(1) in general con tex t. After preparations on deformation in §7, we shall explain
basic strategy for determining PnX i i n  § 8 .  I n  § 9  § 1 1 ,  w e shall obtain the
unitarizability conditions for groups o f classical ty p e . In  § 1 2 , we shall reduce
the unitarizability problem of m  simply connected groups o f classical type
to  the case when x is rea l va lued . This result can be regarded as the first step
toward the determination of P.

The first version of this paper was completed in the spring of 1989. However
it contained a  se r io u s  e rro r '. The results appeared in a short communication
[23] are false except for Proposition 5, Theorem 6 in Case B  and Theorem  7. I
w ould like to express my sincere gratitude to  Institute for advanced study for
its hospitality and for providing abundant time to revise the  previous draft. I
shou ld  like  to  express m y hearty  thanks to  P rofessor H . H ijikata  fo r  useful
comments on semi-simple groups.

Notation and terminology

Let G be a locally compact Hausdorff topological g ro u p . By a Haar measure
dx o n  G, we understand a  left invariant Radon measure. W e denote by 6 G  the
modular function o f  G .  Symbolically we have d(x - 1 )  =  6 ,(x )d x . (This adapts
modern convention used in [8], [10], [20] ; it  is  the inverse of Weil's definition
[22], p . 4 0 .)  I f  V  is  a com pact subset o f  G , vol (V ) denotes the volum e of V
m easured by d x .  W e d en o te  b y  G  th e  se t  o f  th e  equivalence classes of all
irreducible unitary representations of G.

By a  t.d . group G, we understand a Hausdorff topological group which has
contable  open  com pac t subsets a s  a  b a s is  o f  o p e n  subsets (cf. Silberger
[ 2 0 ] ) .  Such a  G is locally com pac t. F o r a  function (or a distribution) f  o n  G,
su p p (f)  denotes the support of f  L e t T  b e  a  d istribution on G  a n d  a  b e  a
function o n  G '  in to  C .  A s in Schw artz [16], 'T(a(t, x , , . . . ,x ) )  denotes the

D r. J-S. L i communicated the  author some mistakes in  th e  previous draft after the author had
come to notice an error in the proof of Theorem 1, [23]. According to his communication, he has
a complete determination of P in the case of type G 2 . We can immediately obtain the unitarizability
condition for n (x) for x E by our method also for type G 2 .  This is because the condition (4) is
satisfied or wSl12 e D for some we W if D is a  bounded domain in the case G2.
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function obtained by taking the value of T  fo r the  function Œ(t, x 1 . .... x )  o f  t
with (x 1 , ..., xn) e Gn fixed, whenever this is well defined.

If R  is a  ring  with unit, we denote by l e  the set of all invertible elements
of R .  If k is a commutative field, M (e, k) denotes the ring of all e x é'-matrices
with entries in  k. The diagonal matrix with diagonal elements a l , a 2 , . . . , a ,  is
denoted by diag [a l , a 2 ,..., a e ]. We set Gme, k) = M(e, k) x  .

From § 3 on, we consider algebraic groups defined over a non-archimedean
local field k. W hen a n  algebraic group is considered as an algebro-geometric
object, w e denote  it by  a  bold  face capital letter (by G  fo r example), whereas
the  group of k-rational points is denoted by the  corresponding Roman capital
(by G  for example).

§1 . Positive and bounded distributions on t.d.groups

In  this section, we shall study certain classes of distributions on a t.d. group
and generalize L. Schwartz's results on positive and bounded distributions. Let
G  be  a t.d. g ro u p . B y  C(G ), C (G ), Cœ(G ) and C ( G ) ,  we denote the  space of
all continuous functions, continuous functions with com pact support, locally
constant functions a n d  locally constant functions with com pact support with
values in C respectively. F o r ct e C(G), we set

(1.1) ôt(x) = a(x - 1 ), 6 i(x ) = cx(x - 1 ) , x  e  G,

where— denotes th e  com plex conjugation. A  d is tr ib u tio n  o n  G  i s  a  linear
functional on C ( G ) .  Let D(G) (resp. D (G )) denote the space of all distributions
(resp. distributions w ith  com pact support) on G .  If  o n e  o f  T,, T2 eD (G ) is  of
compact support, we can define the convolution T,* T2 eD (G ) in  th e  following
w a y . (cf. B ernstein-Zelevinski [1 ] ,  w h e re  o n ly  t h e  c a s e  T1 , T2 eD ,(G )  is
tre a te d . B u t th e  generalization is straightforward.) First le t G 1 a n d  G 2  be
t. d. groups. B y  se ttin g

(Œ1 0 Œ 2 ) ( x 1 ,  x2) = oti (xi)Œ2(x2), E G I ,  X2 G G2

for a l  e (GO, oc 2 e Cc'  (G2 ), w e have

(G i  x  G 2 ) C , ' 1 G 1 )  c (G2).

F o r  Ti eD(G i ) ,  T2 ED(G 2 ) ,  we can define T, T 2 eD(G 1 x  G 2 )  by setting

(T, ® T2 )(a 1 ® Œ2 ) = T, (a l ) T2 (a2 ), oci e C (G ,), i =  1 , 2.

Take G 1 =  G 2  =  G .  Let 7 .
1 , T2 E D (G ) and assume one of T, and T2 is of compact

support. For oce C ( G ) ,  define 13e C '(G  x  G )  b y  f3(x , x 2 ) = Œ(x x 2 ). S in c e
supp (T, T 2 ) = supp (TO x supp (T2 ) and supp (T, T 2 ) su p p  (fl) is compact, we
can define T,* T2 by

(1.2) (T1* T2 ) (cc) = (T1 0  T 2 )($).
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W e can rewrite (1.2) more explicitly as

(1.3) (T1* T2 ) (a) = (T,),((T2 )(a(tx ))), T2 e D(G),

(1.4) (T, * T 2 )(Œ) = (T2 )x ((T1 ),(a(tx))), T, e Dc (G).

W e see easily that T, * T2 coincides with the usual convolution when T , and T2
are functions in  C  (G ). We can verify easily the associativity:

(1.5)T 1  * (T2  * T3 ) = (T, * T2 )* T 3  if T 1 , T3 E D ( G ) , T2 e D(G).

Let T ED (G ) and a e C ( G ) .  Then we have

(1.6) (T * a) (x) = 7;(a(t -  x )), x e G,

(1.7) (a* T)(x) = 7;(a(xt -  1 )6 G (t)), x e G.

Thus T* a, a * TE C " ( G ) .  W e set

(1.8) = T;(50 6 G(0),

(1.9)T ( Œ )  = T ( ) ,

(1.10) T.
When T is a  function in C(G), these definitions coincide with (1.1). By definition,
we have

T  = T , T =T ,  T =T ,  T = T.

L et T1 , T2  e D(G) and  a e C ,"(G ). W e assume tha t one  o f T1 , T2 is  of compact
su p p o rt. We can also verify easily the following formulas.

(1.11) ( T , T 2 ) = t 2 * 1' 1 ,

(1.12) (T, * T2 )(Œ) =  (T1 ) (a * 1.
2 ),

(1.13) (T, * T2 )(a) = (T2 )x ((i' 1 * ai )(x)SG (x)),

where ai (x) = a(x)S G (x) - 1 ,  x e G.
We are going to define certain classes of bounded distributions. For a closed

subset U  o f G, le t D u  d eno te  the  se t o f a ll distributions on G  whose supports
are contained in  U .  W e set

C1(G) = tcp e C°D(G)1 there exists an open compact subgroup K = K  (9)
of G  such that ço * T e  ( G )  for any TE DO,

CII(G) = {9 e C(G)Ithere exists an open compact subgroup K  = K (4 )

of G  such that T  *  e  ( G )  for any  Te DO,

CI(G) = { 9 E C(G)Ithere exists an open compact subgroup K  = K (9)
of G  such that T, * 9 * T2 E L l  (G) for any  T,, T2 E DO.
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We define a  topology of C1(G ) in the following way : A sequence 19„1 in C1(G )
converges to  0  if  an d  only if  there exists an open com pact subgroup K  o f G
such that 9„ * Te ( G )  and converges to  0  in  L l (G ) for any  Te DK .
A  topology of C 1 (G ) is defined similarly.
A  topology of COG) is defined by: A  sequence 19„1 in C 1 (G ) converges to  0
i f  a n d  o n ly  i f  there  ex ists an  o p en  co m p ac t subgroup K  o f  G  such that
T,* *  T 2  c ( G )  and converges to  0 in  12(G) for any  T,, T 2  e DK .

Obviously CI' (G) C rK i(G) n Cli(G ) and the topology of C}1 (G) is finer than
the induced topology from  C ( G )  o r  Cli(G).

Lemma 1.1. Cf (G) is a dense subspace of  C (G ),  0 1 (G ) and Cti(G).

P ro o f . It suffices to show that Cf (G) is dense in C O G ). If a e C (G )  and
T,, T2 E D e (G) , w e  h a v e  TI *a* T2 E C f (G ) .  H ence  w e  h a v e  Cf (G)
T ak e  an y  9 e  C li(G ). L e t K  b e  a n y  open com pact subgroup o f  G  and let
G =  W 1 , K x ,K . Set X„ = Kx,K,

cc (g) 9(g)'
for g e X

t 0, for g it X „.

Then a n E C ( G ) .  T a k e  a n y  T,, T 2  e D K . It su ffices  to  show  th a t  T, *an * T2

converges t o  T1 * 9* T 2  in  1 )(G ) for n cc. C onside ring  the supports, we see
easily that

T, * (9 — an )* T2  X p =  0,

T, * (9 — an )* T2 IG — X „ = T, * 9 * T,1G — X .

Therefore T, * (9 — a„)* T2  is obtained by restricting the  support o f T,* 9 * T2 e
(G )  t o  G — X .  H e n c e  T, * (9 — an )* T 2  converges t o  0  i n  L i  (G )  for

n —> c o .  This completes the  proof.

Let Br(G), g(G) and Bt (G ) be the space of continuous linear functionals on
COG), C 1 (G )  a n d  COG) respectively. By Lem m a 1.1, these spaces can be
canonically regarded a s  subspaces of D (G ).  Clearly we have

fr(G), 11 1(G) g  Bt(G) g D(G).

We are going to examine the structure of DK  for an open compact subgroup
K  o f  G .  L et p  b e  a n  irreducible unitary representation o f  K  and let m i (x),
x e K  denote the  matrix coefficients of p  fo r  1 < i, j <  dim p. W e normalize a
Haar measure dx of G  so  tha t vol (K) =  1 .  W e set

j<nifi ,  m ) =  . In fi (x)mf; dx,
K

where p ' i s  a n  irreducible unitary representation o f  K .  T h e n  th e  following
relations are well known (cf. Weil [22], p . 73).

(1.14) mf.;* m,P,; = 0 if p is not equivalent to p'.
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mfi *mfa  =  0 if j  k .

1
'41'4 i *myi — m .

dim p

= 0 if p is not equivalent to p'.

mfa > = 0 if i k  or j  /.

1
(1.19) Onfi, nt> — .

dimp

L e t  IZ  d e n o te  t h e  s e t  o f  equivalence c la s s e s  o f  a ll irreducib le  unitary
representations of K .  Let cp be a  locally constant function on  K .  We can find
an open compact normal subgroup K 1 o f  K  so that cp is left and right invariant
under K 1 . Then we can expand 9  in  the  form

(1.20) 9 (x ) =  E E a(p, Am fi (x), xe K,
peic'

where a (p , j )e C  and  if  a ( p ,  j )  0 , then p  is  trivial on K 1 . The expansion
(1.20) for 9, which is actually a  finite sum, is un ique . F o r p e 1Z, 1 < j , j < dim p,
define T(p, j, j)e DK by

(1.21) T (p , j)(x ) =  (dim p)rni6(x), xe K.

Then, by (1.17) — (1.19), we have

.i)((p) = a(P,

Therefore any distribution Te DK  can be expanded in  the  form

(1.22)T =  E E c (p ,  j )T (p ,  j )
p E k

with c(p, 1, j) = T(mfi ). In particular, the Dirac distribution .5 supported on  1  is
given by

(1.23) =  E E T(p, j, i).
pek

C onversely any infinite series (1.22) w ith c (p ,  j) e C  d e f in e s  a distribution
TeD K . Since p is unitary, we have m (x ) =  nifi (x - 1 ). Hence we get

(1.24) = m , mfi = rnYi.

 

OK, mf;>

L et 9  a n d  T  be given by (1.20) and (1.22) respectively. By (1.14)  (1 .1 6 ) , w e
obtain
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(1.25) 9* z z OE
p  dim p k,;

a(p, k, i)c(p, j, i))t (p, j, k),

(1.26) t * (p — E
p  dim p i,k ;

a(p, j, k)c(p, j, i))1' (p, k, i).

The following Theorem is an analogue of Théorème XXV of L.Schwartz [16],
p. 201.

Theorem 1.2. L et T e  D (G ). The follow ing three conditions are equivalent:
(1) For any  open compact subgroup K  of  G, there exist a bounded continuous

function f  on G  and T,e D, such that T = f *T,.
(2) TeBr(G).
(3) For any  ocEC f (G ), T  * e  C '(G ) is bounded on G.

P ro o f .  First w e assume that (1) holds fo r som e K .  Suppose 9 e q 1 (G )
converges to  0  for n o o .  By (1.12), we have

(f*Ti)(p„)= f(Q.* TO.

Since 9 „ *  t ,  converges t o  0  i n  L i  (G ), f  (9 * converges to  0 . H e n c e
T  =  f *  T ,e if(G ). Next we assum e (2). Suppose (NEC,' (G ) converges to  0  in
I ) (G ) .  To prove (3), it suffices to  show  th a t (T* cc) (q) converges to  0 . B y
(1.12), we have

(T * cx)((P.) = T(9.* 5)

Let K  be any open compact subgroup of G and T, E D , .  W e see that 9„*5c* T,
converges to  0  in  L l (G) since ?it * T ,E C f(G ).  Therefore T(9„ * 5c) converges to 0
and we get (3).

Finally we assume (3) and shall prove (1). Put

B = {9 E (G)111911Li 1}.

Let cc e Cf (G), 9 E B .  By (1.12), we have

(9* T)(oc)= 9(ot* 1').

Since (cc* t )  = 6c by (1.11), cc * e C 0 ( G )  is bounded on  G .  Hence, when cc is
fixed, (9* T) (cc) is bounded for (i9 e B .  Let K  be any open compact subgroup of
G and we consider the restriction 9 *T 1 K E D ,. W e may set

*  T K  =  E Ec(p, i , j ,  0)T(P,
pei

T aking  a  =  mfi , w e  s e e  t h a t  c(p , i,j, 9 ) is b o u n d e d  fo r  q EB, f o r  every
(p, i , j). Choose c(p, i, j) > 0  so that

Ic(p, i, j ,  9 ) 1 i, i), V9 E B.

By the  first axiom of countability, k  is  a  countable set. F o r  (p, i , j ) ,  choose
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a(p, j)EC so that a (p , j) and EE a (p , j)c (p , j) are absolutely convergent
P  

i , j P

and that dim p x dim p-matrix (ai i ) = (a(p, i, j)) is non-singular for every p. Put

x(x) = {E pE iJa (P , P i t i f x ) ,i( 
0,

Then a e Cc (G ).  Let k =IpnIneN1 . Let

an =  E Ea(Pk, j, Anifj` on  K  and a n  =  0  o n  G — K.
ki5n

Then

(9 * — an) = 49 ((a — an)* )

is bounded for (pe B and this bound converges to  0  for n co. Therefore a*
is a continuous function as the uniformly convergent limit of an * E C (G ) .  Since
9 ( a *  t )  is bounded for cp e B, a * 't  is bounded o n  G .  Put f = T *6c = (a ; 1 ) .
F or every (p, j ) ,  we can choose ci (p, j )  so that

E a(p, 1, k)ci(P ,=  ( 5 .ik dim p

holds for every p, j, k, where Si k  denotes K ronecter's 6 . Set

T, =  E Eci (p, j)T (p , j)e  D K .
pac'

Then, by (1.23) and (an obvious generalization of) (1.26), w e  ge t sT 1 * a  =  =
Hence we obtain

T =  T * = T * (6( * = (T * ôt)* =  f  *  T,.

This completes the proof.

We see easily that cp n e Cji(G) converges to 0 if and only if „(x ) G (x)
and converges to  0  in  C li(G ) . Therefore T  Br (G) if  and  only if T e 1-11 (G ) by
(1.8). H e n c e  a  similar result holds for BI (G ).  We give a  statement of a Theorem
o n  Bt (G) which can be proved in  a  similar way without giving a  proof.

Theorem 1.3. Let T e D (G ) . The follow ing three conditions are equivalent:
(1) For any  open compact subgroup K  of G, there ex ist a bounded continuous

function f  on G and T1 , T2 ED, such that T=  T,* f * T2.

(2) Te Bt(G).
(3) For any a, /3 e C (G ), a* T* fl is bounded on G.

Now we are going to study positive distributions on G .  Hereafter we shall
assume that G is unim odular. A continuous function 0 on G is called of positive
type if

if x e K
if x e G — K.
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(1.27)
fc.fc °CY-1 

a(Y) ot1z) dY dz

fo r a n y  a E  C (G ).  It is  w e ll know n  tha t such  0  is bounded o n  G(cf. Weil
[2 2 ]) . A distribution T  o n  G  is called of  positive type if

(1.28)T ( Œ  * 5 )>  0 for any a e Cf (G).

By definition, we see easily that a  continuous function is of positive type if and
only if it defines a distribution of positive type. Let P(G ) denote the set of all
positive distributions on G.

Lemma 1.4. A  distribution T E D (G ) i s  o f  p o s itiv e  ty p e  if  an d  on ly  if
T*aeC '(G )  is of  positiv e ty pe for any  a e Cf (G).

P ro o f . F or CCE (G), we have

't (a * =  T ((a ; 5 )) =  T  * ji)

Hence T is  of positive type if and if f  i s  o f  positive type. For f E C(G), put

Tr (f) = f (1).

We have, for a e CNG),

T r ( *  *  a) =
G

 5i(y) t (a (t -  y ')) dy = 7; (f (5i(y)a(ty -  1 ) dy)
 G

= Tt(f 5 (y -  t)a(y)dy) = T(a * 3).
G

Therefore T is of positive type if and only if Tr (a * T* 5) > 0 for any a e  C N G ). If
C(G), we get

(1.29) Tr (a * 0 * = f 0(31- 1  z) a(y) a(z) dydz, e C NG).
G G

N ow  assume TE P(G ) and  take a e Ce" (G ) .  P u t 0 =  * T * 5. Then

Tr (# * 0 * /3- ) = Tr ((13 * a)* T*(13 * a)) 0

for any fi e  C (G ) .  Hence by (1.29), we see that 0  is of positive type. Conversely
a ssu m e  * T * a is of positive type for any a e C ( G ) .  Take any fie  ( G ) .  We
can find a e C  (G) so that a *# = /3, by taking a  a s  a  suitable constant multiple
of the  characteristic function o f  a  sufficiently small open compact subgroup of
G .  Since ai * T * a  i s  o f positive  type , w e  h a v e  Tr(T3* (5/ * T* a)* #) >  0  by
(1.29). Hence we obtain

Tr ((a * 13)* T * (a * f3)) = Tr ( T* # ) =  ([3  * ) O.

Therefore f  is  of positive type. This completes the proof.
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Lemma 1.5. W e assume TE P ( G ) .  T h e n  T =  and a*T *13 is bounded on
G  f or any  a, f leCf (G).

P ro o f . L e t  a, fi e  C ( G ) .  W e  u s e  th e  following form ula w hich can be
verified by direct computations.

(1.30) 4(a* T * 16) = (a + T3)* T *( + )3) — (a — ;3-)* T * (6i — fl)

+ -1 (a+.,/-1 1 3 )* T * (6 1 — . \/—  l )3)

— 1 (a — .\ /-1F3)*T*(ii+. \ /-113).

By Lemma 1.4, e i* T * a is  a  bounded function o n  G  fo r any  a e C f ( G ) .  The
second assertion follows by (1.30). W e have

T1 (a* 6 0 = 7; (a * 3) fo r Tl eD (G ), aeC (G ).

Consider the formula obtaind from (1.30) by letting T  as the Dirac distribution
supported o n  1. T ak ing  th e  v a lu e s  o f  T  a n d  7;  a t th is  fu n c tio n , w e  see
immediately that T(a*13)= T(a* )3), a, fi e C f  (G ) . Since for any  ae C f  (G), we
can take fi e Cf(G) s o  th a t  a *  = a, we obtain T = T. This completes the proof.

By Theorem  1.3, w e have P(G ) g B t(G ). W e shall prove an analogue of
Theorem 1.2 for P(G).

Theorem 1.6. L et T eD (G ). T he  following three conditions are equivalent:
(1) For any  open compact subgroup K of  G, there exist a continuous function

f  of  positiv e ty pe on G and T ,eD K  su c h  th at T =7 .
1 * f * T 1 .

(2) Te P(G).
(3) For any  a E Cf(G), Fic*T *a is of  positive type.

P ro o f . W e assume (1). For any ae C r(G ), we have
•••••■ . ,

T  * = * (T ,* f  * T ,)* a = (T, * a)* f * (T, * a).

Since  T,* a e C (G ), (T ,*  a)*  f  * (T ,*  a) i s  a  continuous function of positive
ty p e . Hence, by Lemma 1.4, we have T e  P(G ). The equivalence of (2) and (3)
is proved a s  Lemma 1.4. W e assume (2). By Lem m a 1.5, a* T * f ie C "(G ) is
bounded on G for any a, fi e  C ( G ) .  Let B be defined as in the proof of Theorem
1.2. Let a, )6 e C (G ) and  yoe B .  By (1.12) and (1.13), we have

(a* T* i6)((P) = ( T *  * (p) (6).

We see, when a  a n d  )3 are  fixed, ( T  *  * ) ( 6 )  is bounded for 9 e B .  Let K  be
any open compact subgroup o f  G .  F o r  p e k ,  1 j  dim p , let fi = mt on
K , i6 = 0  on G —K , and let us consider the restriction T *B *91K eD K . We may
set

T* mf;  * 1 K  =  E E c(p , I, j, T , k, 1, 9) T(T, k, 1) .
k,1
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Taking a = trek l ,  w e  se e  th a t c ( p ,  j ,  T ,  k, 1, (p) is  bounded  for (p e B .  Choose
c(p, j, j, T , k, 1) 0  so that

c(P, i,j, T >  k, 1, (P)I c(p, i,j, T , k, V q) e B.

Since k is  a  countable set, we can choose a ( p ,  j)E C  so that

E a(p, j, j) and E E c(p, j, j, T , k, 1)a(t, k, 1)a(p, j, j)
p,i,J r,k,1 p,i,j

are absolutely convergent and tha t (ai i ) = (a(p, i, j)) is  a  non-singular matrix for
every p. Let

a =  E E c (p, i, j) m ,  o n  K , a = 0  o n  G — K.
p E l

Then ae C c ( G ) .  By (1.12) and (1.13), we have

(1.31) * T * a) ((p) = (T * a * (p)(ri)

Similarly as in the proof of Theorem 1.2, w e  s e e  th a t  * T* a e C(G) and is  of
positive type as the uniformly convergent lim it of ci„* T* an (a n i s  the same as
there). Put f =  ei* T* a. For every (p, j ) ,  we can choose c i (p, j )  so that

E a(p, k, Oc i (p, j, i) = 6 i k  dim p

holds for every p, j, k. Set

=  E E ci (p, i )  ( p ,  i ) .
pek

Then, b y  (an obvious generalization of)  (1.25), w e get a  * T1 =  6 , 5 = *
Hence we obtain

T = 6 * T * 6  =( * e ( ) * T * ( a* T 1 ) = Ti * f  *T i .

This completes the proof.

Lemma 1 .7 .  L et T ED (G) and K  be an open com pact subgroup of  G . Set

T IK  = E E c ( p ,  j ) T ( p ,  j ) .
peK  'J

For p e k, le t  CI, = (c(p, j, j)) be the dim p  x dim p-m atrix . T hen  the following
conditions are equivalent:

(1) T ( Œ * )  0 f o r any  a e C (G ) such that supp (a) g  K.
(2) Cp  is a positive (not necessarily definite) hermitian matrix f or any p E K.

P ro o f . Take any a e C ( G )  such that supp(a) g K .  W e m ay set

a =  E E ci(p,
pEK
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By (1.24), we have

= EE a(p, j, i)

Hence we get

1
a *  = 1 (E a(p , k )  a(p , j, k ))m f i .

dim p i , j  kpeK

Therefore we obtain

1
(1.32) T(a* 6 ) =  E E c(p, j)(1a(p, j, k ) a(p, j, k )).

p a s  dim p

The condition (1) is equivalent to

(1.33) E c ( p , j ) ( E a( p , j)  a( p , j ,  k ) ) .  0
i , j

for any choice of a ( p ,  j ) ,  for every p. Let A p = (a(p , j) )  be the dim p  x dim p-
m a tr ix . T h e n  (1.33) is e q u iv a le n t  to  T race(C A A ) O. T h e re fo re  (1 )  is
equivalent to Trace (t ii p Cp A p ) 0  for any  p  and A .  T h i s  is  the case if and
only if Cp  i s  positive hermitian for any p. Hence the assertion follows.

W e  f ix  a  H aar m easure  d x  o n  G , not necessarily norm alized so that
vol (K) = 1.

Lem m a 1.8. L et T EP(G ) and K  be an open com pact subgroup o f  G . Let
K o  b e  an open compact subgroup of  G  contained in  K  and a be the characteristic
function of  K o . S et y  = v ol(K ), v o  = v ol(K o ). F o r p e  k, let x p  b e  the character
o f  p  an d  consider x p  a s  a n  element o f  C f (G ) by  setting 0  outside of  K . L e t
K(1) denote the f inite se t o f  all p ek  w hich occur in I n d () 1. Then we have

(T* cx)(x)I v 3 1 E (dim P)T(Xp),y pa w

P ro o f . Set

T IK  = I c ( p ,  j ) T ( p ,  j ) ,
peic'

where T (p , j)  = (dim p)mfi  as before. W e have c (p , j)  = T ( m ) .  Let p E k
and  A  be  a  dim p  x dim p  unitary m atrix. Consider th e  unitary representation
p'(x) = (mri (x)) = /1 - 1 (mfi (x))A, x EK, w h ic h  is  e q u iv a le n t to  p. L e t  Cp  =
(c(p, j, j)). If we use mf; instead of nifi , the matrix Cp  changes to  A ' C P A. S in c e
Cp  i s  hermitian, we can choose A  so  that A - 1 Cp A  is a diagonal m atrix. Thus
we may assume that every p e K  is chosen so that Cp  i s  a diagonal m atrix. By
Lemma 1.7, every diagonal entry of Cp  i s  a  non-negative real number. We may
set

x e K.
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(1.34) =  E E a(p,

Since 'a = a, we obtain

=  E E OP, mf; ,
pa (1) Li

by (1.24). Then we obtain

(T * a) (x) = y E E(Ec(p, j , k)a(p, j, k)) mfi (x) , xe K.
pek(i) k

Since C p  i s  diagonal, we get

(1.35) (T* a) (x) = v E  Ec(p, j , i)(Ea(p, j, i)) infi (x), x  K.
peki)

By (1.17) — (1.19), we have

nej (x)dx = 61(x)mfi (x)dx = v(dim p) -  a(p, j, i).LO
Hence we have

       

E a(p, j, i)mfi (x) = v - 1 (dim p) a nei (y)nifi (x))dy, xe K.
K.

Since p is unitary, we have

E infi(x)1 2 = 1, x e K ,

and by the Schwarz inequality, we get

1E /W () )  Infi(X11 1, y  K.

Therefore we obtain

1E a(P,i, i)nifj(x)I v - 1  vo (dim p), x E K.

Since c(p, 0, we get

1(T * a)(x)1 vo  E  dim pEc(p, j, i), xe K,
petC(1)

b y  (1.35). Since xp  =  Ei mfi ,  w e  have Ei c(p, j, i) = v T ( x p ). Therefore we
obtain the estimate

I (T* cx)(x)1 v  v o  E (dim p) TOO,
paw
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and complete the proof.

Lemma 1.8 has some applications. We conclude this section by:

Proposition 1.9. L et T eP(G) and K  be an open compact subgroup of  G .  Let
K , be an open compact subgroup of  G  contained in K  and a be  the characteristic
function o f  K 0 . L e t  Z  b e  the  center o f  G. W e  assum e that there ex ists an
increasing sequence Z„ of  open com pact subgroups o f  Z  such that Z  = H
T hen T *a is bounded on K • Z.

P ro o f .  Put K K • Z„ and set

M n =  vol (K „)- E (dim p) T (x p ).
p e i„ (1 )

By Lemma 1.8, it suffices to show Mn + , =  M n fo r  n >  1. We may assume that
K„4. 1 1> K  that K „,,IK „ is a  cyclic group of prime order p„ for n >  1. For
every r  K n ± i /K n a n d  p e K „, w e have  pit p  where p ' e k  is defined by
pt(k )= p(t - i k r) ,  k e K „. P ut p  = p „. We can show without difficulty that

Ind ' p 0  f ;  j  (or ni)

for some a e k „ , , ,  where 1nd '  p  denotes the  induced representation from p
and ri denotes a  generator of Kn

/ N
+ 1 /K n . If  pek „(1 ), then o- q i e k „ ,,(1 )  for

all i, 0 < i <p  — 1. B y  the formula of induced characters, we have Eli: 0
1 x ®  =

px p  a s  functions in C ( G ) .  Hence we get
p— 1

E (dim a- q ')  T  (x „, e ) = p(dim p) T (xp ).
i=o

Since all crek„ 1 (1) occurs in  Indt+ ' p  fo r some p e IZn(1) and vol(K 1) =
pvol(K „), we obtain M n + , =  M n . T h i s  completes the  proof.

§ 2 .  Preservation of positivity under the direct image

Let G be a  unimodular t.d. group and H  be a  closed subgroup of G .  For
a distribution T  o n  H , we define the direct image distribution 1,T  o n  G  by

(2.1) (1 T)(a)= T(o1111), ocE C (G ).

Lemma 2.1. W e assum e that H  is unim odular. If 1,,, T  is  of positive type,
then T  is also of positive type.

P ro o f  Take any Œ E  C  (H ). L et U  be an open compact subset of H  such
that supp (a) U .  L et Ko b e  an open com pact subgroup of H  such that a  is
right invariant under K , .  Take a n  o p e n  comact subgroup K  o f  G  so that
K nH  g  Ko . D e f in e  a  function [I o n  G  by

a(h) if g = hk e HK , heH, k e K ,
(2.2) fl(g) = 0 if gOHK.
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Then fie (G) is well defined, supp (/3) g UK a n d  #  is  r ig h t invariant under
K .  L e t dg , d h  a n d  d k  be H aar m easures o n  G , H  a n d  o n  K  respectively.
Choosing dk  suitably, we may assume dg = dhdk  o n  H K . Let x e H .  Then we
have

(# * )(x) = f Mg) fi(x -  g) dg I3(g) /3(x - 1  g)dg
G UK= f I3(hk) ,6(x -  hk) dhdk = v ol (K) f l(h )  ,6 (x ' h) dh
U  K

= vol (K) La (h) (x h) dh = (a * 62)(x) .

Therefore we obtain

(2.3) (t*T)(i6 *) = vol (K) T(Œ * 62).

Hence the assertion follows.

The converse of this Lemma holds under some additional conditions.

Lemma 2 .2 .  In addition to  the assumptions o f  Lemma 2.1, we assume that
there exists an  increasing sequence of  open com pact subgroups V„ of G  such that
G = U n I/,. Then i f  T  is of positive type, i *  T  is also of  positive type.

Pro o f . T a k e  a n y  fie (G ) . B y  th e  assum ption, there exists an open
compact subgroup V of G such that supp (f3) g  V . We can find an open compact
subgroup K  o f  G  so  th a t f i is  righ t invariant under K  a n d  th a t  K  g V . Put
U = Vn H .  Then U is an open compact subgroup of H .  Let {xi } be a  complete
set of representatives of the finite set U \ V IK . For every x i , define a, e Cc" (H) by

(2.4) ai(h) = 
j# (hx i) if h e U ,
t 0 if h  U.

Let dg, dh and dk be the same as in the proof of Lemma 2.1. On Hx i K, we have

dg = c i dhdk, g = hx i k , he H, k e K

with some positive constant ci . F or x e U, we have

(fi * fi) (x) = l3(g) ,6(x' g) dg = E I3(g) fl(x -  g)dg
VI  J U x K

= E c i1 3 ( h x i k ) hxik) dhdk =Ec,voi(K)  f l ( h x i) fi(x -  hx i) dh
U  K

=  V 0 1 ( K )  cia i (h )  i (x -  h) dh = vol(K )E c i (a, * 62)(x).

Since
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supp (fl * -fi) nH g V nH = U, supp (oci * g U,

the  above computation yields

(2.5) (f3* :11)(x) = v ol(K)Ec i (oci * 6)(x), x  H.

I f  T is  of positive type, we have

( T)(I3 * I3)= vol (K )Ec i (ai * 61,) 0.

This completes the proof.

We summarize the obtained results by the following Theorem.

Theorem 2 .3 . L et G  be a t.d. group and H  be a closed subgroup of  G. W e
assum e that G  an d  H  are  unim odular. W e further assum e that there ex ists an

n  nincreasing sequence of  open com pact subgroups k  of  G  such that G = u Ti. Let
T  be a distribution on H . T h e n  the direct im age i* T  is  o f  positive type if  and
only  i f  T  is  of positive type.

§ 3 .  Semi-simple groups and quasi-characters o f  T

L et k  b e  a  non-archimedean local fie ld  and I  I  b e  th e  absolute value of
k. Let JD be the maximal compact subring and ru be a prime element of k. Let
q =I vu I - I  b e  the module of k.

L e t G  b e  a  connected semi-simple algebraic group defined over k. We
assume tha t G  splits over k. Let d  be  the universal covering group of G  and

be the central isogeny of d  onto G .  Let rt  be a maximal torus of d  which
splits over k  and B  b e  a Borel subgroup of d  which contains T. S e t

T = tfr(i), B = O A .

Then T is a  k-split maximal torus and B is  a Borel subgroup of G .  Set

X (i) = Hom(I', G m), X(T) = Hom (T, Gm),

X (i)  =  Horn i), X (T ) =  Horn (Gm , T).

W e have X (T) g X (î') , ) g X * (T) canonically. Set

V =  X (i) ,1 2 , V* = X * ( i )  0

and  le t < , > be  th e  canonical pairing between V  a n d  V* . L et E be  the  root
system  realized i n  V  a n d  A  b e  th e  s e t  o f  s im p le  roots determ ined by
(d, 13,  i ) .  L et e  be  the  rank  o f G  and se t A = oc2, ,  .  L et W be  the
W eyl g roup  a n d  1 denote  th e  length function o n  W . W e  can  en d o w  V  a
W-invariant positive definite inner product ( , ) so  that /  is  a  root system in  V
with respect to  ( , ). Let i  be the inverse root system of E realized in  V* . Let
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P (E ) a n d  Q(E) deno te  t h e  la ttices o f  w eights a n d  o f  ro o t w e ig h ts  i n  V
respectively. Then we have

X (i)  =  P (E) 2  X (T) Q  (E),

X ( t )  =  Q (i) g. X  (T) P ( ) ,

(3.1) X (T) = Q (E), X (T) = P(i) if  G  is of adjoint type.

For a  e l ,  Let Cite  b e  the co-root of Œ. P u t

(3.2) (la = ôt(to)e T.

We have

(3.3) fi> = 2 ( 1 ' fl)a  SEE

(3.4) w4t)w - 1 = (w5c)(t), w eW , tek .

Let o-
a e Wdenote the reflexion defined by a. We set ai =  a . a i e A , 1 < i < e.

Let x a be  the isomorphism of G a onto the root subgroup of G  corresponding
to a E E. By definition, we have

(3.5) tx a (u )t ' =  x a (a(t)u), t e'T, ue k.

Let I +  b e  the set of positive roots in  E  and let N  (resp. N - )  be  the maximal
unipotent subgroup of G generated by x a ( ), cceE+ (resp. EE - ). T h e n  B  =  TN,
B  = T N .  The modular function S E  o f  B  is given by

(3.6) S B (tn)= n *01, teT , n e N.
a e l

For fie X.,(T), we have Sp (13(t)) =Itl" , tek >< w here np  = E OEEE , <cc, P .  If = po

for /30 e 4 ,  we have np  = 2  (cf. [7], p . 1 6 9 ) . Hence we obtain

(3.7) bp(aa,)= (1- 2 f o r  c c eA.

Let L  be a  non-negative integer. Let K L  b e  the open compact subgroup of G
generated by all x a (t), t raL ID, a e E, 13(t), t e l  + raL C, X ( T ) .  (If L =  0 , we
understand 1 + vg L ID = X . )  T h e n  KL  f o rm s  a  fundamental system of open
neighbourhoods of l c G .  Set K = K o . Then K  is a maximal compact subgroup
of G and we have the Iwasawa decomosition G = B K .  Let II I': (resp. U L- ) denote
the open compact subgroup of N  (resp. N - ) generated by all x(t) (resp. x_ a (t)),
cc EE+, t E rz,LC. L e t  TL  d eno te  the open compact subgroup o f  T  generated by
all f l( t) , f leX .(T ), te l+ roL .C.

Lemma 3.1. I f  L  is a positive integer, then we have

K L  = = TL U L-  .

P ro o f  TL Uik UL-  i s  a compact subset of G .  Hence it is closed. Therefore
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we have

(3.8) TLUi; LIE K  = T L I I,' .

We can easily verify the relation

(3.9) xŒ(t)x_Œ(u) = 6 (1 + tu)x (u(1 + tu))x x (t/(1 + tu)),

where a e E, t, u ek , 1  + tu 0  0. If ci, ) 6 E 1  an d  a  + fi 0  0 , w e have the basic
relation (cf. Steinberg [21], p . 30)

(3.10)x  (t)x f i (u)x a  (t) - (14) 1 = X ic, j p ( C i i t i t, uek,
i j E N

where the product is taken over i, j such that ici + j,6 e E in  some fixed order of
roots (say increasing), and  ci i e Z  does not depend o n  t, u.

By (3.5), (3.9) and (3.10), we see easily that IC, is a norm al subgroup of K L

if L' > L .  L et M  be  a positive in teger. B y (3.10), we get

x ( t ) x (u )  x (u )x ( t ) mod K L +m

if a + fl 0 0, t e u e itrm .C. Taking account of (3.9), we obtain

(3.11)U  U Um- ULf  K L ± m,

(3.12) U  U  j+vf g KL_Fm.

By repeated application of (3.12), we obtain

(3.13) Km g T M U U, K 2M .

W e shall show

(3.14) K L g  T L U L±  UL-  K iL , i > 2

by induction on L  W e have

TL  UL+- U E K ,g T L UZ UET ,U i
+
L UilL K 2 i L by  (3.13)

=  T .LUirk, U L  U i4L U iL K 2iL  g T L U  U i +L U L  K (i + i)L Ut-L K 2 i L by (3.12)

— TL UL+  UL  K u+  l g . .

Hence we get (3.14). B y (3.8), w e have KL  T L U  U Z  a n d  by definition, we
obtain KL  =  TL  UjE Uji . Taking inverse, we get K L  = TL  Uj U . T h i s  completes
the proof.

L e t x  b e  a  quasi-character o f  T  W e call x unramified if  x  is  trivial on
Tn K = <13(t)Ifl E (T ), tEC  x >. L e t  X  b e  t h e  g r o u p  o f  all unramified
quasicharacters of T  W e can extend < , >  to  the pairing between V ® , C  and

C) R  C. F o r X E VG .\/— 1 V = V CI R  C, we can define xx  e X  by

(3.15) Xx(Pri)) = exP (27r <x, 0), )3 e X * (T),
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since T  is generated over T nK  by Mtn), fl e X * (T). From

X (T) = {x e < x , )5 1>  e  Z  for a ll 13 e X*(T)},

we obtain

(3.16) X  y e  —  1(1/1 X (T)).

By (3.16), we can endow X  the structure of complex Lie group inherited from
V ® , C .  The W eyl group W acts on  X  on the  left by

(3.17) (wx(t)= x(w - ltw), t E T

Let x E X .  W e have

(3.18) (0-0,X)(fi(t)) = X(60 ) -  <OE ' f l >  X(Mtn

for ŒE ,   e X ( T ) ,  tek '< , since o-„([1) = f3 — (a, 13>6c. Following S.Kato [13], we
set

Wx =  {we WWX = X} , W w = < 6 .1ŒGE, x(aŒ) = 1 >.

By (3.18), w e see that Wx ) i s  a norm al subgroup o f  Wr

Lemma 3 .2 .  Let G be of  adjoint type and x e X . T hen w e have = w(x).

P ro o f . F or yo , z o  e V, w e set

MY°, zo) = {w  e W Y 0  =  Y o, wzo — zoEQP}.

W e  have  X (T) = Q M , X * (T) = Po since G  i s  o f  a d jo in t  ty p e . W e take
x e V IC) — 1 V so that

xx (fl(ra)) = exp (2n <x, ) for every 13 E P(i).

By (3.16), we have

=  {we WI wx — X E —  1  Q(E)}.

P ut x = y + —  1  z  w ith y, ZE V . Then we have Wx  =  W (y , z ). First we shall
show th a t  W (y, z) is generated by reflexions (Ja e W (y, z), ()te l .  This assertion
for the case y =  0  is given in B ourbaki [7 ], p . 227 a s  exercise 1) and can be
proved easily in the way suggested there. Obviously we have W(y, z) g W (0, z).
Put

E* = {a E  era e W(0, z)}.

Let 6 be the family of hyperplanes in  V defined by a e  E * . If w e W(0, z) , Œ E ,
th e n  w e  h av e  w(a) e E* since  wo-

Œ w =  o -„ (Œ) e W(0, z). Therefore w(H) e if
w e W(0, z), H e b .  T h u s  the condition (D1) in  [7], p . 72 is satisfied and (D'2)
is satisfied obviously. Let w e  W (y , z ). Considering a  chamber C  w ith respect
to  6 such that ye  e , we can apply the assertion (I) of [7], p . 7 5 .  We see that
there exist a , an e E* such that
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w = acci - •a.„, °ŒY  =  Y fo r 1 < i < n.

This proves that W(y, z) is generated by o-
Œ eW (y , z ), e E.

Now let a•Œ e W(y, z), Œ E .  B y  (3.18), we obtain

x(5c(t))0 "0  = 1 for every fi P ( i ) ,  t e .

The group generated by <a, /3>, e P ( )  coincides with Z  for fixed a. Therefore
we obtain x(aŒ) = 1, i.e., o-Œe 

1 "X )
com pletes the proof.

Lemma 3 .3 .  A ssume G  is o f  adjoint ty pe and let x e X .  A ssume wx=
f or som e w e W  Then there ex ists a  w, e W such that lq  = =

P ro o f . Take x  E  C ,1 V such that

x(/3(vg)) = exp (27r <x, IN for every f3e

Then we have

1 (PrJ)) = exp (27r < — IN for every

P ut x = y + 1 z with y, z e V and set

W'(y, z) = {w' e WIw'y = — y, w'x — zeQ(E)}.

Then, for w' e W , w 'x = - 1  if  a n d  only if w' e Wjy, z).
Now le t W(0, z), I*  b e  the same as in  the proof of Lemma 3.2. N ote that

W(0, z ) is  genera ted  by  th e  reflexions o b ta in e d  f ro m  I* . If  y  =  0 , w e  have
W'(0, z) = W(0, z) and the assertion is  obv ious. Assume y 0 0  and let V ' be the
one dimensional subspace o f  V spanned by y. T he  re str ic tion  o f w t o  V ' is  of
o rd e r  2. W e  a p p ly  [ 7 ] ,  p .  128, exercise 4). It fo llow s tha t the re  ex ists
w „ e W(0, z) such that w2i = 1, w , leaves V ' stable and that w 1 IV' = w V '.  Then
we have w1 E W '(y , z). Hence the assertion follows.

L et we W . I f  x E X  and  wx = we call x w-hermitian. Let X „  denote
the group of all unramified w-hermitian quasi-characters o f  T

Lemma 3 .4 .  Let WE 14; w2 =  1 .  Then X a  real analy tic L ie subgroup
of  dim ension t  o f  t h e  com plex  L ie  g ro u p  X .  F o r ev ery  w 'e W , w ' 1,
{ xeX w 'x  =  x } i s  a  proper submanifold o f  X w . Fo r ev ery  fleX ,(T ), fl  0,

{X e I (6 (0 )  =  1 } is a proper submanifold of  X .

P ro o f . For xe V CI —1V, define xx eX  by (3.15). Then we see immediately
that
(3.19) X = y + .\/— 1 z y, zeV wy = — y, wz — z e X(T)1/.\ /— 1 X(T)

under the isomorphism (3.16). Put

V + =  {ye 1/1(w — 1)v = 0}, V -  =  {ye VI(w + 1)v = 0}.

Since w2 =  1 , we have
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(3.20) V =  V + () V -

Let R  denote a  complete set of representatives of (X(T) n (w — 1)v)/(w — 1) X(T).
Since X(T) is a  lattice in  V, R  is a  finite set. F o r  each ae R , take za e V so that
a = (w — 1)z 0 . Then if wz — z  = a, we have (w — 1)(z — za ) = 0, i.e., z ez a  +  V .
If

(za + z ,) — (zb + z 2 )e  X (T ), z i , z 2 e V + , a,beR ,

we get (w — 1)(z a  — zb ) =  a — be(w — 1)X(T), i.e., a = b. Hence we have

{zeV iwz —  zeX (T)}  = U.R(za + V + ).

Therefore, by (3.19), we obtain

(3.21) X „  V -  (:) Ua E R N/ —  1 (Z a + V + I(X (T)n V i )).

In  view of (3.20), this proves the first assertion.
Let w' e W  We have

ex.,Iw'x = Z1

{YET/ lw'Y = Y}C)UaERN/ —1({z a + * e V + , (w' —1 )(za + z)eX (T)}  I(X (On V i )).

We may assume

(3.22) w'y = y for all y e V -

Since V +  —> V ± I(X(T)n v+) is a local homeomorphism, it suffices to show that

V, = {z e V 1(w' — 1)(z a + z)e X (T)}

is  a  proper submanifold o f  V +  f o r  every a e R .  If (w' — 1)(z a +  z i )e X(T) for
some z, e V + , we have

V, =  z , + 1z e V ± (w' — 1)z e X(T)}.

Clearly this defines a  proper submanifold o f  V +  except for the case

(3.23) w'z = z for all z e V + .

If (3.22) and (3.23) are satisfied, we get w' = 1 by (3.20). This proves the second
assertion.

Let iq e X ( T ) ,  / 3  0  0 .  By (3.21), we have

{Z X14,1X(I
3
(r6) )  =  1}

{y e V - 1<y, = 0}
 

u a e R , / —  1 ({za  + zlz e V + , <z a  + z, fl> E Z}/(X(T)n v+)).

In  th e  similar way a s  above, we see that this defines a  proper submanifold of
X .  T h i s  completes the  proof.

F o r  a  subset J  o f A, let E j = Z•J r)E  be th e  root system generated by J
and let W , be the Coxeter group generated by the reflexions s ,  ce  J. L e t  w  j
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be the longest element of W .  The following Lemma slightly sharpens the result
given in [7], p. 225.

Lemma 3.5. Let we W , w 2  =  1. L et w , be an elem ent of  minimal length in
the conjugacy class o f  w .  Then there ex ists a  subset J o f  A  such that w , = w „.
Furthermore we have w,,(Œ) = — a f or ev ery  aeJ.

P ro o f . Take any a e A .  Assume w, a <O . T hen  w e have 4o-
Œw1) = 4w 1) —

(cf. [ 2 1 ] ,  p .  2 6 9 )  since  14q  =  1 . F rom  the minimality of 414) 1 ), w e  have
40- G( 14),o- cc) > 4w 1 ). H e n c e  w e  m ust have 40 .,,w, o-

a ) = 40-„w1)  +  1 .  Therefore we
get (0-04),)(a) > O. Since w i  < O ,  c OE(w, a) > 0, we m u st h av e  w , =  —  a . Thus
we have shown:
(3.24) F o r every ŒEA , w i a > 0  o r  w 1 ci = — a.

In particular, we have w 1 (41) g E ±  u(— A ) .  B y [7 ], p. 225, exercise 17), a ), we
have w, = w j  fo r  some J  g  A .  Since w i a <  0  for a e J ,  we have w j a = — a for
every a EJ by (3.24). This completes the proof.

§ 4. Intertwining operators

L et x e X .  W e denote by PS(x) the  space of all locally constant functions
9  o n  G  which satisfy

(4.1) 9 (tn g )  = 6 ,0 12 x(t)9(g) for all t e T, neN , ge  G.

Let cp,c ,x  EPS(x) denote the  function which takes constant value 1  on K .  Let
7t(x) denote  the adm issible representation o f  G  realized o n  PS(x) by right
translations. 7t(x) is  o f  finite length a n d  has a unique K-spherical constituent
which we denote by irk. It is  w e ll know n  (cf. K ato [13]) that n(x) is irreducible
if and only if
(4.2) X(a) 0  g for every a E E,

(4.3) W x  Woo

are satisfied. PS(x) is generated by yo K ,x  if  a n d  only if (4.3) and

(4.4) x(a) 0 g for every ŒE E

are satisfied. Let X ' denote the set of all x EX  such that ir(x) is irreducible. We
call xe X  regular if wx # x for every we W, w  1. Let X r denote the set of all
x e X which are regular.

Let S denote the space of all locally constant functions on  K  which are left
Bn K -invariant. B y G = B K , it is clear that the restriction map

R(x): PS(x)D9 91K ES

defines an isomorphism of vector spaces. For an open subgroup U of K. we have

(4.5) R(x)(PS(x)u)= Su
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where PS(x) U  (resp. S u ) denotes the space of all vectors fixed under U in  PS(x)
(resp. S u ). For we W , set

{Œe Œ  <01, Ew- fo te E + 1 1 4 , - '« > 0 1 , V i, v+ = foceI±Iwoc <01,

N w  = (x,t (t)lcceE w
+ ,  tek >, N w-  =  <x,c(t)loceE w

- ,  tek>.

It is obvious that

(4.6) g  %AV Vw+ , U v.+ w i ,  w 2  e W

If /(w 1 w2 ) = 1(w 1 ) + 1(w 2 ), then

(4.7) w +  =  w - l w - 1 -  H

w1w2 v"2 w2 (disjoint union).

(cf. [7], p . 158, C or. 2 .) S ince  /+  and E %
-„  are  closed sets of roots, N w  a n d  1%1;

are subgroups of N .  It is well known that

(4.8) N  = N , N ; n N w  = {1}.

For each we W, we choose x w  e K n NG (T) which represents w. We consider
an  intertwining operator

(4.9) (T ( )4 )  (9) = (p(x;1 ng)dn, e PS (), g  E G,
wNw -  n N \ N

with the invariant measure normalized so that vol (wNw 1  n N\(wNw -  n N )U  )
= 1. This definition does not depend o n  th e  choice of x w . It is well known
that the integral (4.9) converges absolutely when x  satisfies certain conditions (see
below), and  can be meromorphically continued to the  whole X  (cf. Casselman
[10], S hah id i [18]). F or later use, let us study this integral more closely.

By (4.8), we have

(4.10) (Tw(x)(p)(g) = (x„,- ng)dn

when the integral converges absolutely. Let cceE and put coOE =x„(1)x_ OE(— 1).;(1).
Then we have a relation

(4.11) co»  x ( t)  = x j — t  1
- )5c(t -

 1 )x _ OE(t - t e  kx .

(cf. Steinberg [21].) N ow  assume w = o , c e z l. W e  c a n  ta k e  x ( p c,. Then
we have

(4.12) (7;.(x)(p)(g) = f cp(w Œ-  ng)dn = f  9(co„-  x OE (u)g) du,
N ,

where du is norm alized so that vol(C) = 1. By (3.7), we have

(4.13) cp(61(t)g) = g - n x(a,c)"9(g), t evonCx, ge G.

There is a  positive integer L  such  tha t (M K is  le f t invariant under K L . Let
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g e K .  By (4.11) and (4.13), we get, for n > 0,

(4.14)

(0); x, i (u)g) du =  g  n  X(ClŒr (x _ c i (u  1) g) du.

Therefore

E f (co; xOE(u)g) du =  E q - nx (accrvol(w- nc.)(p(g ) — 1 x(01.)L   go (g)
n= L r,r) n = L q 1 — x(cia )

the  sum being absolutely convergent if x (aor)1 < 1. Hence we obtain

1
(p)(g) = 7 1 ,E (p(o); x„(u)g)

ueiJmoduiL

1  L  - 1 g  — 1 x(a c c)L

+ L E g" x(aŒ)n E (p(x _ c,(u)g) + 
 g  1  —  x ( a a )

9 ( g ) .

q  n=1 urrIE"V' modoIL

Thus w e have show n that th e  integral (4.12) converges absolutely if I Aci./1 < 1

(The case gOK can be easily reduced to the case geK ); 'I  meromorphic
continuation t o  X  and holom orphic a t  x  if x (a ) 0  1 .  Here we understand
"meromorphic" in  th e  following se n se . P u t 7',(x) =  R (x) Tw (x)R(x) -  ,  which is
an operator in  End (S); T„, is meromorphic (resp. holomorphic) at x if (/ ',(x)f)(k)
is a  complex valued meromorphic (resp. holomorphic) function at z E X  for every
fixed feS , keK .

It is well known that

(4.15) = (w 2X) T.2 (X)

if w 1 , w2 e W, / (w, w 2 ) = /(w ,) /(w2 )  a n d  x  is regular (cf. C asselm an [10]). By
analytic continuation, (4.7) and b y  th e  above result, w e see easily  that Tv i s
holomorphic at z i f  x(aŒ) 0  1  fo r every a E  V : and  then it gives an  intertwining
operator from  P S ()  t o  PS(wx). Furtherm ore  w e see  that th e  integral (4.9)
converges absolutely if  lx(cic)1 < 1 for every  ace  V  . The relation (4.15) holds if
X(aŒ) 0  1 for every ŒE V„,+, „,2 , /(w, w 2 ) = 1(w 1 ) + 1(w 2 ). W e  put

-

(4.16) cŒ(X)
11  x ( c )

otE E,
1 — X(aŒ)

(4.17) cw(X) = f l  c.(x), w e W.

Since

g  —  1 X(aŒ)
1  +     =  . ( X ) ,

q 1 — X(aa)

we get

= c OE(x)9K , ,, ,z, ez1
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by (4.14). By (4.7) and (4.15), we obtain

(4.18) Tw(X)49K,x =  cw(X)(PK, wv
w  e  W

if X(a Œ) 0  1  f o r  every a e Thus w e recover a  resu lt of Casselm an ([9] ,
Theorem 3.1) in the case of Chevalley groups.

Lemma 4 . 1 .  Let cce4 , f e L„ (X) =  R (X) T,„ (X)R(x) -  1 e End (S). Then we
have

ca (X ) i ( L o,(X)f )(k) = f (k) + 0 (11
 -  X(a.)1), k e K,

f o r x(aŒ) -÷ 1 , where 0-term  is uniform  f o r ke K.

This Lemma is a n  obvious consequence of (4.14).

Lemma 4 .2 .  Let w e W, w2 =  1 , ze X .  I f  wX = X - 1
 

an d  if  x(cia ) 1  for
every a e n  ,  then we have cw (x)E R.

P ro o f . Since w 2  =  1 ,  w e  have 1 1-1" = — w . B y  defin ition  (4 .17), w e
obtain

c(x ) = fl c.(5- ) = f l  ca((wx) - 1 )
ae.P;;;,, ae

= 1T c . ( w x ) =  FI c.(x)= cw(x)

Hence the assertion follows.

Lemma 4 .3 .  For w = w i w 2 , w, w 1 , w 2  e W, we have

(4.19) cw(x) -  T(x) = (w2 X) -  1 Tw ,(X)e w2 (X) -  1 Tw 2 00

as meromorphic functions on X .

P ro o f . By the principle of analytic continuation, it suffices to prove (4.19)
when x  is regular and  x(aŒ) q ,  q - 1 f o r  every a e E. N o w  b o th  s id e s  of (4.19)
give intertwining operators from PS(x) to  P S (w x ). Since PS(x) and P S (w ) are
irreducible, they a re  different only by a  scalar fa c to r . By (4.18), we find that
this scalar factor is 1. This completes the proof.

Lemma 4 .4 .  L et w e W and w = a  (72 • • • an be a reduced expression of w . Put
Oi = (a n o-

n _ i •••o-
i +  Mai), w here 1 i  — 1 ,  a i =  a ,  a i e A , and  On = a,. T h en

we have V I: =  f 0 1 , 0 2—•, 0 „1. L et X E X •  I f  x(20 1 ) =- 1, we have

wX =(ai•••tri-itii+1"•an)X.

P ro o f . T he first assertion follows from (4.7) (cf. [7] , p . 1 5 8 , C o r. 2 ) . If
x(a o ,) = 1, we have c o d( =  x  by (3.18). Since

a°, —  (an .
•  •  a i +  1 ) a  On a 1

 1 )  1 5
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we get
(an " • a i + 1) 1 a n ,X  =  (a  + 1 • • • a r i )X  =  (a ia i+ 1" • a 'OZ.

Hence the assertion follows.

Lemma 4 .5 .  L et xe X  and w e  W  S et A  = {w1 e Wlwi X = w X }. If  w ' is an
element of  m inim al length in A , then Tw , is holomorphic at X .

P ro o f . We may assume w' 1. L e t  w '  o -, (r, • • • o- n be  a reduced expression
of w ' and define Oi e V ,  as in  Lem m a 4.4. Assume that Tw , is not holomorphic
a t  x. Then we have x(a0 1) = 1 for some 0, and we get

( a l  • • • a  -  la i +  I • • • a n )X  = X  =  W Z .

This contradicts the minimality of /(w') and completes the  proof.

Lemma 4 .6 .  Let x E X and V1 ,..., V , be G-subm odules of  PS(). W e assume

101, 1 i n, (E K)nvi = n.
i*;

Then we have n <1Wx j.

P ro o f . L e t  V  { 0 }  b e  a  G -subm odule  of  P S ( ) .  B y  the Frobenius
reciprocity, we have

Hom G (V, PS ()) = H om ,(VN , C6 y 2 x ),

w here  VN denotes th e  Ja c q u e t m o d u le  o f  V  (cf. C a r t ie r  [8 ] , Theorem 3.4,
Borel-W allach [6], p. 304). Hence a T-module isomorphic to C 6ip x occu rs in
VN. By the assumption, we have

PS1X/N ( VON la • • • ( KN.
Hence a T-submodule isomorphic to C 4 / 25 occurs at least with multiplicity n  in
PS(x)N . O n  th e  o ther hand, the semi-simplification of PS (x ), as T-module is
isom orphic to C)„E, C 61/2,,x . T here fo re  C 61/2x m u s t  appear at least n-tim es in
C)„,, C61/2,„x . Hence we obtain n This completes the proof.

§5. Unitarizability and positivity of distributions

Let G be a  t.d . g roup . L e t n  be an  irreducible admissible representation of
G o n  a  vector space V  over C .  I f  there exists a  non-degenerate hermitian form
(  , )  o n  V  which is invariant, i.e.,

(5.1) (n(g)u, n(g)v) = (u, v) for every g e G, u, ye V,

we call it herrnitian. Let it be the complex conjugate representation of it on the
vector space V and Tr-  b e  the contragredient of 7 i realized on V. L e t  <  ,  >  be
th e  canonical pairing between V  a n d  V. F o r  a n y  ue V , th e re  e x is ts  unique
u i 617  such that
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(5.2) (u, y) = <u 1 , fi> for every y e V

Put

(5.3) /(u)= ui , u e V.

Then we can verify easily that I defines an  equivalence of ir and r . B y  S c h u r 's
Lemma, I is  unique u p  to  a  scalar m ultip le . Conversely, if n Tir, then we can
obtain a  non-degenerate invariant hermitian form o n  V  by (5.2) and (5.3) when
we choose an  isomorphism I from n  to  -it suitably ; any non-degenerate invariant
hermitian form  is of this fo rm . Thus we see that 2r is  hermitian if and  only if

. If there exists an invariant hermitian form o n  V which is positive definite,
we call rc unitarizable.

Now we go  back  to  the case where G is  the group o f k-rational points of
a  Chevalley g ro u p . L e t x e X .  W e have

(5.4) n(X) n(X- 1 ), n(X) n(i).

The pairing between n(x) and n ( x )  is given by (cf. Casselman [10], 3.1.2)

(5.5) <491, (P2> = (g) ( P2(g)dg,

 ( P 1  PS(X ), (P2 e I ) .
B\G

Assume n)lt is herm itian. Then we have n i
l
(  f t t .  Hence there m ust exists

a  we W such  tha t wx = (cf. Cartier [ 8 ] ) .  Lemma 4.5 guarantees that we
can choose w so  th a t Tw  i s  holomorphic a t  x.

F ir s t  w e  assum e t h a t  x e X  is r e g u la r  a n d  t h a t  n(x ) is irreducible
hermitian. W e  have wx = w ith  a  u n iq u e  w e W . S ince  w2 x = x , we get
w2 =  1 .  By the discussion above, we see that

(5.6) ((P i , (P2) = cf( T (x )9 1 )(g) 9 2 (g) dg, (Pi, P2 e P S (Z ) ,
B\G

defines an invariant hermitian form on P S ( ) ,  where c is a non-zero constant. By
G = BK, (5.6) equals (cf. [10], 3.1.3)

(5.7) ((pi, 9 2 ) = c (T (x )9 1 )(g) 9 2 (g) dg, (P1, 92e PS(X).

By (4.18), we may take c = c w (x) -
1 . By Lemma 4.2, we m ay take c = 1  and

we see that (5.6) and (5.7) are positive definite with c = 1 if  and  only if n(Z)
is unitarizable. Here c = 1 has the same signature as cw (x).

Lemma 5 .1 .  Let w e  W ,  w 2  =  1 .  L e t  x e X  and assume t h a t  T„, is
holomorphic a t  x. Then

((P 1, (P2) = (Tw(X)(P (P2(9) dg, 91, EPS ()
B\G
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defines an  invariant hermitian f orm  on P S ( ) .

P ro o f . W hat we must show is (9 ,, 9 2 ) = (9 2 , 9 ,) o r  equivalently

(5.8) f. (T (x) f (k ) f  2(k) dk = f (T(X) f2)(k) (k) dk, f 1 , f2 E S,

w here 7(x) =  R(x)T(x)R(x) 1 a s  before . In  view o f the  proof o f Lemma 3.4,
w e can find a  sequence L i e  X  such that )6, converges to  x, x n is  regu la r and
that m ( x )  is irreducible. Then

L (T(xn)fi)(k) fz(k) d k ,f 1 , f 2  E S,

defines a hermitian form  o n  S. Since T,:,(x)fi is locally  constant on K, we see
t h a t  T (x ) fi converges t o  T,,(x)f; uniformly o n  K, i = 1, 2. Therefore (5.8)
h o ld s . This completes the proof.

Let w o b e  the longest element of W and co, EKnN G (T ) be an element which
represents wo .

Lemma 5 .2 . L et PS(51,12)  be  the space of  all locally  constant functions on
G  which satisfy

f (bg ) =  B (b) f (g) f o r every b e B, g e G.

W hen invariant measures are suitably normalized, we have

f (g)dg = f  (wo n) dn f o r every fe  PS(61/ 2 ).
f B\G

P ro o f . L et do denote a  right invariant measure o n  B\G a n d  dg  b e  the
Haar measure o n  G .  W e have

cp(g)dg = f  ( f  c p(bg)db)d4 for every E Cf (G),
B\G

when a  Haar measure db on B is suitably norm alized. It is easy to see that on
the open dense subset BcooN  o f G , dg is given by dg = dbdn, g = bwo n, be B,
neN , when a  Haar measure dn on  N  is suitably normalized. Hence we have

9(g)dg = (p(bcoon)db)dn for every e Cf (G).
N B

Since the map

C  (G) D  (g) f (g) = cp(bg)db e PS(6L12)

is  surjective (cf. W eil [22], p . 43; we need a  slight modification), the assertion
follows.

5.

1.
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By this Lemma, we have

(T (x )9 1)(g) 9 2 (g) dg = ( T ( x ) 9  (0) 0 n )  2( 0 ) o n) dn.
JN

Lemma 5 .3 .  L et x e X .  For q , PS () , d e f in e  a  locally  constant function 0
o n  N  by  0(n)= 9(w 0 n ) , n e N . T h e n  the space o f  0  contains CN N ) w hen 9
extends over all functions in P S ( ) .

P ro o f . F o r 0 e C cc° (N ), define a  function cp o n  G by

(5.10)
cp(bcoo n) = db) 1 1 2  x(b) ( n ) , b e B ,n e N ,

1. go(g) — 0 if g  Bo), N

Clearly this is well defined and  9(g) is locally constant a t  geB w o N .  What we
must show is  th a t go(g) is locally constant a t  g■$Bwo N .  Since N  is  unipotent,
we can find an open com pact subgroup U  of N  which contains the support of
0 .  It is sufficient to find an open compact subgroup V  of G  such that

Bw o U V  B w o U.

Since Bco, U  is  open in G, there exists an open compact subgroup V, of G  such
th a t V, g cocTi Bcoo U. Set

V = nn, Vi n = nnev Kn.

Clearly V is an open compact subgroup of G and we have nVn - i  g  V , for every
fl E U .  Hence UV g  V1 U. T hen  w e  ob ta in

Bcoo UV  g Bw o V, U  B c o 0 w cT1 Bw 0 UU = Bw o U.

This completes the proof.

W e no te  th a t  if  th e  func tion  P  is  de fined  by  0(n) = 9(co0 n ) ,  n e N  with
9 e P S (x ) , 9  is uniquely determined by since Bcoo N  i s  d e n se  in  G .  For

e Cf  (N ), le t ix (0 ) denote the ePS(X) defined by (5.10). W e set

(5.11) = (T.(X)(i x (0 )))(coo), E Cf(N ).

Then T  defines a  d istribution on N  fo r x e X , W E W whenever x(aŒ) 0 1 for
every a e .

Lemma 5 .4 .  L et w  e W , xe X  and assum e X (a Œ) 1  f o r all a e . Let
ceC X and assum e

(91, 49 2 ) = ( T.„(x)91)(g) 9 2 (g) dg, 91, (Pz  PS(X)
B\G

defines an invariant hermitian form  on PS () .  I f  (  ,  )  is positive semi-definite, then
cT„,.x i s  of  positiv e ty pe. Conversely if cT„, x i s  of  positive type and if  lx (a 2)1 < 1
f o r all a e V„,+ ,  then ( , ) is positive semi-definite.

(5.9)
fB\G
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P ro o f . Let 0 e C ( N )  and  pu t 9  = i(0 ) ,  T =  T .  By (1.6) and (1.8), we
have

(t * 0)(n) = t,(0 (t -  n)) = 7;(0 (tn)) = (L(X )9)(w0n), neN ,

since T ( x )  i s  a  G-homomorphism. By (5.9), (1.11) and (1.12), we get

(go, 9) = cf (t * 0)(n)0(n)dn = c(f  * 0)(0) = (0  *  0) = cT (0; 0).

Hence we have

(5.12) (cp, 9) = cT(0 *

If ( , ) is positive semi-definite, we have cT (0* 0) > 0 for every 0 E C ,'( N ) .  This
shows tha t cT  is  of positive type.

Conversely we assume tha t cT„,, x i s  of positive type and that I x(aŒ)1 < 1 for
every oce .  W e  c a n  ta k e  a n  increasing sequence IN i l  of open com pact
subgroups so that N  = ( .M i N i . Take any 9 E PS (x ) . Define 0, e C ( N )  by

It suffices to show

Ii(n) = { 09(won) if ne N
if nON i .

(5.13) (p) = li ( i x (o i), ix (01))

since (ix (0 i), iz (d5i)) > 0 by (5.12). W e have

(9 , x (0 )) = cf (L(X )9)(k) 1 x (0 i)(k) dk = c (Tw(X)(P)(k) x (0 i)(k) dk
K n BwoN

since K  — (K nBcoo N) is of measure O. By definition of this integral equals

(T„(x)9)(k) 9(k) dk.IK n BcooN

Hence we obtain immediately that

MIc (40 , ix (0 i)) = (q), 49) = P.111 (' x (0 i), 49)

Therefore (5.13) is reduced to

(5.14) lim (ix (0 i), p — ,x (0 i)) = O.

For f e PS(X ), le t  IIIf  IIL2( K)
 denote the L2-norm of f 1 K .  Clearly we have

lim —  x (0 )11 L2 ( K )  =  O.
OD
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Since

1(1,(0 3, - 1( 0 31 1c1 Ty(X)/5 (0 i)11L2(10119 — tx (0 )11L2(10.

it su ffices to  show  t h a t  11 Tw (x),,(0,)11„L2(K) is  bounded  for c r .  Take any
f c P S (x ) .  L e t L  b e  a  positive  integer such that f1 K  is  le f t  invariant under
KL . L et cz E A. B y  (4.14), we find

11 To,(X)f 11L2(K) t (X)11 fIlL2 ( K)

w ith  a  p o s it iv e  c o n s ta n t pc, (x )  w h ic h  d o e s  n o t  d e p e n d  o n  f  a n d  L  if
lx(a)i < 1. Therefore we have

11 (X)f 11 L2(10 ftw(X)I1 f 11L2( K)

with a positive constant  i ( x )  which does not depend on f. Since 11/x (4) ,) L 2( K )

11(P1IL2(K), th e  boundedness o f  11 Tw  (X) (ix (0 3)11L2(K) fo llow s. T h is  completes the
proof.

Further elaboration on the converse part of Lemma 5.4 shall be given in
Lemma 12.1.

Lemma 5 .5 .  L e t Oc C (N ). T here  ex is ts  a positiv e integer L  such that
ix (0 ) is right invariant under K L  f o r all xe X.

P ro o f . L et U  be an open compact subgroup of N  such that U 2  supp (0).
We can find a positive integer M so  that 0  is right and left invariant under the
translations of U  and  th a t [4,-, g. U .  Since n n e o m  \ o n -  K m n is  open in G, we
can find a positive integer L  so  that nKL n- i  g  K m  fo r  every n e U .  In  view of
the  proof o f  Lemma 5.3, w e m ay also assume Bcoo  UK L g B co ,U . Take xe X
and put 9 = 1x (0 ) .  Let g = bcoo n with b e B, n e U .  Then it is sufficient to show
th a t 9(g) = 9(gk) fo r every k e K L . W e have gk = bcoo nk = bcoo ki n with some
k1 eK m . By Lem m a 3.1, w e have k, t u -  u-fr w ith  t e TM ,  u- c
Then we get

gk = b(coo tcoo
- 1 )(coo u-  coo

- l ) wo u+ n, w0 tcoo
- 1 T n  K , coo -  coo'  eU -M- .

Hence we obtain

9(gk)= (5,(b) 1 1 2 x(b)0(u +  n) = 5,(b) 1 1 2 x(b)0(n) = 9(g).

This completes the proof.

L em m a 5 .6 .  Let e C (N ). T hen  T , ( 0 )  i s  meromorphic o n  X  and
holomorphic at  xe X i f  x(aŒ) 1  f o r every ace

P ro o f .  Let L be a positive integer as in Lemma 5.5. We can take a double
coset decomposition K  ( j x (BnK)xK L  so  th a t x e Bwo  N .  P ut x = bx coo nx  with
bx e B, nx e N .  Define f w  e S by

=  0 (n ) x  the  characteristic function of (Bn K)xKL.



188 Hiroyuki Y oshida

L e t x e X  a n d  s e t  cp = i x ( 0 ) .  B y  (5.10), w e  h av e  R(X)((P) = > x (b ) f .  Let
T,(x) = R(x)T(20(x) -

1 E End (S) as before . Then, for every k E K , (T,(X).fx)(k) is
meromorphic on  X  and holomorphic a t  x if x(act) 0  1 for every aE V :. S in c e

T ,(0 ) = ( 7 ;„(Z)(P)(0 )0) = Tv(Z)(R(X)(P))(wo) = E x(b„)(T,'„(x)f,c)(0),),

the assertion follows.

L et i// be  the central isogeny from  'd t o  G  a s  in  § 3. Then tp induces an
isomorphism 'I■1' N .  W e can choose co o  and  x  (IZ) fo r w e W . Take
x e X  a n d  s e t  = x. tfr. For (pie PS (), p u t (Mg) = cp(tli(g)), g e G. T h e n  w e  have

e PS (). B y  de fin ition  of the intertwining operator, we see that

(5.15) (7,(2)(p) (g) = (7,(x)c,o)(111(g)), g e

if IX(aŒ)I < 1 fo r every c e .  T ake 0 e Cc  (N ) =  C ( i )  identifying N  with
N .  Then we have i ( 0 )  = tx (0 ) .  Hence, by (5.15), we have

(1,(jc)i i (0))(g) = (7,(x)t x (0))(111(g)), g

if I x(a)I < 1 for every ŒE V  .  Since both terms are  meromorphic functions of
x  when 0  and g  are fixed, we obtain the following Lemma.

Lemma 5 .7 . L et x e X , WE W and assume x(ac) 0  1  f o r every a e . Then
we have 7, 07 = T„, x  w hen 1■1-  an d  N  are identified by the isomorphism Ili and coo ,
x chosen from  OK ).

W e assume tha t G  is sim ply connected. Let J  be a  subset of A .  Let E j ,
Wj  a n d  wj  b e  the same as in §3. L e t  Gj  b e  the universal Chevalley group over
k  generated by xOE(t), a  e l f ,  t e k .  As for G, we define the corresponding objects
Bj ,  TJ , N ,, K , and X 5 .

Lemma 5 .8 .  L et xe X , we WJ . W e take representatives co and co, o f  w and
w5 respectively  from  K J . W e  assume x(ciOE) 0 1 f o r every a e .  S et 11= x1TJ

e X J . L e t T„,J,n b e  the distribution on N J  def ined as in  (5.11), i.e.,

T4 1 (0 1) = (T.( 11)10 1 ) ) ( 0).1), 0, e Cc'  (N j).

L et co' = w i l co,. T h e n  c o ' N 5 cor Œ N . P u t

cli' (n) = 0(co—  nco'), neN ,

f o r every e Cc" ( N ) .  Then we have

T , x (0)=

In  other word, Tw o (  i s  the direct im age o f  the distribution on co' N J o i which is
o b tain ed  f ro m  T  b y  the isomorphism N J  c o - 1  N J co'.

P ro o f . Since we 14/5 ,  it  is  c le a r  th a t  N w g  N J . T h e  g ro u p  c o ' N j w ' is
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generated by x,c (t), a e (w, wo ) - 1 / .; , tek.  W e have

w0 wrEJ = w 0 (— EJ± ) g  E  •

Hence we obtain a  N j co' g  N.
Let e C (N ), (fi• = t x (0 ) .  Then w e have cp E PS(x), 0(n) = yo(coo n), n e N.

Put

(g) = (p(ga), g e G j , (n) = cp'(co,n), n e N j .

Since (5 Bj  = 6103.1 (cf. (3.7)), we have 9' e P S (q ) .  F o r neN j ,  we have

(n) = (p' (o) j n) = cp(co j na) = (p(c0 0 0f -  noi) =  0 (co ' -  nco' ).

Hence 0' e C (IV .1)  and  (p' =
First assume lx(a a)i <  1 for every a e . T h e n  w e  g e t

Tw,,(0)=
f N 

cp (co - 1  moo ) dn = cp(oi-  1  m.o., a ) dn = yo' (co'  ncoj )dn = Tjm  (0 ').
w N m , N

B y analytic  continuation (cf. L em m a 5.6), T ( 0 ) =  T w
.1,n (0 )  holds whenever

x(acc) 0  1  for every oce V/: . This completes the proof.

It is well known that

B  x ND (b, n) bwon elko o N  (c G)

is  a biregular mapping defined over k  and Bco o N  is  open in G  for k-Zariski
topology. Hence B x N is birationally equivalent to G  over k. Therefore there
is a  rational mapping 14 (resp. no )  o f G  into B (resp. N) defined over k  which
is r e g u la r  on  B w o N  s u c h  th a t  g = b o (g)w o  no (g )  f o r  g e Bwo  N .  W e  have
coo-  n, co o e Bcno N  fo r  a  generic p o in t n , o f  N  over k. Hence we can define a
rational mapping b (resp. n) o f N  into B (resp. N) defined over k by

b(n i ) = bo (wo ni coo
- n ( n 1 ) = n o (coo n ,coo

- n ,  e N

Then b and n  are regular on N n (0 0
- 1 1Bcoo No), , and  we have

(5.16) coonicoo- = b(n,)co o n(n,), n i N  n (00
- 1 B(00 N(Do .

W e see easily that n is a birational mapping o f  N  in to  N , and  that n gives a
biregular mapping of N n (n o

- l Bwo No), onto itself.

Lemma 5.9. For ni e N , let n = n(n i ). Then we have d n , =  B (b(n)) dn.

Proof. L e t dn, = c(n )dn. W e see  tha t c (n ) i s  a  continuous function on
N n coo-

 1  Bcoo Ncoo ,  which is an open dense subset o f N .  Take any ço P S (4 12 ).
By Lemma 5.2, we have

(p(g)dg = (p(wo n) dn.I
 B\G
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Hence we obtain

f 9(g)dg = go(gcol)dg = 9(coo ni cc4 1 )dn i

B\G B\G

= f 6,(b(n,))c(n)(p(co o n)dn.
J N

Since 14q, =  1 , w e have co4e Tn K .  B y this fact, w e see easily that 6,(b(n,))=
(5B (b (n )) ' .  Therefore

IN (P(0)0n)dn = f 6B(b(0 - 1 009(co0n)dn

holds for any cp e PS(6/ 2 ). Hence the assertion follows from Lemma 5.3.

The following Lemma gives an  explicit form of the distribution Tw o t  in  the
case w = w o .

Lemma 5.10. L et w = w0 , xe X and assume lx(act)1 <1 f or any a e I ±. Then
the distribution T  is given by  a  locally  integrable function 6B (b(n)) 1 1 2 x(b(n)) - 1 ,
ne N.

P ro o f . Take anye (G ) and set cp = tx (0 )e PS(x). By definition, we
have

'Tx (0 )=  (Tw 0 (x)(p)(w0 ) =  f cp(o),- 1 ni coo )dn i  = f p(co o ni wo
- l )dn i ,

with absolutely convergent integrals. W e change the variables by n = n(n i ). W e
have

X1b1n =  X 1 134 0 - 1 , 6 )30)10 1  =  5 ,911)(0 -  •

By Lemma 5.9, the above integral is equal to

fN 6 db(0)- 112 x(b(o_ 9(co n) 
B (b(n)) dn = f B (b(n)) 1 1 2  x(b(n)) -  0(n) dn,

and we see easily that this integral is absolutely convergent. Hence the assertion
follows.

For general x E X , T  can be given by analytic continuation (cf. Lemma 5.6).

Example 5.11. L et G  b e  the  universal Chevalley group of type C2 . We
may set
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0 1 ,
G = {g e GL(2)1`gJg = J}, J =

(
— : 0  2 ) '

N =
(a0  t a 0 1)  ( 01 bi )

}

a E G L(() is upper unipotent, b e m (e), tb = b ,

 

wo =

Then x is  of the form

x(diag [t 1 ,...,t,, = x (t), ti ek x ,

with unramified quasi-characters xi o f  le  . W e have wo x =  - 1  i f  a n d  only if
xi(1 < i < e) a r e  re a l v a lu e d . L e t  P  (resp. U ) b e  th e  subgroup of GL((, k)
consisting o f  all u p p e r  t r ia n g u la r  (resp . u p p e r  unipotent) m atrices. For

n=
 ta i) ( )

( a  0 b
)E N  w e  c o n s id e r  t h e  decomposition wo rtokT1 =  b coo ni  ,

0 A 0  1
bi eB, n 1 e N. W e  set

( x  0  ( 1 ( a  0  y l  )(.3
b  = n1 =

0  t x - i ) V )  1 ) ' 0  t oc- 1) 121 1 ) '

where x e P , a e U  and y, /3 e m y , k) are symmetric. Then we get

(5.17) ab = tx -  oc.

F o r a  matrix C = (co )e m(t, k), le t M i (C) denote the determinant of the minor

MAC) = det (c„ ; 1 r, s

f o r  1 <i < e, a n d  s e t  Mo (C ) =  1 . T h e  follow ing L em m a can be verified
immediately by induction on e.

Lemma 5 .1 2 .  L e t  cem (e, k ) be  g iv en . T hen  th e  equation tpu= C  with
p =(p i i )e P , u e U  can be solved if  and  only  i f  M i (C) 0 0 f o r 1 i  I f  this
is  the case, the solution is  unique and we have

Pu = MAC» M i-i(C ), 1 < i <

By (5.17) and Lemma 5.12, the first e diagonal components of b, are given
by M i _1(aNIMi(ab), 1 i W e have
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6B (diag [t i ,...,t e , _
) (11 Itil

i - 1 - 1 - 1 ) 2 ,

tiekx .

Therefore, by Lemma 5.10, the distribution 7'  is given by a  function

(5.18) T,x(n) = 111 x i (M i (ab)1 Mi _ i (ab))111M 1(ab)I 1

e= e=

( a  0  ) ( 1  b )
for n = e N, when x  is  in  th e  domain o f absolute convergence,

0  ta - 1 ) V )  1
th a t is  1 > I X1(ru)1 > IX i - 1(w)1> • - • > IX 1()1. In  the  general case, T ,  is given
by the analytic continuation of (5.18).

§ 6 .  Spherical functions

Let x e X .  Recall that 74 is the unique K-spherical constituent of z (x ). The
spherical function associated with 7rxi  is given by

(6.1) Tx(g)= epK ,x (kg)dk, g e G,
JK

where the Haar measure dk is normalized so that f K d k  = 1 . As is well known,
7.4  i s  unitarizable if  a n d  only  if  T x i s  of positive type (i.e., positive definite
function). Let P  denote the set of all x e X  such that it  unitarizable. Since
T (g )  is a  continuous function of x  when g  is fixed, it is obvious that P is closed
in  X .  It is  w ell know n tha t P  is bounded. H ence P  is  a  com pact W-stable
subset of X.

Lemma 6 . 1 .  L et we W , x eX „,. A ssume that x(aœ ) 0 1 f o r every ae V : and
that 74 is un ita rizab le. Put = ep,, x mod K er (T (x)). I f  PS(x)IKer(T„(x)) is
generated by  OK . x ,  then

((Pi, (P2) = (T (x )1 )(g ) p 2 (g) dg, (P 1, (P2 e PS (X)
8\ G

is a positive definite hermitian f orm  on PS(x)IKer(T(x)).

P ro o f . By the assumption, we have

Tw(X)(Pee,x = cw(X)(Px..x, c w (x) 0 0

and every element of PS(x)IK er(T (x)) can be represented by a  function of the
form

ri(g) =- Ecti(PK,x(gYi), a i eC , yieG .

W e have
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n) = c ) ,(26 - 1 E ai c,„(x )ço„,„,(g y ,)E di  L x (gy i ) dg
B\G

= E f ço,,„, x(gyi) (pK,x(gY i) dg) =  E (pi<
' wX j

( g y :  1 y.)
i i B\G f,i B\G

cpl< (g)dg)oc i o7;

(  

= E (Px,,,x(kYT1 Yi) 49 x, x (k) dk)oci =  E rw x (Y r Y i)°6i =  E F x (Y r Yi)ai

since Fw x = Fx a n d  T x i s  positive definite. H e n c e  th e  sesqui-linear form  ( , )
must be herm itian. Then it is clear that ( , ) defines a  non-degenerate hermitian
form o n  PS(x)IKer(Tw (x)). Hence positive definiteness follows. This completes
the proof.

Lemma 6 .2 .  L et d b e  the simply  connected covering group o f  G  and let
the related notation be the sam e as  in  § 3. Let X  b e  the  se t o f  all unramified
quasi-characters of  T  For x eX , define 5-c EX by  )- (t) = (0 (t)) , te  T . Then 4
is unitarizable if  and  only  if  nx

i  i s  unitarizable.

P ro o f . W e have

ri(4) = ç , ( )  d , 4 e â-

w here k" i s  the  m axim al com pact subgroup of Ô  d e f in e d  a s  i n  § 3  and
fizdk = 1. If 4 = tik, bEB, kek, we have

(pk, i (4)= 06)2(6) = (5112 0fr(b)) x(o(b)) = (p,,,(tm».
Since Ker (0) is contained in 'nk, we obtain

(6.3) F1(4) = Tx (tfr(0)), 4E6.

Therefore E is positive definite if T x is  positive definite. T h u s  the unitarizability
of 7t; implies that of 4.

Conversely we assume th a t  4 is  unitarizable. P u t  G' = 0 ( 6 ) .  W e note
tha t G ' is  a norm al subgroup of G .  By (6.3) and by two-sided K-invariance of
T x , we see that Fx IG'K  defines a positive definite function on  G 'K . This implies
that 741G'K is  unitarizable. Since [G: G'K ] < oo, we can easily conclude that
7r xl  i s  unitarizable. This completes the proof.

§ 7 .  Deformations of representations

In  the following sections, we shall determine all unitarizable 7c(x) when G  is
o f  classical ty p e  a n d  7r(x) is irreducible . B esides th e  re su lt i n  § 2 , certain
deformation arguments shall play important roles, which we shall prepare in  this
section.

L et w e W, w2  =  I. W e  se t .X .„= X w n x i (cf. §3  and  § 4 ) .  L et x  X„,' and
assume th a t T„ is  holomorphic a t  x. In  §5, we have shown that
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(7.1) 1(P 1, 49 21x = (T.(X)4 9 0(0  2 (k ) d k , ( P i ,  (P2 G PS(X)

gives an  invarian t non-degenerate hermitian form o n  PS (x ) a n d  th a t  7/(x) is
unitarizable if and only if ( , ) x  i s  positive definite. W e define a hermitian form
H5 o n  S  by

(7.2) f2)=1R(Z) - 1L,R(X ) - 1f2), f 1 , f 2 E  S.

W e have

(7.3) H x ( f i  f 2 )  =  c ( x ) 1 (T (X )4 9 1)(k) 2(k) dk,

where 1',(x) = R(x)T(x)R(x) 1 eE n d (S ). For an open subgroup U of K , let H x
u

be the restriction of H5 t o  Su . Then H x
u  is  a  non-degenerate hermitian form on

Su ; n(x) is unitarizable if and only if K  is positive definite for every U.
The following Lemma 7.1 and Proposition 7.3 are well known a s  a  general

technique to construct complementary series (cf. O rganskiI [15], p. 251). We
include proofs for the sake of completeness.

Lemma 7.1. L et a < b be real numbers and let p: [a, b] X ',;,  be a continuous
m ap . S e t xt = p(t), a t b. L et U be an open compact subgroup o f  K .  Then
K b  is  positive definite if  and  only  if  11,11

.  is  positive definite.

P ro o f .  F o r  simplicity, se t H t
u =  115

11,, a < t < b. It suffices to  prove "if"
part. A ssum e Ha

u  i s  positive definite a n d  H1
1,1 i s  n o t  positive definite. Since

c(x ) -  1
 T ( x )

 is holomorphic at x as far as X(aŒ) 0  g for every a e V + (cf. (4.14) and
Lemma 4.3), c (X ) 1 T ( x t)e End (S) depends continuously on t by the assumption
and  (4 .2 ). Hence when we fix a  basis of the finite dimensional vector space Su,
W  is  rep resen ted  by  a  h e rm itian  m atrix  w hose  m atrix  coefficients depend
continuously o n  t. It is c lear that the set

P = It e [a, b ] l i f  is  positive definite}

is  open  in  [a, b ] .  Hence [a, b] — P  is  a com pact subset, which contains b, of
[a, b ] .  Therefore there exists a < t ,  s u c h  th a t  [a, to) g_ P , t o O P . Since
H tuo =  lim ,, t0 H i

u , w e  se e  th a t  W r
o  i s  positive semi-definite, b u t  is  n o t  positive

definite. H e n c e  H t
u
a canno t be  non-degenera te . T h is  i s  a contradiction and

completes th e  proof.

Lem m a 7.2. L et p: [a, b]— > X  be a  continuous m ap . S e t xt = p(t). Then
n(x i )  is unitarizable i f  and only  if  n(x 0 )  is unitarizable.

P ro o f . If the assertion is negative, there exists an  open  subgroup U  of K
such that one of K .  and  K t i s  positive definite b u t th e  o ther is no t positive
definite . This contradicts Lemma 7.1 and completes the proof.

Proposition 7.3. Let w e  14; w 2 1  an d  p: [a, b] X , „  b e  a  continuous
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m ap. Pu t x t = p(t), 0  t 1. If  the conditions
(1) X o(cia) = 1 f o r every a e W„,'" ,
(2) x,(a,) 0  1  f o r every c e !t' ,  0 <  t  < 1,
(3) p (0 , 1 ]

are satisfied, then 1r(X1) is unitarizable f o r 0 < t  < 1.

P ro o f . L et w = o- , • • an _ o-„  be  a  reduced expression of w .  Let 0 <  t  < 1.
By (4.15), we have

L (x )  = Tcri (o-2 • • an Xt) • • • (unXt) T.,„(Xt).

Set O. = (o-„Cn-l• C i+ i loct , 1 i n — 1. W e have

=  {Oi (1 n — 1), an } and +1 • • • an -1 an Xr)(a.,) = Mao).

L et U  be an open subgroup of K  and fix a  basis of Su . By the assumption (1)
and Lemma 4.1, we have

crn -ia n k r T6,1(ai+1 "'an- i anXt)ISu  = 1 + o(1) (1 i < n — 1),

ca(X t)_ 1 : (X )S u = 1 + o (1)

for t +  0, where 1 e End (S) denotes the identity. Hence we get

c,„(x,) -  7;(x ,)1S u  = 1 + io(1), t + 0.

Then, b y  (7.3), there exists 0 < eu  < 1 su c h  th a t HT, i s  positive definite for
0 < t cu . Applying Lemma 7.1 t o  th e  interval [eu , 1 ], w e  se e  th a t i g t i s
positive definite for 0 < t  < 1. This completes the proof.

M a n y  unitarizable n (x ), x  e X  c a n  b e  c o n s tru c te d  b y  m e a n s  o f  this
p ro p o sitio n . T h e  follow ing proposition  g iv e s  a  m o r e  e la b o ra te  s tu d y  of
deformations.

Proposition 7 .4 .  Let w e W , w 2 = 1  and  assum e  w  is decom posed so that
w = w i w 2 , w  = 1, w i = 1, 1(w) = l(w  i )1(w 2 ). L et p: [a, b] -+X p ,: [a, b]
X  ,  be a  continuous m aps. For O t  1 ,  put x t = p(t), x  = P  1 1 *  W e  assume
that the following conditions are satisfied.

(1) Xo =
(2) p(0, 1] X;,;, and p i n  1]
(3) For every a e X°(aŒ) 0 1, g.
(4) For every a e Xo(aœ)= 1.

I f  7t(4 )  is unitariz able f o r  som e to e (0, 1], then n(X t) is unitariz able f o r  all
0 < t < 1. Conv ersely  i f  n() ,0 )  is unitarizable f o r som e t o e (0, 1], then it(x:-) is
unitarizable f o r all 0 < t < 1.

P ro o f .  B y  (3 ),  w e  se e  th a t T v , (X )  is  holomorphic a t  X  = X o• From
wt w2Xo — Xo 1 , wi X0 = Xo we get W  Y Y2 , 0  - Hence h 1
a t  x = Xo•

2 , ,  - S  ..o.omorphic

(7.4)

Also by (3), we have
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Um c (w 2 X tr  =  Jim 0  0 0 .t-, +o t-, +o

Therefore we get

lim (w 2 X ) - 1 T  (w  X )f =  h m  c 1 (X Vt wi 2  t t _ .+ 0 t wi t

for every f e S. By (4), using the same argument as in the proof of Proposition
7.3, we obtain

(7.5) c2(x) T,(Xt)S u =  1 +  0 (1), t ± 0

for any open subgroup U  of K .  Since

= T(w2X1) 7
2 (Xt) for t > 0,

we get

0
cw (X tr T ,X t)f =  t tirfo cw,(X11) -+

for every fe S ,  by (7.4) and  (7 .5 ). Therefore we obtain, by (7.3),

(7.6) lim f2) = f2), f i ,  f2 6 S.t-, +o

Now assume that n(2en) is unitarizable for some t o e (0, 1]. Then by L em m a
7.2, n(z i

l ) is unitarizable for all t e (0, 1]. Let U be any open subgroup of K .  By
(7.6), we see that there exists 0 < eu  <  1  such that  i s  positive definite for
O < t <  eu . By Lemma 7.1, H f', i s  t h e n  positive definite f o r  a ll 0  <  t <  1.
Threfore 

m ( X 1 )
 is unitarizable for 0 < t <  1. The converse assertion can be proved

sim ilarly . This completes the proof.

Remark 7.5. The assumption (4) can be replaced by the condition (7.5) for
all open subgroup U  of K.

Theorem 7.6. Assume G  is  o f adjoint type. Let xe  X  and assume n (x ) is
irreducible and unitarizable. Then x  belongs to the closure of P n X  n X ' in  X.

P ro o f . B y  t h e  assum ption o f  irreducib ility , w e h a v e  n(x) n ;  and
n(wx) n(x) for every WE W. We have wx = f o r  some wE W  Hence, by
Lemma 3.3, we get w, x = ic - 1  w ith w , E  W , w  = 1. B y Lem m a 3.5, w e m ay
assume that x e X,„, for some J g  A and that w j  a c ts  on  J  by multiplication by
— 1, replacing x  by w'x, e

Assume X (a Œ) =  1  f o r  so m e  cz e . Let w , =  o - , 0-
2 . • • o-

n b e  a  reduced
expression of w ., with a i =  a g ., e J, 1 i n. By Lemma 4.4, there exists i such
that w ' = (o- • • • o-

 i )(a i + i • • • o-„), w' x = i -  1 . W e  have w j w' =, (an • ••
••-an ). Hence w j w' is of order 2 and we get w' 2 = 1. Therefore w' is conjugate
in W wj ,  fo r some and w j , = —  1 on J'. Repeating this procedure,
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we may assume x e ,C j  and  X(aŒ ) 0 1  for every a e Ej
+ . By Lemma 3.4 and its

p ro o f , th e re  e x is ts  a  co n tin u o u s m ap  p: [0, 1] —*X s u c h  t h a t  p(0)= x,
p(0, 1] g j n X " .  N ow  the assertion follows from Lemma 7.2.

§ 8. The unitarizability of i (z) when it is irreducible

I n  th is  section, w e  sh a ll e x p la in  b a s ic  principles o f  determ ining the
unitarizability of n(x) for x e X '.

Theorem 8.1. A ssume that G  is sim ply  connected. L et J g  A , xeX,,,i  j  and
assume lx(a,c )i <1 f o r every ocEEÏ . Define Gj , Tj  and X j  as in  Lemma 5.8. Put

= xiTj eX j . Then n(x) is  unitarizable if  and only  if  the  representation n(n) of
Gj  i s  unitarizable.

P ro o f . By Lemma 5.4, n(x) is unitarizable if and only if cT 5  is  of positive
type for some c E C ' . By Lemma 5.8 and Theorem 2.3, cT  is of positive type
if and only if cT J  i s  of positive type. Again by Lemma 5.4, this is equivalent
to  the unitarizability of n(q ). This completes the proof.

N ow  w e conside r t h e  determination o f  t h e  unitarizability o f  n(x) for
x e X '. B y L em m as 3.2, 6.2 and the irreducibility criterion, we may assume that
G  is  o f  ad jo in t ty p e . By Theorem 7.6, it suffices to consider the case where
XEXL fl X r .  Replacing x by wx with w E W, we may assume that x E X ,  for some
J g  A  and that w,, acts on  J  b y  — 1 (cf. Lemma 3.5). Replacing x  by wx with
w e 14/j , we may further assume lx(aŒ)1 _  1 for every a e  .  By Lemmas 3.4 and
7.2, it suffices to consider the case lx(aa,)1 < 1 for every a e .  L et i//: G
be the simply connected covering map as in  § 3 .  P u t  = i,li o x. Then we may
assume that it() is irreducible and k" is regular by Lemma 7.2. Now we apply
Theorem 8.1. I f  J z  1 , w e can  reduce  th e  unitarizability o f  z(2 ), which is
e q u iv a le n t to  th a t o f  7r(), t o  t h e  untarizability o f  ir(n) o f  a  lower rank
g ro u p . Therefore it suffices to consider the case where J = A , xeX,„' 0 n X ', 14, 0

acts o n  A  b y  — 1 and  G  is  of adjoint type.
W e may set x  in  the  form

x(f1(m))= q<x• 13) = exp —  1 <z, !N e d » ,

where x = y + 1 z, y, ze V  The condition wo X = X is equivalent to
log q

woY = — WoZ — Z E 2Q(/).

y eV , z G Q(E) and we have

(8.1) X(fl(vcr)) = (— l)<z 'f l ) q<Y "» f l  e P(±).
We fix z e Q(E). In V, we consider the family of hyperplanes 5 z  defined by

fl E P(±),

Since w 0 = — 1, w e have z eQ (E). Thus we m ay set x = y + N /  1 z  with
log q
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(8.2) <y, = 1.

for every a e such  that <z,50 7=-  0  mod 2. Let D , be  a  connected component
o f  V — 5z .  F or v eD ,, define x(v)e by

(8.3) x(v)(fi(m)) = (— 1)<2 •fl>q<v"»$ E  P ( ) .

By Lemma 7.2, either all of n(x(v)) is unitarizable o r non-unitarizable for v e Dz ,
i.e., the  unitarizability on  D , remains the same.

Lemma 8 .2 .  L et G  be o f  rank  1, E +  =  fa l and w = ac c . L et x e X .  Then
n(x) is  unitarizable if  and  only  if  q ' < x ( a ct) < q.

P ro o f . This is w ell know n. W e shall g ive  a  sh o r t  proof. It suffices to
consider the case when G  is  o f ad jo in t type . By x e ,  we find X (aŒ) E R .  If
X(aŒ) < q - 1 o r  X(a) > q, we find that D  is  no t bounded . If C I

- < x (a)< q , we
can immediately conclude the  unitarizability of n(x) by  Proposition 7.3.

Suppose that there exist & 0 E t a n d  v 0  e D, su c h  th a t (z, 6t o > -= 0 mod 2,
<vo , ao > = O. P u t  xo = x(v 0). W e shall show  th a t th e  unitarizability o f it(x0 )
c a n  b e  r e d u c e d  to  t h a t  f o r  a  lo w e r  r a n k  g ro u p . T a k e  w e 14/ so  th a t
w ' a° e A .  Replacing xo b y  wX0, we may assume ao e zl. We can find a  reduced
expression of wo s u c h  th a t  wo =  a ,  • o- „, o„ = o-

zo . S et w, = o- , • • • o- „ _ , .  Then
wf = 1 since wo =  —  1 . W e have xo e ,  and w , is conjugate to w, for some
J  A .  Then as we have shown above, the unitarizability of n( 0) can be reduced
to  tha t fo r a  lower rank group.

Remark 8 .3 .  Assume th a t  J =ta lu J i  w h e re  a ll ro o ts  o f  J ,  an d  a  a re
orthogonal. Then, by Lemma 8.2, we see that  n ( x 0 )  i s  unitarizable if and only
if q - 1

 < X ( a Œ )
 <q  a n d  n(n o ), rio = x o Tj 1 EX j 1  i s  unitarizable, in the notation of

Theorem 8.1.

Therefore it suffices to consider only those D , which satisfy

(8.4) <v, 5c> 0 0 for every v e Dz  and for every &E such that <z, 0 mod 2.

In the following sections, we shall show that if D, satisfies (8.4), then all the
points of D , represent non-unitarizable representations. This shall complete the
determination of the unitarizability for n(x) which are irreducible.

We shall prove two more Lemmas which are useful in later considerations.

Lemma 8 .4 .  L et D = D , be as above and let ae E. There exists vo eD  such
that <v s , '6c> = O  f  an d  only  i f  aOED nD  00.

P ro o f . I t  vo ED satisfies <vo , ôt> = 0, we have o-Œ VØ = v o b y  the formula of
reflexions. Hence vo  E o- „D n D .  Conversely assume v, e az D n D .  Then we have

(8.5) <y1, = 0-;60 = <0- .Y — = — <0- 0)1, 60 .

W e may assume 0 1 , ei> 0 O. T h e n  (8.5) shows tha t the real valued continuous
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function y — > <1), 60 o n  D  changes the sign. Hence there exists yo  E D  such that
<v,) , Cc> = O. This completes the proof.

Lemma 8.5 . L et xe X . W e  assum e th at all com position factors of  PS(x)
are hermitian. Furthermore we assume the following conditions (1)— (3).

(1) There ex ists a  non-degenerate invariant hermitian f orm  on P S ( ) .

(2) 114/x 1 = 2 .
(3) PS(x) has two irreducible G-submodules.

Then there exists irreducible G-submodules V , and V2 such that PS(x)= V, 0  V2.

P ro o f . L e t  (  ,  )  b e  t h e  non-degenerate invarian t herm itian fo rm  on
PS (). L e t  V b e  a n  irreducible G-submodule of P S ( ) .  W e  s h a l l  show  that
( , )1V can be assum ed to  be non-degenerate. A ssum e, on the contrary, that
(  , )  is degenerate. S ince V is irreducible, ( , )1V m ust b e  the zero  form . L et
1 / ' b e  th e  annihilator o f  V in P S ( ) .  W e  have 1/' 2  V  Since there exists a
non-degenerate G-invariant sesqui-linear form

V x PS(x)117 ± C ,

we get PS () /  V V as G-modules, and we have V  V  by the assum ption. Let
(l4 )  b e  th e  se t o f  all irreducible constituents of P S ( ) .  W e  m a y  s e t  14/, = V,
W2-2" "-  V  By the exactness of the Jacquet functor, we obtain

C)„,E w  Ch y2„,xC ) i the semi-simplification of (140,

as T-modules. Since C 42, occurs in  V, (cf. the proof of Lemma 4.6), C42, does
not occur in (14 ), ,  i > 3, by the assumption (2). Therefore Wi is not isomorphic
to  V for i > 3  and  any irreducible submodule of PS(x) m ust be isomorphic to
V  Let V ' 0 V be an irreducible submodule. We obviously have V' n V' = V' n V
= 101 . Therefore PS(x)=1/' IQ V ' a n d  w e  ge t a  non-degenerate sesqui-linear
form  o n  V x V ' b y  the restriction of ( , ). T his im plies that ( , )1V C) V ' is
non-degenerate. Hence V C) V ' h a s  the orthogonal complement W  such that
PS(x) =  VC) V' e  W  (T h e  ex istence  o f the  o rthogona l com plem ent can be
justified easily by considering (  ,  )  o n  th e  spaces o f  U-fixed vectors for open
subgroups U  of K .)  Therefore by (2) and Lemma 4.6, we m ust have W = {0} ;
hence the assertion follows.

T hus w e m ay assume th a t  ( , )1V is non-degenerate fo r  every irreducible
G-submodule V L et V, be an  irreducible G-submodule of PS () .  L e t  V2 be an
irreducible G-submodule of the orthogonal complement of V . T h e n  ( , )1 V,C) V2
is non-degenerate. If PS(x) V, CI v2 , we obtain a n  irreducible G-submodule V3
in  the  o rthogonal complement o f  V C, V2 ,  which contradicts (2) a n d  Lemma
4.6. This completes the  proof.

§ 9 . The case of type C,

For the root system, we use the notation given in Bourbaki [ 7 ] .  The simple
roots are
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=  8 1 — 8 2 ,  ( 1 2  =  8 2 — 8 3, "• , Cite —1 = 8 e - i —  ce , l e  = 2 Ee.

P ut a i =  o ,  1 < i  < e  as before. Then w e have

w o  =  ( 6 1(7 2 - cre - l a g  ae - c • • ( 7 20 - 1) - (a e - l ue ag - i )a g woe, = -  s i ,  1 < i < t.

W e have

P (1) = C) = Ze i , Q ( ) =  { ai ej lai e z ,  E a1 0  mod 2}.

We identify {e,} with its dual basis with respect to  <  ,  > .  Then we have

2gi = e i (1 ei si = c,±  s i  (1  < i < j < I),
1

P (i) = (j) f , ,Z e ,  + Z ( -  E Q (i) = C) f=i Zs i .

W e  assum e t h a t  G  is o f  a d jo in t  ty p e .  F o r  z  =E t' = i c eQ (E ) and
y = Ef= i ai ci e V, a, e R, we define x(Y)e X  by

(9.1) X(v) (13 (w)) =  ( -  1 )( z "» 9‹ v 'fl> , e P (±)

W e have

x(v) ( (2 gi) (vi)) = ( — 1)`' q'',1  <  i <  t,

(9.2) ((ei ef)(r3)) = ( - 1 <  i <  <  e,

X1V11(E 1 ej)(tzr)) = (- 1)' iqai ± ai, 1  <  <  <  t.

F irst w e  conside r th e  c a se  z  = O. T h e  fam ily o f  hyperplanes 5  i n  V
considered in  §8 are

at = ± 1 (1 i < a, ± a i  = 1 (1 i < j .

We consider a  connected component D o f  V -  5 .  Replacing D b y  wD, w e W,
we may assume tha t D contains a  po in t y = Ef= i  a,Ei su c h  th a t <y, 50  > 0  for
every 1 < i < t. T h is  c o n d itio n  is equivalent to a l  > a 2  > • • • > a  > 0. Take i
so  that ai >  1, ci,,. 1 < 1. Then D contains a  po in t y = E f , i a,e, such that

(9.3) ai > a 2  > • • > a i > 1> a r f i > ••• > a e >  O.

W e m ay assume th a t D  is  b o u n d ed . L e t 1 j  i  and suppose a ;  - 1 > 1.
Then we have

at, — a, > 1 ,  1 u  < j ,  j  < s  e .

Hence we see that

E (a. + ()E i +  E  au ei  D
u = 1 u =j+ 1

for every t > 0. Thus D is no t bounded. W e must have
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(9.4) ai— a i + i  < 1 , 1 < j < i.

F o r  1  j  e  —  1, we define p ( j )  as the greatest integer p  such that a• — a  < 1,P

J <  p  < 1 . Obviously we have

2 < p(1) < p(2) < • • • < p(i) p(i + 1) = • • • p (e  — 1) = e.

F or 2  < j < e, w e define  q ( j )  a s  t h e  least in teger q  s u c h  th a t  a  — a  <1,q J
1 q < j . W e have

1 = q(2) q(3) < • • • < q(e) i + 1.

The function q can be determined by the function p  in the obvious m anner. For
i +1 <J <  e', l e t  r ( j )  b e  t h e  g re a te s t in te g e r  su c h  th a t a i  + a r >  1 , j r ,
1 < r  < e .  If  such r ( j )  does not exist fo r some j ,  w e have i = 0 , a l  +  a ,  < 1.
Then w e find o- OED = D for a 2 .  T h e r e f o r e  in  th is case, w e can apply the
results in  § 8 .  W e may assume that r ( j )  exists for i +  1 < j < I .  W e have

e r(i +  1) .••• r(e)

The functions p  and r  completely determine the shape of the domain D.

Lemma 9.1. Suppose that one of  the following conditions are satisfied.
(1) For som e 1 _< j i —  1 , p (j)=  p (j +  1 ) and q (j)  =  q (j +  1 ). (If j=  1 , we

understand q(1) = q(2).)
(2) F o r  so m e  i + 1  < j < 1  —  1 , q (j) =  q (j +  1 ), a n d  r ( j)=  r ( j  +  1 )  or

r(j)=  j + 1 , r(j +  1 ) =  j.
Then there exists & A  su c h  th at <1.),, â> = 0 f o r some v o eD .

P ro o f . Suppose that (2) is satisfied. A m ong th e  inequalities defining the
dom ain  D ,  w e conside r those  invo lv ing  th e  v a ria b le s  a i  a n d  ai + 1 . Put
q  =  q ( j ) .  W e have

(9.5) 1 > a, — a i > — 1, 1> a, — a i + 1 > — 1, q , t j ,  j  +  1,

(9.6) a, — a i > 1, a 1 — ai + 1 > 1, 1 <t < q,

(9.7) 1 > ai  — ai + 1 > —1.

If r ( j)=  r ( j +  1), we have, putting r =  r(j),

(9.8) a, + ai  > 1, a, + a i + 1 > 1, t .< r,

(9.9) —  1 < a1 +  a;  <1, — 1 < a 1 + a i + , < 1, t >  r , t  j ,  j  +  1,

(9.10) ai+  a i + 1 > 1 if r>  j + 1 , — 1 < a i + a i + , <  1 if r < j.

If r(j)=  j + 1 , r(j +  1 ) =  j, we have

(9.8') a, + a j > 1, at + a i + , > 1, t < j,

(9.9') —  1 < a1 + a;  <1, — 1 < a 1 +  a„ ,, < 1 , t  > j  + 1,
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(9.10') ai + ai ,  > 1.

By (9.5) — (9.7), and (9.8) — (9.10) or (9.8') — (9.10') according as the cases, we see
th a t  o- „D = D fo r a  =  ei — i.e ., D  is  invariant under the permutation of
variables ai , a i + 1 . Our assertion follows from Lemma 8.4.

If (1) is satisfied, we find o- „D = D for a = ei  — ei , I  similarly as a b o v e . This
completes the proof.

Our main objective in this section is to  prove the following Theorem.

Theorem 9 .2 .  If  the points of  D represent unitarizable representations, we have

— 1 < a 1 <1, 1  < i < e.
First we state a  consequence of this Theorem.

Lemma 9 .3 .  I f  all the points of  D satisfy

— 1 < a 1 <1 , 1  < i <e,

then o- D = D  f or som e ae I  +.

P ro o f . W e may assume that D  contains a point y =  Ef, i ai ei such that

1 >  a l > a2 >•••> a ,  > 0.

W e have q(i) = 1, 2 i  < 1 .  Assume that there does not exist Œ E ±  such that
cra D = D .  By Lemma 9.1, (2), we must have

(9.11) r(1) > r(2) > ••• > r(e — 1) > r(e).

Since I > r(1), r(( ) 1, we immediately obtain

r(i) = +  1  — 1 i  <  e

by (9.11). If e is odd, we h a v e  r  
+  1

)

 e + 1 
, which contradicts the definition

2 2
o f r. If  e  is even, p u t e = 2 n .  W e have r(n)= n + 1, r(n + 1) = n. Applying
Lemma 9.1, (2), we get a  contradiction. This completes the  proof.

Therefore as explained in §8, it suffices to prove Theorem 9.2 to determine
the unitarizability. The following Lemma shall play a crucial role in the proof.

Lemma 9 .4 .  Let e> 4. Suppose that wD, the closure of  wD for som e weW,
contains a point vo  o f  th e  form

Vo =  (a — 1)(e 1 — e2 ) — av, + (a — 2)e4  +  E b i Ej

i= 5

which satisfies the following conditions.

(1) b i ± b ,0 0 ,  ± 1 ,5 _ < _ j < t e ,b i o o , ±  1, 5 < j <  e.
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(2) a 0  — 1, 0, 1/2, 1, 3/2, 2, 3.
(3) bi ±  (a +  1 ), ±  a ,  ±  (a — 1), ± (a — 2 ), ±  (a — 3), 5 j  e.

Then all the points of  D  represent non-unitarizable representations.

P ro o f . Assume th a t a  po in t o f D  represents a unitarizable representation.
T hen  a ll the  po in ts o f w D  represent unitarizable representations a s  shown in
§ 8 .  B y v irtue  o f  a  resu lt o f  T ad i6  [2 6 ], T heorem  2 .7 , w e  see  tha t a ll the
composition factors of PS(x(v)) for y EwD are unitarizable, in particular hermitian.

Define w 2 E W by

w2 ei  =  ej , 1 j  2, w2 yi  = — ej ,  3 j

Put Zo = X (v0). B y th e  assum ptions (1) (3) a n d  by Lem m a 4.3, we see that
is holomorphic at x o and K er (Ta iX o.2(Xo)) = {0} . W e have alw2X0 =

Hence

((p , (P2) =  C 2 .2 (X o r  f  ( T 1 X o ) ( P  OM  92(0 dg, (10 1, (P2 e PS0(0)
B\G

defines a  non-degenerate invariant hermitian form on P S ( X 0 ) .  W e  have I Wx .1 = 2
by the assumptions (1) — (3). L e t V be the G-submodule of PS(x 0 ) generated by

x  0 . By (4.18) and (4.14), we see that

= c9K,x0 , C 0 , w2PS(x 0 ) Ker ()Co)) 10 1.7;2 ,7i w2(X0) (PK,x, 0 

Let

0(g) = E ci (pK,x o (ggi) E cieC, g, gieG.

Then we have

(Ta2,1w2(x0) c,o111)(g) = c E c, ,, x 0 (gg,), g e G.

B y  th is  form ula, we find Vn Ker (7: w2 (X0)) = 101. Hence  PS(X ø ) has tw o
irreducible G-submodules. Therefore, by Proposition 8.5, PS(x 0 ) must be a direct
sum of two irreducible G-submodules. Since

PS(X0) K e r  ( 7 ;2(Xo)) {0} ,

m ust be irreducible. On the otherhand, it is easy to see that

Ker a 2 a 3  ( X 0 ) )  Ker (Ta2(Xon,

Ker (Tr, CT2a3 (xo)) n Ker ( T,2 (X0)) n ( PK, xo •

(A simple w ay to see (9.12) is to use Casselm an's form ula [9], 3.4.) This is  a
contradiction and completes the proof.

Proof  o f  Theorem 9 .2 . W e  m ay  assume i >  1  in  (9 .3 ). It suffices to show

Ker (T, 2 (Xo))

(9.12)
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tha t a  po in t of D  represents non-unitarizable representation. We assume e > 2
and set the hypothesis of induction, i.e., we assume th a t the  theorem holds for
g ro u p s  o f  t y p e  C  whose ranks  —  1 .  T h r o u g h o u t  t h e  p ro o f , w e  let

= (Df=+,2 Ry i b e  the  vector space attached to the adjoint group of type C e  + 2
similarly as a b o v e . In  the  proof, we shall consider a  domain B which contains
a  p o in t  y e V .  B y th is  term , we shall always understand that y a n d  that
B nv  is the connected component of V — where i s  the family of hyperplanes
in V similary defined a s  above. W e shall prove the th e o re m  b y  contradiction.
Thus we assume that all the points of D reresent unitarizable representations. The
proof is rather involved. W e divide it into several cases.

CASE (A) We assume i = e — 1.
Thus we assume tha t D  contains a point y = ai ei  such that

a, > a,> •••> a e _ i > 1 > a, >0.

First we note the following fact. S u p p o se  that are chosen so that

ai + ,  > • • • > a, > 1 > a 1 > 0 ,  a, ap m  < 1, a, a p ,1, , 1 >  1 ,j  +1  < t  <e  — 1.
Then choose a i  so  tha t

1 + ap ( J ) +  <  ai < 1 + a p ( i ) , a•>  a
j + l •

This choice is always possible since ai + ,  < 1 + a ( i +  i )  <  1  +  amp . Repeating this
procedure, we can construct a  po in t in  D.

Let q  =  q ( t ) .  W e have

(9.13) a  — a  <1, aq_1—  a, > I.

W e can choose a ,  so that

(9.14) 0 < a , <  1/2.

W e have p(q) = t , p (q  — 1) e — 1. B y  the remark above, aq  can  a tta in  values
less than 1 + a ,  and a q _ , can attain values less than 1 + ap ( q _, ) . Hence we find
easily that we can choose a q _  >  aq  so  that

(9.15) aq_, +  aq  > 3.

By (9.13), (9.14) and aq  >  a q , i ,  we have

(9.16) a, < 3/2,a ,  + a,, + , < 3.

In  -12, we consider a domain 15 which contains a point E l =  l ai y;  + b 1 8, + 1 +b 2 8, +  2

such that E 2  a .c .eD 5 1
a  > •••> a 1 _ ,>  1 > a 1 > 0, 1 > 6,, b 2 > 0,I  1 

(9.17) aq —  bi  <1, a„_,—  b i > 1, a ,  + b i  <  1, j = 1, 2,

(9.18) b , +  b ,<  1.

The conditions on bi  are
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a q  — 1 < b  <  a,_ , —  1,b .  <1  — a,

which a re  sa tisfied  by  1 /2 . H ence w e see  that there  ex ists b ,  and b 2 which
satisfy (9.17) and (9.18), i.e., the  domain 13 is non-empty.

We have o- ŒB = 13 for Œ =  s e + ,  —  6, + 2 . By Remark 8.3 and (9.18), we see
t h a t  a l l  t h e  p o in t s  o f  13 represent unitarizable  representations. Assume
E l =  a i e ;  +  b,E, + 1  +  62 6, 4. 2  e /3, the conditions (9.13) — (9.18) being retained.
We set

a', = a, —  1, b i= a, —  1, b 2 — a q .

Then we have a; = by (9.16). W e have

a, —  a; = 1, a q _ i  — b'2 = a,_ , + a, —  2 > 1

by (9.15). W e also have

a; +  1) = —  2 < 1, a; + = b , +13 = 1

by (9.16). Therefore we see that
-1
E  ai s;  + (a q — 08, + (a q — 1) e e  + 1  +  (2 — aq )e, + 2  E D.

j=  1

Hence, for some we ITT; we have
q-1 —1

(a q —  1 )(e i — 62 ) — a,6 3 + (a,—  2) e , + E  a i 2J + 4  +  E  a i ei + , ewD.
j=1 j=q+1

H ere  ii' the  W eyl g roup  o f  ty p e  C e + 2 • S in c e  w e  c o u ld  have chosen ai ,
1 < j  < e — 1, j q  in  "generic position" 2 , w e can apply Lem m a 9.4. W e have
obtained a contradiction.

We therefore may assume (  — i > 2, i > 1. We shall consider three cases.
CASE ( B )  W e assume a, + , + a i + 2 > 1, a, _ 1 + a ,  < 1.
The assumption implies ( —  i > 3. W e can find s, i + 2 < s < e —1 so that

(9.19)a 1  +  a s > 1, a, + a s + ,  < 1.

F irst w e  n o te  th e  following fact. W e choose as > a s + 1 > • •• > a, > 0  so  th a t
as + a2 ± 1 < 1. W e  c h o o s e  a;  for s — 1 i + 1  in  th e  following way. Suppose
that ai + 1 ,..., a ,  are chosen. Then choose ai  so  tha t

1 —  ar c i , < a  <  1 — ar c h + , ai + 1 <

Since we have r( j ) >  s  fo r s — 1 >j > i + 1, w e see easily that this is alw ays
possible. Then ai + 1 , . . . , a ,  satisfy the required properties to belong D concerning
the  add itions a m o n g  th e m . Let 1 i  and  suppose  th a t  ai ± 1 , . . . , a ,  are
chosen. W e can choose a;  so  tha t

2 T h is  remark shall apply to the succeeding argum ents as w ell. W e shall not repeat it.
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1 4- du o + ,  < a i  <1 + a p i p , a.> a
j + l •

By successive application of this procedure, we can construct a  po in t in  D.
Let q  =  q (s ) . W e have

(9.20) a, —  as < 1, a ,_ , —  as > 1.

First we assume
STJBCASE (I) aq  — as  + 1  > 1.
By the  remark above and  the  assumption, we can choose aq , a q + 1  a n d  as

so that

(9.21) as> 1 / 2 ,  aq  >  3 / 2 ,  aq  +  a q + 1  < 3.

In  V, we consider a domain 13 which contains a point El = i ai e;  + b i e ,,,+  b ,e , +  2

such that

E ai e i e D ,  a, > •••> a i > 1 > a i + i > •••> a, >  0 , 1 >  b l , b 2 > 0,

(9.22) aq — 1, a q + 1 — bi  < 1 , as + b i > 1, as + ,  + b i  < 1 , j =  1, 2,

(9.23) b, + b 2  <  1.

The conditions on b i  are

a, —  1 > b i > a q + , —  1, 1 — as + 1 ›  >  1 — as ,

which are satisfied by 1/2. H ence w e see that 15 o 0.
B y R em ark  8 .3  and (9 .23), w e  s e e  th a t  a ll  th e  p o in ts  o f  13 represent

unitarizable representations. Take E  d i e f +b l e , + 1 +b 2 e , ± 2 e l i ,  the conditions
(9.20) — (9.23) being retained. Set

a, =  aq  —  1, b1 = aq  —  1 , b'2  = 2 — aq .

W e have a, =  b i >  b'2  by  (9 .21 ). W e have

aq  —  a, =  1 , a g —  b'2 >  1 , a q + , —  b'2  =  a, + a q + ,  —  2 < 1

by (9.23). W e also have

as _  +  bi2 = 2 —  (a q  —  a s _ 1 ) > 1, as + , + a =  (a, —  as) + (as + a s + 1 ) —  1 < 1.

Therefore we see that

E a.
J
e• + (a

q
 —  1)e, + (aq  — 1)e, + (2 — aq )e, + 2 E D.

j = 1 , j * s

In  the  same way as in Case (A), we obtain a contradiction.
Next we assume
SUBCASE (II) aq  — a s + 1  <  1.
By (9.20) and the assumption, we have q(s) =  q(s +  1) =  q. By Lemma 9.1,
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(2) and the induction hypothesis, we may assume r (s + 1) < r(s). By (9.19), we
have r(s) = s —  1. Thus we have a + 1  +  as _  < 1. Then it follows r(s — 1) = s.
A g a in  b y  L em m a 9 .1 , (2 ) a n d  th e  in d u c tio n  hypo thesis , w e  m ay  assume
q(s —  1) < q(s) . Thus we have

(9.24) a s -1  ±  as+1 < 1
, a, _ 1 — a s -  < 1 .

By aq _  + a+ 1 = — as _ 1 ) + (as _  + as +  1 ) , we get

(9.25) aq_i + as , ,  < 2 .

Now we can choose a ,_ , ,  a , and as so  that

(9.26) as > 1/ 2 , aq _  > 3/2, a q _ i  + aq  < 3.

In  V, we consider a domain /3 which contains a point E.;= a i e;  + b i g, +, + b 2 e + 2
such that

E cv i e D ,  a i  > • • • > a, > 1 > a i + , > • • • > a e >  0 ,  1  >  b  b  2  > 0,
J=1

(9.27) a, — bi  < 1, a,_ —  b .>  1, a s + > 1, as + 1 +  b  <  1, j = 1, 2,

(9.28) b1 + b 2  < 1.

The conditions on b .,  are

a
q - 1  

— I  >  b .>  a  — 1 1— a + 1  >  b .>  1 — as ,J

which are satisfied by 1 / 2 . Hence have B o 0.
We see that all the points of D represent unitarizable representations. Take

E;= a +  b 1 e + 1  b  2 e + 2 e  ,  the  conditions (9.24) — (9.28) being retained.
Set

aS = a, _  —  1 , b i = a,_ , —  1 , b ; = 2 — aq _ 1 .

We have a; = b1 > b  b y  (9.26). We have

aq _, — a; = 1, aq  — b'2  = a, + a, — 2 <

by (9.26). We also have a 5 _ 1 +  b =  2 — (aq _ i  — as _ >  1 by (9.24), as + 1  +  a =
( a ,_  + as +  1 ) —  1 < 1 by  (9.25). Therefore we see that

E  a.E• + (a g - i  — 1)es  + (a
g - i  

— 1)e, + 1  + (2— a
q - 1

) e
g  +  2

e D .
j= 1 , j # s

In  th e  same way as in  C ase  (A), we obtain a  contradiction. This finishes the
proof in Case (B).

CASE (C )  W e assume a 1  a , 2 <  1.
In  this case, we have

(9.29) r(j) = 1, i + 1 < j < ‘.
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Let q = q(i + 1). W e have

(9.30) aq — a 1 + 1  < 1, aq_, ai + 1 >  1.

B y  (9.29), L em m a 9.1 , (2) a n d  th e  in d u c tio n  hypothesis, w e  m ay  assume
q(i + 2) < q(i + 1). Hence we get

(9.31) aq — a 2  > 1.

By aq +  a + 2  = (aq — ai +  1 ) + (ai +  +  a 1 ± 2), w e  have

(9.32) aq + a 1 2 < 2.

By (9.31), we see that we can choose aq ,  a q + 1  
and a i + 1  so  th a t

(9.33)a 1 1  >  1 /2 ,  aq >  3 /2 ,  aq +  aq + , < 3.

In  V, we consider a domain ij which contains a point I I =  a t b i s e   + 1 + b 2 e , + 2

such that

(9.34) aq — bi  >  1 ,  aq +  —  bi  < 1 , a i + , + b  > 1 , a i + 2 ± h i <  1 ,  =  1, 2,

(9.35) 1 > b 1 , b 2 > 0, b1 + b 2 < 1.

The conditions on b . ; are

aq — 1 > bi  >  aq +  —  1, 1 — a 2 > bi > 1 1,

which are satisfied by 1 / 2 .  Hence we have 15 0 .  W e see that all the points
of 15 represent unitarizable representations. Take E:. =  d i e ./ + b, e, + 1  + b 2 E, + 2 e
.5, the conditions (9.30) (9 .3 5 )  being retained. Set

a; + , =  aq —  1, bi = aq — 1 ,  ho = 2 — aq .

Then we have ai + , = b >  b .  We get

aq a ; + , = 1, aq + b'2 — aq + a q + , 2 < 1

by (9.33). W e also have

a+ 1 + > 1,

by (9.32). Therefore we have

a 1 + a 2 =  a q a 1 2 — 1 <

E d i e ;  + (aq — 1)e1+ 1  +  (aq — 1)E, + 1  + (2 — aq )e, + 2 E D.

In  the  same way as in Case (A), we obtain a contradiction.
It remains to consider
CASE (D )  W e assume a , _ 1 + a , > 1.
In  this case, we have

(9.36) r(j) = i + 1 j ( — 1 , r (e )  =  e —1.



Unitarizability of  representations 209

Let q  =  q (t) . W e have

(9.37) aq — a ,  <1, a q _,— a ,  > 1.

B y  (9.36), L em m a 9 .1 , (2 ) a n d  th e  in d u c tio n  hypothesis, w e  m ay  assume
q(e — 1) < q(( ). Then we have

(9.38) a
q —  1  

— a _ 1  < 1.

W e can choose a q - 1 ,  
a

q  
and  a  so that

(9.39) a ,  > 1/2, a q _ i  > 3 /2 ,  a q _ i  + a q  < 3 .

In  V, we consider a domain 15 which contains a point aiei+ b i e , + , +b 2 2+ 2

such that

(9.40) aq — b i  < 1 ,  a q _ , - 1 3 ,> 1 ,  a ,  + b i > l ,  j =  1, 2,

(9.41) 1 > b 1 , b 2 > 0, b, + b 2  < 1.

The conditions on b i  are

a q — 1 < b  < a q _,— 1, 1 — a  <  •

which are satisfied by 1 / 2 . Hence we have 13 o 0 .  W e see that all the points
of 13 represent unitarizable representations. Take E ,: ai e i + b 1 Cg + 1  + b 2 e, + 2 e
13, the conditions (9.37) — (9.41) being retained. Set

a; = a q _ i  —  1, 1)1 = a q _ ,—  1, b 2' = 2 — aq _ 1 .

We have a; =1)1> b .  W e get a q  — b =  a q _, + a q — 2 < 1 by (9 .39). We also
have a,_ , +  b'2  = 2 — (aq _ i  — a, _ 1 ) > 1 by (9.38). Therefore we obtain

E 1)e, + (aq _  — 1)8, ±, + (2 — a q _ i )e, + 2  e D.
.1=1

In  the same way as in Case (A), we obtain a  contradiction. This completes the
proof of Theorem 9.2.

Now we consider the general case where z = E:=  c i e i e Q(E) is not necessarily
0. Replacing z(v) by  w(z(v)), we may assume

c, = 0, 1 < i < n, c i = 1, n +1 < i < e .
We see that e — n is  even . The family of hyperplanes in V considered in §8 are

a i =  ± 1  (1< i < n), a i ±a i =  ± 1 (1< i < j < n), a .+  a=  ± 1

This shows that w e can  trea t the variables a i (1  < i < n ) and  a i  (n + 1 j  <
separately. W e can normalize a 1 , . . . , a ,  so that

a n +1  > a n +2  > >  ( le  —1 > a 1 > 0.

Then we obtain
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(9.42) an+ a g <  1

by the same proof as Theorem 9.2. Then we see that o-„D = D for some o eX ±

b y  the sam e proof as Lemma 9.3. This completes the determination of the
unitarizability for groups of type C 1 .

§10. The case of type

The simple roots are

El E 2 , C42 E2 63, =  E i – 1 — E e Œ e Eg,

P (1 ) = 1=1zei + E 12(1) = f =iz e i.
L  i =

We identify fei l  with its dual basis with respect to  <  , > . Then we have

= 2E(1 i < t) , e te i  = EiE i  ( 1 i < 1 ),

W e have

= Q(t) = 1 Eaa,EZ, E ai 0  mod 21.
i=i 1=1

WOEi = 6 i ,  1e ,  w o = ( 0 . 1. 0- 2 -• •0 - ,  – la  a  –1 - 1 7 2 6 1) - 0 - - l a g  ci -1)ce •

W e assume th a t  G  i s  of adjoint type. For z = C16 E Q (I)  and y =
Ef= 1  a i e E V, ai ER, we define x(y) e X  by

(10.1) A O  (ru )) = (—  1 )<z ' 19> q<v 'fl>1 3 E 1 3 ( ) .

W e have

x(v)((gi) (t o ) = q 2a;

(10.2) ((ci Ei)( 0 )  = (— qa i– a i

z(v)((e i 4- gi )(rc i)) =  (_  1)ci F a q a+ ai

F irst w e  consider the case z = O. The fam ily o f  hyperplanes 5  in  V
considered in §8 are

a1 =1 / 2  ( 1 a. ± a = 1 (1 < i < j

Let D be a connected component of V — 5 . Replacing D by wD, WE W, we may
assume th a t  D  contains a point u  = ai ei s u c h  th a t  <y, >  0  for every
1 < i < e .  This condition is equivalent to a l  > a 2  > ••• > a  > 0. Take i so that
ai > 1/2, ai ,  <  1/2. Then D  contains a point y = Ef= , ai ei such that

(10.3) a, > a 2  > ••• > ai >  1/2 > a i + 1  > ••• > a, > O.

In a similar manner as in the case of type C 1 ,  w e see that the boundedness of
D  implies
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(10.4) a; — (Li + ,  <1, 1 < j < e — 1.
F o r 1 j  e — 1, we define p(j) as the greatest integer p  such that ai  —  a ,, <1 ,

< p  < ( .  F o r  2  j  < e , w e de fine  q ( j)  a s  t h e  least in tege r q  such that
aq  — ai  < 1, 1 q  <  j .

Lemma 10 .1 . I f  a ,  + a ,  < 1, we have cr„D = D f o r a = g,.

P ro o f . We have a, ±  a ,  <1 , 1  < t  < —  1 from the assumption. Hence the
assertion is obvious.

W e assume

(10.5) a l  + a, >  1.

F or i + 1 <j < e, we define r(j)  as the  greatest integer r  such that ai  + a,. > 1,
j  r,  1  < r <

Lemma 10 .2 . Suppose that one of  the following conditions are satisfied.
(1) For some 1 j  i —  1, p(j)= p(j + 1) and q(j) = q(j + 1). ( I f  = 1, we

understand q(1) = q(2).)
(2) F o r so m e  i + 1 j  e — 1, q ( j)  = q ( j + 1 ) , a n d  r(j)= r ( j + 1 ) or

r(j) = j + 1, r(j + 1) = j.
Then there ex ists ôte i  such that <vo , = 0 f o r some vo e D.

The proof is identical to that of Lemma 9.1.

Lemma 1 0 .3 . L e t e> 4. Suppose th at wD , the  closure o f  wD f o r some
weW , contains a point vo  o f  the form

vo  = (a — 1)(g 1 — e2 )  —  ag3 + (a — 2)e4  + bi g;

i= 5

which satisfies the following conditions.
(1) bi  b ,  0 ,  ± 1, 5  <  j  < t e, b i oo,± 1 /2  5  <  j  < e.
(2) a 0  —  1/2, 0, 1/2, 1, 3/2, 2, 5/2.
(3) b ± (a + 1), ±  a ,  ± (a —  1), ±  (a —  2), ±  (a —  3), 5 j e.

then all the points of  D  represent non - unitarizable representations.

Again the proof is identical to that of Lemma 9.4.

Theorem 1 0 .4 . T he points of  D represent unitarizable representations if  and
only  if

— 1/2 < ai < 1/2, 1 < i <

P ro o f . Assume th a t th is  condition h o ld s . L e t v1 e D a n d  p u t x i  =  x(v i ).
Since 0 , th e  origin o f  V, belongs to D , w e can easily find a  continuous map
p: [0, 1] —> X,„0 s o  t h a t  the conditions of Proposition 7.3 are satisfied. Hence
n(x(v,)) is  unitarizable.
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We shall prove "only if" p a r t .  It suffices to show that a point of D represents
a non-unitarizable representation assuming i > 1 in (10.3). We assume e > 2 and
set the hypothesis of induction on e. Throughout the proof, we let 12 = _+ ,2 R e i

be the vector space attached to the adjoint group of type 13,1_2. In  th e  proof,
we consider a  domain D which contains a point y e  V . B y  th is  term, we shall
always understand that v 5  a n d  th a t  13 B y  i s  th e  connected component of

— 5 ,  

w h e r e
 5  is the family of hyperplanes in V similarly defined as above. W e

shall prove the  theorem by contradiction. Thus we assume tha t a ll the points
of D represent unitarizable representations.

CASE (A ) W e  assume a, —  a, < 1.
Since a, —a < 1 ,  1  < t  <u  <e , we obtain

(10.6) p(t)= —1, q(t) = 1, 2  <  t < e.
By Lemma 10.2 and the induction hypothesis, we may assume

(10.7) e r(1) > r(2) > • • • > r(i + 1) > •••> r(e)> 1.

SUBCASE (I) W e assume r(i)> r(i + 1).
By (10.7), we obtain

r(j)= t+1 —j,<  <  e .

If e is odd, we get r

(e + e + 1
, which contradicts the definition of r. We

\ 2 ) 2
assume e is even and put e = 2 n .  Then we have r(n )= n  +1 , r(n  +1 )= n . By
Lemma 10.2 and induction hypothesis, we have n = i. A ssum e n =  1. Then we

h a v e  D D Y ,, v1 = -
3

e, + -

1 

e2 . W e  se e  th a t  X(V1) =  4 1 /2 . S i n c e  P S (4 1 /2 )
2 2

contains a non-unitarizable constituent (cf. Borel-W allach [6], X I), th is  is  a
contradiction. W e assume n > 2. W e  can  choose  a , and  a 2 s o  t h a t  a, > 1,
a2  < 1. In  V, we consider a  domain 13 which contains a point E:= 1 a181 + b,e,
+b 2 2+ 2  such that

(10.8) a,—  b1 > 1, a2  —  b, <1, a, + 1)1 > 1, a2  + b , <1 , t  = 1, 2

(10.9)1 / 2 >  a2 > 1) 1 , b 2 > 0.

T h e n w e f in d S 5 é ø .  W e have o-„B = /3 for a  =  e, + 1 —  s, + 2 . By Remark 8.3
and (10.9), we see that all the points of 5 represent unitarizable representations.'
Set

a', =1 + a 2 ,„ d 2 = 1 — a2 ,„ b i =  a- 2n

and  choose b2 so  that a 2 „ > /32 > 0. W e  have a2> a 3  s in c e  a3  <1  — a2 „, and
cl; + a2n- 1 > 1. H e n c e  w e  have

(1 + a2n)e1 + (1 — a2 „)e2 +  E at e, + a 2 „e, + 1  + b2r., + 2 e D.
t=3
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N ote tha t w e cou ld  have chosen a„ 3 < t < e  a n d  1:) ,  in  "generic position '.
Hence we obtain a contradiction by Lemma 10.3.

In the following subcases, we shall assume r(i) = r(i + 1). This im p lie s  > 3.
SUBCASE (II) W e assume r(j) —  r(j + 1) 1 for a ll 1 j  < e — 1.
W e have either r(1) = r(e)= 2  o r  r(1) = e — 1 , r(e )= 1. F irs t assume

r(1) = r(e)= 2. By (10.7), we have

e  +  — j, 1 < j <
r( j)=

+ 2 —  j, i + 1 j  e .

If e  is odd, pu t e  = 2n — 1, n > 2. If n < i, we get r(n) = n, a contradiction. If
n >  1 ,  w e  g e t r(n) = n + 1, r(n + 1) = n. B y L em m a 10.2 and the induction
hypothesis, we get a  c o n tra d ic t io n . I f  is even, pu t e = 2n, n > 2. If n > i, we
get r(n + 1) = n + 1, a  contrad ic tion . If n < i, we get r(n) = n + 1, r(n + 1) = n.
By Lemma 10.2 and the induction hypothesis, we get a contradiction.

Next assume r(1) = e —1, r(e)= 1. By (10.7), we have

f t — j,
r( j)=

+ 1 — j,

If e  is odd, pu t e = 2n — 1, n > 2. If n >  i, we get r(n)= n, a contradiction. If
n < i, we have r(n —  1) = n, r(n)= n —  1, a contradiction. If e is even, put e  = 2n,
n  >  2 . If  n < i, w e get r(n)= n, a contradiction. If  n >  i, w e get r(n) = n + 1,
r(n + 1) = n, a contradiction.

SUBCASE (III) W e assume r(j) —  r(j + 1) = 2  for some j ,  1 < j  < e — 1.
By (10.7), we have

(10.10) r(1) = r(e)= 1.

P ut ro  = r(j + 1). By definition, we have

ai + , + a r o > 1 , a i + , + a r o + ,  < 1 ,  a;  + a r o + 2 > 1.

Hence we have r(ro + 1) = r(ro  + 2) = j. By (10.7), we have i = r o  + 1. Thus we
get

(10.11) r(i) = r(i + 1), j j, i + 1.

First assume j > i +  1 . By (10.7), we have

{e + 1 — t, i < t < i
r(t) =  e  +  2 —t, i + 1 < t<  i

e +1— t, j < t e — 1.

By (10.11), we have

(10.12) i + j  = ë  + 1.

  

3 These remarks shall apply to the succeeding argum ents as w ell. We shall not repeat them.
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Assume e is even and put ( = 2 n . Since 2n + 1 = i + j > 2i + 1 by (10.12), we
get n > i + 1. If n + we have r(n + 1) = n + 1, a contradiction. We may
assum e n > j. I f  n = J .  w e  g e t  i = j  + 1 b y  (10.12) w hich contradicts the
assumption j >  i + 1. W e m ay assume n  >j + 1. Then w e have r(n)= n + 1,
r(n + 1) = n. W e get a contradiction by Lemma 10.2 and induction hypothesis.
Assume e is  o d d  a n d  p u t e = 2n — 1, n > 2. By (10.12), we get n >  i + 1. If
n + 1 < j ,  we have r(n)= n + 1, r(n + 1) = n, a  contrad ic tion . W e m ay assume
n  > j .  If  n = J ,  w e  g e t  i = j  b y  (10.12), a  con trad ic tion . Hence n  j  + 1 and
we get r(n)= n, a contradiction.

Next we assume j  < i. By (10.7), we have

e + — t, < t < j
r(t) = — t,

e + 1 — t, + < t < e — 1.
By (10.11), we have

(10.13) i + j =

Assume e is even and put ( = 2 n . By (10.13), we have n > j  +  1 . If n < i, we
ge t r(n)= n, a  con trad ic tion . If  n > i + 1, w e have r(n)= n + 1, r(n + 1) = n.
By Lemma 10.2 and induction hypothesis, we get a contradiction. Assume e is
odd  and put ( =  2n — 1. By (10.13), w e have n j  +  1. If  n _> i + 1, we get
r(n)= n, a contradiction. Hence we may assume j  + 1 < n  < i .  If n > j  + 2, we
have r(n —  1) = n, r(n)= n —  1. By Lem m a 10.2 and induction hypothesis, we
get a contradiction. Therefore we may assume n = j  +  1 . By (10.13), we obtain

e = 2n — 1, i = n , j  n  —  1 , n  > 2.

W e note that

a l  + a 2 n - 1  >  1 ,  a2 + a 2 „_ 1 <  1, a n d  a 2 + a 2 _2 >  1 if n > 3.

W e can choose a ,  and a 2 s o  th a t  al  > 1, a 2 <  1 . I n  1-2,  we consider a  domain
.5 which contains a  po in t l i

e
= a i ei + b l E, + 1  + b 2 e, + 2  such that

(10.14) a l — b, > 1, a 2 — b , <1 , a l  + 13, > 1, a 2 + b , < 1 , t  = 1, 2,

(10.15)1 / 2 >  a 2 _ 1 > b 1 , b 2 > 0.

Then we find 5 ø. S e t

a l = 1 + a 2 _ 1 , a'2 = 1 — a2 1 , 1 ) , = a 2 „_ 1

and choose b2 so  th a t a2 „_ 1 > N . > 0. W e have a2 > a 3 s in ce  a, < 1
 a 2 n -  1 ,

and a'2 + a2n-2 >  1  if n  >  3 . Hence we obtain

(1 +  a 21 _ 1 )c 1 +  (1 — a2,1)E2 E afEt + az. - Cc) +1 1;, e1  + 2  E D,
t =3
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which contradicts Lemma 10.3. This finishes the  proof in Case (A).
In  the  following cases, we shall assume

(10.16) a, — a, > 1.

L e t  1  j  i .  I f  ai — a,>  1 , w e  have ai + a e > 1. A s s u m e  th a t  a;  +  a, < 1
holds fo r  every j ,  1 < j  <  i  su c h  th a t a;  — a, < 1. T h e n  w e  f in d  e a s ily  th a t
o- „D = D for a =  e , .  Therefore we may assume

(10.17) There exists j ,  1 < j  <  i  such that a i — a, < 1 , a • +  a, > 1.

We divide the series (10.3) in  the  form

(10.18) a, > a 2 > •••> a i > 1 + a, > a i + i  > •••> a i > 1/2 > a, + , > •••> a, > O.

By (10.16) and (10.17), we have

(10.19) j  > 1, j  > 1 ,  e — i > 1.
(If (= i, D  is not bounded.) By (10.17), we get

(10.20) a i+ ,+  a, >1 .

CASE (B) W e assume i — j 2.
SUBCASE (I) W e  assume ai+2 + a, > 1.
We note the following fact. First choose a i + 1 , . . . ,a 1 so  tha t 1 /2  >  a1 + 1 >

> a, > 0. T h e n  c h o o se  a„ j +  3 < t  < i so that

a, +  ar ( t ) > 1 ,  a, + a r i o + ,  < 1 ,  a 1 > a 1 + 1 .

Then we choose a i + 1 ,  ai+2 so that

(10.21) 1 + a, > a i ± 1 > a i + 2 > 1 — a 1 , ai±2 > ai+3.

When a 1 + 1 , . . . ,a 1 a r e  chosen for t <  j, we can choose a, so that

1 + a p i 0 + 1 < a1 < 1 + a p i o , a, > a 1 + 1 .

By successive applications of these choices, we can obtain a  p o in t in  D .  Since
(10.21) is the only constraints on a ± 1 , a ± 2 , we can choose a i ± 1  and  a + 2 so that

(10.22) ai+1+ a i + 2  — 2, a i + 1 > ai+2.

Then we have 1 < < 3 /2 . I n  1Ç we consider a  domain /3 which contains
a  poin t Ei'=  a i e i + b l e , + 1  +  b 2 e 2 + 2  such that

(10.23) +  b, >  1 , ai+2 b, < 1, a i + 1 6 1 > 1, ai+2 — b, < 1, t — 1, 2,

(10.24) 1/2 > a, > b 1 , b 2 > 0.

T h e  a b o v e  conditions r e d u c e  to  ai + ,  — 1 > b 1 > 0, t =  1 , 2  a n d  w e find
o. We set

b", — ai + , 1, b'2 = a i + , — 1.
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Then we see that

E at e, + (2 —  ai + ,)e i + 2 + (ai ,„
1=1,t#J+1

which contradicts Lemma 10.3.
In  the  following subcases, we shall assume

(10.25) ai+2 + a , < 1.

SUBCASE (II) W e  assume e — j  > 2.
First we assume

0E¢ +2 CD ,

1)E g + 1 + (a +  1

(10.26) a•  2 ± a 1 > 1.
i + g-

We can choose a 1 a n d  ai+2  so  that ai + , > 1, a i + 2 < 1. In  1; we consider a
domain 15 which contains a  po in t E f = „a i ei + b l E +  1  ±  b28, + 2  such that

(10.27) 1 + b1 > 1, a + 2b ,  < 1 ,  a i ± 1 — bt > 1, a1+2 — 13, < 1, t = 1, 2,

(10.28) 1/2 > a, > b 1 ,b 2 > 0.

We find 15 0  0 .  Then put

di +  =  1  +  a „  di+2 = 1 — a „  b , = a „

and choose 0 < 1)1
2 < a , .  W e find aj + 2 > a„ for u > j  +  2  since a„+ a, < 1 by

(10.25). Since we can choose by the procedure described above, we find

g=1,g#,J+1,;+2 
at e, + (1 + a 1 )ei + 1 + (1—  a 1 )ei + 2 + a,e , + 1  + b 2' e 1 + 2 ED,

which contradicts Lemma 10.3.
Next we assume

(10.29) a•  2 + a ,  < 1 ..1 + 1-

We have r((  — 1) = r(e) = j  +  1  by (10.20), (10.25) and (10.29). By definition, we
have q(e) =1 + 1. If  a;  — a, _ , > 1, w e get q((  — 1) = j  +  1 , w hich leads to  a
contradiction b y  L e m m a  10.2 and  induction  hypothesis. Therefore we may
assume

(10.30) a; —  a, _ , < 1.

W e can choose ai + ,  so  th a t a1 + 1  <  1 .  I n  17 we consider a  domain 13 which
contains a  po in t Ef = 1 a1e1 + b,e, + 1 + b 2 e, + 2  such that

(10.31) a; — bt > 1, a j + 1 —  b, < 1, d i + , + b , <1 , t  = 1, 2,

(10.32) a, > b 1 , b 2 > 0.

W e find B  0  0 .  Set
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a i = 1  +  a ,, a i + , = 1  —  a„  by, = a,

and choose a, > b'2 > 0. B y  (1 0 .2 5 ) , w e  have a 1 >  (5, 2 a n d  ai  —  a, < 1
holds (cf. (10.30)). Since we can choose by  the procedure described
above, we have

z a,E, + (1 + a,)e i  + (1 — a d e i +  +  f Eg +1 + be e + 2 eD,
* j , j + 1

which contradicts Lemma 10.3.
SUBCASE (III) W e  assume 1 — i = 1.
By (10.25), we have

(10.33) j+  2 <u <e—  1.

W e can choose a i + ,  so  th a t ap , >  1 .  In  V,-  w e  consider a  dom ain 13 which
contains a point E ie=  a i e i + b 1 e, + 1 + b 2 e, +2 such that

(10.34) ai+1 —  b t > 1, a i + 2 — b, <1, a i + 1 + b,> 1, a i + 2 + b, < 1,

We find o 0 .  B y  the specialization

a 1 =  1  +  a e ,  d i + 2  = 1 — a e , a e ,  a, > ho > 0,

we obtain a contradiction as before.
CASE (C ) W e assume i = j + 1.
In this case, (10.18) takes the form

(10.35) ai > ••• > a;  > 1 + a, > a i + i > 1/2 > ai + 2 > ••• > a e >  O.

SUBCASE (I) W e  assume e  — j> 3.
By (10.20), we get /V ) =  r(e — 1) =1 + 1. By definition, we have q(e) =1 + 1.

If a ;  — a,_ 1 > 1, we have q(e — 1) = j + 1 and we get a contradiction by Lemma
10.2 and induction hypothesis. Hence we may assume

(10.36) a•— a  -  1  < 1.

W e can choose a i + ,  so  th a t ai + , < 1. In we consider a  dom ain 5 w h ic h
contains a point E ig=  a i g i + b i e, + i + b 2 e,• + 2  such that

(10.37) a; —  b, > 1, a i + 1 —  b, < 1, a i + b,> 1, a i + 1 + b, <1, t = 1, 2,

(10.38)1 / 2 >  a ,  > b 1 , b 2 > 0.

W e  fin d  /3  0  0 . Set

ai =1 + a g , a i + i  = 1  —  a , ,  b =  a ,

and  choose a ,  > b.,> 0. B y  ( 1 0 .2 5 ) ,  w e  have d i+ 1  >  a i+ 2 .  W e  a ls o  have
— a ,_ , < 1 (cf. (10.36)). Since we can choose  a 1 , . . . ,a _ 1 b y  the procedure

described above, we have
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1= + 
at e, + (1 + ode .; + (1 — a 5 ) + 1  + a ,E, + 1 -1- N . e, + 2 E D ,

which contradicts Lemma 10.3.
SUBCASE (II) W e assume t  — j = 2.
In  this subcase, (10.35) takes the form

(10.39) a, > •••> a 2 > 1 + a ,  >a 1 _ 1 >  1/2 > a ,  >0.

W e have

(10.40) a, + a 1 >1 ,  (1 1 _2  — a ,  > 1 ,  a ,  _2 — a, _ 1 <1 .

W e can choose a 1 _ 1 s o  th a t  a 1 _ 1 < 1. I n we consider a  domain which
contains a  po in t E:, ai ei + b 1 E, + 1 + b2E, ± 2  such that

(10.41)a 1 _2 — bi > 1, a, —  bi <1 , a 1 _ 1 + b i <1 , t  = 1, 2,

(10.42)1 / 2 >  a ,  > b 1 , b 2 > 0.

We find 0 .  By setting

a;_ 2 = 1 +a ,, = 1 —  a 1 , b ,  =  a 1 ,

and choosing a , > b'2 > 0, we can find a  desired point.
This completes the proof of Theorem 10.4.

Now we consider the general case where z  = Ef= , c•e, e Q(1) is not necessarily
0. Replacing x(v) by w(x(v)), we may asume

c, = 0, 1 < i < n, ci = 1, n + 1 < < e.

The family of hyperplanes in  V considered in  §8 are

ai = ±  1 /2 (1  < n), ai ± a i =  ± 1 ( 1 < i < j . n ) ,

ai = ±  1/2 ( n + 1 < i< e ) , ai ± d i =  + 1  ( n + l i < j .
This shows that w e can treat the variables ai (1 < i < n) and  ai  (n + 1 < j <
separately. Assume that the non-unitarizability of the domain for e = 4, n = 2 : 4

(10.43) 
—  1/2 < a1 , a, < 1/2 < a2 , a,, —  1 < a 2  — a, <1, —  1 < a 4  — a, < 1,

1 < a 1 + a 2 , 1 < a 3  + a,.

Then all the arguments in the proof of Theorem 10.4 apply to this case and we
obtain

(10.44) — 1/2 < a, < 1/2, 1 < i < e
as the  necessary and sufficient condition for the unitarizability.

4  I n  C a s e  (A ), Subcase ( I )  in  th e  proof o f  Theorem  10.4, w e  h a v e  u sed  the existence o f  a
non-unitarizable constituent of PS(1  1 /2 ). It becomes necessary to consider this case when Case
(A), Subcase (I) occurs simultaneously for separated variables a1(1 i n) and a i (n + 1 j
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It rem a in s  to  show  th a t  th e  dom ain D  given by (10.43) represents non-
unitarizable representations. Changing D to wD, we W, we may assume c1 =c 2 = 1,
c3  = c 4 = 0. W e  ta k e  a point

V o  =  —  8 1 -1- E 2  a 3 s3 +  a4 e4 eD
2 2
1 1

so that

a3 >  1/2 > a,„ >  0 ,  a,— <  1 , a, + a 4  >  1.

Put x o  =  Z(v0)• W e have 114/„.1 = 2. Define w 2 e W by

w2Ei — ei, i = 1, 2, w2Ei — — ci, =  3, 4.

Then we have a- , w2 Xo = io • Set

(9 1, (P 2) = 1
( T , 1 w 2 (x0 ) p 1 )(g) 9 2 (g) dg, (P 1, (P2 e PS(X 0)•
B\G

T h e n  (  , )  d e f in e s  a  non-degenerate invarian t herm itian  fo rm  o n  P ,5( 0 )/
Ker C E 7 0 , ( X o ) ) .  L e t  V be  the G-submodule of PS(x 0 )  generated by cp„, x o • We
h a v e  L i (7 1 coW 2 ,/ ,0/  T  IC, X 0  -  " PIC X0 w ith  c 0. S e t 1 /0  = Ker ( T„, 2 (x0 )). Then w e
obtain

(10.45) V n Vo  =  {0}

in  the  same way a s  in  th e  proof o f Lem m a 9.4. H ence, by restricting ( , ) to
V, w e  o b ta in  a  non-degenerate invariant herm itian fo rm  o n  V . By (10.45),
0 1 / , „  PS( 0 ) and by Lemma 4.6, V must be irreducible. Let y, =  a 2 w2 (y0 ) =
2.1 — —  a3 g3 — a4 e4  a n d  p u t x i  =  x(y 1 ). Set

1(P 1, (P21' = (T21X091)(9) (P 210 dg, 'Pi (P2EPS(X1).
B\ G

x,
T h e n  (  , ) ' d e f in e s  a  non-degenerate invarian t herm itian  fo rm  on P S ( , )/
Ker (To i  w 2 (xi )). Put 14 = K er (T,, 40 xoe,(x i )). Since all constituents of
PS( i )/ Vi  a r e  no t spherica l. If the G-module P S ( 1 )/Vi  is irreducible, we see
th a t  the distribution c7;,,,, 2 ,x , is o f  p o s it iv e  ty p e  fo r  c = 1 s in c e  it  is
unitarizable. By Lemma 5.4, this implies that the domain

0 > — a 4  > — 1/2 > — a 3 , a 3 — <  1 ,  a 3 +  >  1

represents unitarizable representations. We have already shown that this is not
th e  c a se . Therefore we may assume tha t PS(x,)/ VI is  n o t ir re d u c ib le . Let W
be an  irreducible G-submodule of PS (,)/  V,. If ( , )'1 W is degenerate (i.e., zero
form), we find PS(x„)/ V , contains a constituent W ' isomorphic to W  as in the
proof of Lemma 8.5. By 7„

1 2 (x,), W is isomorphically mapped to a G-submodule
IfT( o f  F S ( 0 ) a n d  W ' t o  a  constituent of  P S ( „ ) .  T hen C 6 y 2x0 o c c u r s  in
(W ) , .  T h i s  l e a d s  t o  a  c o n t r a d ic t io n  a s  in  L e m m a  8 .5 . If ( , ) '1 W  is
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non-degenerate, there exists a n  irreducible G-submodule of P S ( , )/  V , such that
W n  =  { 0 }. B y  7; 2 (X 1), W  a n d  W1 a r e  m apped  isomorphically t o  G-
submodules 1/V a n d  W. o f  PS(z 0). This contradicts Lemma 4.6 since V is  a
spherical irreducible G-submodule o f  PS(x o ). T h is  proves th e  desired non-
unitarizability and  we complete the determination o f the  unitarizability in case
of type B e .

§ 1 1 . The case of type De

The simple roots are

-  6 1 82, CX2 E2 E 3 , - 5 ; - 1  = E¢-1 E e, = E e - 1  + E g•

1 e
P ( ) = 1Z +  Z ( -  E e i ) ,  Q ( ) =  { E a i Ej la t E z, E a i 0  mod 21.

We identify {si} with its dual basis with respect to  <  ,  > .  Then we have

e i I  Ei =  E i±  e i , 1 <  i <  j P(i) = P(E), Q(i) = Q(E).

W e assume e  is even, e>  4. (Since we have reduced to the case wo =  -  1  on
A in §8, we lose no generality by this assumption.) Put e = 2n, n >  2. We have

w o Ei =  -  e i , 1 < i

WO =  ( 6 1 6 2 - 6  — 2 6  — l a  a - 2 - 6 2 6 1) - 4 0  — 2 6 e —l a  e a  — 2 )( 6  e - 1 6 ,2)•

We assume that G  is of adjoint type. For z = E:=  C A E  Q(E) and y = E  a i i

eV , a i e R, we define x(y) e X  by

(11.1) Z(v)(P 59) =  (-  1)" >q<' " , f3 e P(±).

W e have

(11.2)
x(v)((ei Ei )(r0 ))=  (- 1 )" - ì qa‘ - ai
x ( v ) ( ( e i  4_ e )

 (
v ) )  _

1<i < j  <e,
1<i < j  <e.

First we consider the case z =  0 .  The family of hyperplanes 5 in  V considered
in  §8 are

(11.3) ai ± d i = ± 1 (1 i < j 1').

We consider a connected component D of V -  5 . Replacing D by wD, w e  W,
we may assume tha t D contains a  po in t y = E:= 1  a i Ei su c h  th a t <y, 60 > 0  for
every 1 < i < e. This condition is equivalent to

a l >  a 2 > •••> a ,_ 1 > a , , a ,_ 1 + a ,  > 0,

which is equivalent to

(11.4) ai > a 2 > ••• > a ,_ 1 > O.
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Since D  is  open, w e m ay assume a, O .  W e  m a y  a n d  shall assume that
D  is  bounded . L e t 1 j  < e — 2 and suppose a;  — ai + 1 >  1 . Then we have

a p >  1, j < u < 1, a i + ap> 1, 1 < i <u < e.
Hence we see that

E (au  +  t)e, + E au Eu eD
u=1 u=i+i

for every t > O. T h u s  D  is not bounded. Therefore w e have

(11.5) ai— ai+ 1< 1, 1 < j <  e — 2.

F or 1 < j  < e — 2, we define p ( j )  as the greatest integer p  such that a;  — a p  < 1,
j< p < _  . If a ,_ ,—  a ,  < 1 , we set p (e — 1) = e. If a ,_ ,— a ,> 1  and a , - 1 +
a, > 1 , we see that D  is not bounded in  the  same way as  above. Therefore we
have

(11.6) a ,_ 1 +  a ,  <1 if a ,_ 1 — a,> 1 .

F o r  2 < j  < e — 1, w e define q ( j )  a s  th e  least in teger such  tha t aq — a;  < 1,
1 < q < j.

Lemma 11.1. A ssum e a, + a ,  < 1 .  T h e n  w e  h av e  a a,D = D  f o r  a  =
Ee —1 Ce

P ro o f . From  the  assumption, we see easily that

a i ± a ,_ 1 < 1 ,  a i + a ,  < 1 ,  1 < i<  e — 2.

This shows tha t a„D = D , a =  e ,_ ,—  E l ; hence the assertion follows.

Assume

(11.7) a, + la,1> 1.

For 1 < j  < e — 1, we can define r ( j)  as the greatest integer r  such that di + a,.> 1,
1 <_ e, r j .

Lemma 11.2. A ssum e that there ex ists j ,  1  < j  e — 2  such  that p ( j)=
p(j +  1), q ( j )=  q ( j  + 1 ) .  ( I f  j  = 1 ,  w e understand q (1 )=  q (2 ).)  Furthermore
assum e (11.7) an d  r ( j)=  r ( j +  1 )  o r r ( j)  = j  + 1 ,  r ( j  + 1 )=  j .  T hen w e have
o- „D = D  f or a = Ej  —

The proof is identical to that of Lemma 9.1. W e shall prove the following
Theorem.

Theorem 11.3. W e norm alize D  so  th at  D  contains a p o in t o f  th e  form
(11.4). If  the points of  D  represent unitarizable representations, we have

a, —1a,1 <1.
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First we state a  consequence of this Theorem.

Lemma 11.4. I f D  contains a  p o in t which satisfies (11.4) and  a,—  1(1,1 <1,
then o- „D = D  fo r  som e aeE + .

P ro o f . By Lemma 11.1, we may assume that (11.7) is satisfied. Hence r(j)
is defined for 1 < j  < (  — 1. Assume o- OED 0 D for every a GE + . First we consider
the case a ,  > 0. W e  have

P( 1) = P(2 ) = • •• — 1) = q(2) = q(3) = ••• = q(e — 1) = 1.

By Lemma 11.2, we must have

(11.8) r(1) > r(2) > • •• > r(e — 1).

By (11.7), we have r(1) = t . If IV  — 1)= 1, we have

a, + 1, a2 +a ,_ ,<1 ,  a i +a,>1 , a 2 +a,<1 , a 1 — a,<1, a 1 — a,_ 1 <1.

Hence we have o- OED = D for a =  e,_, —  Ee . Thus we m ay assume r(e —1) 2.
Then, by (11.8), we get

r(i) = e +1— <i < — 1.

Therefore r(n) = n + 1, r(n + 1) = r(n). By Lemma 11.2, this is a contradiction.
N ext w e assume a ,  < 0. I f  a, — a ,  < 1, th e  sam e argument applies. W e

may assume

(11.9) a l +  a, <1, a l  — a ,  >1.

Assume ai — a , > 1 , 1 . j e  — 1. Then we get

p(1) = p(2) = ••• = p(e' — 2 )  =  — 1, q(2) = q(3) = •••  q (e  —  1) = 1.

Hence, by Lemma 11.2, we must have

r(1) > r(2) > •• • > r(e' — 2).

If  r(e — 2) = — 1), we find easily that o- „D = D, a = E e _ 2  —  e , _ , .  Therefore
we may assume (11.8). By (11.9), we have r(1) e —1 • Hence we must have

r(i) = e — — 1.

Then we get r(n)= n, which is a contradiction. Thus it turned out that we may
assume
(11.10) ai — a, > 1, a1 + 1 — a, <1

for some 1 < i <e  — 2. T h e n  w e  have

P( 1) = P(2 ) = ••• = P(i) = t — 1 , p ( i+1 ) = . . .=p ( t - 1 ) = t .

q(2) = q(3) = ••• = q(e — 1) = 1.

By Lemma 11.2, we must have
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(11.11)( - 1 r(1) >  r(2) >  • • • >  r(i) > r(i + 1)> ••• > r( ( — 1) > 1.

If r(i)> r(i + 1), we get r(j)= e — — 1. Hence r(n) = n, a contradiction.
We may assume

(11.12) r(i) = r(i + 1).

By (11.10), we get ai + a , _ ,  > 1. H en ce , b y  (11.9), we have r(i) = —  1. By
(11.11), we m ust have i = 1. Thus we obtain

(11.13) e —i= r(1) = r(2) > • •• > r(e — 1) > 1.

We shall consider two cases.
(I) The case where r(j)—  r(j + 1) 1 for every 1 j  <  —  2 .
Then, by (11.13), we have

r ( j ) = ( + l —j,2 1.

We get r(n)= n + 1, r(n + 1) = n. By Lemma 11.2, we obtain a contradiction.
(II) The case where there exists j  such that 1 j e — 2, r(j)—  r(j + 1) = 2.
Put r o =  r(j + 1). We have r(j)= r 0  + 2 —  1. By definition, we have

ai + , + a r o > 1 , a i + 1 + ar.+1 < 1, a i  + a r o + 2 > 1.

H ence w e h a v e  r(ro  + 1) = r(ro  + 2) = j. B y  (11.13), w e  h a v e  1.0 +1 = 1 ,
j  = —  1. T h i s  is a contradiction and completes the  proof.

Lemma 11.5. L e t e > 4. Suppose th at w D, the  closure of  wD for som e
w  W , contains a point vo  o f  th e  form

vo  = (a — 1)(e 1 — e2 ) —  ae, + (a — 2)e4  +  E
i= 5

which satisfies the following conditions.
(1) b 13, 0 0, ± 1, 5  j  <  t e.
(2) a 0  1/2, 1, 3/2.
(3) b i ±  (a + 1), ±  a ,  ± (a —  1), ± (a — 2 ), ±  (a — 3), 5 j  (.

Then all the points o f  D  represent non-unitarizable representations.

Since the  proof is almost same as that of Lemma 9.4, it is omitted.

Proof  o f  Theorem 1 1 .3 . We set

(11.14) a l > a 2 > ••• > ai > 1 + la > a i + i > •••> a, _, >1(2,1> O.

It suffices to show that a  p o in t o f  D  represents non-unitarizable representation
assuming i > 1 in  (11.14). We shall prove the theorem by contradiction. Thus
we assume that all the  points of D  represent unitarizable representations. We
also make the hypothesis of induction on e for groups of type D  .  Throughout
th e  proof, we let V = (D R  et b e  th e  vector space attached to the adjoint
groups of type I), + 2 .  In  the  proof, we consider a  domain B which contains a



224 Hiroyuki Y oshida

point v E V By this term, we shall always understand that vO . ' and th a t  i5D v
is the connected component o f V — where is the family o f  hyperplanes in

similary defined a s  above.
W e have

(11.15) at + a u > 1, 1  <  t < t <u <

If  i = e — 1, we see that E !  (a•+ v)e•+ a
I
D  for every > 0 .  H e n c e  D is

J =1 J j P

not bounded. W e m ay assume

(11.16) — i > 2.

First w e assume a ,  > 0. Since this case is  pararell to  the case of type C e ,  we
shall briefly describe the  p roo f. W e  have

(11.17) —  au < 1, i + 1 < t< u < 1 9 .

C A S E  (A ) W e assume a 1 + 1 + a i+ 2  > 1, a , + a ,  < 1.
In  this case, I' — i > 3. Choose s , i+  2 < s < e — 1, so that

(11.18) a5_1+ as > 1, as + a s + ,  <1.

Let q  =  q (s). We get

(11.19) a,—  a, <1, a,_ 1 — a,> 1.

SUBCASE (I) W e assume aq — as + ,  > 1.
W e have q  < i .  B y th e  assumption o f  th e  subcase, w e can choose as , a,

and aq + 1  so  th a t

(11.20) a ,>  1 /2 ,  aq  > 3 /2 , a q  +  a, + 1 < 3.

I n  V,—  w e consider the  domain D—  which contains a  p o in t  E ;  ai e, + b1ee + 1  ±

b2 e, + 2  such that

(11.21) aq —  hi > 1, a q + 1  — b i  < 1 , as + bi > 1, a5 + 1 + bi  < 1, J = 1, 2,

(11.22) 1 + a ,  > b 1 , b 2 > a ,, b 1 + b 2 < 1.

T hen 15 o 0 .  W e have  o- a 13 = /3 fo r a  = ea +, — e e + 2 . B y R em ark 8.3 and
(11.22), we see that all the points of 15 represent unitarizable representations.' On
the other hand, we have

E  ai e i  + (a,—  1)Es + (a, — 1)e, + , + (2 —  aq )E, + 2 6 D.
J=1,;#.,

Hence
q - 1 s - 1 f

(a q  —  1) (c1 — E2) — a q E3 (aq  —  2)e4  +  E a iE  i+ 4 E  ai e i +  3 E  a iE  i + 2
j= 1 j= q + 1 j= s+ 1

E WD,

5 These remarks shall apply to the succeeding argum ent as w ell. We shall not repeat them.
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for some WE 1-4/, w here li/ is the Weyl group for D 1 + 2 .  Note that w e could
have chosen a„ 1 < t < e, t s ,  q  in "generic  position". This contradicts Lemma
11.5.

SUBCASE (II) W e  assume a q  — a, + , <  1.
By (11.18) and the assumption of the subcase, w e find q = q(s) = q(s + 1).

Since a, > 0 , w e  m a y  assume r(s) < r(s + 1). H ence  w e ge t a s + 1  + a s _, < 1,
which implies r(s — 1) = s .  Since r(s) = s — 1 , w e  m ay  assume q(s — 1) < q(s).
Summing up, we have

(11.23) a s - 1  ±  a + 1 < aq_,— a s _, < 1.

Then we get a q _ i  +  as + 1 < 2. C h o o s e  as , a q 1 and  aq  so  tha t

(11.24) as> 1 / 2 ,  a q _, > 3/2, a q _  + a q  < 3 .

In V, we consider the domain which contains a point a ie j+  hi e, +, +
b2 g 1 + 2  such that

(11.25) aq — bi  <  1 , aq _ i  — b./ >  1 , a ,+  b>> 1, a s + 1 + b i  < 1, j =  1, 2,

(11.26) 1 + a, > b 1 , b 2 > a 1 , b ,+  b 2  <  1.

Then 15 0  and all the points of B represent unitarizable representations. On
the other hand, we have

E  a.e • + (aq-1  — 1)e, + (a q _, — 1)g, + 1  + (2 — aq _ 1 )e, + 2  E D ,
j= 1 , j* s

which contradicts Lemma 11.5.
We omit the cases (B) a i + , + a 1 + 2  < 1 , (C) a ,  

1
+ a, > 1, since they can be

dealt with in completely pararell way as in the case of type C 1 .
N ext w e assume a, < 0. T h o u g h  th is  case can be dealt w ith  in  a  similar

but more complicated way compared with the case a, > 0, we prefer the following
argument. Let tfr : G —> G be the simply connected covering map as in § 3 .  Take
a n y  y = E 1 a i g i D  a n d  p u t  x =  x(y), =  x . tp. C o rre sp o n d in g  to  the
automorphism which interchanges ;  _  and a ,  of the D ynkin diagram of
there exists an automorphism Ô  Ô  (cf. Steinberg [21], Theorem  29). W e
have

(11.27)= ñ , =

(11.28)
(6c1(0)6 = —  2,

-1(0) 6  =  5t (t) (6t 1 (0) =  6( - 1(0 t e l e

(To see (11.28), use relations in [21], p. 30.) For an admissible representation
ir of 5, set m a(g ) = n(g 6 ) ,  g e Ô .  Then r t' is a lso  an admissible representation;

is unitarizable if and only if i r e' is. F o r  yoePS(x), define yo6 b y  y e ( g )=  9 (e ) ,
gE Ô . By (11.27), w e have (pa PS(x>') where 2a(() = 2((c), t e T .  Hence we
obtain n ( i )>' =  n (7 ) .  By (11.28), we obtain
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-  1

= X(V6) .17 E aie ag e g •
i= 1

Since the unitarizability of n(x(v)), it(), rc()r) and n(x(va)) are equivalent, we
are reduced to the case a 1 > O. H e n c e  a,— la,l< 1 follows from the previous
case . T h is completes the proof of Theorem 11.3.

Now we consider the general case where z =c c  e Q(E) is not necessarily
O. W e  m a y  assume

ci =  0 ,  1  <  <  n, c. = l , n + l < i < t.

W e see that —  n is  even . The family of hyperplanes in V considered in §8 are

ai ± a i = ± 1 ( 1 < i < j < n ) , ai ± a i = ±  1 ( n + l _ i < j e ) .

T h e re fo re  w e  c a n  tre a t the  va riab les  ai (1  < i < n )  and a  (n + 1  <j
separately. W e can normalize an +  1 , ,  a ,  so that

a „ 1 >a„, 2 >•- •>a,_ ,>lc i e l O.

Then w e obtain a„, —  la, < 1  b y  th e  sam e proof a s  Theorem 11.3 a n d  we
o b ta in  crOE D  D  f o r  s o m e  Œ E .  T h i s  completes th e  determination of the
unitrizability for groups of type D 1 .

§ 1 2 . Reduction of the unitarizability of n1 to  the case of real quasi - characters

I n  th is  section, w e shall consider the unitarizability problem  o f  7I x
l  t h e

spherical consitituent of P S ( ) .  W e  sh a ll show that the problem can be reduced
to  the case when x  is real valued, if G  is  a  simply connected group of classical
ty p e . We begin with the following Lemma which is an elaboration on Lemma 5.4.

Lemma 1 2 .1 . Let the notation and the assumptions be the same as in Lemma
5.4. A ssume that G  is  o f  adjoint ty pe and that cTw ,x  i f  of  positiv e ty pe. L et
A l  b e  the  dualbasis  o f  fai l  = A  w ith respect to  < , > (i.e., the fundamental
weights o f  P ( ) ) . S et m = max c c e z , , , , ; < ,<a, fli >. Then i f  lx(cia)l < g l im f or all
ae V i„ , ( , ) is positive semi-definite.

P ro o f . We use the same notation as in the proof of Lemma 5.4. It suffices
to prove (5.14), i.e.,

(12.1) lim (cp — i(0 ), = O.i-co

Since II ix(0 i)IIL-(K) (I) II L '..(K ), (1 2 .1 ) follows from

(12.2) lim j T(x)(cp — 1 r(°))1IL iao= O.

Take any f  E PS(x) such that f  K  is right invariant under K L , w here Le N . Note
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th a t  K L  < K .  L e t  a e  4  a n d  a ssu m e  I x(ac,)1 < e n '.  C hoose p c, >  1  so  th a t
Z (aci) < < e l m .  Then by (4.14), we obtain

111 ,,(X/f catOEL  f 111,1 (K )

with a constant c, > 0 which does not depend on f  and L. Therefore we obtain

(12.3) T .(X )f (K ) C 2 / 1 '

with constants c2 >  0  a n d  1  <  <  en' which d o  not depend on f  and L .  Let
L i b e  a  strictly increasing sequence of positive integers and set ti =f lJ=
e 'T. Since

(12.4) tix a(u)t11 = x OE( L'<a'fli> u), a eE, u e k,

we have N  = W ,N , for N 1 = t .0  t 1 1 ; it suffices to prove (12.2) for this choice
of N 1. L e t  M be a positive integer such that cp is right K m -invariant. Obviously
if

(12.5) B w oN iK m i nK = (Bcoo N, for M 1 > M,

then ix ( )IK  is right K m ,  invarian t. By (12.4), we have K n ti Ki  ti
- 1

By Lemma 3.1, we see that (12.5) is satisfied for M 1 =  tnL, + 1 when i is sufficiently
large. S e t  U, = K — (Bw o N  K ) .  By (12.3), if i is sufficiently large, we obtain

(12.6) II TAX/ ((P — ix (
0 i))11L ( K)c 3 kenl • vol (Ui),

with a constant c3 > 0 w hich does not depend o n  i, since II (0)111„ —  x .-
( P  Lc" (K) •

k  U
(R0649 1)(k) = 0, k çt U,

i,

,

for ke K .  Then we have

10 if neN i ,
P * 0 0 = (won) if n e N  — Ni

By Lemma 5.2, we get

v ol (U i) = (pi (k)dk = pi(g)dg = Jot o n) dn
JK B\G

vol(U i). To evaluate vol(U i), define p i e PS(61,12 )  by

By (3.6), we have

B ( t i y -  _  q — L in , n  = E E <OE, ,(3>.
cleE+ j = 1
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F or cc e / 4", E l =  <a, A i > >  1 . Hence we have n 1 E + 1. We obtain

(12.7) vol(U) C4q — L ' n , n 1E+ 1,

with a constant  c 4 > 0 which does not depend o n  i. Then (12.2) follows from
(12.6) and (12.7) since um < q. This completes the proof.

L e t  G  be  the  ad jo in t group a n d  le t  i/J: - +  G  b e  th e  simply connected
covering map as in  § 3 .  For y e  V C), C, we define X(V)EX by

(12.8) X(v)(Arg)) = q<v's> , #6 PO .

We have x (v) = z(v') for v, v' e V O R  C if and only if v — v' e

2 n  —  1  

Q (E ). Set
log q

x = x(v) and assume n; is unitarizable. Then we have wx = k - 1  fo r  some we W
which is equivalent to

(12.9) w(v) +  E 
2 n  .\ ./ —  1

log q

If we replace x to w,x, w 1 eW, we have (wi ww1- 1 )Iwi =  (w 1 x ) .  By Lemmas
3.3 and  3.5, we may assume that wj x =  - .1  f o r  some J  A  and  that wj  acts
on  J  b y  — 1.

Hereafter we shall assume that G  is of type B, C o r  D .  First we consider
the case of type C .  W e  use the notation in § 9 .  Set y = Ef= , ai vi , a i e C . W e
may assume

(12.10)j  = {/m , Œm+29— ox.+2u-2, cxn, /.4-19 — ,ote -1, ag} ,

where n = m + 2u. Then we get

w ,e, = Ei, 1  <  i < m —  1,

WJ 8 m + 2 v -2  =  8 m+2v-15 W.1 8 7 n + 2 v -1  =  C m + 2 v-2 , 1 < v < u,

W jE i =  n + 1 < i < (.

The condition (12.9) reduces to

E {(a m +  2 v -2  4- eim-f- 2v-1)Em+ 2v-1 4- (am +2v —  1  ±  ã + 2 V - 2 ) 8 + 2 V _ 2 }
v=1

m-1
+ (a, + d i) v ,  +  E (a);  — ai)Ei e 27r  .\ /  

—  1

12(E)
1=11 =n+1 log q

Set a, = b, + —  Ic i , 131, vi e R, 1 < i < e and w (v ) +  —
 2 — 1

B y
log q

(12.11), we obtain

(12.12) die —  1 R , d, = 0, 1 < i < m.



n  + 1 < i < e.ci(12.14)

Hence we have

(12.15)

d i ,
log q

E d i a  0 mod 2.
i =n+1
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(12.13)
b m +  2 v -  2  +  b.+ 2 v -  1  =  139

2rt 27r .4
C m + 2 v -2  C m + 2 v -1  =

l o g q
"m+2v-2 =  

l o g q
um+2,1,

W e have t/i o x(v) = !P. x(v + v') fo r  If 
e 2 i t . \ / —

 1 P ( )  B y  L e m m a  6.2, we can
log q

assume cm + 2 ,,_ 2 =  Cm + 2v _1, 1 u  without losing any generality. Replacing
x(v) to  wx(v) for some we W, the  series qa', 1 < i < e takes the form

(12.16) (611,•..,0s, rii- 1 ,•••, fl ,,  •  •  •  , e = s+  2m + n.

Here Oi OR =  1 ,  g i  R x , NI 0  I ,  ni eR x fo r every i. (F or simplicity, we
have used the letters m and n which may be different from the previous ones.) By
(12.15), we observe:

(12.17)
The number of ni su ch  th a t ni <O  is even if n i —  1  for every 1 < i < n.

Set

V —  (V1, • • . 5Vp) (011•••, es, 11 1 , Pi t ir ; 1 ), p = s + 2m,

and  le t W ' be the W eyl group of type C p . Replacing v  by WV, W E W ', we can
assume tha t v contains a  series ("segment")

(A) (q -tx  e l-0 -1)14_44 ,t4 R ,  te Z , t> 0

w hich  is m ax im al in  the  sense  tha t n o  vi o r  v i 1  a r e  e q u a l to  q - ( t +  1 )  
or

q p .  Consider the "conjugate" segment

(B) (a-1 ,

By the  maximality of (A), it  is  c lea r  th a t if  one  element of (A) is  of absolute
value 1, then (B) coincides with (A). Suppose that (A) and (B) contain a common
elem ent. Then w e have

q -  =  q b /it -  1 fo r  so m e  0 < a, b < t.

Hence (B) equals

-  (a -I- ) q 1 - (a + b) -  (a + b) to .

If a + b t ,  it contradicts the maximality of (A ). If a + b = t, (A) coincides with
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(B). Therefore either (A) coincides with (B), or (A ) and  (B) have no  common
elem ents. In the latter case, we may assume that (B) is contained in  v.

W e no te  the  following properties of the m axim al segm ent. Suppose that
(Catt)v i

- 1  =  q  for some 0 < a <  t .  Then v, = If a =  t, this contradicts
the maximality of (A ). If a <  t, v i appears in ( A ) .  In a similar manner, we see:
Assume (A) =  (B ). If xvi

- 1  =  q  or xvi =  q  with x e (A), then vi o r  v i '  appears in
( A ) . Assume (A) 0  (B ) . If xvï l  =  q  o r xvi =  q  with x e (A) u (B), then vi o r  vi

- 1

appears in (A) u (B).
Since O R ' ,  w e  have Cay • c r bq  fo r 0 a, b t .  Assume (A) 0 (B).

Replacing (A) to (B) if necessary, we may assume u p  q t .  Let 0 a, b  <  t .  If
q _a 1 j . q _ b _ l=  q ,  w e have y  ER '  , a  con trad ic tion . If q - a [11(q - 19 fi - 1 )  =  q , we
have Ail =  q"  w ith  1 < u <  t .  Then w e see that (A ) and (B) h av e  a  common
element, a contradiction.

N ow  w e take off (A) o r  (A) u (B) from v according as cases and apply the
sam e procedure. By successive application of this procedure, we can bring v to
the following form.

= (1 ,, I 2 ,•••,I N ),

j .  = q— ti (I-03— 1) p i ,q  (1i - 1 ) ,

or
=  ( q  t i q  t i , q 1) q  ( t i  1 )•

AT 1 , 1 , 1 , qti 1 , qti 1) .

Here (q - `,  p j ,  c r ( t i - 1 ) up • • • , y i )  is a maximal segment as in (A) such that pi ti;  q t ,

and I .  tak es  the  form (i) o r  (ii) according as (A) = (B) or (A) 0 (B); q - a yi  and
q b it may appear with certain multiplicities. All elements of the form (q -

a 1 1 ) ± 1 ,

0 < a < t j  in case (i), (C a a i )± 1 , (q b tii 1 ) ± 1 ,  0 < a, b <  t j  in  case (ii) which appear
in  v  a re  included in I .  F u r th e r m o r e  if  w e m ake a  suitable permutation on
elements of I. ,  I. can be written as a sum of segments of the form of (A) or (A) u (B).

Now replacing (qa9 by w(qa) with we W, w e can bring it to  the form

(12.18) ( 1 1 ,  1
2 ,• • • , 1 1■1, 111, — , 11,1), >111n1 •••

Then by this construction, we obviously have

(12.19) qa, q, €9, qai ±ai o q ,  1
< j

e .

L e t  J 1
 = J2 = T hen  W a s  th e

permutation group S, o n  e 1 ,• • • W e have

(12.20) w 2 ( q a )  =  ( q a i )  —1

with some Iv, e 147
J ,, w2 e W./2 . By the obsevation (12.17), we see easily that (12.20)

can be lifted to the relation

(12.21) = - 1
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with wi e W , WE W/ 2 , replacing y by y + y', y' e 
2 n  . \ / —  1  

P(E) if necessary. Then,
log q

replacing x(y) b y  wx(y), w e Wj i ,  w e can assume tha t x(y) satisfies the following
conditions.

(12.22) wi w2X(v) = for some wi  e , w 2  e W, 2 .

(12.23) AO (a.) 0  q for every ace E +.

(12.24) I X (v) 1 for every ŒE

(1 2 .2 5 ) XII)/(a) I for every ŒE Ww
+, .0  

Set x = x(y), = x . 0 .  By (12.23), Lemma 3.2 and  Kato's criterion (4.3), (4.4),
PS(x) is generated by 9 , 4  a s  G -m o d u le . By Lemmas 6.1, 5.4 a n d  12.1, n ; is
unitarizable if and only if cT

1 2 ,x  is of positive type for some c e  x .  By Lemma
5.7, this is equivalent to that cT„1 2 , i  is  of positive  type. By Lemma 5.8 and
Theorem 2.3, th is is the case if and only if c i  T and c2 T,„2 , i ,  are positive
type with some c 1 , c 2  e C  .  Here i = 1, 2 is defined a s  in  Lemma 5.8, i.e.,

=  I Tr. . By the construction above, we can assume i f , = o w i t h
fo r the  ad jo in t g roup , i = 1, 2, w here c: i s  th e  simply connected
covering m a p .  By Lemmas 5.7, 5.4 and  12.1, this is the case if and only if both
of 4 1 a n d  7r,l2 a re  unitarizable, xi = xj ,  i  = 1, 2. Summing up, n ;  is unitarizable
if and only if nz

l
i a n d  n; 2 a r e  unitarizable.

N ow  G  ( r e s p . G, 2 )  is  the adjoint group o f type  A  (resp. type C ) .  The
unitarizabilty o f n  is solved in  Tadie" [26]. Therefore we have reduced the
unitarizability problem o f  7 E ;  to  th a t  o f 742 . W e see that = X 2 ° 0 2  is real
v a lu ed . (x2  itself may not be real valued because lEf= 1  e i e P(± ). That is, if the
number o f ni su c h  th a t rti < 0  is  odd , x2  is  n o t re a l v a lu e d .)  This is what we
claimed at the beginning of this section.

W e assume th a t G  is  of type Be . W e can start with  X(V)EX  w i t h  J  of
the form (12.10) assuming G  is  o f ad jo in t type . All argum ents in the previous
case of type C , can be applied. It is not necessary to take care of the signature
condition (12.17). W e  c a n  re d u c e  t h e  unitarizability o f  n ;  f o r  th e  simply
connected group to the case when x  is real valued.

W e  assum e th a t  G  i s  the  ad jo in t g roup  o f  ty p e  De . W e m ay  assume
x(v) e for some J g  A  and tha t wi  a c ts  on  J  b y  —  1. W e can assume that
J  takes either one of the following forms.

(I)

(II)

=  { Œrn> Œm+25 — , 1 m + 2 u - 2 ,  CXn, Œn+15 - 50 Ce —1> OW,
n = m + 2u, e — n + 1 > 4 is even.

J  consists of isolated summits in  the  Dynkin diagram of E.

Set y = ae 1, ai e C  in the notation of § 1 1 . First we consider case (I). We
m ay assume that th e  series q , 1 <  j < I ,  ta k e s  th e  form  (12.16). Instead of
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(12.17), we have

(12.26) Let a, b and  c be  the  numbers of n; su c h  th a t ni =  1 , gi = -  1 and
ni <O  respectively. Then n  -  (a + b) and c - b are even.

By this observation, we find easily that x(v) satisfies (12.22) - (12.25) after replacing

x(v)-> wx(v), v + //, y' e 2
 - ‘- / -  1  

P (E ) . In  this way, we can obtain the same
log q

conclusion as in the case of type  C .
N ow  le t u s  consider th e  ca se  (II) . If  a,  ,  a , e J ,  then w e have a, _ 2 çt,/

by the assumption. Since o-, _ l o-, ci =  -  ei for i = e — 1, e, this case is completely
sim ilar to Case (I). Assum e f a  _ 1 , 1  J .  If a ,  J, we observe the following
fact. T h e  series ( l a ' ,  1 < i  < '  takes the  form (12.16). Then (12.26) also holds
in  th is  c a s e . I f  there exists a n  ni su c h  th a t  ni ±  1 ,  th e  sam e argument as
above can be applied. If all ni satisfies qi = ±  1, we can bring w (e) to the form

(12.18')

instead of (12.18). Put

-

T h e n  (12.22) ( 1 2 .2 5 )  h o ld s  w ith  J2 = 0 .  T herefore  w e ob ta in  th e  desired
reduction . Assume a, e J, a,_ 1 0 J .  Let or' b e  the  automorphism o f  5 induced
b y  th e  g raph  automorphism o f  E , a, _ 1 -÷ a, ,  a, a ,  _ 1 . W e u se  th e  same
no ta tion  as in  § 1 1 . Then (7r;)6 o ccu rs  in  P S (r )  a n d  is  the unique spherical
constituent of PS(T) since 1Z- K. 4  is  unitarizable if  a n d  only if  4 ,  is
unitarizable. T h e n  w e  have  ia = (1/ x', x' e X  su c h  th a t  x' e J'
Thus we are reduced to the case a, _, e J .  This completes the reduction to the
case of real quasi-characters.
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