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On the unitarizability of principal series representations
of p-adic Chevalley groups

By

Hiroyuki YOSHIDA

Introduction

In this paper, we shall determine the unitarizability of unramified principal
series representations of p-adic Chevalley groups of classical type. To be precise,
let k be a non-archimedean local field and let G be a connected semi-simple
algebraic group which is defined and splits over k. Let T be a maximal k-split
torus and B be a Borel subgroup of G defined over k which contains T. Let
N be the unipotent radical of B. Let £ be the root system and 4 be the set
of simple roots determined by (G, B, T). Let W be the Weyl group. Let G, T, B
and N stand for the groups of k-rational points of G, T,B and N
respectively. For a quasi-character y of T, let PS(y) denote the space of all
locally constant functions ¢ on G which satisfy

o(tng) = 85(1) *x(t)o(g)  for every te T, neN, geG.

Here 8, denotes the modular function of B. Let n(y) denote the admissible
representation of G realized on PS(x) by right translations. We call y unramified
if y is trivial on the maximal compact subgroup of 7. Let X denote the set of
all unramified quasi-characters of T. If yeX, n(y) has the unique spherical
constituent with respect to a standard maximal compact subgroup of G, which
we denote by .. Let P denote the set of all ye X for which =} is unitarizable. It
is well known that P is a W-stable compact subset of X. We call y regular if
wy # x for every we W, w# 1. Set

X"={xlxeX and y is regular},
X'={xlxeX and =(y) is irreducible}.

In the notation above, our main results in this paper determine PnX‘ when G
is of classical type.

Let us explain main ideas of the proof. First we note the following fact
(Lemma 6.2). Let G be of adjoint type and let y: G — G be a central isogeny
defined over k. We define X for G similarly as for G. Then we have an
surjective homomorphism X3y - = yoyeX. We see that nl is unitarizable
if and only if n} is unitarizable. By this fact, we can freely move from the
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adjoint group to the simply connected group. For we W, set

X, ={xlxeX, wy=7"1}.

As is well known, if ye X", there exists a non-zero intertwining operator T,, from
PS(y) to PS(wy). First assume yeX'nX" and assume that n(y) is unitarizable.
Then we have ye X, for some weW, w? = 1. We see that n(x) is unitarizable
if and only if

(1) 000 =c| (100 9:00)4s. 01. 0:PS()
is a positive definite hermitian form with a non-zero constant ¢. To determine
directly the positive definiteness of (1) in general is very difficult however.

Let w, be the longest element of W and w, be an element in the standard
maximal compact subgroup of G which represents w,. Since BwoN is the big
cell, we see easily that for every @e C*(N), there exists a unique @€ PS(x) such
that @(n) = @(wen), neN. We put ¢ =1,(P). Then

)] T, (@) = T,(,(P)) (@wo),  PeC” (N)

defines a distribution on N. Suggested by Godement [11], 1.19, we shall show
that ¢T, , is of positive type if m(y) is unitarizable and the converse holds if x
is in the absolutely convergent domain for T, (Lemma 5.4). Thus we are naturally
led to the study of distributions of positive type.

In §2, we shall prove that the positivity of distributions is preserved under
the direct image among nilpotent groups (Theorem 2.3). This result shall simplify
our arguments considerably.

For a subset J of 4, let £; be the root system generated by J and W, be
the Weyl group attached to Z;. Let w; denote the longest element of W,. If
n(y) is unitarizable, then m(wy) is unitarizable for every we W. By this fact, we
may assume yeX,, for some J< 4. By Theorem 2.3, we can reduce the
unitarizability problem to the case where J =4 and w, =w, acts on 4 by
multiplication by — 1 (cf. §8).

Let

X(T) = Hom(T, G,), X, (T) = Hom (G, T).
Set
V=XM®zR V=X, (TH®.R

and let { , ) be the canonical pairing between V and V. Let ¥ be the inverse
root system of X realized in V. Let P(X) and Q(X) be the lattices of weights
and of root weights respectively. Assume that G is of adjoint type. Then we
have X(T) = Q(Z), X ,(T) = PX). Assume wo= — 1 on 4. Fix zeQ(Z). For
veV, we can define x(v)e X, by

©) 1) (B(@) = (= VPgP, pep(),
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where @ is a prime element and g is the module of k. Every quasi-character in
X,,, is of this form. Set

¥, = {xeX[<v, a) = 0 mod2}.

Let $, be the family of hyperplanes in V defined by (v, ad = + 1 for ac¥,. The
irreducibility criterion of Kato [13] says that =(y(v)) is irreducible if and only if
v¢9, (cf. Lemma 3.2). Let D be a connected component of V— §,. A simple
deformation argument shows that if zm(x(ve)) is unitarizable for a point v,e€D,
then z(x(v)) is unitarizable for all ve D. By Theorem 2.3, we see that if

4) {vg, a) =0 for some vyeD, aei‘.z,

then the unitarizability of n(x(v,)) can be reduced to that of a lower rank group
(Remark 8.3).

Suppose that we could obtain a sufficiently sharp estimate on velV as a
necessary condition for unitarizability. Then we can determine the unitarizability
completely since, intuitively speaking, hyperplanes attached to ael, are
“crowded” in narrow domains around the origin of V so that (4) holds for such
domains.

We shall realize this idea in §9 ~ §11 for groups of classical type. In fact,
to prove (4) assuming a suitable estimate is rather easy. To obtain a sharp
estimate for ve V such that m(x(v)) is unitarizable, we appeal to considerations
on composition series of n(x(v)) for v on the boundary of D. A result of Tadi¢
[26], Theorem 2.7 tells that if the points of D represent unitarizable
representations, then all the composition factors of n(y(v)) for veD, the closure
of D, are unitarizable. By this fact, we can show that if a point on D satisfies
certain conditions, then non-unitarizability follows (Lemmas 8.5 and 9.4). The
existence of such points, for those D which are bounded and do not satisfy the
estimate, shall be shown by delicate combinatorial considerations on the shape
of D and by raising up the dimension of D.

Let {¢;} be the standard basis of V as in Bourbaki [7]. For the adjoint
group of type B,, the final result is

Theorem B. Let zeQ(X) and let v=)y/_  ageV. Assume n(x(v)) is
irreducible. Then n(x(v)) is unitarizable if and only if

©) —1)2<a,<1/2, l1<i<t.
For the adjoint group of type C,, we obtain

Theorem C. Let z=0 and v = Zi‘=1ais,~el/. Assume n(y(v)) is irreducible.
Then if n(x(v)) is unitarizable, we have

6) —l<a <, 1<i</t.

Although the estimate (6) is not a sufficient condition for unitarizability, (6)
guarantees that we can apply (4). Hence we can easily determine the
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unitarizability inductively. (For the case z # 0 and for type D,, see the text.)

We shall briefly explain the contents of each section. §1 reflects author’s
previous attempts to derive good estimate directly from the positivity of
distributions. We have retained this section since it may be useful on future
occasions. The reader who is interested only in the unitarizability should skip
this section after confirming standard terminologies. In §2, we shall prove the
functorial properties of distributions of positive type stated above. §3 and §4
are preparations on semi-simple groups and on intertwining operators. In §5,
we shall show an explicit relation between the unitarizability of representations
and the positivity of distributions. In particular, we shall prove that T, , for
JS 4 can be written as a direct image. In §6, we shall study the relation of
the unitarizability of 7, with the positive semi-definiteness of the hermitian form
(1) in general context. After preparations on deformation in §7, we shall explain
basic strategy for determining PnX’ in §8. In §9 ~ §11, we shall obtain the
unitarizability conditions for groups of classical type. In §12, we shall reduce
the unitarizability problem of =, for simply connected groups of classical type
to the case when yx is real valued. This result can be regarded as the first step
toward the determination of P.

The first version of this paper was completed in the spring of 1989. However
it contained a serious error!. The results appeared in a short communication
[23] are false except for Proposition 5, Theorem 6 in Case B and Theorem 7. I
would like to express my sincere gratitude to Institute for advanced study for
its hospitality and for providing abundant time to revise the previous draft. I
should like to express my hearty thanks to Professor H. Hijikata for useful
comments on semi-simple groups.

Notation and terminology

Let G be a locally compact Hausdorff topological group. By a Haar measure
dx on G, we understand a left invariant Radon measure. We denote by d,; the
modular function of G. Symbolically we have d(x~!') = d5(x)dx. (This adapts
modern convention used in [8], [10], [20]; it is the inverse of Weil’s definition
[22], p. 40) If V is a compact subset of G, vol(V) denotes the volume of V
measured by dx. We denote by G the set of the equivalence classes of all
irreducible unitary representations of G.

By a t.d. group G, we understand a Hausdorff topological group which has
contable open compact subsets as a basis of open subsets (cf. Silberger
[20]). Such a G is locally compact. For a function (or a distribution) f on G,
supp(f) denotes the support of . Let T be a distribution on G and a be a
function on G"*! into C. As in Schwartz [16], T(x(t, x,,...,X,)) denotes the

! Dr. J-S. Li communicated the author some mistakes in the previous draft after the author had
come to notice an error in the proof of Theorem 1, [23]. According to his communication, he has
a complete determination of P in the case of type G,. We can immediately obtain the unitarizability
condition for n(x) for xe X' by our method also for type G,. This is because the condition (4) is
satisfied or wéy2eD for some we W if D is a bounded domain in the case G,.
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function obtained by taking the value of T for the function af(t, x,,...,x,) of t
with (x,,...,x,) e G" fixed, whenever this is well defined.

If R is a ring with unit, we denote by R the set of all invertible elements
of R. If k is a commutative field, M(¢, k) denotes the ring of all ¢/ x /-matrices
with entries in k. The diagonal matrix with diagonal elements a,, a,,...,a, is
denoted by diag[a,, a,,...,a,]. We set GL(¢, k) = M(¢, k)*.

From §3 on, we consider algebraic groups defined over a non-archimedean
local field k. When an algebraic group is considered as an algebro-geometric
object, we denote it by a bold face capital letter (by G for example), whereas
the group of k-rational points is denoted by the corresponding Roman capital
(by G for example).

§1. Positive and bounded distributions on t.d.groups

In this section, we shall study certain classes of distributions on a t.d.group
and generalize L.Schwartz’s results on positive and bounded distributions. Let
G be a t.d.group. By C(G), C.(G), C*(G) and CZ?(G), we denote the space of
all continuous functions, continuous functions with compact support, locally
constant functions and locally constant functions with compact support with
values in C respectively. For ae C(G), we set

(1.1) a(x)=alx"Y), &x)= a(x'), xeG,

where —denotes the complex conjugation. A distribution on G is a linear
functional on C*(G). Let D(G) (resp. D.(G)) denote the space of all distributions
(resp. distributions with compact support) on G. If one of T,, T,eD(G) is of
compact support, we can define the convolution T, * T,eD(G) in the following
way. (cf. Bernstein-Zelevinski [1], where only the case T,, T,eD.(G) is
treated. But the generalization is straightforward.) First let G, and G, be
t.d.groups. By setting

(o ® 0ot5) (x1, X5) = oy (xq)5(x5), x,€Gy, x,€G,
for a,€CX(G,), a,€CX(G,), we have
C2(Gy x G3) = C2(Gy) ®c C2(Gy).
For T,eD(G,), T,eD(G,), we can define T, ® T,e D(G, x G,) by setting
(T; ® T) (o, ® ;) = Ty (etq) To(xy), ,eCE(GY, i= 1,2
Take G, = G, = G. Let T;, T, D(G) and assume one of T, and T, is of compact
support. For aeCX(G), define feC®(G x G) by P(x,, x,) = a(x;x,). Since

supp(T; ® T,) = supp(T;) x supp(T) and supp(T; ® T,)nsupp(f) is compact, we
can define T, * T, by

(12) (T, * T) () = (T, ® T,)(B).
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We can rewrite (1.2) more explicitly as

(1.3) (T * T) (@) = (T),(T):(2(tx))), T, €D.(G),
(1.4) (T * Ty) (@) = (T)((Ty),(2(tx))), T, eD.(G).

We see easily that T, * T, coincides with the usual convolution when T, and T,
are functions in C(G). We can verify easily the associativity:

(1.5) T, *(TyxTy) = (T, * T,)* T, if T,, TyeD.(G), T,eD(G).
Let Te D(G) and e C*(G). Then we have

(1.6) (Txo)(x) = T,(a(t™'x)),  x€G,

(1.7) (@* T)(x) = T(a(xt™")dg(t), x€eG.

Thus Txo, ax Te C*(G). We set

(1.8) T (@) = T,(3(0)36(1)),

(1.9) T() = T(@),

(1.10) F=T.

When T is a function in C(G), these definitions coincide with (1.1). By definition,
we have

= ¥

T =T T=T T=T T=T.

Let T,, T,eD(G) and ae C®(G). We assume that one of T, T, is of compact
support. We can also verify easily the following formulas.

(1.11) (Ty*Ty) = T, % T,
(1.12) (Ty * Ty) () = (Ty) (a+ T5),
(1.13) (Ty * Ty) (@) = (Ty) (T * ;) (x)6 (%)),

where o, (x) = a(x)dg(x)" !, xeG.

We are going to define certain classes of bounded distributions. For a closed
subset U of G, let D, denote the set of all distributions on G whose supports
are contained in U. We set

C;.(G) = {p e C™(G)|there exists an open compact subgroup K = K (¢)
of G such that ¢ x Te L'(G) for any Te Dy},

Ci1(G) = {¢p e C*(G)|there exists an open compact subgroup K = K(¢)
of G such that Tx@eL!'(G) for any Te Dy},

C1:(G) = {p e C*(G)|there exists an open compact subgroup K = K(¢)
of G such that T, *@*T,eL'(G) for any T,, T,eDg}.
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We define a topology of C7:(G) in the following way: A sequence {¢,} in C}.(G)
converges to 0 if and only if there exists an open compact subgroup K of G
such that ¢, * Te L'(G) and converges to 0 in L!(G) for any TeDy.
A topology of C}.(G) is defined similarly.
A topology of Cj.(G) is defined by: A sequence {¢,} in C}.(G) converges to 0
if and only if there exists an open compact subgroup K of G such that
T, *¢,* T,e L'(G) and converges to 0 in L'(G) for any T;, T, Dy.

Obviously C}:(G) < C}:(G)nC}:(G) and the topology of C}.(G) is finer than
the induced topology from C}.(G) or Ci.(G).

Lemma 1.1. C2?(G) is a dense subspace of C3.(G), C};(G) and C..(G).

Proof. It suffices to show that C*(G) is dense in C:(G). If aeC®(G) and
T,, T,eD.(G), we have T;xaxT,eC?(G). Hence we have CX(G)c< Ci.(G).
Take any @eCpi(G). Let K be any open compact subgroup of G and let
G=Ux,Kx;K. Set X,=U!' KxK,

(g, forgeX,
a,(g) =
0, forg¢ X,.

Then «,eCP(G). Take any T,, T,eDg. It suffices to show that T,*a,* T,
converges to Ty*@* T, in L'(G) for n— o0o. Considering the supports, we see
easily that

Tl *((P - an)* TZ'Xn = 0’

Ti*(@ —a)*+ TG — X, = Tyx 0+ T,|G — X,.
Therefore T, *(¢p — a,)* T, is obtained by restricting the support of Ty x¢@* T,e

L'(G) to G— X,. Hence T,*(¢p —a,)*T, converges to 0 in LI(G) for
n— oo. This completes the proof.

Let B'(G), B'(G) and B'(G) be the space of continuous linear functionals on
CL.(G), CL:(G) and C}.(G) respectively. By Lemma 1.1, these spaces can be
canonically regarded as subspaces of D(G). Clearly we have

B'(G), B'(G) < B'(G) < D(G).

We are going to examine the structure of Dy for an open compact subgroup
K of G. Let p be an irreducible unitary representation of K and let mf(x),
xe K denote the matrix coefficients of p for 1 <i, j <dimp. We normalize a
Haar measure dx of G so that vol(K)=1. We set

(mfy, mg> = f mfy(x) mf; dx,
K

where p’ is an irreducible unitary representation of K. Then the following
relations are well known (cf. Weil [22], p. 73).

(1.14) méxmf =0 if p is not equivalent to p’.
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(1.15) mbamt, =0 if j# k.
1
1.16 mlxmh = ——mf.
(116 T dimp
(1.17) (mf, mf> =0  if p is not equivalent to p'.
]
(1.18) (mbmpy =0 ifi#korj#l
1.19 mfj, mf) = — .
(1.19) mé, mfy) dim p

Let K denote the set of equivalence classes of all irreducible unitary
representations of K. Let ¢ be a locally constant function on K. We can find
an open compact normal subgroup K, of K so that ¢ is left and right invariant
under K,. Then we can expand ¢ in the form

(1.20) p(x)= Y Yalp, i, jym(x), xeK,
pel? ij
where a(p, i, j)eC and if a(p, i, j) # 0, then p is trivial on K - The expansion

(1.20) for ¢, which is actually a finite sum, is unique. For peK, 1 <i, j < dimp,
define T(p, i, j)e Dx by

(1.21) T(p, i, j)(x) = (dimp) mfi(x),  xeK.
Then, by (1.17) ~ (1.19), we have
T(p’ i J)((p) = a(pv i, ])

Therefore any distribution Te Dy can be expanded in the form

(1.22) T= Y Yclpi,j)T(p, i, )

pek i
with ¢(p, i, j) = T(mf). In particular, the Dirac distribution é supported on 1 is
given by

(1.23) =YY T(p, i i).

pel? i

Conversely any infinite series (1.22) with c(p, i, j)eC defines a distribution
TeDy. Since p is unitary, we have mf(x) = mfj(x™'). Hence we get

(1.24) m; = mf;, mf; = mf,.

Let ¢ and T be given by (1.20) and (1.22) respectively. By (1.14) ~ (1.16), we
obtain
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1

(1.25) oxT =Y 5L Zal, k Delp, ), ) T (p, j, k),
p AIM Pk, j i
v 1 v
(1.26) Txo =Y -3 (Zalp.j, e, N T (o, k. ).
p AIM Pk

The following Theorem is an analogue of Théoréme XXV of L.Schwartz [16],
p. 201.

Theorem 1.2. Let TeD(G). The following three conditions are equivalent:

(1) For any open compact subgroup K of G, there exist a bounded continuous
Sunction f on G and T, €Dy such that T= f*T,.

(2) TeB(G).

(3) For any aeC*(G), TxaeC®(G) is bounded on G.

Proof. First we assume that (1) holds for some K. Suppose ¢,€Cii(G)
converges to 0 for n— 0. By (1.12), we have

(f* T (@) = f(@n* T)).

Since ¢, * Tl converges to 0 in L!(G), f((p"*f"l) converges to 0. Hence
T=f*T,eB’(G). Next we assume (2). Suppose ¢,eC>(G) converges to 0 in
L'(G). To prove (3), it suffices to show that (T*a)(p,) converges to 0. By
(1.12), we have

(T*0)(@,) = T(p, *&).
Let K be any open compact subgroup of G and T, e Dy,. We see that ¢, *x&* T,
converges to 0 in L'(G) since &* T, e C®(G). Therefore T(p,*&) converges to 0
and we get (3).

Finally we assume (3) and shall prove (1). Put
B={peCrG)lel. <1}.

Let ae C*(G), peB. By (1.12), we have

(@+T)() = plexT).

Since (a * T) =Tx4& by (1.11), a* TeC“’(G) is bounded on G. Hence, when « is
fixed, (¢ * T)(x) is bounded for pe B. Let K be any open compact subgroup of
G and we consider the restriction ¢ * T|[KeDy. We may set

e*xTIK =Y Yclp i,j, ¢) T(p, i, ).
pel? )

Taking o =mf;, we see that c(p, i j, ) is bounded for ¢@eB, for every
(p, i, j). Choose c(p, i, j) > 0 so that

lc(p, i, j, @)l < clp, i, j), VeeB.

By the first axiom of countability, K is a countable set. For (p, i, j), choose
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a(p, i, j)eC so that Y3 a(p, i, j) and Y. Y a(p, i, j)c(p, i, j) are absolutely convergent
p ij P isj

and that dimp x dim p-matrix (a;;) = (a(p, i, j)) is non-singular for every p. Put

() = {szi,ja(p, Ljyme(x),  ifxeK
0, ifxeG — K.

Then aeC.(G). Let K = {p,|neN}. Let

a, = Y. Y.a(py i,jyme* on K and a, =0 on G — K.

k<ni,j

Then
(@*T)(x—a,) = @@ —o)*T)

is bounded for @€ B and this bound converges to 0 for n —» co. Therefore a* T
is a continuous function as the uniformly convergent limit of a, * TeC ®(G). Since
(p(a*f‘) is bounded for @€ B, a* T is bounded on G. Put f=Tx*d&= (a;’f).
For every (p, i, j), we can choose c¢,(p, i, j) so that

Y alp, i, k)ey(p, i, j) = 6 dimp

holds for every p, j, k, where J; denotes Kronecter’s 6. Set

T, = Y. Y cilp. i, j) T(p, i, j)€ Dy.
pek b
Then, by (1.23) and (an obvious generalization of) (1.26), we get T, *a =4 = 4.
Hence we obtain

T=T+«d=T*@*xTy)=(T*&)+«T, = f+T,.
This completes the proof.

We see easily that ¢, e C}.(G) converges to 0 if and only if ¢,(x)ds(x)e CL:(G)
and converges to 0 in CL.(G). Therefore TeB'(G) if and only if TeB'G) by
(1.8). Hence a similar result holds for B/(G). We give a statement of a Theorem
on B'(G) which can be proved in a similar way without giving a proof.

Theorem 1.3. Let TeD(G). The following three conditions are equivalent:

(1) For any open compact subgroup K of G, there exist a bounded continuous
Sfunction f on G and T,, T,eDg such that T= T xfxT,.

(2) TeB(G).

(3) For any a, e CZ(G), a*x T*p is bounded on G.

Now we are going to study positive distributions on G. Hereafter we shall
assume that G is unimodular. A continuous function @ on G is called of positive

type if
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(1.27) J J Dy~ 'z)a(y) a(z) dydz >0
GJG
for any aeC>®(G). It is well known that such @ is bounded on G(cf. Weil
[22]). A distribution T on G is called of positive type if
(1.28) T(*&) >0 for any ae CX(G).

By definition, we see easily that a continuous function is of positive type if and
only if it defines a distribution of positive type. Let P(G) denote the set of all
positive distributions on G.

Lemma 1.4. A distribution TeD(G) is of positive type if and only if
a* Txoe C®(G) is of positive type for any ae CZ(G).

Proof. For ae C®(G), we have
T (a%&) = T((@* &) = T(@*4&).
Hence T is of positive type if and if T is of positive type. For feC(G), put
Tr(f) = f(1).
We have, for ae C*(G),

Tr(G+ T*a) =J a(y) Tt~ y~ 1)) dy = T.( f (a(y)a(ty‘l)dy)
G

G
= Tt<f &(y_’t)a(y)dy> = T(ax3).
G

Therefore T is of positive type if and only if Tr(a* T+ &) > 0 for any ae CX(G). If
®eC(G), we get

(1.29) Tr(a*tb*&):J f d(y z)a(y) a(z) dydz,  aeC2(G).
GJG

Now assume Te P(G) and take ae CP(G). Put @ =a* T+d. Then
Tr(B* @+ ) = Tr((B*o)x T*(B+a)) >0

for any fe C°(G). Hence by (1.29), we see that @ is of positive type. Conversely
assume & * T*o is of positive type for any ae C°(G). Take any Be C*(G). We
can find ae C*(G) so that axf = B, by taking « as a suitable constant multiple
of the characteristic function of a sufficiently small open compact subgroup of
G. Since @*T=*oa is of positive type, we have Tr(ﬁ*(&* T+a)*f) >0 by

(1.29). Hence we obtain

Tr((*B)* T*(xxB) = Tr(Bx T+ p) = T (B ) > 0.

Therefore T is of positive type. This completes the proof.
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Lemma 1.5. We assume Te P(G). Then T = T and a* Tx B is bounded on
G for any a, Be CX(G).

Proof. Let a, fe CX(G). We use the following formula which can be
verified by direct computations.

(1.30) 4oaxTxpB)=(x+ P)* T*@+ P) — (@ — f)*x T*(@ — p)
1@+ /= 1h*Tx@ -/~ 1P
— /= 1@— /= 1p*T*@G+/— 1p).

By Lemma 1.4, &+ Txo is a bounded function on G for any ae C®(G). The
second assertion follows by (1.30). We have

Consider the formula obtaind from (1.30) by letting T as the Dirac distribution
supported on 1. Taking the values of T and T at this function, we see

immediately that T(axf) = T(a*pf), o, fe CX(G). ~Since for any ae CX(G), we
can take fe C(G) so that a* f = a, we obtain T= T. This completes the proof.

By Theorem 1.3, we have P(G)< B'(G). We shall prove an analogue of
Theorem 1.2 for P(G).

Theorem 1.6. Let TeD(G). The following three conditions are equivalent:

(1) For any open compact subgroup K of G, there exist a continuous function
[ of positive type on G and T,eDg such that T = Tl*f* T;.

(2) TeP(G).

(3) For any aeCX(G), d* T*o is of positive type.

Proof. We assume (1). For any ae C*(G), we have
GxTwo=Gx(T,#f+T) %o = (T, %)% f+(T, % a0).

Since T, *aeC2(G), (7:;To='23c)>::f=|=(Tl xa) is a continuous function of positive
type. Hence, by Lemma 1.4, we have Te P(G). The equivalence of (2) and (3)
is proved as Lemma 1.4. We assume (2). By Lemma 1.5, ax TxBeC*(G) is
bounded on G for any a, fe CX(G). Let B be defined as in the proof of Theorem
1.2. Let o, feC>®(G) and ¢eB. By (1.12) and (1.13), we have

(@ T+ f)(¢) = (T* f* 9)(&).

We see, when o and f are fixed, (T*,B*(}))(&)‘is bounded for peB. Let K be
any open compact subgroup of G. For peK, 1 <i, j<dimp, let f =m!; on
K, B=0o0n G — K, and let us consider the restriction T+ f*p|KeDy. We may
set

Txm&*@|K =Y Y clp,inj. . k|, o) T(z, k1).

ek B!
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Taking o = r;nz,-: we see that c(p, i, j, 7, k, I, @) is bounded for ¢eB. Choose
c(p, i, j, 7, k, ) = 0 so that
lc(p, i, j, T k, I, @) < c(p, i, j, T, k, 1), Vo eB.
Since K is a countable set, we can choose a(p, i, j)e C so that
Y oalp,i,j) and Y Y clp, i), 1, k, Da(z, k, Da(p, i, j)
piisJ t,k,l p,i,j

are absolutely convergent and that (a;) = (a(p, i, j)) is a non-singular matrix for
every p. Let

a= Y Yalp,i,jym on K,a=0 on G-—K.

pel? ij
Then ae C.(G). By (1.12) and (1.13), we have
(1.31) (@* Txa)(p) = (T*axd)(3).

Similarly as in the proof of Theorem 1.2, we see that & T+oeC(G) and is of
positive type as the uniformly convergent limit of &,* T*a, («, is the same as
there). Put f=a*Txa. For every (p, i, j), we can choose ¢,(p, i, j) so that

za(p’ k’ i)cl(p’ j? l) = 51kdlmp

holds for every p,j, k. Set
T,= Y Yele, i )T (p, i, )).
pek i
Then, by (an obvious generalization of) (1.25), we get a*xT, =46, 6 = ’7’1*&.
Hence we obtain
T=06xTx6=(Tyxa@)* Tx(a*T) =T, f*T,.
This completes the proof.

Lemma 1.7. Let TeD(G) and K be an open compact subgroup of G. Set

TIK =Y Y clp, i, ) T(p, i, j).

pek B

For peI&, let C,=(c(p,1i,j)) be the dimp x dim p-matrix. Then the following
conditions are equivalent:

(1) T(xxd) =0 for any ae CX(G) such that supp(a) = K.

(2) C, is a positive (not necessarily definite) hermitian matrix for any peI&.

Proof. Take any ae CX(G) such that supp(a) = K. We may set

a=Y Y alp, i, jyms.

pel? ij
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By (1.24), we have

&=y alp.j i) ml.

pekis

Hence we get

axd =Y

Z(Za(p, i, k) a(p, j, k))m

peidl
Therefore we obtain
- 1 L . —_—
(1.32) Trd)= 3o T elpr i) (Lalp. i 0 alo. i R).
peKdlm X

The condition (1) is equivalent to

(1.33) Y.elp, i, )Y alp, i, j) alp, j, k) >0
iJj k

for any choice of a(p, i, j), for every p. Let A, =(a(p. i, j)) be the dimp x dim p-

matrix. Then (1.33) _is equivalent to Trace(C,A4,4,) > 0. Therefore (1) is

equivalent to Trace('4,C,A4,) >0 for any p and A,. This is the case if and

only if C, is positive hermitian for any p. Hence the assertion follows.

We fix a Haar measure dx on G, not necessarily normalized so that
vol(K) = 1.

Lemma 1.8. Let Te P(G) and K be an open compact subgroup of G. Let
K, be an open compact subgroup of G contained in K and o be the characteristic
function of K,. Set v = vol(K), vy = vol(K,). For peIe let x, be the character
of p and consider y, as an element of C>(G) by setting 0 outside of K. Let
K(l) denote the finite set of all peK which occur in Ind§ 1. Then we have

(Txa)(x)| < ¥ dimp)T(,). xek.

U pek(1)

Proof. Set
TIK = ZZC(P, l’])T(p» i’j)’

pek i

where T(p, i, j) = (dim p) m" as before. We have c(p, i,j)=v~! T(m?). Let peK
and A be a dimp x dimp unitary matrix. Consider the unitary representation
p'(x) = (mf; [(x)) = A" '(mfj(x))A, xeK, which is equivalent to p. Let C,=
(c(p, i, j)). 1f we use mf instead of mf}, the matrix C, changes to 47'C,A4. Since
C, is hermitian, we can choose A4 so that A~ 'C, A is a diagonal matrix. Thus
we may assume that every peK is chosen so that C, is a diagonal matrix. By
Lemma 1.7, every diagonal entry of C, is a non-negative real number. We may
set



Unitarizability of representations 169

(1.34) a= 3% Yalpijjm

pek(1) bJ
Since & = o, we obtain
Z Za(prjs l) m?ja
pek(1) bJ

by (1.24). Then we obtain

(Tea)®=v T (Telp, i alp. ), k) M), xeK.

pek(1) B

Since C, is diagonal, we get

(1.35) (T*a)(x) =v Z Yelp, i, i (Za(p, J, i) m(x),  xeK.

pek(1) !
By (1.17) ~ (1.19), we have

J mf(x)dx = f &(x)ymfi(x)dx = v(dim p)~'a(p, j, i).
Ko K

Hence we have

Yalp, j, ymf(x) = v~ (dimp) | (X mf(y) m(x))dy,  xeK.

i Ko J

Since p is unitary, we have

Y imE(x))? =1, xeK,

i

and by the Schwarz inequality, we get

Zm mix)| <1,  x, yekK.

Therefore we obtain
12 alp, j, Y mf(x)| < v™lve(dimp),  xeK.
j

Since c(p, i, i) > 0, we get

[(T*o)(x)| < v, Z dimp) c(p, i, i), xeKk,

pek(1) i

by (1.35). Since x,=),;mf, we have Y.c(p, i, iy=v"'T(y,). Therefore we
obtain the estimate

(Txoa)(x)| <v7've Y. (dimp) T(y,),

neIe(l)
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and complete the proof.
Lemma 1.8 has some applications. We conclude this section by:

Proposition 1.9. Let Te P(G) and K be an open compact subgroup of G. Let
K, be an open compact subgroup of G contained in K and o be the characteristic
Sfunction of K,. Let Z be the center of G. We assume that there exists an
increasing sequence Z, of open compact subgroups of Z such that Z =\ ,Z,.
Then Txo is bounded on K- Z.

Proof. Put K,=K-Z, and set
M, =vol(K,)™' } (dimp)T(x,).

peKn(1)
By Lemma 1.8, it suffices to show M,,, = M, for n>1. We may assume that
K,,; > K, and that K,,, /K, is a cyclic group of prime order p, for n > 1. For
every t€K,,,/K, and pele,,, we have p*=~p where p’ele,, is defined by
p'(k) = p(t~*k1), keK,. Put p=p,. We can show without difficulty that

Indfr'p = @PZ5 (0 ®7)

for some aele,,“, where Indk"''p denotes the induced representation from p
and n denotes a generator of K,,:\I/K". If peI&,,(l), then o®n"eI€,,+1(1) for
all i 0 <i<p-—1. By the formula of induced characters, we have Zf;ol Xooni =
px, as functions in C*(G). Hence we get

p—1
Y. (dimo ® 1) T(tsey) = p(dimp) T(x,).
i=0

Since all oeIé,,H(l) occurs in Ind{r+'p for some peI&,,(I) and vol(K,,,) =
pvol(K,), we obtain M,,, = M,. This completes the proof.

§2. Preservation of positivity under the direct image

Let G be a unimodular t.d. group and H be a closed subgroup of G. For
a distribution T on H, we define the direct image distribution 1, T on G by

(2.1) (1, T) (o) = T(x| H), oae CF(G).

Lemma 2.1. We assume that H is unimodular. If 1, T is of positive type,
then T is also of positive type.

Proof. Take any ae C®(H). Let U be an open compact subset of H such
that supp(a) = U. Let K, be an open compact subgroup of H such that « is
right invariant under K,. Take an open comact subgroup K of G so that
KnH < K,. Define a function  on G by

a(h) ifg=hkeHK, heH, keK,

@2 P = {0 if g¢ HK.
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Then pfeCZ(G) is well defined, supp(B) = UK and B is right invariant under
K. Let dg, dh and dk be Haar measures on G, H and on K respectively.
Choosing dk suitably, we may assume dg = dhdk on HK. Let xe H. Then we
have

(h@@=fﬂ@ﬁ@*@@=fﬂ@ﬁf@ﬂg
G UK
=J I B(hk)ﬂ(x‘lhk)dhdk = vol(K)J ﬂ(h)ﬂ(x“h)dh
UJK U

= vol(K)J a(h) a(x~1h)dh = (o * &) (x).
U

Therefore we obtain
2.3) (t, T)(B* B) = vol (K) T(a * 8).
Hence the assertion follows.
The converse of this Lemma holds under some additional conditions.

Lemma 2.2. [n addition to the assumptions of Lemma 2.1, we assume that
there exists an increasing sequence of open compact subgroups V, of G such that
G=U,%. Then if T is of positive type, 1, T is also of positive type.

Proof. Take any peCX(G). By the assumption, there exists an open
compact subgroup V of G such that supp(f) = V. We can find an open compact
subgroup K of G so that B is right invariant under K and that K < V. Put
U=VnH. Then U is an open compact subgroup of H. Let {x;} be a complete
set of representatives of the finite set U\ V/K. For every x;, define a;e C®(H) by

hx) ifheU,
2.4) oc,.(h)={§( x) ;fh::J]

Let dg, dh and dk be the same as in the proof of Lemma 2.1. On Hx;K, we have
dg = c;dhdk, g = hx;k, heH, ke K
with some positive constant ¢;. For xe U, we have

(mmw=fﬁ@ﬁu*w@=z Blg) B(x~Tg)dg

i UxiK
=Ye j f B(hx;k) B(x~*hx;k) dhdk =Y ¢;vol (K) f B(hx;) B(x Thx;) dh
i UJKk i U

o;(h) o;(x " h) dh = vol(K)Zc,-(a,. * &) (x).

= vol(K)ZciJ

U

Since
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supp(ﬁ*ﬁ)ﬂHg VnH = U, supp(o; *&;) = U,

the above computation yields
(2.5) (ﬁ*ﬁ)(x) = vol(K)Zci(ai*&)(x), xeH.
If T is of positive type, we have

1, T)(B* ) = vol (K)Y c(o ) > 0

This completes the proof.
We summarize the obtained results by the following Theorem.

Theorem 2.3. Let G be a t.d. group and H be a closed subgroup of G. We
assume that G and H are unimodular. We further assume that there exists an
increasing sequence of open compact subgroups V, of G such that G =\),V,. Let
T be a distribution on H. Then the direct image 1, T is of positive type if and
only if T is of positive type.

§3. Semi-simple groups and quasi-characters of T

Let k be a non-archimedean local field and | | be the absolute value of
k. Let O be the maximal compact subring and w be a prime element of k. Let
q =|w|™! be the module of k.

Let G be a connected semi-simple algebraic group defined over k. We
assume that G splits over k. Let G be the universal covering group of G and
Y be the central isogeny of G onto G. Let T be a maximal torus of G which
splits over k and B be a Borel subgroup of G which contains T. Set

T=y(@, B=y(®).
Then T is a k-split maximal torus and B is a Borel subgroup of G. Set
X(T) = Hom(T, G,,), X(T) = Hom(T, G,,),
X,(T) =Hom(G,, T),  X,(T)=Hom(G,, T).
We have X(T) < X(T), X,(T) = X, (T) canonically. Set
V=XM®:R ¥ =X,DH®.R

and let ( , > be the canonical pairing between V and V,. Let X be the root
system realized in V and 4 be the set of simple roots determined by
((~}, B, T). Let ¢ be the rank of G and set 4 = {oy, ot5,--+,0,}. Let W be the
Weyl group and | denote the length function on W. We can endow V a
W-invariant positive definite inner product ( , ) so that X is a root system in V
with respect to (, ). Let ¥ be the inverse root system of T realized in V.. Let
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P(X) and Q(X) denote the lattices of weights and of root weights in V
respectively. Then we have

XM=PE2XM20Q®),
X,M=0E&) cx,(T)cPE),
(3.1) X(T) = Q(), X, (T)=PE) if G is of adjoint type.

For a€Z, Let €3 be the co-root of a. Put

(3.2) a,=d(w)eT
We have
o 2(a, B)
(3.3 . = , , BeX,
(33) {a, B> BB a, fe
3.9 wa(t)w™! = (w) (1), weW, tek.

Let o, Wdenote the reflexion defined by «. We set 6, = g,, for ¢;e4, 1 <i < /.
Let x, be the isomorphism of G, onto the root subgroup of G corresponding
to aeX. By definition, we have

(3.9) tx, (W)t~ = x, («(t)u), teT uek.

Let * be the set of positive roots in £ and let N (resp. N7) be the maximal
unipotent subgroup of G generated by x,( ), xeZ™* (resp. xeX”). Then B = TN,
B = TN. The modular function 65 of B is given by

(3.6) Sg(tn) = | [] a(l, teT, neN.

aelt
For fe X ,(T), we have 55(B(t)) = |t|™, tek™ where ny =) 5+ <, 5. If p= Bo
for Boed, we have n; =2 (cf. [7], p. 169). Hence we obtain

(3.7 dgla)=q %  for aed.

Let L be a non-negative integer. Let K, be the open compact subgroup of G
generated by all x,(t), te@™ D, aeZ, B(t), tel + o0, fe X, (T). (If L=0, we
understand 1 + @*O = 0*.) Then K, forms a fundamental system of open
neighbourhoods of 1€ G. Set K = K,. Then K is a maximal compact subgroup
of G and we have the Iwasawa decomosition G = BK. Let U} (resp. Uy ) denote
the open compact subgroup of N (resp. N ) generated by all x,(t) (resp. x_,(¢)),
aeXt, tew?D. Let T, denote the open compact subgroup of T generated by
all B(1), e X, (T), tel + " D.

Lemma 3.1. [If L is a positive integer, then we have
KL = TLUZ UE = TLUE UE-.

Proof. T, U; Ul is a compact subset of G. Hence it is closed. Therefore
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we have
3.8) Ni=1 LU UL Ky = TU U, .

We can easily verify the relation

(3.9) X, (0)x _ (1) = &(1 + tu)x _, (u(l + tu))x,(t/(1 + tu)),

where aeX, t, uek, 1+tu#0. If o, fcX and o + f # 0, we have the basic
relation (cf. Steinberg [21], p. 30)

(3.10) X, () x5W)x, (£) ' x5(w)~ " = X+ ip(Ciit'w), t, uek,
B B (h JB\*~ij
i, JE!

where the product is taken over i, j such that ix + jf€X in some fixed order of
roots (say increasing), and c;;€ Z does not depend on ¢, u.

By (3.5), (3.9) and (3.10), we see easily that K. is a normal subgroup of K,
if L >L. Let M be a positive integer. By (3.10), we get

X, () x5(u) = x5(u)X,(t) mod K, y
if o +p#0, tew"D, uew™O. Taking account of (3.9), we obtain
(3.11) UfUy < Uy Uf Ky,
(3.12) U Uy cUyU[ K4y
By repeated application of (3.12), we obtain
(3.13) Ky S TyUn Uy Koy
We shall show
(3.14) K, cT,U}U[ Ky, i>2
by induction on i. We have

TLU; UKy, s LU UL LUz UKy, by 3.13)
=TLU/ UL UjUiKy S TLUL UL UL Ky Ui Ko by (3.12)
= TLUE UL K+

Hence we get (3.14). By (3.8), we have K, = T,U/ U, and by definition, we
obtain K, = T,U; U;. Taking inverse, we get K, = T, U, U;. This completes
the proof.

Let y be a quasi-character of T We call y unramified if y is trivial on
TnK ={B(t)|e X, (T), teO*). Let X be the group of all unramified
quasicharacters of T We can extend ¢ , ) to the pairing between V' ®zC and

V, ®rC. For xeV®/—1V=V®rC, we can define y,€X by
(3.15) 1:(B(@) = exp(2nlx, ),  BeX,(T),
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since T is generated over TnK by f(w), fe X, (T). From
X(T)={xeV|[{x, BYeZ for all feX (T)},

we obtain

(3.16) X2Ve - 1(V/X(T).

By (3.16), we can endow X the structure of complex Lie group inherited from
V®gC. The Weyl group W acts on X on the left by

(3.17 (wx(®) = x(w™*tw), teT.
Let ye X. We have

(3.18) (@0 (B() = x (&)™ P x(B(1)

for aeX, pe X, (T), tek™, since o,(f) = p — {a, f>& Following S.Kato [13], we
set

W, = {weWlwy = x}, Wy = (o,JaeZ, x(a) =1).
By (3.18), we see that W, is a normal subgroup of W,.
Lemma 3.2. Let G be of adjoint type and ye X. Then we have W, = W,,.

Proof. For y,, zo€V, we set

W(yo, 20) = {we W|wyo = yo, wzo — 2o0€ Q(Z)}.
We have X(T)=Q(), X,(T) = P@X) since G is of adjoint type. We take
xX€ V@J—_IV so that

1:(B(®@)) = exp(2n<x, By)  for every feP(E).
By (3.16), we have

W, = {weW|wx —xe/—1Q0(2)}.

Put x =y +./— 1z with y, ze V. Then we have W, = W(y, z). First we shall
show that W(y, z) is generated by reflexions o,€ W(y, z), «eX. This assertion
for the case y =0 is given in Bourbaki [7], p. 227 as exercise 1) and can be
proved easily in the way suggested there. Obviously we have W(y, z) € W (0, z).
Put

* = {0aeX|o,e W(0, z)}.

Let $ be the family of hyperplanes in V defined by aeX*. If we W(0, z), aeXZ¥,
then we have w(x)eZ* since wo,w ' =0,,€W(0,z). Therefore w(H)e9 if
weW(0, z), He®. Thus the condition (D1) in [7], p. 72 is satisfied and (D2)
is satisfied obviously. Let we W(y, z). Considering a chamber C with respect
to $ such that yeC, we can apply the assertion (I) of [7], p. 75. We see that
there exist a,,...,a,eX* such that
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W=0, 0,, 0u,)=1Y for 1<i<n

This proves that W(y, z) is generated by o,e W(y, z), a€Z.
Now let g,e W(y, z), aeZ. By (3.18), we obtain

x (@) =1 for every peP(E), tek™.

The group generated by <a, B>, fe P(X) coincides with Z for fixed a. Therefore

we obtain x(a,) = 1, i.e., g,€ W,. This completes the proof.
Lemma 3.3. Assume G is of adjoint type and let ye X. Assume wy =3 !

for some weW. Then there exists a w,e W such that w? =1, wx =7"".

Proof. Take xeV@® ./ — 1V such that
x(B(@)) = exp 2nlx, B)) for every BePX).

Then we have
i Y (B(®)) = exp(2n{— X, B)) for every e P(X).
Put x =y+\/—712 with y, ze V and set
W (y,z)={weWlwy=—y wx—zeQX)}.

Then, for w'eW, wy = 7~ ! if and only if w e W’(y, z).

Now let W(0, z), £* be the same as in the proof of Lemma 3.2. Note that
W(0, z) is generated by the reflexions obtained from X*. If y =0, we have
W'(0, z) = W(0, z) and the assertion is obvious. Assume y # 0 and let V' be the
one dimensional subspace of V spanned by y. The restriction of w to V' is of
order 2. We apply [7], p. 128, exercise 4). It follows that there exists
w, € W(0, z) such that wi = 1, w, leaves V' stable and that w,|V' = w|V’. Then

we have w; e W'(y, z). Hence the assertion follows.
Let weW. If yeX and wy = 3!, we call y w-hermitian. Let X, denote

the group of all unramified w-hermitian quasi-characters of T.

Lemma 3.4. Let weW, w>=1. Then X,, is a real analytic Lie subgroup
of dimension ¢ of the complex Lie group X. For every weW, w #1,
{xeX,Iwyx=1yx} is a proper submanifold of X,. For every BeX,(T), B#0,
{xeX,|x(B(®)) = 1} is a proper submanifold of X,.

Proof. For xeV@® ./ —1V, define y,€X by (3.15). Then we see immediately
that

(B19) X,x{x=y+./—1z|y, zeV, wy=—y, wz—zeX(T)}/\/—1X(T)
under the isomorphism (3.16). Put
Vt={veV|w—1v=0}, V= {veV|w+ 1)v=0}.

Since w? = 1, we have
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(3.20) Vv=vtev".

Let R denote a complete set of representatives of (X(T)n(w — )V)/(w — 1) X(T).
Since X(T) is a lattice in V¥, R is a finite set. For each aeR, take z,eV so that
a=w—1)z,. Then if wz — z=a, we have (W — 1)(z — z,) =0, i.e., zez, + V*.
If

(zo +21) — (2 + 2,)eX(T), zy,2,€V™, a, beR,
we get w— 1)(z, —z,) =a—be(w—1)X(T), i.e., a=b. Hence we have
{zeVIwz —z2e X(D)} = Uuer(za + V7).
Therefore, by (3.19), we obtain
(321) Xy = V" @® Users/— L+ V7 /(X(TNVH).

In view of (3.20), this proves the first assertion.
Let w'eW. We have

{xeX, wy=1}=
VeV IWY = 1} @ Usern/— 1({z, + 2l2€V ¥, W' = 1) (2, + DX (D} /(X (D) V).
We may assume
(3.22) wy=y for all yeV ™.
Since V¥ - V*/(X(T)nV ™) is a local homeomorphism, it suffices to show that
Vi = {zeV*|w — 1)(z, + 2)€ X(T)}

is a proper submanifold of V* for every aeR. If (w — 1)(z, + z,)e X(T) for
some z,eV*, we have

Vi=z,+ {zeV*|w — 1)ze X(T)}.
Clearly this defines a proper submanifold of V'* except for the case
(3.23) wz=z for all zeV ™.

If (3.22) and (3.23) are satisfied, we get w’ =1 by (3.20). This proves the second
assertion.
Let BeX ,(T), B #0. By (3.21), we have

{xeX,[x(B(w) = 1} =
eV 71, B> =0} @ User~/ — 1({z. + zI2€ V™, Kz, + 2, B Z}/(X(T)N V).

In the similar way as above, we see that this defines a proper submanifold of
X,. This completes the proof.

For a subset J of 4, let £, =7Z-JnX be the root system generated by J
and let W, be the Coxeter group generated by the reflexions o,, aeJ. Let w,
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be the longest element of W,. The following Lemma slightly sharpens the result
given in [7], p. 225.

Lemma 3.5. Let weW, w> = 1. Let w, be an element of minimal length in
the conjugacy class of w. Then there exists a subset J of A such that w, = w;.
Furthermore we have w;(a) = — o for every ael.

Proof. Take any aed. Assume w,a <0. Then we have l(g,w,) = I(w,)— 1
(cf. [21], p. 269) since w?=1. From the minimality of I(w,), we have
l(o,w,0,) > l(w,). Hence we must have l(o,w,0,) =l(o,w,) + 1. Therefore we
get (o,w()(a) > 0. Since w,a <0, o,(w,a) >0, we must have w,a = —a. Thus
we have shown:

(3.24) For every ae4, wia>0 or woau= —a

In particular, we have w,(4) < Z*U(— 4). By [7], p. 225, exercise 17), a), we
have w, = w, for some J < 4. Since wya <0 for aeJ, we have w;a = — a for
every aeJ by (3.24). This completes the proof.

§4. Intertwining operators

Let yeX. We denote by PS(y) the space of all locally constant functions
@ on G which satisfy

4.1 o(tng) = 650 *x()p(g)  for all teT, neN, geG.

Let ¢k ,€PS(x) denote the function which takes constant value 1 on K. Let
n(y) denote the admissible representation of G realized on PS(y) by right
translations. 7m(y) is of finite length and has a unique K-spherical constituent
which we denote by 7). It is well known (cf. Kato [13]) that =(y) is irreducible
if and only if

4.2) x(ay) # q for every a€eZ,

(4.3) Wy =W
are satisfied. PS(y) is generated by ¢, if and only if (4.3) and
4.4) x(a,) #q for every aeX*

are satisfied. Let X' denote the set of all ye X such that z(y) is irreducible. We
call ye X regular if wy # x for every we W, w # 1. Let X" denote the set of all
x€ X which are regular.

Let S denote the space of all locally constant functions on K which are left
BnK-invariant. By G = BK, it is clear that the restriction map

R(x): PS(x)>¢ — @|KEeS
defines an isomorphism of vector spaces. For an open subgroup U of K, we have

(4.5) R()(PS(0") =8
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where PS(y)U (resp. SY) denotes the space of all vectors fixed under U in PS(y)
(resp. SY). For we W, set

Yr={aelw la<0}, ¥, ={ae) T Iw la>0}, Vi ={aed) wa<0},
N, = {x(0)laed l, tek), N, = {x(0)lae, tek).

It is obvious that

(4.6) Yow, SWy Yo U, wy, wyeW.
If I(w,w,) = l(w,) + [(w,), then
4.7 YL, =w W u¥,  (disjoint union).

(cf. [7], p. 158, Cor. 2)) Since £, and X are closed sets of roots, N,, and N,
are subgroups of N. It is well known that

4.8) N=Nj;N,  N;nN,={1}.

For each we W, we choose x,,e KN Ng(T) which represents w. We consider
an intertwining operator

4.9) (T.()%)(9) =J @(x,'ng)dn,  @ePS(y), geG,
wNw~1AN\N
with the invariant measure normalized so that vol(wNw ™ 'nN\(wNw~nN)U{)
= 1. This definition does not depend on the choice of x,. It is well known
that the integral (4.9) converges absolutely when y satisfies certain conditions (see
below), and can be meromorphically continued to the whole X (cf. Casselman
[10], Shahidi [18]). For later use, let us study this integral more closely.
By (4.8), we have

(4.10) (T,(0e)9) = f @(x, ' ng)dn

Nw

when the integral converges absolutely. Let a€Z and put w, = x,(1)x_,(— 1)x,(1).
Then we have a relation '

4.11) oy ' x, () = x,(— t Y&t Y)x_ (t7Y), tek™.

(cf. Steinberg [21].) Now assume w =o,, a€4. We can take x,, = w,. Then
we have

(4.12) (T, ) (9) = J

Nw

¢(w, 'ng)dn = J o0, ' x,(u)g)du,
k

where du is normalized so that vol(D)= 1. By (3.7), we have
(4.13) e@(g) =97 "x(@)"p(g), tew"D, geG.

There is a positive integer L such that ¢|K is left invariant under K,. Let
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geK. By (4.11) and (4.13), we get, for n > 0,

f P(w; ' x,(u)g)du = q“"x(aa)"f Px_,(u""g)du.
w-nQx

m—an
Therefore
- - & - n -n x - 1 (aaL
y o x,g)du= 3 ¢ (@) vol @ "D *)g(g) = 1L X4
n=LJw-npx n=L q 1 - X(aa)

the sum being absolutely convergent if |x(a,)] < 1. Hence we obtain

1
(T,o) @ =~ Y oo x(u)g)

ueOmodwl
(4.14) . .
- n n q— pacH
+5 2 q"x(a,) Y ex_ g+ ————0(9).
q n=1 uew" O * modwl q 11— X(aa)

Thus we have shown that the integral (4.12) converges absolutely if |y(a,)] < 1
(The case g¢ K can be easily reduced to the case ge K); T, has meromorphic
continuation to X and holomorphic at y if y(a,) # 1. Here we understand
“meromorphic” in the following sense. Put T,(x) = R (x) T,,(x) R(x)~*, which is
an operator in End(S); T, is meromorphic (resp. holomorphic) at y if (T, (x) f) (k)
is a complex valued meromorphic (resp. holomorphic) function at ye X for every
fixed fe8S, keK.
It is well known that

(4.15) T, (0) = T, (w20) T, (2)

if wy,w,eW, I(w;w,)=1(w;)l(w,) and yx is regular (cf. Casselman [10]). By
analytic continuation, (4.7) and by the above result, we see easily that T, is
holomorphic at y if y(a,) # 1 for every ae ¥, and then it gives an intertwining
operator from PS(y) to PS(wy). Furthermore we see that the integral (4.9)
converges absolutely if |x(a,)| < 1 for every ae ¥,;. The relation (4.15) holds if
x(a,) # 1 for every ae ¥, ., l(wyw,) = Il(w)) + l(w,). We put

1 _ 41
(4.16) P P B ACC
1 - X(aa)
(4.17) )= [1 (), we W.
ac¥),
Since
1
R {C
q 1—xa)
we get

nu(X)(pK,x = cu(x)(pl(,uax’ lXGA
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by (4.14). By (4.7) and (4.15), we obtain

(418) TW(X)(pK,x = Cw(x)(pl(,wl’ weW

if x(a,) #1 for every ae¥,;. Thus we recover a result of Casselman ([9],
Theorem 3.1) in the case of Chevalley groups.

Lemma 4.1. Let aecd, feS, T, (x) = RWT, ()R(x)”'€End(S). Then we
have

(0 N 0N K) = fk) + 01 — x(a)l),  keK,
for y(ay) — 1, where O-term is uniform for keK.
This Lemma is an obvious consequence of (4.14).

Lemma 4.2. Let weW, w2=1, yeX. If wy=%"" and if y(a)#1 for
every ac W}, then we have c,(y)eR.

Proof. Since w?=1, we have ¥} = —w¥,. By definition (4.17), we
obtain
() = [1 ca@= 1 ecalw)™
ac¥y ac¥d,
= [1 ccwn= TI cult)=cu®
ac— ¥ ac—w¥i,

Hence the assertion follows.
Lemma 4.3. For w=w,w,, w, w,, w,€ W, we have
(4.19) () Ty(0) = €, W20 Ty, (0w, (0 T, (1)

as meromorphic functions on X.

Proof. By the principle of analytic continuation, it suffices to prove (4.19)
when y is regular and y(a,) # g, ¢~ ' for every aeX. Now both sides of (4.19)
give intertwining operators from PS(y) to PS(wy). Since PS(y) and PS(wy) are
irreducible, they are different only by a scalar factor. By (4.18), we find that
this scalar factor is 1. This completes the proof.

Lemma 4.4. Let weWand w = 0,0,---0, be a reduced expression of w. Put
0, =(0,0,-1-0;.1)(x;), where 1 <i<n-—1, 0,=0,, 0;€4, and 0, =a,. Then
we have ¥, ={0,,0,,...,0,}. Let yeX. If xl(ap) =1, we have
WY = (0101041 0,)X-
Proof. The first assertion follows from (4.7) (cf. [7], p. 158, Cor. 2). If
x(ag) =1, we have g4, x = x by (3.18). Since

0, = (0, 0;4,)0:(0, 0,4 1)_1,
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we get

(an”'ai+l)_100.~x = (01410 = (0,041 0,)
Hence the assertion follows.

Lemma 4.5. Let yeX and weW. Set A= {w,eW|w,x=wy}. If w'isan
element of minimal length in A, then T,. is holomorphic at y.

Proof. We may assume w’ # 1. Let w' = g,0,--0, be a reduced expression
of w' and define 6,e ¥, as in Lemma 4.4. Assume that T, is not holomorphic
at y. Then we have yx(as) = 1 for some §; and we get

(010110141 0)X = WY = wy.

This contradicts the minimality of /(w') and completes the proof.

Lemma 4.6. Let ye X and V,,...,V, be G-submodules of PS(y). We assume

V#{0) 1<i<n (L W)nK=1{0}, 1<j<n

i#j
Then we have n < |W,|.

Proof. Let V#{0} be a G-submodule of PS(y). By the Frobenius
reciprocity, we have

Homg(V, PS(y)) = Homp(Wy, Csy2,),

where V, denotes the Jacquet module of V (cf. Cartier [8], Theorem 3.4,
Borel-Wallach [6], p. 304). Hence a T-module isomorphic to C,y2, occurs in
Vy. By the assumption, we have

PS(On 2 (Vv @D -+ @ (W)w-

Hence a T-submodule isomorphic to C,y2, occurs at least with multiplicity n in
PS(y)y.- On the other hand, the semi-simplification of PS(x)y as T-module is
isomorphic to @ ,w Csy2w,- Therefore C;y2, must appear at least n-times in
@® wew Csy2,,- Hence we obtain n < |W,|. This completes the proof.

§5. [Unitarizability and positivity of distributions

Let G be a t.d. group. Let = be an irreducible admissible representation of
G on a vector space V over C. If there exists a non-degenerate hermitian form
(, ) on V which is invariant, i.e.,

(5.1) (m(g)u, n(g)v) = (u, v) for every geG, u, veV,

we call m hermitian. Let 7 be the complex conjugate representation of z on the
vector space ¥ and 7 be the contragredient of 7 realized on V. Let ¢, > be
the canonical pairing between V and V. For any ueV, there exists unique
u, €V such that
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(5.2) (u, v) = uy, ) for every veV.
Put
(5.3) I(u) = uy, ueV.

Then we can verify easily that I defines an equivalence of n and 7. By Schur’s
Lemma, I is unique up to a scalar multiple. Conversely, if n =~ 7, then we can
obtain a non-degenerate invariant hermitian form on V by (5.2) and (5.3) when
we choose an isomorphism I from 7 to 7 suitably; any non-degenerate invariant
hermitian form is of this form. Thus we see that z is hermitian if and only if
n =~ 7. If there exists an invariant hermitian form on V which is positive definite,
we call 7 unitarizable.

Now we go back to the case where G is the group of k-rational points of
a Chevalley group. Let yeX. We have

(5.4) =Y, ) =@

The pairing between n(x) and =(x~') is given by (cf. Casselman [10], 3.1.2)

(5.5) @1, 02 =J ©1(9)9,(9)dg, @,€PS(x), ¢,€PS(x™ ).
B\G

Assume 7} is hermitian. Then we have m, ﬁ; =~ nl-.. Hence there must exists
a we W such that wy = 5~ ! (cf. Cartier [8]). Lemma 4.5 guarantees that we
can choose w so that T, is holomorphic at y.

First we assume that yeX is regular and that =n(y) is irreducible
hermitian. We have wy = 7! with a unique weW. Since w?y =y, we get

w2 = 1. By the discussion above, we see that

(5.6) (p1, 92) = cy (T.(091)(9) #2(9) dg, ¢y, 9,€PS(x),
B\G

defines an invariant hermitian form on PS(y), where ¢ is a non-zero constant. By

G = BK, (5.6) equals (cf. [10], 3.1.3)

(5.7) (@1, 92) = cf (T, (001 9) ¢2(9) dg, @1, ¢,€ PS(y).
K

By (4.18), we may take ¢ = c,(y)”'. By Lemma 4.2, we may take ¢ = + 1 and
we see that (5.6) and (5.7) are positive definite with ¢ = £ 1 if and only if =(y)
is unitarizable. Here ¢ = + 1 has the same signature as c, ().

Lemma 5.1. Let weW, w*=1. Let yeX, and assume that T,

w IS
holomorphic at y. Then

(¢1,¢2)=J (T, 1) (9) 0:(9) dg, 01, 92€PS(x)
B\G
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defines an invariant hermitian form on PS(y).

Proof. What we must show is (¢,, ¢,) = (¢,, ¢,) or equivalently

(5.8) f(mx)fo(k)szk)dk= j (To(0 ) Kk) fi(k)dk,  fi, f€8,
K K

where T, (x) = R(x) T, (x)R(x)~' as before. In view of the proof of Lemma 3.4,
we can find a sequence x,€ X, such that y, converges to y, x, is regular and
that n(y,) is irreducible. Then

j (T f) k) L) dk,  fy, f,€S,
K

defines a hermitian form on S. Since T,(y)f; is locally constant on K, we see
that T,(x)f; converges to T,(x)f; uniformly on K, i=1,2. Therefore (5.8)
holds. This completes the proof.

Let w,y be the longest element of W and w,e KN N4z(T) be an element which
represents wy.

Lemma 5.2. Let PS(63/%) be the space of all locally constant functions on
G which satisfy

f(bg) = dg(b)f(g)  for every beB, geG.

When invariant measures are suitably normalized, we have

J flg)dg = J f(won)dn  for every fe PS(63/?).
B\G N

Proof. Let dg denote a right invariant measure on B\G and dg be the
Haar measure on G. We have

J »(g)dg =J (J <p(bg)db>dé for every e C(G),
G B\G B

when a Haar measure db on B is suitably normalized. It is easy to see that on
the open dense subset Bwo,N of G, dg is given by dg = dbdn, g = bw,n, be B,
ne N, when a Haar measure dn on N is suitably normalized. Hence we have

J o(g)dg =J <J q)(bcoon)db>dn for every @ e CX(G).
G N B

Since the map

Ce(G)a0(9) — f9) = f @(bg)dbe PS(35?)

B

is surjective (cf. Weil [22], p. 43; we need a slight modification), the assertion
follows.
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By this Lemma, we have

(59) f (T.(091)(9) @2(g) dg = f (T (0)@1) (o) @5 (won) dn.
B\G N

Lemma 5.3. Let yeX. For @€ PS(y), define a locally constant function @
on N by &(n)= @(wgn), neN. Then the space of @ contains CX(N) when ¢
extends over all functions in PS(y).

Proof. For ®@eCX(N), define a function ¢ on G by

{q)(bwon) = 05(b)'"2 y(b) D(n), beB, neN,

(5.10) .
®(g) =0 if g¢ BwgN.

Clearly this is well defined and ¢(g) is locally constant at ge BooN. What we
must show is that ¢(g) is locally constant at g¢ Bw,N. Since N is unipotent,
we can find an open compact subgroup U of N which contains the support of
&. It is sufficient to find an open compact subgroup V of G such that

Bw,UV < Bw,U.

Since Bw,U is open in G, there exists an open compact subgroup ¥, of G such
that ¥, € wy ' Bw,U. Set

_ -1 _ -1
V_ ﬂnsvn Vin - ﬂneVan\Un Vln'

Clearly V is an open compact subgroup of G and we have nVn~! < V| for every
nelU. Hence UV < VU. Then we obtain

Bw,UV <= Bw,V,U < Buyw, ' BoaUU = Bw, U.
This completes the proof.

We note that if the function @ is defined by @(n) = @(won), neN with
®€ePS(x), ¢ is uniquely determined by @ since Bw,N is dense in G. For
®eCX(N), let 1,(P) denote the ¢ e PS(x) defined by (5.10). We set

(5.11) T, (@) = (L0 (1 (?)) (@),  PeCZ(N).

Then T, , defines a distribution on N for yeX, we W whenever x(a,) # 1 for
every ae ¥, .

Lemma 5.4. Let weW, yeX and assume y(a,)# 1 for all ac¥W). Let
ceC™ and assume

(‘Pp‘l’z)‘—'cf (T.(00)®1)(9) ¢2(9) dg. ¢, ¢, €PS(y)

B\G
defines an invariant hermitian form on PS(y). If (, ) is positive semi-definite, then
cT,,, is of positive type. Conversely if cT, , is of positive type and if |x(a,)| < 1

Sor all ae W}, then ( ,) is positive semi-definite.
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Proof. Let ®eCX(N) and put ¢ =1,(®), T=T, ,. By (1.6) and (1.8), we
have

(T* ®)(n) = T(®(t™ " n) = T(®(tn) = (T,(0)9)(@on),  neN,

since T,(y) is a G-homomorphism. By (5.9), (1.11) and (1.12), we get
(o, ) = cj (T* @) (n)®(n)dn = c(T * D) (D) = cT(ci* @) =cT(D* D).
N

Hence we have
(5.12) (¢, @) = cT(® x P).

If (, ) is positive semi-definite, we have ¢T(® * @) > 0 for every ®e C®(N). This
shows that ¢T is of positive type.

Conversely we assume that cT,, , is of positive type and that |x(a,)| < 1 for
every ae¥,). We can take an increasing sequence {N;} of open compact
subgroups so that N = (2, N;. Take any @€ PS(y). Define &;e CX(N) by

&.(n) = {qo(won) ffneNi,
0 ifngN,.
It suffices to show
(5.13) (9. @) = lim (1,(®), 1,(®)

since (1,(®,), 1,(P;)) = 0 by (5.12). We have

(T, @) (k) 1,(P) (k) dk = CJ (T.() @) (k) 1,(P) (k) dk

KnBwoN

(0. 1,(®) = CJ

K

since K — (KN BwyN) is of measure 0. By definition of @;, this integral equals
¢ f (T.(0 @) (k) o (k) dk.
KnBwoNi
Hence we obtain immediately that
lim (¢, 1,(®)) = (¢, ¢) = lim (,(®), 9).
Therefore (5.13) is reduced to
(5.14) lim (1,(®y), ¢ — 1,(®)) = 0.
For fePS(x), let || f .2« denote the L*-norm of f|K. Clearly we have

‘llrg o — (@) L2k = 0.
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Since

1 (@D), @ — 1,(P)] < [ | T, (1P | L2y | @ — 1,(P) | L2y

it suffices to show that | T, (x)1,(®)ll 2k 1is bounded for i—oco. Take any
fePS(y). Let L be a positive integer such that f|K is left invariant under
K;. Let aed. By (4.14), we find

I na(X)f L2 < Ha(X) ||f||L2(K)

with a positive constant u,(y) which does not depend on f and L if
|x(a,)| < 1. Therefore we have

[ Tw(X)f”LZ(K) < (1) "f"LZ(K)

with a positive constant u,,(x) which does not depend on f. Since [|1,(D)[ L2k <
l@ll 2k the boundedness of | T,(x)(,(P)) L2k follows. This completes the
proof.

Further elaboration on the converse part of Lemma 5.4 shall be given in
Lemma 12.1.

Lemma 5.5. Let @€ C>®(N). There exists a positive integer L such that
1, (D) is right invariant under K, for all yeX.

Proof. Let U be an open compact subgroup of N such that U 2 supp(®).
We can find a positive integer M so that @ is right and left invariant under the
translations of Uy and that Uy < U. Since ey, v~ ' Kyn is open in G, we
can find a positive integer L so that nK,n™' < K,, for every neU. In view of
the proof of Lemma 5.3, we may also assume Bw,UK; < Bw,U. Take yeX
and put ¢ =1,(P). Let g = bwon with be B, neU. Then it is sufficient to show
that @(g) = @(gk) for every ke K;. We have gk = bwgnk = bwgk, n with some
k,eK). By Lemma 3.1, we have k, =tu"ut with teT,, u eU,, u*eU;.
Then we get

gk = b(wotwg ) (weu~ wg Hweutn, wotwy e TNK, wou~ wyeUy;.
Hence we obtain
@(gk) = d5(b)"/2 x(b)D(u* n) = d5(b)' x (b)P(n) = @(g).

This completes the proof.

Lemma 5.6. Let @®eCF(N). Then T, (®) is meromorphic on X and
holomorphic at yeX if x(a,) # 1 for every ac¥}.

Proof. Let L be a positive integer as in Lemma 5.5. We can take a double
coset decomposition K = (J(BnK)xK, so that xe BogN. Put x = b, wyn, with
b.eB, n,eN. Define f, €S by

f. = @(n,) x the characteristic function of (BnK)xK;.
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Let yeX and set ¢ =1,(P). By (5.10), we have R(x)(¢) =, x(by)f,. Let
T.(x) = R T, (x)R(x)” ' €End(S) as before. Then, for every ke K, (T.(x)f.) (k) is
meromorphic on X and holomorphic at y if y(a,) # 1 for every ae ¥). Since

T, (®) = (T, (0 9) (wo) = T, (0) (R(2)@)) (@o) = Zx N (T (0 £ (@o),

the assertion follows.

Let y be the central isogeny from G to G as in §3. Then ¢ induces an
isomorphism N =~ N. We can choose w, and x, from y(K) for we W, Take
x€X and set § = yoy. For ¢ePS(x), put ¢(g) = oW (9)), ge@. Then we have
@€ PS(f). By definition of the intertwining operator, we see that

(5.15) (L@@ = (TP W), geG

if |x(a) <1 for every ae¥,. Take ®eC* (N)= C§°(1\~l) identifying N with
N. Then we have 1:(P) = 1,( (D) Hence, by (5.15), we have

(T ([@D1®)(9) = (T, (D)W (). geGC,
if |x(a,)| <1 for every ae ¥, . Since both terms are meromorphic functions of
x when @ and g are fixed, we obtain the following Lemma.

Lemma 5.7. Let ye X, we W and assume y(a,) # 1 for every ae¥P,. Then
we have T, =T, , when N and N are identified by the isomorphism  and w,,
x,, are chosen from Y (K).

We assume that G is simply connected. Let J be a subset of 4. Let X,
W, and w; be the same as in §3. Let G, be the universal Chevalley group over
k generated by x,(t), a€X,, tek. As for G, we define the corresponding objects
B;, T;, N,, K; and X,.

Lemma 5.8. Let ye X, weW,. We take representatives @ and w; of w and
w, respectively from K;,. We assume x(a,) # 1 for every ac¥, . Set n=y|T,
€X,. Let T], be the distribution on N, defined as in (5.11), i.e.,

T, (@) = (T, (1, (P)) (@), P eCP(Ny).
Let o = w;'w,. Then o' 'Nyw' = N. Put
@'(n) = P(w' ™ 'nw), neN,
for every ®e CP(N). Then we have
T, (®) = T (D).

In other word, T, , is the direct image of the distribution on o' ~Y*N;w' which is
obtained from T, by the isomorphism N; = o' 'Nyw'.

Proof. Since weW,, it is clear that N, < N,. The group o' " 'N,w’ is
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generated by x,(f), ae(w,wo) 'Z}, tek. We have
Wow, 25 = wo(— X)) X*.

Hence we obtain o'~ !'N;w’ < N.
Let #eC>(N), ¢ =1,(®). Then we have @ePS(y), ®(n) = @(won), neN.
Put

¢'(9) = @lgw), geG,,  P'(n) = ¢'(w;n), neN,.
Since 0g, = 05|B, (cf. (3.7)), we have ¢'€PS(y). For neN,, we have
@'(n) = ¢'(w;n) = p(wno') = p(wew'  'nw’) = d(w' ™ *hw').

Hence @'€eC(N,) and ¢’ = 1,(D").
First assume |x(a,)| < 1 for every ae ¥,). Then we get

T, (®) = j

Nw

(p(w_lna)o)dnzf

Nw

o0 'nw,w)dn = j @' (@ 'nwy)dn =T, (P).

Nw

By analytic continuation (cf. Lemma 5.6), T, (@)= T, ,(®) holds whenever
x(a,) # 1 for every ae ¥W,). This completes the proof.

It is well known that
B x Na(b, n) — bwgneBwyN (< G)

is a biregular mapping defined over k and BwyN is open in G for k-Zariski
topology. Hence B x N is birationally equivalent to G over k. Therefore there
is a rational mapping b, (resp. n,) of G into B (resp. N) defined over k which
is regular on Bw,N such that g = by(g)wgny(g) for geBw,N. We have
o 'nywoeBwN for a generic point n; of N over k. Hence we can define a
rational mapping b (resp. n) of N into B (resp. N) defined over k by

b(n,) = bo(wen, wq '), n(n,) = no(won, g '), n eN

Then b and n are regular on Nnwg ' Bwy,Nw,, and we have
(5.16) won,wg ' = b(n)wen(n,), n;eNnwy ' BoyNw,.

We see easily that n is a birational mapping of N into N, and that n gives a
biregular mapping of Nnwg 'Bw,Nw, onto itself.

Lemma 5.9. For n,eN, let n=n(n;). Then we have dn, = dz(b(n))dn.

Proof. Let dn, = c(n)dn. We see that c(n) is a continuous function on
Nnwy ' BwgNw,, which is an open dense subset of N. Take any ¢e PS(64?).
By Lemma 5.2, we have

f ¢(g)dg =J o(won)dn.
B\G

N
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Hence we obtain
J o(g)dg = f o(gwo ') dg = J @(won, g ')dn,
B\G B\G N
= J 0p(b(ny))c(n)p(won)dn.
N

Since w3 =1, we have w3e TnK. By this fact, we see easily that Sz(b(n,)) =
6(b(n))~ 1. Therefore

j @(won)dn =f d5(b(m)) ™" c(n)p(cwon) dn
N N

holds for any @ePS(6}/?). Hence the assertion follows from Lemma 5.3.

The following Lemma gives an explicit form of the distribution T, , in the
case w = w,.

Lemma 5.10. Let w = w,, y€ X and assume |x(a,)| < 1 for any a€X*. Then
the distribution T, , is given by a locally integrable function &g(b(n))"/>x(b(n))~",
neN.

Proof. Take any ®eC2?(G) and set ¢ =1,(P)ePS(x). By definition, we
have

T(®) = (T,,,(0) @) (wo) = f @(wg 'nywe)dn, =J @(wonywq V) dny,
N N

with absolutely convergent integrals. We change the variables by n = n(n;). We
have

x(b(ny)) = x(bm)™",  S5(b(n,)) = dp(b(n))™".
By Lemma 5.9, the above integral is equal to
J 5(b(n) ™ x(b(n)) " @(won)dg(b(n))dn = J d5(b(n)!"2 x(b(n)) ™' B(n)dn,
N N

and we see easily that this integral is absolutely convergent. Hence the assertion
follows.

For general ye X, T,, , can be given by analytic continuation (cf. Lemma 5.6).

Example 5.11. Let G be the universal Chevalley group of type C,. We
may set
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0, 1
G = {geGL(Q2¢)|'gJg = J}, J=< ‘ “>,
- le Oe

Ly

o~
EN

it

)

Then y is of the form

ae GL(¢) is upper unipotent, be M(¢), 'b = b},

w0=J.

]
X(dlag [tla---9tl’ t;l’---’tzl]) = 1—[ xi(ti)’ tiekxa
i=1

with unramified quasi-characters y; of k*. We have woxy =z~ ! if and only if
2(l <i<{¢) are real valued. Let P (resp. U) be the subgroup of GL(Z, k)
consisting of all upper triangular (resp. upper unipotent) matrices. For

a 0 1 b
n=<0 . _1>(0 1>EN, we consider the decomposition wonwg ! = b,wyn,,
a

b,eB, njeN. We set

b x 0 1 y) fx O 1 B)
1_<0 'x“><0 1)’ n‘_< ‘a“)(O 1)’

where xe P, aeU and y, fe M(Z, k) are symmetric. Then we get

(5.17) ab="'x"1a.

For a matrix C = (¢;;)e M(Z, k), let M;(C) denote the determinant of the minor
M;(C)=det(c,; 1 <r,5<i)

for 1<i<?¢, and set My(C)=1. The following Lemma can be verified
immediately by induction on /.

Lemma 5.12. Let CeM(/, k) be given. Then the equation ‘pu= C with
p=(p;)eP, ueU can be solved if and only if M(C)#0 for 1 <i<¢. If this
is the case, the solution is unique and we have

pi = M;(C)/M;_,(C), I1<i<t.

By (5.17) and Lemma 5.12, the first / diagonal components of b; are given
by M;_,(ab)/M;(ab), 1 <i<{. We have
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]
dp(diag[ty,....t,, t7 ..t D= (1161 )2, tek™.

i=1
Therefore, by Lemma 5.10, the distribution T, , is given by a function

(5.18) T, ) = [] z(Mi(ab)/ M, (ab)) [] | Ms(ab)|~*
i=1 i=1

a 0 1 b
for n= (0 . _1><0 1)eN, when y is in the domain of absolute convergence,
a

that is 1> |y, (@)| > [x,-1(@)| >---> [x;(@)|. In the general case, T, , is given
by the analytic continuation of (5.18).

§6. Spherical functions

Let ye X. Recall that n} is the unique K-spherical constituent of z(y). The
spherical function associated with n is given by

(6.1) I(9) = f ok, (kg)dk, g€,
K

where the Haar measure dk is normalized so that j',(dk =1. As is well known,
m, is unitarizable if and only if I, is of positive type (i.e., positive definite
function). Let P denote the set of all yeX such that =z} is unitarizable. Since
I',(g) is a continuous function of y when g is fixed, it is obvious that P is closed
in X. It is well known that P is bounded. Hence P is a compact W-stable
subset of X.

Lemma 6.1. Let weW, yeX,. Assume that y(a,) # 1 for every a€¥,, and
that my is unitarizable. Put ¢y , = @k, modKer(T,(x)). If PS(x)/Ker(T,(x)) is
generated by ¢y, ,, then

(‘/’1,(P2)=CW(X)_1J (T,(0e1)(@9) 02(9) dg, @1, ,€PS(¥)

B\G
is a positive definite hermitian form on PS(y)/Ker(T,(x)).
Proof. By the assumption, we have
Tw(X)(pK.x = cw(X)(pK.wx’ CW(X) # 0

and every element of PS(y)/Ker(T,(y)) can be represented by a function of the
form

n(g) = Lo, 9),  %€C, y;€G.

We have
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(. m) =c, ()" PILAMPITS wx(gyl)Za ¢x.,(gy;) dg

B\G i

Y ( J Ok, wyr(9Y) Pk, ,(9Y)) dg) TEDY ( J Pk @Y; 1Y) 0k, (9) dg) o &
i,j B\G B\G

ij

Z(j (pl( wx(ky x) (pK x(k dk>a <1 - Z (yj_lyi)ai Zr (y ala} > 0

since I',, =1, and I, is positive definite. Hence the sesqui-linear form ( , )
must be hermitian. Then it is clear that ( , ) defines a non-degenerate hermitian
form on PS(y)/Ker(T,(y)). Hence positive definiteness follows. This completes

the proof.

Lemma 6.2. Let G be the simply connected covering group of G and let
the related notation be the same as in §3. Let X be the set of all unramzﬁed
quasi-characters of T. For xeX define XEX by 7(t) = x(Y( t)) teT Then ny
is unitarizable if and only if m) is unitarizable.

Proof. We have

~

I'z@g) = I <Pk,;(’;§)dl;, jeG

where K is the maximal _compact subgroup of G defined as in §3 and
[zdk = 1. 1f §=bk, beB, keK, we have

0z.79) = 55" (B) 1) = 55> (W (B) x (¥ (B) = ¢k, (¥())-

Since Ker () is contained in TnK, we obtain

(6.3) ry{g =r,w@), ge6.

Therefore I'; is positive definite if I, is positive definite. Thus the unitarizability
of m} implies that of 7j.

Conversely we assume that 7y is unitarizable. Put G' = l/l(é). We note
that G’ is a normal subgroup of G. By (6.3) and by two-sided K-invariance of
I',, we see that I',|G'K defines a positive definite function on G'K. This implies
that T, HG'K is unltarlzable Since [G: G'K] < o0, we can easily conclude that

ny is unitarizable. This completes the proof.

§7. Deformations of representations

In the following sections, we shall determine all unitarizable n(y) when G is
of classical type and n(y) is irreducible. Besides the result in §2, certain
deformation arguments shall play important roles, which we shall prepare in this
section.

Let weW, w2=1. We set X\ =X, nX' (cf. §3 and §4). Let yeX) and
assume that T, is holomorphic at . In §5, we have shown that
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(7.1) (@1, 92)y = cw(x)—lf (T0e) (k) 9,(k) dk, @1, p,€PS(Y)
K

gives an invariant non-degenerate hermitian form on PS(y) and that =(y) is
unitarizable if and only if ( , ), is positive definite. We define a hermitian form
H, on S by

(7.2) H(fi.f) =R 'fi,RO'f), fi.f2€S.
We have
(7.3) H,(fi. ) =c.()7! J (To(e) k) 0, (k) dk, @1, @, €S,

where T,,(x) = R(x)T,,(x)R(x) ' €End(S). For an open subgroup U of K, let H}
be the restriction of H, to SU. Then HY is a non-degenerate hermitian form on
SY; n(x) is unitarizable if and only if H} is positive definite for every U.

The following Lemma 7.1 and Proposition 7.3 are well known as a general
technique to construct complementary series (cf. Oranskil [15], p. 251). We
include proofs for the sake of completeness.

Lemma 7.1. Let a < b be real numbers and let p: [a, b] — X, be a continuous
map. Set y,=p(t), a<t<b. Let U be an open compact subgroup of K. Then
HY is positive definite if and only if H}, is positive definite.

Proof. For simplicity, set H’ = HY, a<t<b. It suffices to prove “if”
part. Assume HY is positive definite and Hj is not positive definite. Since
¢,,() ' T, (x) is holomorphic at y as far as x(a,) # q for every ae ¥, (cf. (4.14) and
Lemma 4.3), ¢,,(x,) " ! T..(x,) € End (S) depends continuously on ¢ by the assumption
and (4.2). Hence when we fix a basis of the finite dimensional vector space SY,
HY is represented by a hermitian matrix whose matrix coefficients depend

continuously on t. It is clear that the set
P = {te[a, b]|H is positive definite}

is open in [a, b]. Hence [a, b] — P is a compact subset, which contains b, of
[a, b]. Therefore there exists a <t, <b such that [a,t,) = P, t,¢P. Since
HY =lim,, HY, we see that Hy is positive semi-definite, but is not positive
definite. Hence H; cannot be non-degenerate. This is a contradiction and
completes the proof.

Lemma 7.2. Let p:[a, b] > X be a continuous map. Set y, = p(t). Then
n(x,) is unitarizable if and only if n(x,) is unitarizable.

Proof. 1f the assertion is negative, there exists an open subgroup U of K
such that one of Hy and Hj is positive definite but the other is not positive
definite. This contradicts Lemma 7.1 and completes the proof.

Proposition 7.3. Let weW, w?*=1 and p:[a, b]—> X, be a continuous
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map. Put y,=p(t), 0<t<1. If the conditions
(1) xola)=1 for every ac¥,),
(2) xla)#1 for every ae¥y, 0 <t <1,
(3) pO 1] X,

are satisfied, then n(y,) is unitarizable for 0 <t < 1.

Proof. Let w=g6,---6,_,0, be a reduced expression of w. Let 0 <t < 1.
By (4.15), we have

Tw(Xt) = 7;[(02 "'o-nXt)"' ’I:r,,_l(o.nXt) T;',,(Xt)'
Set 0, =(0,0,-1-"06;+1)%, 1 <i<n—1.We have
Yy = {6.1<i<n—1), “n} and (0,41 0,-10,X)(a,,) = x:(as)-

Let U be an open subgroup of K and fix a basis of SU. By the assumption (1)
and Lemma 4.1, we have

cai(ai+l"'an—lanXt)_1 ’1:,".(0}4.1 '"an—lanXt)|SU =1+ 0(1) (1 <i<n-— l)w

(7.4) . .
() T, (X187 = 1 + o(1)

for t - + 0, where 1eEnd(S) denotes the identity. Hence we get
) T T )ISY =1+ 0(1),  t— +0.

Then, by (7.3), there exists 0 <egy <1 such that HY is positive definite for
0<t<ey Applying Lemma 7.1 to the interval [ey, 1], we see that H is
positive definite for 0 < ¢ < 1. This completes the proof.

Many unitarizable n(x), xeX! can be constructed by means of this
proposition. The following proposition gives a more elaborate study of
deformations.

Proposition 7.4. Let weW, w? =1 and assume w is decomposed so that
w=ww,, wr=1wi=1,Iw)=Iw)lw,). Letp:[ab]—-X, andp,:[a, b]—>
X,, be a continuous maps. For 0 <t <1, put y,=p(t), x; = p,(t). We assume
that the following conditions are satisfied.

M 2 =1xo- .

2 pO,1]1<=X;, and p,(0, 1] < X,,.

(3) For every ae¥,, xola) #1, q.

(4) For every ae ¥, , xola,) = 1.
If n(yx,) is unitarizable for some t,€(0, 1], then n(y,) is unitarizable for all
0<t<1. Conversely if n(y,) is unitarizable for some t,€(0, 1], then () is
unitarizable for all 0 <t < 1.

Proof. By (3), we see that T, (y) is holomorphic at y =y, From
WiWaXo = %o > WiXo = Xo '» We get wyxo = Xo- Hence T, (w,x) is holomorphic
at y = xo. Also by (3), we have
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4 -1 _ 13 1\—1
Jim ey, (Wax) ™" = lim e, (1) # 0.

Therefore we get
lim ey, (0o 7)™ T, w220 = lim e,,, ()™ T, () f

for every feS. By (4), using the same argument as in the proof of Proposition
7.3, we obtain

(7.5) o) T T ()ISY =14+ 0(1), t—+0
for any open subgroup U of K. Since
T, () = T.,(wax) T, (%)) for ¢ >0,

we get
: -1 g . H -1 1
Jime, ()™ To() S = lim ey, ()™ T, (0) S
for every feS, by (7.4) and (7.5). Therefore we obtain, by (7.3),
(7.6) Jim Hy(fys f) = lim Hy(fi, ), fis f2€S.

Now assume that z(y.) is unitarizable for some t,€(0, 1]. Then by Lemma
7.2, n(x}) is unitarizable for all te(0, 1]. Let U be any open subgroup of K. By
(7.6), we see that there exists 0 <gy <1 such that HY is positive definite for
0<t<egy. By Lemma 7.1, Hj is then positive definite for all 0 <t < 1.
Threfore n(y,) is unitarizable for 0 <t < 1. The converse assertion can be proved
similarly. This completes the proof.

Remark 7.5. The assumption (4) can be replaced by the condition (7.5) for
all open subgroup U of K.

Theorem 7.6. Assume G is of adjoint type. Let yeX and assume n(y) is
irreducible and unitarizable. Then y belongs to the closure of PNXnX" in X.

Proof. By the assumption of irreducibility, we have n(y)=~n, and
n(wy) = n(y) for every we W. We have wy = 3! for some we W. Hence, by
Lemma 3.3, we get w,x = ' with w,eW, w}=1. By Lemma 3.5, we may
assume that ye X, for some J = 4 and that w; acts on J by multiplication by
— 1, replacing y by w'y, weW.

Assume x(a,)=1 for some aeX;. Let w,=0,0,---0, be a reduced
expression of w, with o; = 0,, ¢;€J, 1 <i<n. By Lemma 4.4, there exists i such
that w'=(o,---0;_1)(0;4,---0,), wx=%"'. We have w,w =(0,-0;1,)0:(0;4,
---0,). Hence w;w’ is of order 2 and we get w? = 1. Therefore w’ is conjugate
in W; to w;. for some J'SJ and w;, = —1 on J'. Repeating this procedure,
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we may assume y€ X, and y(a,) # 1 for every ®xeX;. By Lemma 3.4 and its
proof, there exists a continuous map p:[0,1]—X,, such that p(0) =y,
p(0,1] < X, nX". Now the assertion follows from Lemma 7.2.

§8. The unitarizability of n(x) when n(y) is irreducible

In this section, we shall explain basic principles of determining the
unitarizability of n(y) for ye X'.

Theorem 8.1. Assume that G is simply connected. Let J < A, yeX\,, and
assume |x(a,)| < 1 for every aeXj. Define G;, T, and X; as in Lemma 5.8. Put
n=yxlTyeX,. Then n(x) is unitarizable if and only if the representation n(n) of
G, is unitarizable.

Proof. By Lemma 5.4, n(y) is unitarizable if and only if ¢T, , is of positive
type for some ceC*. By Lemma 5.8 and Theorem 2.3, cT,,, , is of positive type
if and only if ¢T;] , is of positive type. Again by Lemma 5.4, this is equivalent
to the unitarizability of n(y). This completes the proof.

Now we consider the determination of the unitarizability of n(y) for
x€X' By Lemmas 3.2, 6.2 and the irreducibility criterion, we may assume that
G is of adjoint type. By Theorem 7.6, it suffices to consider the case where
Z€X'nX". Replacing x by wy with we W, we may assume that ye X\, for some
J € 4 and that w; acts on J by — 1 (cf. Lemma 3.5). Replacing ¥ by wy with
we W,, we may further assume |y(a,)| <1 for every «€X;. By Lemmas 3.4 and
7.2, it suffices to consider the case |x(a,)| <1 for every aeX). Let y: G-G
be the simply connected covering map as in §3. Put y =y oy. Then we may
assume that z(j) is irreducible and j is regular by Lemma 7.2. Now we apply
Theorem 8.1. If J &4, we can reduce the unitarizability of n(j), which is
equivalent to that of =(y), to the untarizability of =z(y) of a lower rank
group. Therefore it suffices to consider the case where J =4, yeX. nX", w,
acts on 4 by — 1 and G is of adjoint type.

We may set y in the form

1(B(®)) = ¢*P =exp(n/— 1<z, B>)q*?,  BeP(),

where x =y + ./ — IILZ’ y, zeV. The condition woy = ¥~ ! is equivalent to
0gq

Woy = —J, woz — z€2Q(2).

Since wo = — 1, we have zeQ(X). Thus we may set x =y + ./ — ll—n—z with
o

yeV, zeQ(X) and we have g4

(8.1) 1B@) = (= D=Pg>»  pePE).
We fix ze Q(Z). In V, we consider the family of hyperplanes §, defined by
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(8.2) {v, &> = £ 1.

for every &eX such that (z, &> =0 mod2. Let D, be a connected component
of V—9,. For veD,, define x(v)e X, by

(8.3) 1O (B@) = (= V&P gP  BePE).

By Lemma 7.2, either all of n(x(v)) is unitarizable or non-unitarizable for veD,,
i.e., the unitarizability on D, remains the same.

Lemma 8.2. Let G be of rank 1, L% = {a} and w =0,. Let yeX.. Then
n(x) is unitarizable if and only if q~! < x(a,) < q.

Proof. This is well known. We shall give a short proof. It suffices to
consider the case when G is of adjoint type. By yeX., we find y(a)eR. If
x(a) < q~ ' or x(a,) > g, we find that D is not bounded. If ¢~ ! < y(a,) < g, we
can immediately conclude the unitarizability of n(y) by Proposition 7.3.

Suppose that there exist &,eX and voeD, such that (z, &,> =0 mod?2,
{vg, &g> = 0. Put yo = x(vy). We shall show that the unitarizability of 7z(x,)
can be reduced to that for a lower rank group. Take weW so that
w laged. Replacing y, by wy,, we may assume ayed. We can find a reduced
expression of w, such that wyo=g0,:--0,, 0,=0,,. Set w;, =0,---0,_;. Then
wi =1 since wo= — 1. We have g,e X}, and w, is conjugate to w, for some
J S 4. Then as we have shown above, the unitarizability of n(y,) can be reduced
to that for a lower rank group.

Remark 8.3. Assume that J = {a}UJ; where all roots of J, and « are
orthogonal. Then, by Lemma 8.2, we see that 7m(y,) is unitarizable if and only
if g7 < x(a,) < q and =(no), no = %ol Ty, € X, is unitarizable, in the notation of
Theorem 8.1.

Therefore it suffices to consider only those D, which satisfy
(8.4) <w, &> # 0 for every ve D, and for every &eX such that ¢z, &> = 0 mod 2.

In the following sections, we shall show that if D, satisfies (8.4), then all the
points of D, represent non-unitarizable representations. This shall complete the
determination of the unitarizability for n(y) which are irreducible.

We shall prove two more Lemmas which are useful in later considerations.

Lemma 8.4. Let D = D, be as above and let a€X. There exists vye D such
that {vy, &) =0 if and only if 6,DND # Q.

Proof. It vyeD satisfies vy, &) =0, we have o,v, = v, by the formula of
reflexions. Hence voea,DnD. Conversely assume v,€0,DND. Then we have

(85) <v1’ &> = <aavl’ aa&> = <O'al71, - &> = - <Uavl’ &>

We may assume <v;, & # 0. Then (8.5) shows that the real valued continuous
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function v — (v, &) on D changes the sign. Hence there exists v,eD such that
{vy, & = 0. This completes the proof.

Lemma 8.5. Let yeX. We assume that all composition factors of PS(y)
are hermitian. Furthermore we assume the following conditions (1) ~ (3).

(1) There exists a non-degenerate invariant hermitian form on PS(y).

@ (Wl=2

(3) PS(y) has two irreducible G-submodules.
Then there exists irreducible G-submodules V; and V, such that PS(x) =V, ® V,.

Proof. Let (,) be the non-degenerate invariant hermitian form on
PS(y). Let V be an irreducible G-submodule of PS(x). We shall show that
(, )|V can be assumed to be non-degenerate. Assume, on the contrary, that
(, ) is degenerate. Since V is irreducible, ( , )|V must be the zero form. Let
VL be the annihilator of V in PS(y). We have V' 2 V. Since there exists a
non-degenerate G-invariant sesqui-linear form

V x PS(y)/Vt —C,

we get PS(y)/V* =~ V as G-modules, and we have Vv by the assumption. Let
(W) be the set of all irreducible constituents of PS(x). We may set W =V,
W, = V. By the exactness of the Jacquet functor, we obtain

@ vew Csy2u, = @ the semi-simplification of (W))y

as T-modules. Since C;y2, occurs in ¥ (cf. the proof of Lemma 4.6), C;y2, does
not occur in (W)y, i > 3, by the assumption (2). Therefore W, is not isomorphic
to V for i >3 and any irreducible submodule of PS(x) must be isomorphic to
V. Let V' # V be an irreducible submodule. We obviously have V'nV:=¥'nV
= {0}. Therefore PS(x) = V'@ V' and we get a non-degenerate sesqui-linear
form on V x V' by the restriction of (, ). This implies that (, )|[V@® V' is
non-degenerate. Hence V@ V' has the orthogonal complement W such that
PS()=V® V' @W. (The existence of the orthogonal complement can be
justified easily by considering ( , ) on the spaces of U-fixed vectors for open
subgroups U of K.) Therefore by (2) and Lemma 4.6, we must have W = {0};
hence the assertion follows.

Thus we may assume that ( , )|V is non-degenerate for every irreducible
G-submodule V. Let V| be an irreducible G-submodule of PS(y). Let ¥, be an
irreducible G-submodule of the orthogonal complement of ¥;. Then (, )|, ® W,
is non-degenerate. If PS(y)RV, ® V;, we obtain an irreducible G-submodule ¥,
in the orthogonal complement of V; @ V,, which contradicts (2) and Lemma
4.6. This completes the proof.

§9. The case of type C,

For the root system, we use the notation given in Bourbaki [7]. The simple
roots are
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Uy =&y — &g, Uy =€y — b3, Uy =&y — &gy Uy = 28,.
Put 6, =0,, | <i</¢ as before. Then we have

Wo=(0,0,0,_10,0,_1"0,0,)(0,-,0,0,_,)0,, - Weg;=—¢, 1 <i</?

We have

] ]
PE)= @, Z¢g, 0®) ={) a&la,eZ, ) a;=0 mod2}.
i=1 i=1

We identify {g;} with its dual basis with respect to { , >. Then we have

2B=¢ (1<i<?), egEeg=ete(1<i<j<),

4

PE) =@, Ze + Z(% Y 8i>s 0% = @, Ze,.

i=1

We assume that G is of adjoint type. For z=Y/  c;&€Q(X) and
v=Y/!  ageV, q;eR, we define y(v)e X by

.1) 1) (@) = (— D& g BeP(E).
We have

20 (28) (@) = (= 1) 'g™, l<i<¢,
9.2) 1) (& = e) (@) = (= 1" 9g" ™, 1<i<j<{,

1) (& ¥ ) (@) = (— 1itegata,  1<i<j<t.

First we consider the case z=0. The family of hyperplanes $ in V
considered in §8 are

a=x1(1<i</), axa=21(1<i<j<o).

We consider a connected component D of V— 9. Replacing D by wD, we W,
we may assume that D contains a point v = l.‘zlais,- such that <{v, &) > 0 for
every 1 <i</. This condition is equivalent to a, >a, >--->a, >0. Take i
so that a;> 1, a;,, < 1. Then D contains a point v =Y/  a;¢ such that

9.3) a,>a,>->a;>1>a;,,>->a, >0

We may assume that D is bounded. Let 1 <j<i and suppose a; —a;,, > 1.
Then we have

a,—a,>1, 1<u<j, j<s</.

Hence we see that

i ¢
Zl (a,+ e+ Y, ageD

u=j+1

for every t >0. Thus D is not bounded. We must have
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(9.4) a;

= iy <1, 1<j<i
For 1 <j </ — 1, we define p(j) as the greatest integer p such that a; —a, <1,

j<p</¢. Obviously we have
2<p() < pR) < <pl)<pli+1)=-=p( 1) ="

For 2<j</, we define g(j) as the least integer g such that a, —a; <1,
1 <g<j We have

1=9q2)<q@B3)<--<q)<i+ 1

The function g can be determined by the function p in the obvious manner. For
i+1<j</¢ let r(j) be the greatest integer such that a;+a,>1, j#r,
I <r<¢. 1If such r(j) does not exist for some j, we have i =0, a, +a, <1.
Then we find o,D =D for a =2¢,. Therefore in this case, we can apply the
results in §8. We may assume that r(j) exists for i+ 1 <j </. We have

tzr(i+)=-->rf) =i
The functions p and r completely determine the shape of the domain D.

Lemma 9.1. Suppose that one of the following conditions are satisfied.
(1) Forsome 1 <j<i—1,p(j)=p(j+ 1) and q(j)=q(j+1). (Ifj=1, we
understand q(1) = q(2).)
(2) For some i+1<j<¢—1, q(j)=q(+1), and r(j)=r(G+1) or
r)=j+ 1L rG+1)=j
Then there exists 8€¥ such that {vy, &> =0 for some vo€D.

Proof. Suppose that (2) is satisfied. Among the inequalities defining the
domain D, we consider those involving the variables a;j and a;,,. Put
q=q(j). We have

9.5) l>a,—-a;> 1, 1>a,—a;,,>—1,t>q, t#j, j+1,
9.6) a—a;>1,a—a;,,>1, 1<t<aq,
(9.7) 1>aj—aj+1> — 1.

If r(j)=r(j + 1), we have, putting r = r(j),

(9.8) a+a;j>1,a+a.,,>1t<r,
9.9) —l<ag+a;<l, —l<ag+a,, <L t>r t#j j+1,
9.10) ajit+a; ., >1ifr>j+1, —l<aj+a;,, <1lifr<j

If r(j)=j+ 1, r(j + 1) =j, we have
©.8) a+a;>1,a+a;,,>1,t<},

9.9) —l<a+a;<l, —1<ag+a;,;, <1, t>j+1,
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9.10) a;+aj, > 1.

By (9.5) ~ (9.7), and (9.8) ~ (9.10) or (9.8) ~ (9.10") according as the cases, we see
that ¢,D =D for a =¢; —¢;,,, i.e., D is invariant under the permutation of
variables a;, a;,,. Our assertion follows from Lemma 8.4.

If (1) is satisfied, we find o,D = D for a = ¢; — ¢;,, similarly as above. This
completes the proof.

Our main objective in this section is to prove the following Theorem.

Theorem 9.2. If the points of D represent unitarizable representations, we have
—l<a <], 1<i<t.

First we state a consequence of this Theorem.

Lemma 9.3. If all the points of D satisfy
—l<ag <1, 1<i</,

then ¢,D = D for some aeX™.
Proof. We may assume that D contains a point v =/  a;; such that
l>a,>a,>-->a,>0.

We have q(i)=1, 2<i <. Assume that there does not exist aeZ* such that
6,D=D. By Lemma 9.1, (2), we must have

9.11) r)y>rQR)>-->r(¢ —1)>r().
Since ¢ > r(1), r(#) > 1, we immediately obtain
ry=¢+1—1, I1<i<?t

/+1 /+1
by (9.11). If ¢ is odd, we have r(%) = %, which contradicts the definition

of r. If £ is even, put £ =2n. We have r(n)=n+1, r(n+ 1) =n. Applying
Lemma 9.1, (2), we get a contradiction. This completes the proof.

Therefore as explained in §8, it suffices to prove Theorem 9.2 to determine
the unitarizability. The following Lemma shall play a crucial role in the proof.

Lemma 9.4. Let £ > 4. Suppose that wD, the closure of wD for some we W,
contains a point vy of the form
¢
vo=(a— 1), —&)—ae;+(a—2)e,+ Y b
j=s

which satisfies the following conditions.

(1) bj£b #0, £1,5<j<t<l b#0, 1, 5<j<?.
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) a#-101/21,3/22,3.
@) by#+@+1), £a, t(@—1), +@@a—2), £@—3), 5<j<t

Then all the points of D represent non-unitarizable representations.

Proof. Assume that a point of D represents a unitarizable representation.
Then all the points of wD represent unitarizable representations as shown in
§8. By virtue of a result of Tadi¢ [26], Theorem 2.7, we see that all the

composition factors of PS(x(v)) for ve wD are unitarizable, in particular hermitian.
Define w,e W by

W28j=8j,1SjS2, W28j=—81,3sjsl.

Put yo = x(vo). By the assumptions (1) ~(3) and by Lemma 4.3, we see that
T,,w, is holomorphic at y, and Ker(T,,w,(xo)) = {0}. We have a,wyx, =75 -
Hence

(@1, @2) =cazwz(xO)"J (T35, (x0) ©1)(9) ©2(9) dg, @4, @, € PS(xo)
B\G

defines a non-degenerate invariant hermitian form on PS(x,). We have |W, | =2
by the assumptions (1) ~ (3). Let V be the G-submodule of PS(y,) generated by
Qk,z- By (4.18) and (4.14), we see that

T o, (X0) P yo = €O por € # 0, PS(xo) 2 Ker(To,0,w,(x0)) 2 {0}
Let

V(g) = Xciox 990V, cieC. g, gieG.
Then we have
(Tor0,w ()W) (9) = € 3. Ci0k (99D, g€G.

By this formula, we find VnKer(T,,,w,(x0)) = {0}. Hence PS(x,) has two
irreducible G-submodules. Therefore, by Proposition 8.5, PS(x,) must be a direct
sum of two irreducible G-submodules. Since

PS(xo) 2 Ker (T, (x0)) 2 {0},
Ker(T;,(xo)) must be irreducible. On the otherhand, it is easy to see that

Ker (15,6,4,(x0)) 2 Ker (T, (x0)),
Ker (T:ncr;q(XO)) n KCI' (7}2(%0)) E] (pK.xo'

(A simple way to see (9.12) is to use Casselman’s formula [9], 3.4) This is a
contradiction and completes the proof.

9.12)

Proof of Theorem 9.2. We may assume i > 1 in (9.3). It suffices to show
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that a point of D represents non-unitarizable representation. We assume £ > 2
and set the hypothesis of induction, i.e., we assume that the theorem holds for
groups of type C whose ranks < ¢ — 1. Throughout the proof, we let
V=@ Re be the vector space attached to the adjoint group of type C, .,
similarly as above. In the proof, we shall consider a domain D which contains
a point veV By this term, we shall always understand that v¢$f) and that
Dav is the connected component of V — §, where § is the family of hyperplanes
in V similary defined as above. We shall prove the theorem by contradiction.
Thus we assume that all the points of D reresent unitarizable representations. The
proof is rather involved. We divide it into several cases.
CasE (A) We assume i =¢ — 1.

Thus we assume that D contains a point v =) ', a;e; such that

a,>a;>-->a,_,>1>a,>0.
First we note the following fact. Suppose that a;.,....,a, are chosen so that
Qi1 >>a,1>1>a,>0,a,-a,,<1, a4 —apy; >1,j+1<t</ -1
Then choose a; so that

1+ Apj+1 < a; < 1+ Ap(jy» a; > aj.

This choice is always possible since a;,; <1 + a,;+;, <1 +a
procedure, we can construct a point in D.
Let g = q(£). We have

s)- Repeating this

(9.13) a,—a, <l, a,-;—a,> 1.
We can choose a, so that
(9.14) 0<a,<1/2

We have p(q) =7, p(q — 1) <¢ — 1. By the remark above, a, can attain values
less than 1 + a, and a,_, can attain values less than 1 + a,,_,,. Hence we find
easily that we can choose a,_, > a, so that

9.15) a,-1 + a, > 3.
By (9.13), (9.14) and a, > a,.,, we have

(9.16) a, < 3/2, a, + a;., <3.

In ¥, we consider a domain D which contains a point Z ajej+bie, o1 +bye, 45
such that ' ! a;eD, a; >-->a,_,>1>a, >0, l>b1,b2>0,

9.17) a,—b;j<l,a,;—b;>1a,+b<1,j=1,2,

9.18) b, +b, < 1.

The conditions on b; are
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a,— 1 <bj<a,_,—1, bj<1—a,

which are satisfied by 1/2. Hence we see that there exists b, and b, which
satisfy (9.17) and (9 18) i.e., the domain D is non-empty.
We have o,D = D for ® =& 41 — &+, By Remark 8.3 and (9.18), we see
that all the points of D represent unitarizable representations. Assume
iz 1aJsJ+b €,+1 + byg,,,€D, the conditions (9.13) ~ (9.18) being retained.
We set

’ ’ "o
ay=a,—1, bj=a,—1, by=2—a,

Then we have a, = b} < b; by (9.16). We have

a,—a, =1, -y —by=a, y +a,—2>1
by (9.15). We also have

a, + by =2a,-2<1, a, +by,=b;+by;=1
by (9.16). Therefore we see that

¢—1

Y oajei+(a,— e, +(a,— e,y +(2 —aq)steIS.
i=1

Hence, for some we W, we have

¢—1
(a, — 1)(ey — &) — aze; + (a, — 2) &g + Z aj€jrq + Zﬂ 0181+3EWD.
Jj= j=q

Here W is the Weyl group of type C,,,. Since we could have chosen a;,
1<j<¢—1,j+#q in “generic position”?, we can apply Lemma 9.4. We have
obtained a contradiction.

We therefore may assume / —i>2, i > 1. We shall consider three cases.

Case (B) We assume a;,y +a;4,,>1,4a,_, +a,<1.

The assumption implies £ — i > 3. Wecanfinds, i +2 <s<¢ — 1so that

(9.19) a;_y +a;> 1, ag+az,, < 1.

First we note the following fact. We choose a;>a,,; >:->a, >0 so that
a;+as.; <1. We choose a; for s—1>i+1 in the following way. Suppose
that a;,,,...,a, are chosen. Then choose a; so that

1 —a,;<a;<1—a4+,, aj+, < aj.

Since we have r(j)>s for s—1>j>i+ 1, we see easily that this is always
possible. Then q;,,,...,a, satisfy the required properties to belong D concerning
the additions among them. Let 1<j<i and suppose that g;,,,...,a, are
chosen. We can choose a; so that

2 This remark shall apply to the succeeding arguments as well. We shall not repeat it.
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1+ a,5+1 <a;<1+ay;, a;>aj.q.

By successive application of this procedure, we can construct a point in D.
Let g = q(s). We have

(9.20) a,—a; <1, a_y —a;> 1.

First we assume

Suscase (I) a, — a,.y > 1.

By the remark above and the assumption, we can choose a,, a,,; and q
so that

(9.21) a;>1/2, a,>3/2, a;,+a,,; <3.
In ¥, we consider a domain D which contains a point Y198+ bie i +bye, 4,
such that

]
Y ajgeD, ay>-->a;>1>a,,>>a,>0, 1>by, b, >0,
j=1

9.22) a,—b;>1, apy —b; <1, a,4b;>1, a +b,<1,j=12
(9.23) b, +b, < 1.

The conditions on b; are
a,—1>b;>a,.,— 1, l—ag;>b;>1—a,

which are satisfied by 1/2. Hence we see that D 5 @.

By Remark 8.3 and (9.23), we see that all the points of D represent
unitarizable representations. Take Z:= ,a;ej+bye, . +bye, 4 ,€D, the conditions
(9.20) ~ (9.23) being retained. Set

ag=a,—1, by=a,—1, by=2—a,

We have a; = b; > b; by (9.21). We have

’

a—a;=1, a,—by>1, a,.y—by=a,+a,,, —2<1
by (9.23). We also have
ag_, +by=2—(a,—a,_;)>1, Aoy +ag=(a,—a)+ (@, +a,.,)— 1< 1.
Therefore we see that
¢ ~
Y a4 (a,— Deg+(a,— e, vy + (2 —aye, +,€D.
j=1,j#s

In the same way as in Case (A), we obtain a contradiction.
Next we assume
Suscase (II) a, —a,,; < 1.
By (9.20) and the assumption, we have q(s) = q(s + 1) = ¢q. By Lemma 9.1,
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(2) and the induction hypothesis, we may assume r(s + 1) < r(s). By (9.19), we
have r(s) =s — 1. Thus we have a,,, + a,_, < 1. Then it follows r(s — 1) =s.
Again by Lemma 9.1, (2) and the induction hypothesis, we may assume
q(s — 1) < q(s). Thus we have

(9.24) a,_; +ag, <1, a,_;—a,_, <1
By a,-1 +agey =(a,-1 — a5-1) + (a5 + a54,), We get

(9.25) gy + Gy <2.

Now we can choose a,_,, a, and a so that

(9.26) ag>1/2, a,_,>3/2, a,_,+a,<3.

In ¥, we consider a domain D which contains a point Z;= (agj+bie, o +bye, 4,

such that

0

a;e;eD, a;>-->a;>1>a;4,,>->a,>0, 1>b,, b, >0,
ji=1
9.27) a—b;<l,a,_,—b;>1,a,+b;>1,a,,,+b;<1,j=12,
(9.28) by +b,< 1.

The conditions on b; are

aq_1_1>bj>aq—l, l_as+l>bj>1—as,
which are satisfied by 1/2. Hence have D # Q.
We see that all the points of D represent unitarizable representations. Take
;zlajej +bie, 4y +bye,+,€D, the conditions (9.24) ~ (9.28) being retained.
Set
ag=a, -1, bi=a,_,—1, by=2—a,_,.
We have a; = b; > b) by (9.26). We have
a,_; —a; =1, a—by=a,_y+a,-2<1

by (9.26). We also have a,_, + b, =2 —(a,_; —a,_,) > 1 by (9.24), a,,, +a, =
(ag—1 +ag4y) — 1 <1 by (9.25). Therefore we see that

Y agi+ (@ — Deg+ (@, — Degyy +(2— aq_l)s,+2eﬁ.

j=1,j#s

In the same way as in Case (A), we obtain a contradiction. This finishes the
proof in Case (B).

CAse (C) We assume a;,, + a;,, < 1.
In this case, we have

(9.29) r()=i i+1<j<¢
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Let g=gq(i+1). We have
(9.30) a

—a;4, <1, a,_;— a;;; > L.

q q-1

By (9.29), Lemma 9.1, (2) and the induction hypothesis, we may assume
q(i+2)<gq(i+1). Hence we get

9.31) a, — a;4, > 1.

By a, + a;45 = (@, — G;41) + (@41 + a;4,), we have

(9.32) a, + a;4, < 2.

By (9.31), we see that we can choose a,, a,,; and g;,, so that

(9.33) Gy > 1/2, a,>3/2, a,+ a4, <3.

In V, we consider a domain D which contains a point Z;=1 ajgj+bie, 1 +bye,

such that
(9.34) a,—b;>1, a,,;—b;<l, a,,+b;>1, g, +b;<1,j=12,
(9.35) 1>b,, b,>0, by +b,<1.
The conditions on b; are
a,—1>b;>a,,, — 1, l—a,>b;>1—a;,,,
which are satisfied by 1/2. Hence we have D #@. We see that all the points

of D represent unitarizable representations. Take ;=1ajej +bie, 41 +bye,40€
D, the conditions (9.30) ~ (9.35) being retained. Set

ajyy=a,—1, by=a,—1, by=2—a,
Then we have a/,, = by > b;. We get
a,— aj =1, Aoy —by=a,+a,,, —2<1
by (9.33). We also have
aivy +by>1, ay1+ G =0a,+t 0, —1<1

by (9.32). Therefore we have

¢ —
Y a4 (a,— ey + (a, — 1)8l+1+(2_aq)80+2€5'
j=1,j#i+1
In the same way as in Case (A), we obtain a contradiction.
It remains to consider
Case (D) We assume a,_; +a, > 1.
In this case, we have

(9.36) r(j)=¢, i+l1<j<é—-1, rf)=7-—1
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Let g =q(/). We have

(9.37) a,—a, <l, a,-, —a, > 1.

By (9.36), Lemma 9.1, (2) and the induction hypothesis, we may assume
q(¢ — 1) < q(£). Then we have

(9.38) v a,_;—a,_; <Ll

q

We can choose a,_;, a, and a, so that

9.39) a,>1/2, a,_,>3/2, a,_;+a,<3.

In ¥, we consider a domain D which contains a point z;z L€ +bie, i tbye, 4y
such that

(9.40) a,—b;<1, a_y—b;>1, a,+b;>1, j=12

9.41) 1>b,, b, >0, by +b, <1

The conditions on b; are
a,—1<bj<a, -1, 1 —a, <b,,

which are satisfied by 1/2. Hence we have D #@. We see that all the points
of D represent unitarizable representations. Take Z;=1 ajej+bie, 1 +bre 06
D, the conditions (9.37) ~ (9.41) being retained. Set

a,=a,_,—1, bj=a,_,—1, by=2—a, ;.

We have a, =b; >b;. We get a, — b, =a,_, +a,—2<1 by (9.39). We also
have a,_, + by =2—(a,_; —a,—;) > 1 by (9.38). Therefore we obtain

¢ -~

Z aje; +(a,—y — Ve, +(ag-1 — Deygoy + (2 —ag-1)€,42€D.

ji=1
In the same way as in Case (A), we obtain a contradiction. This completes the
proof of Theorem 9.2.

Now we consider the general case where z = f= L &€ Q(Z) is not necessarily
0. Replacing y(v) by w(x(v)), we may assume

;=0 1<i<n, =L n+1<gi</.
We see that £ — n is even. The family of hyperplanes in V considered in §8 are
g;=x1(1<i<n), ag+a;=x1(1<i<j<n), gxa==x1 n+1<i<j<s).

This shows that we can treat the variables a; (1 <i<n) and a; (n+1<j <)
separately. We can normalize a,.....,a, so that

uyq > Quep > >a,_y>a, >0.

Then we obtain
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(942) vy —a, < 1

by the same proof as Theorem 9.2. Then we see that ¢,D = D for some aeX*
by the same proof as Lemma 9.3. This completes the determination of the
unitarizability for groups of type C,.

§10. The case of type B,

The simple roots are

Oy =& — &y, Uy =&y —&3,7 0,1 =&, 1 — &, &, =&,
1 [4
PE)=D/-1Z¢e + Z(g Z 3i>a Q) = Di-1Zs;.
i=1
We identify {g;} with its dual basis with respect to < , >. Then we have
E=2(1<i<{), efe=6+e (1<i<j<y),

PE)= @t Ze, o¢) = { i a;g;la;eZ, i a; =0 mod2}.
i=1 i=1

Woti = — &, 1 <i</, wy=(010,20,.10,0,_1::0,0,)(6,-,0,0,_,)0,.

We assume that G is of adjoint type. For z=zi“=lcisieQ(E) and v =
Y/ | aie:€V, a;eR, we define y(v)e X by

(10.1) 10 (B@) = (= )P gP, BeP(E).
We have

1) (E) (@) = ¢**, I<i</,
(10.2) 1) = g) (@) = (= D) 9g"™%,  1<i<j</,

10 (& F &) (@) = (= 1)f+egn*e,  1<i<j<t.

First we consider the case z=0. The family of hyperplanes $ in V
considered in §8 are

a=%1/2(1<i<l), ata==+1(1<i<j</).

Let D be a connected component of ¥V — §. Replacing D by wD, we W, we may
assume that D contains a point v = ,.”=1a,~s,» such that (v, &) >0 for every
1 <i<¢. This condition is equivalent to a; > a, >--->a, > 0. Take i so that
a;>1/2, a;;, <1/2. Then D contains a point v = ,.'=1a,~s,- such that

(10.3) a,>a,>-->a;>1/2>a;,y>->a,>0.

In a similar manner as in the case of type C,, we see that the boundedness of
D implies
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(10.4) a;j—a;.q <1, l<j<¢—-1

For 1 <j<¢ — 1, we define p(j) as the greatest integer p such that a; —a, <1,
j<p<{ For 2<j<¢, we define g(j) as the least integer g such that
a—a;<l, 1<q<j

Lemma 10.1. If a, + a, <1, we have 0,D =D for a =¢,.

Proof. Wehavea, +a,<1,1<t<¢—1 from the assumption. Hence the
assertion is obvious.

We assume
(10.5) a,+a,>1

For i+ 1<j</¢, we define r(j) as the greatest integer r such that a; + a, > 1,
j#ER1<r<t.

Lemma 10.2. Suppose that one of the following conditions are satisfied.
(1) Forsome 1 <j<i—1,p(j)=p(j+Dandq(j)=q(j+1). {fj=1, we
understand q(1) = q(2).)
(2) For some i+1<j<¢—1, q(j)=q(j+ 1), and r(j)=r(j+1) or
r)=j+ 1L rG+ 1=
Then there exists §€X such that {vy, &> =0 for some vyeD.

The proof is identical to that of Lemma 9.1.

Lemma 10.3. Ler /> 4. Suppose that wD, the closure of wD for some
we W, contains a point vy of the form

¢
vo=1(a—1)(e; — &) — ae; +(a—2e, + Y, bjg;
j=s
which satisfies the following conditions.
(1) bjxb,#0, £1, 5<j<t<{, b;#0,£1/2 5<j</.
(2 a#—1/2,0,1/2, 1, 3/2, 2, 5/2.
(3) bj#x(a+1), £a, £(@a—-1), £(@—-2), £(@—-3),5<j</
then all the points of D represent non-unitarizable representations.

Again the proof is identical to that of Lemma 9.4.

Theorem 10.4. The points of D represent unitarizable representations if and
only if

—-1/2<a;<1/2, I1<i</.
Proof. Assume that this condition holds. Let v,eD and put y; = x(vy).
Since 0, the origin of V, belongs to D, we can easily find a continuous map

p:[0,1] - X, so that the conditions of Proposition 7.3 are satisfied. Hence
n(x(v,)) is unitarizable.
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We shall prove “only if” part. It suffices to show that a point of D represents
a non-unitarizable representation assuming i > 1 in (10.3). We assume £ > 2 and
set the hypothesis of induction on Z. Throughout the proof, we let V= @ /- 2R
be the vector space attached to the adjoint group of type B,,,. In the proof
we consider a domain D which contains a point veV. By this term, we shall
always understand that v¢$ and that D>v is the connected component of
V— f) where 5 is the family of hyperplanes in V51mllarly defined as above. We
shall prove the theorem by contradiction. Thus we assume that all the points
of D represent unitarizable representations.

Case (A) We assume a; —a, < 1.

Since a, —a,< 1, | <t <u </, we obtain

(10.6) pty=2¢, 1<t<f-—1, qi)=1, 2<r</.
By Lemma 10.2 and the induction hypothesis, we may assume
(10.7) (z2r()>r@2)>->r@)=2r(i+1)>-->r(¢)> L

SuBcase (I) We assume r(i) > r(i + 1).
By (10.7), we obtain

ry=¢+1—j, 1<j<t

£+ 1
If 7 is odd, we get r(f-; 1)— % which contradicts the definition of r. We

assume 7 is even and put £ =2n. Then we have r(n)=n+ 1, r(n + 1)=n. By
Lemma 10.2 and induction hypothesis, we have n =i. Assume n= 1. Then we

_ 3 1 .
have Dsv,, v,=5£1+582. We see that x(v,)=0d5'%. Since PS(65'/?)

contains a non-unitarizable constituent (cf. Borel-Wallach [6], XI), this is a
contradiction. We assume n > 2. We can choose a, and a, so that a, > 1,
a, < 1. In V, we consider a domain D which contains a point Y /_, a;&; + by&, 4,
+ b,e, 4, such that

(10.8) a,—b>1,a,—b,<l,a;,+b,>1,0a,+b,<1,t=1,2
(10.9) 1/2>a,,>b,,b,>0.

Then we find D #@. We have 0,D = D for a = €,+1 — €,+2- By Remark 8.3
and (10.9), we see that all the points of D represent unitarizable representations.?
Set

a,=1+a,, ay=1-—a,, bi=a,,
and choose b; so that a,, > b, >0. We have a; > a; since a; <1 — a,,, and

a, + a,,—; > 1. Hence we have

[ T~
(1 +ay)e, + (1 —az)e, + Y, ae, + az,e,41 + bye, €D,
t=3
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Note that we could have chosen q, 3<t<¢ and b, in “generic position”>.
Hence we obtain a contradiction by Lemma 10.3.

In the following subcases, we shall assume r(i) = r(i + 1). This implies £ > 3.

SuBcase (II) We assume r(j) —r(j+1)<1 forall 1<j<¢—-1.

We have either r(1)=¢, r(/)=2 or r(l)=¢—1, r(¢/)=1. First assume
r(l)=/¢, r(£) =2. By (10.7), we have

) £+ 1—], 1<j<i,
ND={ C .
£+ 2—], i+1<j</s.
If £is odd, put £ =2n—1, n>2. If n<i, we get r(n) = n, a contradiction. If
n>1, we get rn)=n+1, r(n+1)=n By Lemma 10.2 and the induction
hypothesis, we get a contradiction. If £ is even, put £/ =2n, n>2. If n>i, we
get r(n + 1) =n + 1, a contradiction. If n<i, we get r(n)=n+1, rn+1)=n
By Lemma 10.2 and the induction hypothesis, we get a contradiction.
Next assume r(1)=¢ — 1, r(£) = 1. By (10.7), we have

. £ — 1<j<i
r(j) = . .
f+1—j, i<j<t.

If £is odd, put £=2n—1, n>2. If n>i, we get r(n) = n, a contradiction. If
n <i, we have r(n — 1) = n, r(n) = n — 1, a contradiction. If / is even, put £ = 2n,
n>2. If n<i, we get r(n)=n, a contradiction. If n>1i, we get r(n)=n+ 1,
r(n + 1) = n, a contradiction.

Suscast (III) We assume r(j) —r(j+ 1) =2 for some j, 1 <j<¢— 1.

By (10.7), we have

(10.10) r(l)=¢, r(¢) = 1.
Put ry =r(j + 1). By definition, we have
ajp1+a,>1, a4 +a,,01<1, a;+a,,.,>1.

Hence we have r(ro + 1) =r(ry + 2) =j. By (10.7), we have i =r, + 1. Thus we
get

(10.11) j=ri)=r@i+1), j#ii+1
First assume j> i+ 1. By (10.7), we have

£+ 1—t, 1<t<i
rf)= {£+2—1t, i+1<t<j
£+ 1—1t, j<t<{-—1.

By (10.11), we have
(10.12) i+j=¢+ 1

* These remarks shall apply to the succeeding arguments as well. We shall not repeat them.
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Assume ¢ is even and put £ =2n. Since 2n+ 1 =1i+j>2i+ 1 by (10.12), we
getn>i+1. If n+1<j, we have r(n+ 1) = n + 1, a contradiction. We may
assume n>j If n=j we get i=j+1 by (10.12) which contradicts the
assumption j>i+ 1. We may assume n>j+ 1. Then we have r(n) =n + 1,
r(n+1)=n. We get a contradiction by Lemma 10.2 and induction hypothesis.
Assume 7 is odd and put £=2n—1, n>2. By (10.12), we get n>i+ 1. If
n+1<j, we have r(n) =n+ 1, r(n + 1) = n, a contradiction. We may assume
n>j. If n=j, we get i =j by (10.12), a contradiction. Hence n>j+ 1 and
we get r(n) = n, a contradiction.
Next we assume j <i. By (10.7), we have

C+1—t, 1<t<j
=1 ¢—ut j+l<t<i
£+ 1—1t, i+l<t</t-1.

By (10.11), we have
(10.13) i+j=¢.

Assume ¢ is even and put £ =2n. By (10.13), we have n>j+ 1. If n <i, we
get r(n)=n, a contradiction. If n>i+ 1, we have r(n)=n+1, rn+ 1) =n.
By Lemma 10.2 and induction hypothesis, we get a contradiction. Assume ¢ is
odd and put £=2n—1. By (10.13), we have n>j+ 1. If n>i+ 1, we get
r(n) = n, a contradiction. Hence we may assume j+ 1 <n<i Ifn>j+2 we
have r(n — 1) =n, r(n)=n—1. By Lemma 10.2 and induction hypothesis, we
get a contradiction. Therefore we may assume n =j + 1. By (10.13), we obtain

£{=2n—1, i=n, j=n—1, n>2
We note that

a,+ay,—1>1,a,+a,,_,<1, and a,+a,,_,>1if n>3

We can choose a, and a, so that a;, > 1, a, < 1. In ¥, we consider a domain
D which contains a point Y/ a;¢;+ by&, ., + by&,,, such that

(10.14) a,—b>1, ay—b <1, a,+b>1, ay+b<1, t=1,2
(10.15) 1/2>ay,y > by, b, >0.
Then we find D # @. Set

ay=1+a3,-y, ay=1—ay,-y, by =45,

and choose b, so that a,,_; >b; >0. We have a; > aj since a; <1 —a,,_,,
and a; + a,,_,>1if n>3. Hence we obtain

[] ~
(1 +ay,-)e; +(1 —az,_y)e; + ) a6+ Ay, 18,4 + bre,12€D,
(=3
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which contradicts Lemma 10.3. This finishes the proof in Case (A).
In the following cases, we shall assume

(10.16) a, —a, > 1.

Let 1<j<i If aj—a,>1, we have a;+a, > 1. Assume that a;+a, <1
holds for every j, 1 <j<i such that a;—a, <1. Then we find easily that
6,D =D for « =¢,. Therefore we may assume

(10.17) There exists j, 1 <j <i such that a; —a, <1, a;+a,>1.

We divide the series (10.3) in the form

(10.18) ay;>a,>>a;>1+a,>a;,,>>a;>1/2>a;4;>-->a,>0.
By (10.16) and (10.17), we have

(10.19) izl i—-j=1, ¢£—i>1l

(If £ =1i, D is not bounded.) By (10.17), we get

(10.20) ajy;+a, > 1.

Case (B) We assume i —j > 2.

Suscase (I) We assume a;,, +a, > L.

We note the following fact. First choose a;,4,...,a, so that 1/2 > a;,{ > -
>a, >0. Then choose a,, j + 3 <t <i so that

a+auy>1 a+agy, <1, a>a.,.
Then we choose a;,;, a;,, so that
(10.21) l+a,>a;,,>a;,,>1—a,, Ajry > Ajys.
When a,,,...,a, are chosen for t <j, we can choose a, so that

L+ a1 <a, <1+ ay,, a,>a, ...

By successive applications of these choices, we can obtain a point in D. Since
(10.21) is the only constraints on a;, ;, a;4,, we can choose 4;,, and g;, , so that

(10.22) aj+1 + aj+2 = 2, aj+1 > aj+2.

Then we have 1 <a;;; <3/2. In V, we consider a domain D which contains
a point Y./ a;;+ bye, .y + bye, 4, such that

(10.23) ajp1+b>1, a5, +b <1, a5, —b>1,0a;,,—b<11t=12
(10.24) 1/2>a, >b,, b, >0.

1_:he above conditions reduce to aj,; —1>b,>0, t=1,2 and we find
D #0@. We set

’
bi=a;,, — 1, by =a;,; — 1.
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Then we see that

¢ ~
Z ae, + (2 —aj41)842+ (@541 — Degoy +(a501 — 1), 4,€D,

t=1,t#j+1

which contradicts Lemma 10.3.
In the following subcases, we shall assume

(10.25) Gz +a, <1

Suscask (II) We assume £ —i > 2.
First we assume

(10.26) Gy +ag_; > 1.

We can choose a;., and a;,, so that a;,, > 1, a;;, < 1. In V¥, we consider a
domain D which contains a point ./  a;&; + b€, + by€, ., such that

(1027) ey +b,> 1, oy +b, <1, a5y —b > 1, ay —b, <1, 1=12,
(10.28) 1/2>a, > by, by > 0.
We find D #@. Then put

ajy,=1+a,, aj,,=1-a,, by=a,

and choose 0 < b; <a,. We find aj,, >a, for u>j+ 2 since a, +a, <1 by
(10.25). Since we can choose a;,...,a; by the procedure described above, we find

¢ ~
Y ag,+(1+a)e+(1—a)e, tae,vq +bye, 426D,
t=1,#j+1,j+2

which contradicts Lemma 10.3.
Next we assume

(10.29) aj,,+a,_; <l

We have r(¢ — 1) =r(¢) =j + 1 by (10.20), (10.25) and (10.29). By definition, we
have q(/)=j+ 1. If aj—a,_;>1, we get q(¢/ —1)=j+ 1, which leads to a
contradiction by Lemma 102 and induction hypothesis. Therefore we may
assume

(10.30) a;—a,_; <1

We can choose a;,, so that a;,, <1. In V, we consider a domain D which
contains a point Y./  a;e; + bye, .| + bye, 4, such that

(10.31) ai—b>1,a;,,—b<1la,,+b<1t=1,2,

(10.32) a,>by, b, >0.

We find D #@. Set
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aj=1+a,, aj,,=1-—a,, bi=a,

and choose a, > b3 >0. By (10.25), we have aj,, >a;,, and a;—a,_; <1
holds (cf. (10.30)). Since we can choose a,,...,a;_; by the procedure described
above, we have

¢ ~

Y ag+(1+a)eg+(1—a)ej, +ae,41 +bre €D,
t=1,t#j,j+1

which contradicts Lemma 10.3.
Suscase (III) We assume £ —i= 1.
By (10.25), we have

(10.33) a,<l1—a,, j+2<u<t(—1

We can choose a;,; so that a;,; >1. In V, we consider a domain D which
contains a point Y [, a;& + by&, 4, + b€, 4, such that
(10.34) aj+l _b(> 1, aj+2—b,< 1, aj+1 +b,> 1, aj+2+b'< 1,

We find D #@. By the specialization
aj,,=1+a,,aj,,=1-a,, by=a,, a, >b;>0,

we obtain a contradiction as before.
Case (C) We assume i =j + 1.
In this case, (10.18) takes the form
(10.35) a,>-->a;>1+a,>a;,;>1/2>a;,,>->a,>0.

SuBcask (I) We assume ¢ —j > 3.

By (10.20), we get r(£) = r(£ — 1) =j + 1. By definition, we have q(¢) =j + 1.
Ifaj—a,_, > 1, we have q(/ — 1) =j + 1 and we get a contradiction by Lemma
10.2 and induction hypothesis. Hence we may assume

(10.36) aj—a,_, <l

We can choose a;,, so that a;,; <1. In V, we consider a domain D which
contains a point Y./ ;& + by&,+1 + by€p4, such that
(10.37) aj—b,>1,a;,, —b<1,a;+b>1,a;,,+b<1,t=12,
(10.38) 1/2>a, >b,, b, >0.
We find D #@. Set

aj=1+a,, a,,=1-—a,, by=a,

and choose a, >b;>0. By (10.25), we have aj., >a;,,. We also have
a;—a,_, <1 (cf. (10.36)). Since we can choose a,,...,a;_, by the procedure
described above, we have
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¢ —
Y ag+(+a)e+(1—a)eq +ae, ., +bre, . €D,
t=1,t#j,j+1
which contradicts Lemma 10.3.
Suscase (II) We assume £ —j = 2.
In this subcase, (10.35) takes the form

(10.39) ay>->a, ,>1+a,>a,_,>1/2>a,>0.
We have
(10.40) a,_1+a,>1, a,_,—a,>1, a,_,—a, ;<1

We can choose a,_, so that a,_; < 1. In ¥, we consider a domain D which
contains a point Y /_ a;&; + byg, 4, + by, ,, such that

(10.41) a,_,—b>l,a,_—-b<l,a,_,+b<1,t=1,2,
(10.42) 1/2>a, >by, b, >0.
We find D # Q. By setting

ay_,=1+a,, a,_,=1—a,, bi=a,,

and choosing a, > b3 > 0, we can find a desired point.
This completes the proof of Theorem 10.4.

Now we consider the general case where z =) /| c;e;€ Q(Z) is not necessarily
0. Replacing x(v) by w(x(v)), we may asume

;=0 1<i<n, g=lLn+l1<i<?
The family of hyperplanes in V considered in §8 are
a=+1/2(1<i<n), ata;=x1(1<i<j<n),
a==x1/2n+1<i</), ata=1(n+1<i<j<y).

This shows that we can treat the variables a; (1 <i<n) and a; (n+1<

<Y)
separately. Assume that the non-unitarizability of the domain for # = 4, n 4

J

2:

(10.43) —1/2<a,ay<1/2<a,a4, —1<a,—a, <1, —1<a, —as <1,
1<a1+a2, 1<a3+a4.

Then all the arguments in the proof of Theorem 10.4 apply to this case and we
obtain

(10.44) —-1/2<a;<1/2, 1<i</?

as the necessary and sufficient condition for the unitarizability.

4 In Case (A), Subcase (I) in the proof of Theorem 10.4, we have used the existence of a
non-unitarizable constituent of PS(dz!/%). It becomes necessary to consider this case when Case
(A), Subcase (I) occurs simultaneously for separated variables a;(1 <i<n) and a;(n+1<j<¢).
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It remains to show that the domain D given by (10.43) represents non-
unitarizable representations. Changing D to wD, we W, we may assume ¢, =c¢, =1,
¢3=c,=0. We take a point

1 1 —
Uo = — 581 + 582 + 0383 + a484ED

so that
a;>1/2>a,>0, ay—a, <1, az+a,>1
Put y, = x(vo). We have |W, | =2. Define w,e W by
wye =¢, i=1,2, wye = —¢g, i=3,4.

Then we have o,w, ), = %o '. Set

(¢1,¢2)=J (T, (20) 21)(9) @2(9) dg. ©1, ©2€ PS(x0)-
B\G

Then (,) defines a non-degenerate invariant hermitian form on PS(xo)/
Ker(T,,w,(x0)). Let V be the G-submodule of PS(y,) generated by ¢k, . We
have T .,(X0)Qk.zo = CPk.p, With c#0. Set ¥, =Ker(T;,.,(x0)). Then we
obtain

(10.45) V¥, = {0}

in the same way as in the proof of Lemma 9.4. Hence, by restricting ( , ) to
V, we obtain a non-degenerate invariant hermitian form on V. By (10.45),
0%V, & PS(xo) and by Lemma 4.6, V must be irreducible. Let v, = g,w,(v) =
l1e, —1e, —aje; —aye, and put x, = x(v,). Set

(col,<pz)’=f (Tyw,(X0)@1) (@) @2(9) dg, @1, 92€PS(xy).
B\G

Then (,) defines a non-degenerate invariant hermitian form on PS(x,)/
Ker(T;,u,(x1)). Put ¥ = Ker(T,,u,(x;)). Since ¢k, €V;, all constituents of
PS(x,)/V. are not spherical. If the G-module PS(x;)/V; is irreducible, we see
that the distribution ¢T, ,,,, is of positive type for ¢= +1 since it is
unitarizable. By Lemma 5.4, this implies that the domain

0>—-ay>—1/2>—a;, a3—a, <1, az+a,>1

represents unitarizable representations. We have already shown that this is not
the case. Therefore we may assume that PS(x,)/V; is not irreducible. Let W
be an irreducible G-submodule of PS(x,)/V;. If (, )|W is degenerate (i.e., zero
form), we find PS(x,)/V, contains a constituent W’ isomorphic to W as in the
proof of Lemma 8.5. By T;, .,(x;), W is isomorphically mapped to a G-submodule
W of PS(x,) and W' to a constituent of PS(y,). Then C;y2,, occurs in
(W)y. This leads to a contradiction as in Lemma 85. If (,)|W is
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non-degenerate, there exists an irreducible G-submodule of PS(x,)/¥; such that
wnw, ={0}. By T, .,(x;), W and W, are mapped isomorphically to G-

submodules W and W, of PS(y,). This contradicts Lemma 4.6 since V is a
spherical irreducible G-submodule of PS(x,). This proves the desired non-
unitarizability and we complete the determination of the unitarizability in case
of type B,.

§11. The case of type D,
The simple roots are

Uy =& — &, Uy =& — &3, 0y T &y — &, X, =&, T &,
l ] [ ]
PE)= @i Ze + Z(E Y £,~>, Q) ={Y ai;laeZ, Y a;=0 mod2}.
i=1 i=1 i=1
We identify {¢;} with its dual basis with respect to { , ». Then we have
gfe=gxe, 1<i<j<t, PE)=PQ), 0C) =0®).

We assume £ is even, £ > 4. (Since we have reduced to the case wy= — 1 on
4 in §8, we lose no generality by this assumption.) Put £ =2n,n>2. We have

Wo& = — &, 1<i</,
Wo=(0,05"0, 30, 10,0, 3-0,0,)(0,_,0,_,0,0, —2)(o,-10,).

We assume that G is of adjoint type. For z=3/  ce€Q(X) and v=Y/_, as
eV, a;eR, we define y(v)e X by

(1L.1) (O B@) = (— VP gD BepE).
We have
(11.2) X(v)((gi - 8,')(117)) =(— l)ci‘ch“i—ﬂj, l<i<j<?,

A0 T &) (@) = (— D+ogn*s,  I<i<j<t.

First we consider the case z =0. The family of hyperplanes © in V considered
in §8 are

(11.3) ata=+1 (1<i<j<?).

We consider a connected component D of ¥V — §. Replacing D by wD, we W,
we may assume that D contains a point v =Y/ | a;¢ such that <v, &) >0 for
every 1 <i</¢. This condition is equivalent to

a,>a,>-->a,_; >a,, a,_,+a,>0,
which is equivalent to

(11.4) a,>a,>-->a,_,>la,|=0.
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Since D is open, we may assume a, 0. We may and shall assume that
D is bounded. Let 1 <j<¢ —2 and suppose a; — a;,, > 1. Then we have

aita,>1,j<u</, a+a,>1, 1<i<u<t.
Hence we see that
i ]
Y (a,+ e+ Y ae,eD
u=1 u=j+1
for every t > 0. Thus D is not bounded. Therefore we have
(11.5) a

=iy < 1, I<j<¢-2

For 1 <j </ — 2, we define p(j) as the greatest integer p such that a; —a, <1,
j<p<t¢ Hfa,_,—a,<l,wesetp(/—1)=¢ 1fa, ,—a,>1anda,_,+
a, > 1, we see that D is not bounded in the same way as above. Therefore we
have

(11.6) a,_,+a, <1 ifa, ,—a,>1

For 2<j<7—1, we define q(j) as the least integer such that a, —a;<1,
1 <qg<j

Lemma 11.1. Assume a, + |a,|<1. Then we have o,D=D for a=
81_1_84'

Proof. From the assumption, we see easily that
ata,_ <1, g+ta,<!1, 1<i<{-—2
This shows that ¢, D =D, a =¢,_, —¢,; hence the assertion follows.
Assume
(11.7) a, +la,| > 1.

For 1 <j <7/ — 1, we can define r(j) as the greatest integer r such that a; + a, > 1,
1<r<{ r#j.

Lemma 11.2. Assume that there exists j, 1 <j<{¢ —2 such that p(j)=
pj+1), q)=q(+1). Uf j=1, we understand q(1) = q(2).) Furthermore
assume (11.7) and r(j)=r(j+ 1) or r(j)=j+1, r(j+ 1)=j. Then we have
0,D=D for a =¢;—¢;,,.

The proof is identical to that of Lemma 9.1. We shall prove the following
Theorem.

Theorem 11.3. We normalize D so that D contains a point of the form
(11.4). If the points of D represent unitarizable representations, we have

a, —la,| <L
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First we state a consequence of this Theorem.

Lemma 11.4. If D contains a point which satisfies (11.4) and a, — |a,| < 1,
then o,D = D for some aeX™.

Proof. By Lemma 11.1, we may assume that (11.7) is satisfied. Hence r(j)
is defined for 1 <j </ — 1. Assume a,D # D for every aeZ*. First we consider
the case a, > 0. We have

p)=p@Q)=-=pf—-1=¢  q2)=4qB)=-=q¢/ -1 =1
By Lemma 11.2, we must have
(11.8) r()>r@2)>-->r( —1).
By (11.7), we have r(1)=¢. If r(¢/ — 1) =1, we have
a+a, >, a,+a,_y<1l,a,+a,>1,a,+a,<1,a,—a,<1,a,—a,_; <l

Hence we have 6,D =D for « =¢,_, —¢,. Thus we may assume r(£ — 1) > 2.
Then, by (11.8), we get

ry=¢+1-1i, I<i</-1

Therefore r(n)=n+ 1, r(n + 1) = r(n). By Lemma 11.2, this is a contradiction.
Next we assume a, <0. If a; —a, <1, the same argument applies. We
may assume

(11.9) a,+a, <1, a, —a,>1
Assume a; —a, > 1, 1 <j<¢—1. Then we get
p)=pQ)=-=pf—-2)=¢—-1,49Q2)=qB) =g/ -1)= 1L
Hence, by Lemma 11.2, we must have
r(1)>r@2)>-->r(f —2).

If r(£ —2)=r(¢ — 1), we find easily that 6, D =D, a =¢,_, —¢&,_;. Therefore
we may assume (11.8). By (11.9), we have r(1) </ — 1. Hence we must have

r(iy=¢—1i, l<i</-— 1.

Then we get r(n) = n, which is a contradiction. Thus it turned out that we may
assume

(11.10) a,—a,>1, e, —a, <1

for some 1 <i<¢ —2. Then we have
p)=p@Q)=--=p()=¢—-1,  pli+1)=--=p/-1)={
42 =4qB3)=--=4q(¢ -1 =1

By Lemma 11.2, we must have
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(11.11) L—1>r()>r@Q)>-->r@=2r(i+1)>-->r/-1)=>1

Ifr()) > r(i+1), wegetr(j)=¢ —j, 1<j<¢/—1. Hencer(n)=n,a contradiction.
We may assume

(11.12) r(i)=r(i + 1).

By (11.10), we get a; +a,_, > 1. Hence, by (11.9), we have r(i)=¢ — 1. By
(11.11), we must have i = 1. Thus we obtain

(11.13) L—1=r()=rQ)>-->r(f-1) =1

We shall consider two cases.
(I) The case where r(j)—r(j +1) <1 for every 1 <j <7/ —2.
Then, by (11.13), we have

r(y=¢+1—j, 2<j<¢{-—1

We get r(n)=n+ 1, r(n + 1) =n. By Lemma 11.2, we obtain a contradiction.
(IT) The case where there exists j such that 1 <j </ —2,r(j) —r(j +1)=2.
Put r, =r(j + 1). We have r(j)=r,+2 <7 — 1. By definition, we have

Gjpy+a,>1, @i+ a0 <l a5+a,42> 1.

Hence we have r(ro+1)=r(ro+2)=j By (11.13), we have ro+1=1,
j=¢ —1. This is a contradiction and completes the proof.

Lemma 11.5. Let £ >4. Suppose that wD, the closure of wD for some
we W, contains a point v, of the form

¢
vo=1(a—1)(e; — &) —ae; + (a—2es + ) by
j=s
which satisfies the following conditions.
(1) bjxb #0, £1,5<j<t </,
2 a#1/2,1, 3/2
(B bj# £(a+1), £a, £(@a—1), £(@—2), £(@—3),5<j</.
Then all the points of D represent non-unitarizable representations.

Since the proof is almost same as that of Lemma 9.4, it is omitted.

Proof of Theorem 11.3. We set
(11.14) ay>a,>->a;>1+la,|>a,,>>a,_;>]a,|>0.

It suffices to show that a point of D represents non-unitarizable representation
assuming i > 1 in (11.14). We shall prove the theorem by contradiction. Thus
we assume that all the points of D represent unitarizable representations. We
also make the hypothesis of induction on ¢ for groups of type D,. Throughout
the proof, we let V= @2 Re; be the vector space attached to the adjoint
groups of type D,.,. In the proof, we consider a domain D which contains a
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point ve V. By this term, we shall always understand that v¢$§ and that Dsv
is the connected component of V— %, where § is the family of hyperplanes in
1% similary defined as above.

We have

(11.15) a+a,>1, 1<t<i, t<u</¢

If i=¢—1, we see that Z;=_11 (aj + v)e; + a,e,eD for every v > 0. Hence D is
not bounded. We may assume

(11.16) (—i>2.

First we assume a, > 0. Since this case is pararell to the case of type C,, we
shall briefly describe the proof. We have

(11.17) a—a,<1, i+l<t<u<t.

Case (A) We assume a;4, +a;4,>1,a,_;,+a, <l.
In this case, / —i>3. Choose s, i +2<s<¢—1, so that

(11.18) ag_ +a;,>1, ag+a,., <.
Let g =q(s). We get

(11.19) a, —a; <1, a,_,—a;> 1.

q
Suscase (I) We assume a, — a,, > 1.

We have g <i. By the assumption of the subcase, we can choose a,, a
and a,,, so that

q

(11.20) a;>1/2, a,>3/2, a,+a,., <3.

[

In V, we consider the domain D which contains a point i=18;€+bie, o+

b,€e, +, such that
(11.21) a,—b;>1,a,.,—b;<l,a,+b;>1a,,+b;<1,j=12,
(11.22) l+a,>by,b,>a,, b, +b, <L

Then D #@. We have aaﬁ =D for «=¢,,y —€,4,. By Remark 8.3 and
(11.22), we see that all the points of D represent unitarizable representations.> On
the other hand, we have

¢ ~

Z aje; +(a, — Deg +(a, — ey oy +(2 —a)e,4,€D.
j=1.j#s

Hence

-1 s—1 ¢
(a, — D&y — &) — ages + (a, — Deg + Y ajgjq + . Y st Y a8

q
j=1 j=q+1 j=st+1

ewD,

5 These remarks shall apply to the succeeding argument as well. We shall not repeat them.
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for some we W, where W is the Weyl group for D,,,. Note that we could
have chosen a,, 1 <t </, t # s, q in “generic position”®. This contradicts Lemma
11.5.

Subcase (II) We assume a, —a,,; < 1.

By (11.18) and the assumption of the subcase, we find g = q(s) = q(s + 1).
Since a, >0, we may assume r(s) <r(s+1). Hence we get a;,, +a,_, <1,
which implies r(s — 1) =s. Since r(s) =s — 1, we may assume q(s — 1) < g(s).
Summing up, we have

(11.23) a,_;+a,, <1, Ay —a,_ <1

Then we get a,_, + a,4; <2. Choose a,, a,_, and a, so that
(11.24) a;>1/2, a,_,>3/2, a,.y+a,<3.

In V, we consider the domain D which contains a point Y/  a;e;+byg 4y +
b,e, ,, such that

(11.25) a,—b;<1l,a,,—bj>1,a,+b;>1,a,,+b;<1,j=12,
(11.26) l+a,>b,b,>a,, by +b,<1.

Then D # @ and all the points of D represent unitarizable representations. On
the other hand, we have

¢ =
Y aigi+ (@ — Deg+ @y — Degyy + 2 —a,-1)e,4,€D,
j=1,j#s
which contradicts Lemma 11.5.

We omit the cases (B) a;4; + a;4, <1, (C) a,_, + a, > 1, since they can be
dealt with in completely pararell way as in the case of type C,.

Next we assume a, < 0. Though this case can be dealt with in a similar
but more complicated way compared with the case a, > 0, we prefer the following
argument. Let y: G > G be the simply connected covering map as in §3. Take
any v=y/ ageD and put y=yx(), 7=yxoy. Corresponding to the
automorphism which interchanges «,_, and o, of the Dynkin diagram of X,
there exists an automorphism o: G—-G (cf. Steinberg [21], Theorem 29). We
have

(11.27) B°=B T°=T K°=K.
&) =), 1<
@, 1) =0a,@), @ @)Y=3a,0, tek”.

(To see (11.28), use relations in [21], p. 30.) For an admissible representation
n of G, set n°(g) = n(g°), geG Then =% is also an admissible representation;
7 is unitarizable if and only if 7% is. For @ e PS(y), define ¢° by o°(9) = og°),
geG By (11.27), we have ¢%€PS(y°) where ¥°(t) = ¥(t°), teT.  Hence we
obtain 7(¥)° = n(3’). By (11.28), we obtain

(11.28)
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-1

F=ox?), =Y ae;—a,e,.
i=1

Since the unitarizability of n(x(v)), n(%), n(%°) and =(x(v°)) are equivalent, we
are reduced to the case a, > 0. Hence a, —|a,| <1 follows from the previous
case. This completes the proof of Theorem 11.3.

Now we consider the general case where z = ,.‘= L ci&; € Q(Z) is not necessarily
0. We may assume

;=0 1<i<n, g=Ln+1<i<t.
We see that £ — n is even. The family of hyperplanes in V considered in §8 are
a;ta;=x1(1<i<j<n), ata=1n+1<i<j<s).

Therefore we can treat the variables a; (1 <i<n) and a; (n+1<j</?)
separately. We can normalize a,,,,...,a, so that

Aupy > Apyr > > a, -y >la,| =0

Then we obtain a,,, —|a,| <1 by the same proof as Theorem 11.3 and we
obtain g,D =D for some aeX*. This completes the determination of the
unitrizability for groups of type D,.

§12. Reduction of the unitarizability of n; to the case of real quasi-characters

In this section, we shall consider the unitarizability problem of 7, the
spherical consitituent of PS(y). We shall show that the problem can be reduced
to the case when y is real valued, if G is a simply connected group of classical
type. We begin with the following Lemma which is an elaboration on Lemma 5.4.

Lemma 12.1. Let the notation and the assumptions be the same as in Lemma
5.4. Assume that G is of adjoint type and that cT, , if of positive type. Let
{B;} be the dual basis of {a;} = 4 with respect to <, ) (i.e., the fundamental
weights of P(X)). Set m=max,s: <<, <% B;>. Then if |x(a)l < q"™ for all
ac ¥}, (,) is positive semi-definite.

Proof. We use the same notation as in the proof of Lemma 5.4. It suffices
to prove (5.14), i.e.,

(12.1) lim (¢ — 1,(®), 1,(P) = 0.
Since [|1,(P) |l o) < | @ llL=k)> (12.1) follows from

(122) lim | T,()(¢ — 1,(8)) 10 = O.

Take any fe PS(x) such that f|K is right invariant under K,;, where LeN. Note
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that K, K. Let aed and assume |x(a,)| <gq'™. Choose u,>1 so that
[x(a)| < pu, < q*™. Then by (4.14), we obtain

[l Em(x)fllu(x, < Clﬂfl ”f"L‘(K)

with a constant ¢; > 0 which does not depend on f and L. Therefore we obtain

(12.3) | TG0 f Il < Cz#' FulL “f“L’(K)

with constants ¢, >0 and 1 < u < ¢"/™ which do not depend on f and L. Let
L; be a strictly increasing sequence of positive integers and set t; = [ /=, B j(w"“)
eT. Since

[
(12.4) tx,Wt ! = x([[ @ “<**Pu),  wel, uek,
j=1

we have N = U=, N, for N; = t;,Ut7'; it suffices to prove (12.2) for this choice
of N;. Let M be a positive integer such that ¢ is right K-invariant. Obviously
if

(12.5) BwoN;Ky,nK = (BogN;nK)K,,  for M, > M,

then 1,(®)|K is right K, invariant. By (12.4), we have Knt;K t; ' 2 K,y 44
By Lemma 3.1, we see that (12.5) is satisfied for M; = mL; + 1 when i is sufficiently
large. Set U;= K — (BwoN;nK). By (12.3), if i is sufficiently large, we obtain

(12.6) I T, (0 (@ — ll(¢i))|lL‘(K) < Caﬂmw‘t’lL"VOI(Ui),

with a constant c¢; >0 which does not depend on i, since ¢ — 1,(P))llL1x) <
@l o vol(U;). To evaluate vol(U)), define ¢,ePS(65?%) by

1 ke U;
R Yk)y=<" P
(R(x) i) (k) {0’ ke U,
for ke K. Then we have
if ne N,

0
@i(won) = .
Ok, sy2 (Won) ifneN — N;

By Lemma 5.2, we get

vol(U)) = J @ik)dk = J ¢i(9)dg =J @i(won)dn
K B\G

N

= J @k, sy (Won)dn = Sg(t;)” ! J ®k,sy2 (@on)dn.
N-N;

N-U}

By (3.6), we have

) =gk n=Y Y (.

acXt j=1



228 Hiroyuki Yoshida
For aeXt, ;=1<oc, B;> > 1. Hence we have n > |Z*|. We obtain
(12.7) vol(U) < cuq b,  n>|Z7,

with a constant ¢, > 0 which does not depend on i. Then (12.2) follows from
(12.6) and (12.7) since u™ < q. This completes the proof.

Let G be the adjoint group and let y: G > G be the simply connected
covering map as in §3. For ve V®zC, we define x(v)e X by

(12.8) 1) (B@) = qP,  BeP(E).
V= h®). set

logg
x = x(v) and assume = is unitarizable. Then we have wy = i ! for some we W

which is equivalent to

We have y(v) = x(v") for v, v'e V®gC if and only if v —v'e

(12.9) wo) +5e Y "o ).
logq

If we replace y to wyy, w, € W, we have (w,ww; })(w,x) = (w,x)~'. By Lemmas
3.3 and 3.5, we may assume that w,y = y~! for some J = 4 and that w, acts
on J by — 1.

Hereafter we shall assume that G is of type B, C or D. First we consider
the case of type C,. We use the notation in §9. Set v =)/  a;&;, a,eC. We
may assume

(1210) J= {am’ O+ 25" s At 2u—25 Xy Xy g5 5%y — 15 at}’

where n =m + 2u. Then we get

wyE = &, I<i<m-—1,
Wi€m+2v-2 = Em+20-1> Wi€m+20-1 = Em+20-25 1 <v< u,
W18i=_8i, n+1$l£/.

The condition (12.9) reduces to

Z {(am+2»—2 + dm+2v—1)8m+2v—1 + (am+20—l + a—m+20—2)8m+20—2}
(12.11)

Y @ras+ Y @-ayne Y Lo
i=1 i=n+1 logg

1]

Set a;=b; +/—1¢;, b;, c;eR, 1 <i< ¢ and w(v) + 0=
(12.11), we obtain

(12.12) ae/—1R d;=0, 1<i<m
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bm+20—2 + bm+20—1 = 0’

(12.13)
2n 2n
Cm+20-2 FT Cmt20-1= — 7 m+20—2=—dm+2v—1’ l<v<uy,
loggq logg
T .
(12.14) ¢ =——d, n+1<i</t.
logq
Hence we have
[
(12.15) Z d=0 mod 2.
i=n+1

2r./—1
We have Yoyx(v)=yoy( +v") for v'enl;P(Z). By Lemma 6.2, we can
ogq

aSSUME C,42p-2 = Cm420—1> 1| < v < u without losing any generality. Replacing
%(v) to wy(v) for some we W, the series g%, 1 <i < ¢ takes the form

(1216) (01""70s’ Hys ﬁl_l""’.um’ ﬁr;l’ '11,""'711)’ £=5s+2m+n

Here 0,¢R*, |60;| =1, w;¢R™, || # 1, n,eR™ for every i. (For simplicity, we
have used the letters m and n which may be different from the previous ones.) By
(12.15), we observe:

(12.17)
The number of #; such that n; <0 is even if n; # — 1 for every 1 <i<n.

Set

V= (vl"“’vp) = (91’“"09 Hys ﬁl—l,"'aﬂm, ﬂr;l)’ p=s+ 2m,
and let W’ be the Weyl group of type C,. Replacing v by wv, we W', we can
assume that v contains a series (“segment”)
(A) @ ', g “ Vu,-p), péR teZ, t>0
which is maximal in the sense that no v; or v; !
qu. Consider the “conjugate” segment

(B) (ﬂ_l’ qﬁ_l""’qtﬂ_l)'

By the maximality of (A), it is clear that if one element of (A) is of absolute
value 1, then (B) coincides with (A). Suppose that (A) and (B) contain a common
element. Then we have

are equal to ¢ Yy or

1

q °n=qa"! for some 0<a b<t.

Hence (B) equals

(q—(a+b)“’ ql—(a+b)u"”’qt—(a+b)u).

If a + b # t, it contradicts the maximality of (A). If a + b =t, (A) coincides with
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(B). Therefore either (A) coincides with (B), or (A) and (B) have no common
elements. In the latter case, we may assume that (B) is contained in v.

We note the following properties of the maximal segment. Suppose that
(@ “wyv;'=q for some 0 <a<t Then v,=q ° 'u If a=t, this contradicts
the maximality of (A). If a <t, v; appears in (A). In a similar manner, we see:
Assume (A) = (B). If xv;! =g or xv; = q with xe(A), then v; or v, ! appears in
(A). Assume (A) #(B). If xv; ' =gq or xv; = q with xe(A)U(B), then v; or v;’!
appears in (A)U(B).

Since u¢R>, we have g “u-q Pu+#gq for 0<a, b<t Assume (A) # (B).
Replacing (A) to (B) if necessary, we may assume pug <gq'. Let 0<a b<t If
q °n-q a ! =gq, we have ueR”*, a contradiction. If ¢ °u/(q i ') =gq, we
have pji =¢* with 1 <u <t. Then we see that (A) and (B) have a common
element, a contradiction.

Now we take off (A) or (A)U(B) from v according as cases and apply the
same procedure. By successive application of this procedure, we can bring v to
the following form.

v=U, I3, 1y),
(i) [j = (q"i#j,...’q_'iuj’ q—('j—l)pj,...,q—('f'1)#1,,...’#1,,...,#],),
or
i L= (@ 9@y @O e, g™ T D e e
ﬁj—l,...,ﬂj—l, q/-_lj_l,"’,qﬂj_1,"',q’jﬁj_1,"'aqtjﬁ1:—l)~

Here (7" p;, =%~ Vp;,---, u;) is a maximal segment as in (A) such that p;; < ¢

and I; takes the form (i) or (ii) according as (A) = (B) or (A) # (B); ¢ “u; and

¢q"fi; ' may appear with certain multiplicities. All elements of the form (g~ “u;**,

0<a<t;in case (i), (g °n)*", (¢°47 ")*', 0 <a, b <t; in case (ii) which appear

in v are included in I;. Furthermore if we make a suitable permutation on

elements of I;, I; can be written as a sum of segments of the form of (A) or (A)U(B).
Now replacing (¢*) by w(q*) with we W, we can bring it to the form

(12.18) (PR PIEEEN IY8 FRCEEN MR L M| A L B
Then by this construction, we obviously have
(12.19) @ Aq 1<i<t, quEu#g 1<i<j<t.

Let J, = {o;, 05,50 —poy}ts Jo={0g—psy1,--2,}. Then W, acts as the
permutation group S,_, on &,---,¢,_,. We have

(12.20) wiwy(g™) = (¢*) '

with some w, e W, w,e W,,. By the obsevation (12.17), we see easily that (12.20)
can be lifted to the relation

(12.21) wiwyx(v) = x(v) 7
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2r/—1 .
with wi e W}, wy e W,,, replacing v by v + ', v’e—ll—————P(Z) if necessary. Then,
0gq
replacing x(v) by wyx(v), we W;,, we can assume that y(v) satisfies the following

conditions.

(12.22) wiwyx() = x() ' for some w,eW,;,, weW,,.
(12.23) x(v)(a,) # q for every aeX™.

(12.24) lx()(a)] < 1 for every ae ¥, ..

(12.25) x(v)(a) # 1 for every ae ¥, ..

Set x = x(v), ¥ = xoy. By (12.23), Lemma 3.2 and Kato’s criterion (4.3), (4.4),
PS(x) is generated by ¢y , as G-module. By Lemmas 6.1, 54 and 12.1, 7 is
unitarizable if and only if ¢T,, ,,, , is of positive type for some ceC*. By Lemma
5.7, this is equivalent to that cT,,,, 7 is of positive type. By Lemma 5.8 and
Theorem 2.3, this is the case if and only if ¢, T,, 3, and ¢,T,, 3, are positive
type with some c,, c,eC*. Here j,, i=1,2 is defined as in Lemma 5.8, i.e.,
Xs, = X|T;,. By the construction above, we can assume J,, = x;,°¥; with y; e X,
for the adjoint group, i = 1,2, where y;: é,iaG,i is the simply connected
covering map. By Lemmas 5.7, 5.4 and 12.1, this is the case if and only if both
of ny, and 7y, are unitarizable, y; = x;,, i = 1, 2. Summing up, 7} is unitarizable
if and only if n,, and =}, are unitarizable.

Now Gj, (resp. G;,) is the adjoint group of type A (resp. type C). The
unitarizabilty of r, is solved in Tadi¢ [26]. Therefore we have reduced the
unitarizability problem of n; to that of n;,. We see that §, = y,oy, is real
valued. (y, itself may not be real valued because 1Y/ e;e P(X). That is, if the
number of #; such that n, <0 is odd, y, is not real valued.) This is what we
claimed at the beginning of this section.

We assume that G is of type B,. We can start with y(v)e X, with J of
the form (12.10) assuming G is of adjoint type. All arguments in the previous
case of type C, can be applied. It is not necessary to take care of the signature
condition (12.17). We can reduce the unitarizability of =) for the simply
connected group to the case when y is real valued.

We assume that G is the adjoint group of type D,. We may assume
x(w)eX,, for some J = 4 and that w; acts on J by — 1. We can assume that
J takes either one of the following forms.

(I) J= {(Zm, Ot 25 s At 2u—25 Eps Xppgs st %y g, az}’
n=m+22u £{—n+1>4is even.
(1) J consists of isolated summits in the Dynkin diagram of X.
Set v = ,-‘:10.'8:, a;€C in the notation of §11. First we consider case (I). We

may assume that the series ¢%, 1 <i</¢ takes the form (12.16). Instead of
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(12.17), we have

Let a, b and ¢ be the numbers of n; such that n;,=1, n,= — 1 and

12.26
( ) n; < 0 respectively. Then n — (a + b) and ¢ — b are even.

By this observation, we find easily that y(v) satisfies (12.22) ~ (12.25) after replacing

2V = lp),
logq
conclusion as in the case of type C,.
Now let us consider the case (II). If a,_,, a,€J, then we have a,_,¢J
by the assumption. Since o,_,0,¢6; = —¢; for i =¢ — 1, ¢, this case is completely
similar to Case (I). Assume {a,_,,oa,} £J. If a,¢J, we observe the following
fact. The series g%, 1 <i < ¢ takes the form (12.16). Then (12.26) also holds
in this case. If there exists an #; such that #; # + 1, the same argument as
above can be applied. If all #; satisfies 5, = + 1, we can bring w(q®) to the form

(12.18’) (nl,""nm 119 IZ""91N)
instead of (12.18). Put

() > wy(), vov+0v, ve In this way, we can obtain the same

Jl = {an+1’ an+2"",ag —1}-

Then (12.22) ~(12.25) holds with J, =@. Therefore we obtain the desired
reduction. Assume a,€J, a,_;¢J. Let ¢ be the automorphism of G induced
by the graph automorphism of X, a,_, »a,, a, >a,_;. We use the same
notation as in §11. Then ()’ occurs in PS(7°) and is the unique spherical
constituent of PS(7°) since K° = K. n} is unitarizable if and only if n}, is
unitarizable. Then we have 7°=yoy’, y'€eX such that y'eX, , J'sa,_,.
Thus we are reduced to the case a,_,e€J. This completes the reduction to the
case of real quasi-characters.
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