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§1. Introduction, Results
In our previous paper (Ikebe-Shimada [2]), we considered the Schrodinger
operator with a penetrable wall potential in R*® formally given by

Hformal = -4+ Q(x)5(|x| - a) ,

where q(x) is real and continuous on S, = {x € R*;|x| = a} (a > 0) and J denotes
the one-dimensional delta function. As a rigorous selfadjoint realization of the
formal expression Hi,,..1» W€ adopted the selfadjoint operator H which is uniquely
determined by the quadratic form h (which is to be associated with Hgyna)

h[u, U] = (Vu’ Vv) + (qyau’ Yav)Lz(Sa) (= (Hformalu’ U)) >
Dom[h] = H!(R?)
(I-S[2, Theorem 1.4]). Here y, is the trace operator from H!(R3?) to L,(S,),
Dom[h] denotes the form domain of h, (, ) means the L,(R*) inner product,
(s )Lys, the Ly(S,) inner product, and H™(G) the Sobolev space of order m

over G. If G = R3, we regard H™(R?) as the Hilbert space with the inner product
(, )gm defined by

(u, V)ym = J (1 + [EP)™(Fu)(&)(Fv)(©)dE ,
nJ
where & is the ordinary Fourier transform defined by

(Fu)(&) =(27t)_3lzf 3e‘“>“"u(x)dx.

More precisely, it is seen that
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Hu= —Au for any u e Dom(H),
Dom(H) = {u; ue H'(R®), ue H*({x; |x| < a}), u € H*({x; |x| > a}),

=0},

Sa

000 - {2 0+ 2 o

where n, (n_) denotes the outward (inward) normal to S,.

In this paper, we shall show how to approximate H by short range Hamil-
tonians H, = —4 + Q, in the norm resolvent sense (convergence of the resolvent
with the uniform operator topology), where the potential Q,(x) converges to
q(x)o(]x| — a) as ¢ 0 in the distribution sense (see Theorem 1). Let us take p(r)
satisfying the following properties:

p(r)=0 forall reR, p(r) e CF(R), supppc[—1,1],
(1.1) +o
J p(rdr=1,

where C¥(G) is the set of all infinitely continuously differentiable functions with
compact support in G and supp means support. Define Q,(x) by

1 —
0= 1o( = oty (0= ).

Then we have the next theorem easily.

Theorem 1. Let q(x)6(|x| — a) be the distribution belonging to &'(R®) defined
by

qé(I"| —a), > = J a(x)@(x)dS,  for any ¢ € (R?).
Sa

Then Q,(x) = q(x)8(|x| — a) as €, 0 in &' (R*), where dS, denotes the measure in-
duced on S, by the Lebesgue measure dx, &R?>) the Fréchet space of C®-functions,
and & (R3®) the dual space of &R3) (cf. Schwartz [6, Chap. 111]).

Let H, be the selfadjoint operator defined by H, = — 4, Dom(H,) = H*(R?).
Then H, = H, + Q, also becomes a selfadjoint operator with Dom(H,) = H%(R?)
by Kato [3, Chap. V, Theorem 5.4]. Let R(z) = (H — z)™! and R,(z) =(H, — 2)"!
be the resolvents of H and H,, respectively. Then we shall prove the following

Theorem 2. For sufficiently large z such that Im z # 0, R,(z) converges to
R(z) as £ 0 in B(L,(R®), H'(R®)) with the uniform operator topology, where B(X, Y)
denotes the Banach space of bounded linear operators on X to Y (B(X) = B(X, X)).

By this theorem and Kato [3, Chap. VIII, Cor. 1.4], we have
Theorem 3. H, converges to H as ¢ |0 in the norm resolvent sense.

Another way of selfadjoint realization of H,,,; and the related approxima-
tion problem will be found in Antoine-Gesztesy-Shabani [1].
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§2. Preliminary Lemmas

Lemma 1. Let r be positive and ue £(R*). Then

21 lu()Lys, < \/—lqull < \/»Ilullm ;

where |[ull = /(u, ), llullL,s, = /(6 Wrys,ys and |ulge = /(W u)gm. FR?) de-
notes the set of functions which together with all their derivatives fall off faster
than the inverse of any polynomial.

For the proof, see I-S[2, Lemma 1.3].
Lemma 2. Let ue #(R3). Then

r—r/|?
22) lu(r) — ulrNiys, < l—-—'l— [Full .

min(r, r’)

Proof. We have only to show the lemma in the case 0 < r’ < r. By Schwarz’
inequality we have for any w € S,

2
(2.3) lu(row) — u(r'w)|? =

" 0u
j 6—(Pw)dp
%4

r

Integrating the both sides of (2.3) with respect to w over S, yields
r—r)

(24) “u(r ) - u(r )"Lz(sl) < _rz_

6p

r<|x|<r

ou
%

r=r)
r/!

(2.2) follows from (2.4) and

ou
b—;(x) < |Pu(x)|. Q.ED.

Let us define the Fourier transform %5 on L,(S,) by
(2.5) (F5,u)(&) = 2n) ™ f e *u(x)ds,  ((eR?).
Sa

Let us introduce the weighted L, space L5(R?®) defined by
L5(R?) = {u(x); (1 + |xI*)"u(x) € L,(R?)}

with the norm |[lull sgs) = II(1 + ['1>)?ul. Then we have the next
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Lemma 3. Let s > 1/2. Then there exists a constant C = C(a, s) such that
(2.6 [ Fs, ullLzoms < CliullL,s,  for any ue Ly(S,).

For the proof, see e.g. Mochizuki [5, p. 16]. We also need the following continu-
ity lemma with respect to the radial direction.

Lemma 4. Let r and r' be positive. Then we have for any u e L,(S,)

lr — r'|}?

2.7 (Fs,w) () — (Fs, W)z ry) < min(r, 7)

||“||Lz(s,) .

Proof. (cf. Kuroda [4, §2.3, Theorem 3]) Consider the linear functional
V(f) on Li(R?) defined by

V(f) = LJ dEf (&) {(Fs5,w(ré) — (F5,w) (')} for fe Ly(RY).
For any fe %(R3), we have by (2.5) and Fubini’s theorem
V(f)= L do{(F*f)(rw) — (F*f)(r'w)}u(w)

(#*: inverse Fourier transform). Thus, by Schwarz’ inequality and Lemma 2
we obtain

28) IV < IE*NE) — (F 2D st
< %(:—'rm) 1P F Nl ] sy
='I;T;(%n|~|f(-)n s
< 'E%(:'—r’; el sl f Do -
Since #(R?) is dense in LL(R?), (2.7) follows from (2.8). Q.E.D.

§3. Proof of Theorem 2

Let Ry(z) = (Hy, — z)”* be the resolvent of H,. Let us define the integral
operator T, depending on a complex parameter kK by

ix|x—y|

T = [ S aomonas,  xer).

s. 1% =yl

It is seen that if Imk >0, T, is a bounded operator from L,(S,) to H!(R?)
(I-S[2, Lemma 2.6]).
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Lemma 5. Let ¢ s, and z be such that 0 <e<a/2, 1/2<s<1, and
z€ C\[0, ), respectively. Then there exists a constant C, = C,(s) (independent
of ¢ and z) such that

1 1+s
@3.1) IRo(2) Qenmm(m<cl[ {( +2'¢" }] ,
ce n= [1€]

where || px.y, denotes the norm of B(X,Y).
Proof. By (1.1) it holds that

1 - 1 _
Ep<r—8—a>20 forall reR, suppgp<¥)c[a—e,a+a],

atel (r—a
LE”( S)ir=1.

For any u e #(R3) we have by Fubini’s theorem and (2.5)

(3.2)

(33) (FRo(@)Qu)(E) = 2m) J dxe-ié-s

i\/;lx—yl 1 I _
e yl—a
X d -p .
Jns y4n|x yl e ( € )q(a »u(y)

ate _
= J drl p (r a> r J dwq(aw)u(rw)
a-¢ € & S

. ez\/;lx—rwl
x (2m)~¥2 f . dxe ™ —
R

4n|x — row)|

ate _ —i§ro
= j dr% p(r - a) r’(2m)~3? j doSr— ~q(aw)u(re)

&7 —z
1 a+te 1 r—
BT J ‘"E”<

where by \/; is meant the branch of square root of z with Im \/E >0 and we
have used the fact that

9_< elxl=yl )(5) (2 ) 3 e %y
4n|- — &P — w2

Thus, we have by Schwarz’ inequality, Fubini’s theorem and (3.2)

") r2[ % (a(@)ulr))](E),

(34)  IRo(2)Qullfy: = LS de(1 +1¢1%)

1 e o1 (r— 2
x mT—“zj dr;p(’ a)rz[fs,(q(a')u(r'))](ré)

(1 + [€]?) a*e 1 (r—a
et ([ (50)7)
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><< f ar p< )M (q(a)u(r))](r¢)|2>
(1 + [Py [+ r—a
<(a+e)” sup {Ilélz 22 H ar "( : )

x La de(1 + 1€17)7*|[Fs, (@(@)u(r)1 o) .

By the change of variables { = r£, we have

(3.5) L3 de(1 + |17~ |[Fs, (q(@)ulr) 1 (rE)?

= Ls dir=3(1 + r2|L1%) 70| [Fs, (q(@)u(r-) IO -

Thus, in view of the inequality

(1 + r—ZlCIZ)-S < max(rzs’ 1)(1 + |C|2)_s ]f s> 0 aﬂd r> 0 5

we have by Lemma 1 and Lemma 3

(3.6) LJ de(1 + 18127 |[Fs, (q(@)u(r) 1 (rE)?

< r73 max(r®, 1)[| %, (@(@)u(r)| 13w
< r 3 max(r®, 1)C(1, s)?llq(a)u(r)|i,s,)
2
< r~* max(r®, 1)C(1, s)? (max Iq(x)l) lullfs
x€S,

where C(1,s) is as given in Lemma 3. Therefore, since 0 < ¢ < a/2, we obtain
by (3.4), (3.6), and (3.2)

1+s
B1) 1ROl < (a +2)* sup {(“g—lz'é"T} C(L, s

2 2 ate 1 r—a
X | max |Q(x)| ||u]|H1 drgp A r_4 max (rZS’ 1)
xeS, a—¢

L+ 182,
e — I}"“””"

where C,(s) is a constant which is independent of ¢ such that 0 < ¢ <a/2. Since
Ro(z) is a bounded operator from L,(R%) to H'(R®) and &(R?®) is dense in
H'(R3), (3.1) follows from (3.7). Q.ED.

< C,(s)? sup {

Lemma 6. Let ¢ s, and z be such that 0<e<a/2, 1/2<s< 1, and
z € C\[0, o), respectively. Then there exists a constant C, = C,(s, z) (independent
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of €) such that
(38) IRo@)Qe + T fivall sy < +/2C5 -
Proof. As we got (3.3), we have for any ue #(R?)

2
(39) (FT y.0)(8) = |g|2—a_z [Zs,(g(a)u(a))](al) .

Thus, we have by (3.2), (3.3), and (3.9)

(10)  [F(Ro(2)Q. + T z7.)ul (&)

- f a Edr%p(' — ") (* — a) [, (@) )

2 a+te _
a J dr%p<r “)[%,(q(w)(u(r-)—u(a~))>](rc)

+—
|€|2—Z a—¢ €

a? e | (r—a
+|€|2_2J~a—5 drEp( € >
x {[Fs,(a(a)u(a))](r) — [Fs,(q(a)u(a))](ad)}

=1,(§) + L,(¢) + I5(¢) .

We shall estimate the L3(R*) norm of I(¢) (j=1,2,3). On replacing r? by
r? —a? in (3.3), as we got (3.7), we have

2 2
@3.11) J dE(L + 1) 11,O)2 < “2F D nax {(a + o 1)
R3 (a—¢)
1 2\1+s 2
X sup {%}C(I,S)z<maXIq(x)l> llull g
cerd | I€12 — 2] xeS,
< &2Cylullys

where C, is a constant which is independent of ¢ such that 0 < & < a/2. Similarly,
as we got (3.4), we have

2\1+s
(3.12) J dE(1 + |E12) | L(E)? < a* ,:SUE {(1 + &%) }
R3 e R®

l1¢1* — 2|

ate | _
x f drgp<’ ") Ladé(l+|€|2)'s|[%,(q(a')(u(r')—u(a‘)))](ré)lz-

a—¢ €

From (3.6) and Lemma 2, it follows that
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(3.13) LS dE(1 + 1E17)°|[Fs, (q(@) (u(r) — u(@)))](ré)?

< 7% max (r*, )C(1, 5)*llq(@) (u(r) — u(@))lli s,

_r=al ., v
{min (r, a)}*

2
< r7* max (r*, 1)C(1, 5)? (max IQ(X)I) ul?
x€eS,

max {(a + ¢)*, 1}
<ée¢ @—o°

if re[a—e¢ a+¢]. Therefore, by (3.12), (3.13), and (3.2) we obtain

C(1, s)? (masx Iq(x)l> lullz

(3.14) j 4G+ LR < oClulin

where C, is a constant which is independent of & such that 0 <¢<a/2. We
shall proceed to estimate the L}(R®) norm of I;(¢). By Schwarz’ inequality and
(3.2) we have

4 ate l _
(O = = I’J_s d’£”<r : a)
x |[%s,(q(a)u(@)](rE) — [Fs,(g(a)u@)](ad)* .

Thus, we have by Fubini’s theorem

(1 + &%) 1 [r—a
(3.15) j de(l + 1EP)I5(©)F < {llél’ le”_c dr;p( : )

X LB de(1 +1€17)7 [ Fs,(@(@)u(@)](r8) — [Fs,(@(a)u(@))]@d)?

- p {ige St [ oo ()
x [, (a(@)u(@)1 () — [F5,(@(@)u@)] @) L5 we -
From Lemma 4 and Lemma 1 it follows that
(3.16) 1L, (a(@)u(@)] () — [Fs, (@(@)u@)] (@)l 5w
Ir — al

= {min (r, a)

r ?1
< _Ar—al (max Iq(X)I) E"““;l

{min (r, a)}?

E lg(a)u(@) s,

T a(a — &) \ xe

2
2(maxlq(x)|> ||u||f,1 ifrela—e¢a+e].
Sa
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Therefore, by (3.15), (3.16), and (3.2) we obtain

(317 j L de( + IEPILEP < eCyllul

where 63 is a constant which is independent of ¢ such that 0 <& < a/2. Since
T /;7. is a bounded operator from H'(R?) to itself and #(R®) is dense in H'(R?),
(3.8) follows from (3.10), (3.11), (3.14) and (3.17). Q.E.D.

We are now in a position to prove Theorem 2.

Proof of Theorem 2. First we remark that by the closed graph theorem
R,(z) and R(z) are bounded operators from L,(R?®) to H*(R®) and H'(R3), respec-
tively. Let us recall that resolvent equations for the pairs (H,, Hy) and (H, H,):

R,(z) — Ro(z) = —Ro(2)Q,R,(z)  (the second resolvent equation)
and
R(2) — Ro(z) = T 7.R(z)  (I-S[2, Theorem 3.2]).
Thus, we have
(3.18) R,(2) — R(z) = —R(2)Q.(R,(z) — R(z))
—(Ro(2)Q, + T f7.)R(2) .

Take z e C\[0, o) sufficiently large such that Im z # 0 and

coof g {0 o

gerr ([IE7 —2[*

which is possible because of 1/2 <s < 1. Then, for any u € L,(R3) we have by
(3.18), Lemma 5 and Lemma 6

IR.(2)u — R(2)ullg1 < [[Ro(2)Q.(R(2)u — R(2)u) s

+ I(Ro(2)Q. + T 27 ) R(2)ul| 1

1
< 5 IR,@u — R@)ullms + \/eC,| R@ull s .
and hence
(3.19) R(2)u — R(2)ullg: < 2\/;'(32”1((2)“"”1
< 2./6C, | R gty ey lull -
The required result follows from (3.19). Q.E.D.
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