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Loop groups and their actions on the corresponding
completed affine Lie algebras
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Kiyokazu Suto

Introduction

In his paper [2], Garland studied a certain group of loops in a connected,
simply connected complex simple Lie group G, and its 1-dimensional central
extensions, together with their Lie algebras. The class to which the loops belong,
corresponds to the algebra L of formal Laurent series. For instance, the Lie
algebra of the loop group is obtained as the coefficient extension of the Lie
algebra g of G by L.

To construct and analyze the groups, he utilized the well-known results
about the structure of the original group G (see, for example, [8]), by regarding
the loop groups as the group of L rational points of the Chevalley group scheme
over Z corresponding to G.

In the present paper, we shall consider the group G, of C*loops in G and
its action on the corresponding completed affine Lie algebra—a 1-dimensional
central extension of the Lie algebra §, of G,—and we follow Garland’s method
for our problems. We first prepare some basic results about general loop spaces,
and then go towards our main purpose. Thus, this paper is divided into the
respective two parts.

In the first part (§1 and §2), we analyze the structure of the space of
Ck-loops in a finite-dimensional manifold M (k=0,1,2,..., o).

Assume that M is a vector space. Then the loop space, denoted by M(L,),
is obtained by a coefficient extension, that is, M(L,) is regarded as the tensor
product M ®g L, g, where L, := C*(S') and L, g is the real form of L, consisting
of all the real valued functions. So it is identified with the Banach (or Fréchet
if k = o0) space (L, g)*™ ™. Thus, M(L,) is a Banach (or Fréchet) manifold with
the tangent space (L, g)*™™.

It is natural to expect that this fact is generalized to the case of a manifold
in general. And, if M is a Lie group, we get an affirmative result as the first
main result in this paper, that is, we can provide M(L,) with a canonical Lie
group structure such that its tangent space is (L, g)*™ ™.

To show this, we first introduce certain classes of functions on an open
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subset of loop spaces (L,)™ with values in other loop spaces (L,)™, in analogy
with the usual differentiable functions on finite-dimensional spaces.

Locally, they are defined as limits of polynomials (and so differentiable in
the sense of Fréchet) similarly as in the case of differentiable functions on finite-
dimensional spaces, but the coefficients of the polynomials are taken from L,. In
other words, we extend the coefficients of the differentiable functions, from C
to L,.

We can prove that for any open subset V in C™, V(L,) is open in the
topological vector space (L,)", and that every smooth function f on V is extended
to a function ¥(f) on V(L,) of the above class.

And then, we give a canonical topology to the loop space M(L,) for an
arbitrary manifold M, with respect to which the connected components are given
exactly by homotopy classes of the manifold. Further, if M is a Lie group,
M(L,) becomes a topological group by pointwise products, with this topology.

Let M be any Lie group. Take any sufficiently small coordinate neighbour-
hood (V, ¢) of 1 in M. Then, thanks to the above topology and the coefficient
extension of functions, we get the pair (V(L,), ¥(#)) of the neighbourhood V(L,)
of 1 in M(L,) and the homeomorphism ¥(¢) of V(L,) onto an open subset in
(L,)*™ M This system satisfies the axioms for a coordinate neighbourhood of 1
in a (probably infinite-dimensional) Lie group. Thus, we arrive at the goal of
the first part.

In the second part (§§3-5), we concentrate on the group G, and the Lie
algebra §,. Thanks to results in the first part, G, is a Lie group with the Lie
algebra g,.

As is well-known, the Lie algebra § of algebraic loops in g has a universal
central extension § called an affine Lie algebra, and the corresponding 2-cocycle
Z(-, -) was explicitly given in [2]. We extend the 2-cocycle to §, after [3], and
get a central extension §, of §,.

g is one of the simplest infinite-dimensional Kac-Moody algebras (more
precisely, the derived subalgebra of a Kac-Moody algebra, see [2] and [4]). And
the corresponding Kac-Moody group G is a 1-dimensional central extension of
the group G of algebraic loops in G (cf. [2], [9], [5], and [6]).

Since the kernel of the adjoint action Ad of G on §, is precisely the center
C of G, G~ G/C acts on § through Ad, and the set of invariants in § under
this action is just the center of §. Hence, the action on § induces an action of
G on §. The last action of G coincides with the adjoint action.

The main purpose of the second part is to extend this fact to the pair of
the infinite-dimensional Lie group G, and the Lie algebra §,, and describe the
extended action explicitly. That is, we give explicitly an action of G, on §,
which induces the adjoint action Ad, of G, on §. Note that G is a subgroup
of G, and that § is a subalgebra of §,.

Moreover, we extend the action on §, to that on a “Lie algebra” g;, called
the extended affine Lie algebra after the terminology in [2]. §¢ is a semi-direct
sum of §, and the “degree derivation” d on §,. I remark that g; is not really
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a Lie algebra. The bracket product on §; is a bilinear map of & x §; into
§¢_,, not into a¢. Further, the “action” of G, on § is also not really a group
action. Actually, we associate with each element in G, a linear map from &
into §¢_,. But we call § the extended affine Lie algebra, and say “G, acts on
g;” for simplicity, because the bracket product on §; and the above maps asso-
ciated with each element in G,, have the similar properties as the bracket product
on the usual Lie algebra and the usual group action respectively, as shown in §4.

As an application of the above results, we can calculate explicit forms of
the normalizers and centralizers, in the loop group G,, of the Cartan subalgebras
of the affine Lie algebras §, and §;. We see that, in both cases, the quotient
groups of the normalizers by the centralizers are canonically isomorphic to the
usual affine Weyl group.

This paper is organized as follows.

The contents of the first part, §§1-2, are general theories for the structure
of spaces of loops in a manifold.

In §1, we give the coefficient extension from C to L,, for the differentiable
functions.

In §2, we define a topology for each space of loops in a manifold so that
the connected components are given exactly by homotopy classes of the manifolds,
and further, give a Lie group structure to the group of loops in a Lie group.

The second part, §§3-5, is devoted to study the actions of the loop group
G, on the corresponding affine Lie algebras §, and §¢.

§3 is the preliminary section to §§4-5. We first prepare notations and
well-known results about a connected, simply connected complex simple Lie group
and its Lie algebra after [8]. And we define a completed version of the affine
Lie algebra after the formulation of [3].

§4 is the main section of this article. We extend the adjoint action of the
loop group G, from its Lie algebra §, to the completed affine Lie algebra §,,
and further extend it to the “Lie algebra” §i, called an extended affine Lie
algebra after [2], which is defined as a semidirect sum of §, and the “degree
derivation”.

In §5, we describe the explicit forms of the normalizers and centralizers of
Cartan subalgebras of affine Lie algebras §, and §; with respect to the actions
defined in §4. And as the quotient groups of them, we get the affine Weyl group
in both cases.

The author expresses his hearty thanks to Prof. T. Hirai of many valuable
discussions and constant encouragement.

§1. The coefficient extension from C to L, = C*(S'), for the differentiable
functions

In this section, we introduce certain classes of functions on loop spaces with
values in other loop spaces, in analogy with the usual differentiable functions
on finite-dimensional spaces.
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Locally, they are defined as limits of polynomials, similarly as in the case
of differentiable functions on finite-dimensional spaces, but the coefficients of the
polynomials are taken from the algebras of C*-loops (k = 1,2,..., o) in C, which
will be denoted by L, (for detail, see below).

1.1. The algebra of differentiable functions on the product space (L,)" with
values in L,. Let L, := C*S!), the algebra of C*-functions on S'. We define a
norm ||, on L, as

lal, ;= sup [(@a)(e*"V ') for ae L, ,
reR

where 0 is a differential operator on S', defined by

1 1
lim - a(eZn\/—_l(rH)) _ a(eZn\/—_lr )
27t./—1t-’0t{ X
The space (L,, ||,) is a Banach algebra.
We consider the polynomial ring P,,,:= L,[X,,..., X,] with coefficients in

(Ba)(e>™ V1) =

0
L,. Define derivations D; = X on P, (j=1,2,...,n) by
j

DjX,=5” f0ri=1, 2, ey Ny
Dija=0  for "aeL,.

In this subsection, we investigate the properties of such L,-valued functions
on an open set in (L,)" that can be uniformly approximated, together with their
derivatives, on every bounded subset by polynomials in P,,,.

For a bounded closed subset B in (L,)", and j=0, 1, 2, ..., put

|f|k;B,j = SUE [(D™f) (D) x for fePy,,

where sup is taken over all m = (my,...,m,) € (Z5o)" satisfying
mli=m + -+ m, <,

and all b = (b,, ..., b,) € B, and D™ is a short form of Dy'D}*...Dy. Let C*/(B)
be the completion of the normed space (Py,,, |"lx;s,;)-

By definition, for any m e (Z,,)" such that |m| <j, and any be B, the L,-
linear map P, > f — (D"f)(b) € L, is continuously extended to C%J(B). Tt is easy
to prove the following lemma.

Lemma 1.1. Let fe C%/(B). We assume that f(b) =0 for any be B. Then,
for any by € Int (B), the interior of B, and any me (Zy,)" such that |m| < j, it
holds that

(D"f)(bo) = 0.

Let U be an open subset of (L,)", and C*4(U) the space of L,-valued functions

f on U which satisfies :
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(*) for any ue U, there exists a bounded closed neighbourhood B of u in
(L,)" and g € C*J(B) such that

f(b) = g(b) for "beB.

Thanks to Lemma 1.1, we can define D™f(u) as D™g(u) for m e (Z,)", Im| < j.
We consider C%J(U) as the inductive limit of the spaces C*J(B), where B are
bounded subsets of U closed in (L,)".

The following lemmas are clear from definition.

Lemma 1.2. f— D™f is a continuous linear map from C*J(U) into C*~™(U).
Lemma 1.3. D,(fg) = (D;f)g + f(D;g).
Lemma 14. D"D™f = D™*"f.

The functions in C*J(U) are j-times differentiable in the sense of Fréchet,
that is, we have the following lemma.

Lemma 1.5. i) Every f € C5°(U) is continuous, and further uniformly continu-
ous on any bounded subset of U.
ii) Every fe C%'(U) is C'-map, that is, it holds that
(1) for “ue U, there exists an operator df, e L((L,)", L,) such that

lif; ol (f(u + v) — f(u) — df,(v)) =0,

(2) the map df: U su—df,e L((L,)", L) is continuous.
Here, we consider (L,)" as a Banach space with the norm

lul, = max [u, for u=(uy,...,u,) e(Ly),
1<isn

and denote by L((L,)", L,) the Banach space of all continuous linear maps from
(L))" into L,.

Proof. i) By definition of C*J(U), it is enough to prove the assertion for
fe€P,,, and this is clear because L, is a Banach algebra.
ii) We can define df, by

df,(0):= Y1, Dif(wyw;  for v=(vy,...,v,) e (L.

Indeed, firstly, by Lemma 1.2 and the above i), u — df, is continuous.
Secondly, for any u € U, there exists ¢ > 0 such that

u+C,cU,

where C, is a closed ball in (L,)" with diameter ¢ and center 0. Since u + C,
is a bounded closed neighbourhood of u, by definition of C*J(U), there exists a
sequence {p;};>; of polynomials in P, such that

lim |f — Piliu+c,1 = 0.

=
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For each p,, by an easy calculation, we see that

1
p(u +v) = p(u) + Z?=l J (Dip)(u + tv)vidt 0 =(vy,...,0,)€C,.
o

As [ — oo, we have

1
S +0v)=fu) + Z?=1 J (Dif)(u + tv)vidt , = (vy,...,0,)€C,.
0

Therefore, it holds that

|L( S+ v) — f(u) — df,(v)
Vli

=St | @uftut - D) Luar, e (0},
0 k

Since each D;f is continuous by i), we obtain the equality in (1). Q.E.D.

1.2. An extension of usual differentiable functions on C" to those on (L,)"
For a subset S of C" and a closed subset P of S!, put

S(P):= {(ay, ..., a,) € (Lo)"; (ay (1), ..., a,()) € S, "t e P},
S(P), := S(P)N(Ly,)", S(Ly) := S(8Y), .
Then, S(P) inherits topological properties of S as follows.
Lemma 1.6. If S is closed or open in C", then so is S(P) in (L,)"

Proof. When § is closed, the assertion is clear because (L,)" 2 (a,, ..., a,) =
(ay(1), ..., a,(t)) e C" is continuous for any te S

Let S be open, and a =(ay, ..., a,) be an arbitrary element in S(P). Since
a is continuous as a map from S' into C", a(P) (< S) is compact.

Hence, the distance, say d, between a(P) and C"\S is positive, and the open
ball with diameter d and center a in (L,)" is contained in S(P). Q.E.D.

Let V be an open subset of C". We may regard V = V(L,)NC". So, for
any fe CY(V(L,)), we can define an L,-valued function &(f) on V by

D(f):=fly .

By Lemma 1.5 ii), if f(V) < C (< L), then &(f)e C/(V).
Conversely, for any g € C/(V), define an L,-valued function ¥(g) on V(L,) by

Y(9)(ay,...,a,) ) :=gla,(t),..., a,(t) for (a;,...,a,)e V(L,), teS!.
Clearly, (Yo ®)(f) =1, if f(V)=C. Moreover, we have
Lemma 1.7. ¥ maps C**i(V) into C*¥(V(L,)), and it holds that
® o ¥ = Tdasy, .
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Proof. Take a sequence {C;};», of bounded closed subsets of C" such that

13

CiCInt(Ci+1)’ C,'= V.
=1
For each i, put
Bi = {a € C,(Lk); |a|k é i} .
By Lemma 1.6, the subsets
Vi:= {a e (Int(C)))(Ly); lal, < i}

of B; are open, and so they are contained in Int (B;). On the other hand, since
a(S') is a compact subset of V for each ae V(L,), a(S') is contained in some
Int (C;), and so the Vs cover V(L,). Thus, we get the equality

V(L) = ) Int (B).

Let g be an arbitrary element of C/**(V), and let {g,},5, be a sequence of
polynomials with coefficients in C which satisfies

}im sup |[D™(g — g)(x)| =0,
where sup is taken over me (Zy,)", Im| <j+k, and xeC,.
For I, I'2 1, and me(Z5,)", |m| <j, we have

sup |[D™(g, — g1)(a)l < sup SUE [07D™(g, — g1)(a)(1)]
aeB; aeB; OrgepSg‘

sup sup [0°D"™(g, — gr)(a())|

aeB; t,p

k
<SUP |a|1> ( sup |D™(g, — gl’)(x)|>
aeB; |m"c|6§{::~k

i"(St}p D™ (g, — gy)(X)I> -0  (LI'> o).

IIA

lIA

Here, we identify C[ Xy, ..., X, ] with the subalgebra of elements in L,[X,, ..., X,]
with coefficients in C (<= L,).
Hence, {g,},», is convergent in C*/(B;), and its limit g, = lim g, e C*/(B,)
1=

satisfies
do(b) = P(9)(b), "beB;.

This implies that ¥(g) e C*/(V(L,)), because interiors of B;s cover V(L,). The
equality of the lemma is clear from definition. Q.E.D.
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Corollary 1.7.1 (of the proof). For any j=1, ge C**(V), and i =1, ..., n,
there holds that

D;¥(g) = ¥(Di(9)) .
For an open subset U of (L,)", and me Z,,, put
CHI(U; (Ly)™) := C¥¥(U) x -- x CH¥(U)  (m times direct product).

We regard each element of C*J(U;(L,)™) as a map from U into (L,)". For a
subset S of (L,)", we define a subspace C*/(U; S) by

Cki(U; 8) = {f e CHI(U; (L)™);, f(U) = S} .
The following lemma is clear from Lemma 1.5.
Lemma 1.8. Every element in C5'(U; (L,)™) is C'-map from U into (L,)™

For every element g = (g,,...,g,) in C**i(V; C™) (= the space of C**/-maps
from an open set V in C" into C™), we put

Y(9):= (¥(g1), ---» ¥(g4) -

And we also define @(f) for fe C*i(V(L,); (L,)™), similarly. Clearly, the same
fact as Lemma 1.7 holds for this new ¥ as follows.

Lemma 1.9. For any g e CI**(V; C™), ¥(g) belongs to C*i(V(L,); (L,)™), and
we have

Do ¥ = Idcj«fk(y;Cm) .

Let L, g be the real form of L, consisting of the real valued functions.
Obviously, all the above results are true for L, g, replacing C with R.

§2. Structure of the space of loops in a manifold

In this section, we provide the space of C*-loops in an arbitrary finite-
dimensional C*-manifold with a canonical topology, and, in case where the mani-
fold is a Lie group, we give to the loop group a Banach Lie group structure.

In subsection 2.1, we shall give a canonical topology to spaces of loops in
manifolds, with respect to which the connected components of the loop spaces
are given exactly by homotopy classes of the manifolds.

In subsection 2.2, making use of the classes of functions in §1 and the
topology in 2.1, we give Lie group structure to an arbitrary loop group canoni-
cally in such a manner that their tangent spaces are isomorphic to a product
of some copies of L,.

2.1. Topology of loop spaces. Let k=0, 1, 2, ..., and M be an n-dimen-
sional C*-manifold (n < c0). We denote by M(L,) the space of C*-loops in M:

M(Ly) = {f:S*> M; f is of class C*}.
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For another finite-dimensional manifold M’, and a C*-map F from M into M/,
we define a map ¥W(F) from M(L,) into M’(L,) by

P(F)(f)(s):=F(f(s)) for feM(Ly), seS".

Of course, this definition is an extension of that of ¥ in 1.1.

Let ¥; = ¥3(M) be the totality of the double sequence (V?); cici0<j<k (I is
a positive integer) with V{? an open subset of M and V{, ..., V¥ open subsets
of C" for each i. And let £ be the totality of the sequence (P,,...,P;) of closed
subsets of S such that the union |J P; is equal to the whole set S'.

For 4= (P,,...,P) €# and V = (V¥), ;€ ¥, put
U(4;V):= ﬂ {f e M(Ly); d’f(P) = VP},

where d°f(x) = f(x), and d’f(x) = d(d"Y~Vf), for j > 0.
For the family of these subsets U(4; V), we have

Lemma 2.1. i) There exists a topology of M(L,) for which an open basis is
given by the family {U(4;V)}sco, ver,-

i) If F:M —> M’ is a map of class C, then W(F): M(L,) - M'(L,) is continu-
ous with respect to the topology in 1).

Proof. 1) is clear from definition of the family.

Let n and n’ be dimensions of M and M’ respectively. For each j=1, ...,
k, we may regard d’F as a C*7J-map from M into the space L;jR" R") of
R"-valued j-linear forms on the product space of j-copies of R". And for any
seS' and fe M(L,), derivatives of ¥Y(F)(f) = F o f are given by

dJ(F of)s = Z{=0 Z lef(s)(dmj;’---’dplfs)’

where the second sum is taken over the positive integers p,, ..., p, such that p, +
-4 p, =j. Since the both maps L,(R";R")x (RY 3(b,ay,...,a)—
b(a,,...,a) eR", and S!'3s-(d'F, d"f,,....d"f) € Ly(R"; R") x (R")' are
continuous, the assertion ii) holds. Q.E.D.

In the following, we always consider the topology of this lemma on M(L,).
If M is smooth manifold, then each M(L,,,) is continuously and densely
imbedded into M(L,). So let M(L,) be the inverse limit of {M(L,)};xo-

Remark 2.2. i) Of course, M(L,) coincides with the totality of smooth loops
in M as sets.

ii) If we take R" as M, then M(L,) = (L, g)", and the above topology is
the same as that given by the norm |-|,.

iii) For k =0, the above topology is nothing but the compact-open topol-
ogy.

With respect to this topology, the homotopy classes of M give the decomposi-
tion of M(L,) into connected components as follows.
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For each f;e M(L,), we define a subset M(f,) of M(L,) by
M(fy) = {fe M(Ly); fifo, that is, f is homotopic to fy} .

Lemma 23. M(f,) is closed in M(L,).

Proof. Let f, be an element of the closure of M(f,). Since f,(S') is com-
pact, there exist a positive real number ¢ < 1, a positive integer p, and pairs
{Vi, &}ioy....,, of coordinates neighbourhoods and local coordinates for M such
that

(1) &(V) ={xeR"|x| <1},

(2) f, maps {exp (/= 1r); rel, = [2n(i — 1)/p, 2ni/p]} into ¥,

() &(filexp (y/ —127i/p)) = 0,

(4) the open subset W, = ¢71{|x| <&} of M is contained in V;NV,,,, where
Vp+l = Vl‘

Define an open subset U of M(L,) by

) 4 .
U:= () {g€ MLy gle¥™") < ¥, gV ") e W} .

i=1
By assumption on f;, the intersection M(f,)NU is not empty. For an element
f, of this intersection, put
gi(9) == & (1 = 9E(fole™ V7)) + s (f (V7)) for 0<s<1,i=1, ..., p,
Since each V; is homeomorphic to {|x| < 1}, there exists a continuous map h;:
[0,1] x eV~ o V: such that

hi(O’ *) = f2 > hi(l’ *) = fl on ¢xp (\/ - 111) 5
hi(x, 32"“_1)‘/__1/”) =di-1>
i, €2%V7P) = g,

Putting h(s, t) := hy(s, t) for se€ [0, 1], t € I;, we see that f, is homotopic with f,,
and so f, € M(f,;) = M(fy). Q.E.D.

Lemma 24. If f, € M(L,) is homotopic with f,, then there exists a continuous
map F:[0,1] > M(L,) such that

FO) =/ and F1)=f,.

Proof. By assumption, we can take a continuous map f:[0,1] x S' > M
such that f(0, ¥) = f,, f(1,*) = f;. We may assume this f is of class C*. Then
the function

F(s)(t):= f(s,t)  for se[0,1], teS*,
gives a path connecting f, and f; in M(L,). Q.E.D.

By these two lemmas, we see that M(L,) is decomposed into disjoint union
of arcwise connected, closed subsets of the form M(f), fe M(L,). Thus, we
have the following theorem.
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Theorem 2.5. Let k=0,1,2, ..., 0, and let M be a connected C*-manifold.

i) For any feM(L,), M(f) is the connected component containing f.
Further, M(f) is arcwise connected.

i) There exists a bijective correspondence between the fundamental group
n,(M) and the set of connected components of M(L,). In particular, M(L,) is
connected if and only if M is connected and simply connected.

2.2. Lie group structure on a loop group. In this subsection, we take an
n-dimensional Lie group G as the manifold M in the preceding subsections, and
give a Banach Lie group structure to G(L,), making use of the above results.

Let g be the Lie algebra of G.

Taking, as F in Lemma 2.1 ii), the product map G x G— G and inversion
map G — G, and bracket product on g respectively, we see that G(L,) is a
topological group, and that g(L,) is a Banach Lie algebra in a natural way.

Let exp: g = G be the exponential map. Since exp is a local diffeomorphism,
¥(exp): g(L,) = G(L,) is a local homeomorphism (see Lemma 2.1). Moreover, if
f. f € g(L,) commute with each other, we have from definition

¥(exp)(f + f') = ¥(exp)(f) ¥(exp)(f') .

In particular, ¥(exp)(tf) (t € R) is a 1-parameter group in G(L,). In this sense,
we can say that P(exp) satisfies the property for the exponential on g(L,), and
so we write exp for ¥(exp).

Let a: G x g3(g, x) > Ad (g)x € g be the adjoint action of G on g. By the
same reason for exp, we use the same symbol Ad (g)x for ¥(x)(g, x) also in case
ge G(L,), and x € g(L,). This new Ad defines a continuous homomorphism from
G(L,) into GL(n, L,) (= L(g(L), g(L,))*) and further it satisfies

Lemma 2.6. g(exp x)g~! = exp (Ad (g)x) for Yg e G(L,), "x € g(L,).
We define f:g x g—>g by
p(x, y) .= Ad (exp x)y for x, yeg.
By Lemma 1.7, ¥(B) is a C®-map from g(L,) x g(L,) into g(L,). Applying

Corollary 1.7.1 to the formula

d
;i—tﬂ(tx, y) = (ad x)(ﬁ(tx, ,V)) fOl’ Vx’ y € g s

we have

d
T P(B)(tx, y) = (ad x)(P(B)(tx, y))  for "x, yeg(Ly).

Since ¥(B)(x, y) = Ad (exp x)y, we see that the infinitesimal generator of the 1-
parameter group Ad (exp tx) is equal to ad x. On the other hand, the same

. 1 .
is true for the l-parameter group exp (t(ad x)) = Z‘;f=0 Et"(ad x)P. Therefore, it

holds that
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Lemma 2.7. Ad (exp x) = exp (ad x) for "x € g(Ly).
Now, we can prove the main result of this section as follows.

Theorem 2.8. Let G be a finite-dimensional Lie group, g the Lie algebra of
G,and k=0, 1,2, .... For a sufficiently small neighbourhood V of 1 in G, there
exist a unique Lie group structure on G(L,) such that its local coordinates at 1
is given by (V(L,), log), where log = ¥(exp~') on V(L,).

Moreover, for another finite-dimensional Lie group G’, open subset U of G,
and C'**-map f from U into G, the map ¥(f): U(L,) — G'(Ly) is of class C’,
and further if U= G and f is a Lie group homomorphism, so is P(f).

Proof. Thanks to Lemma 1.8, the second assertion follows from the first one.

Let W be a neighbourhood of 1 in G such that log = exp™: W — exp (W)
is a diffeomorphism, and let V be an open neighbourhood of 1 in G such that

Vvil=vy, and VV c W.

It is enough to prove the following properties (1) ~ (4):
(1) there exists an open neighbourhood U, of 1 in G(L,), such that U, U, c
V(Ly), and

log (U,) x log (Uy) 3 (xy, x;) = log (e™'e™) € log (V(Ly))

is a C®-map,
(2) the map

log (V(Ly)) 3 x = log (e™*) e log (V(Ly))
is a C®-map,

(3) for any g € V(L,), there exists an open neighbourhood U, of 1 in G(L,)
such that U,UgU, = V(L) and

log (U3) 2 x — log (ge¥) € log (V(Ly))

is a C*-map,
(4) for any g € G(L,), there exists an open neighbourhood U, of 1 in G(L,)
such that U;UgUsg7! = V(L) and

log (U;) 2 x — log (ge*g™") e log (V(Ly))

is a C*-map.
For an open neighbourhood W, of 1 in G such that W, W, c V, put U, =
W, (L,), then (1) holds.
The map in (2) is multiplication by —1, whence (2) is true.
For g e V(L,), g(S') is compact subset of ¥, and hence there exists an open
neighbourhood W, of 1 in G such that W,Ug(S")W, c V. Put U, = W,(L,).
The map in (3) is the restriction of

log (V(Ly)) x log (V(Ly)) 3 (x, y) — log (e¥e”) € log (W (L)) ,

which is of class C* by Lemma 1.7.
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Let g be an arbitrary element of G(L,). Since G(L,) is a topological group,
there exists an open neighbourhood U; of 1 in G(L,) such that U;UgU;g7! =
V(L,). The map in (4) is the restriction of the continuous linear map Ad (g)
by Lemma 2.6, and so it is of class C*. Q.E.D.

Thanks to the second assertion of this theorem, we can replace log with an
arbitrary local coordinates ¢ as follows.

Corollary 2.8.1. Let G, g, and G' be the same as in Theorem 2.8. For any
coordinate neighbourhood (V, ¢) of 1 in G, there exists a unique Lie group structure
on G(L,) whose coordinate neighbourhood of 1 is given by (V(L,), ¥(#)). This
structure is independent of the choice of (V, ¢).

By definition, V(L,) = V(Lo)NG(L,) and ¥(¢) on V(L,) is the restriction of
¥(¢) on V(L,). In this sense, we may say that the differentiable structure of
G(L,) is uniform with respect to k, and we have

Corollary 2.8.2. Let G, g, and G' be the same as in Theorem 2.8. For any
coordinate neighbourhood (V,¢) of 1 in G, there exists a unique Fréchet Lie
group structure on G(L,) whose coordinate neighbourhood of 1 is given by
(V(Ly,), ¥Y(4)). This structure is independent of the choice of (V, ).

Moreover, for any open subset U of G, and any C®-map f from U into G
Y(f): U(Ly,)— G'(L,) is of class C*®.

§3. A complete affine Lie algebra

In this section, we introduce the completed version of a usual affine Lie
algebra.

First, we prepare notations and basic results for a finite-dimensional complex
simple Lie group G with Lie algebra g after [8].

Then, we give a continuous 2-cocycle on the Banach Lie algebra g(L,), and
construct the corresponding 1-dimensional central extension of g(L,), which is
again a Banach Lie algebra, and is the main object in this article.

Note that g(L,) is given by replacing the Laurent polynomial ring in the
case of usual affine Lie algebra with the Banach algebra L,.

3.1. Preliminaries for a finite-dimensional complex simple Lie group. We
fix the notations for the rest of this paper.

Let G be a finite-dimensional connected and simply connected complex simple
Lie group, H a Cartan subgroup of G, B a Borel subgroup containing H, and
g, b, b their Lie algebras respectively. Let n be the nil-radical of b and U =
exp (n) the corresponding unipotent radical of B.

Denote by 4 the root system of (g, b), and 4, the set of positive roots
corresponding to b, IT= {a,,...,a} the set of simple roots in 4,. For each
a e b* (= Homc (b, C)), we define subspace g* by

g :={xeg[hx]=ah)x for "heb}.
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For a Chevalley basis x,eg* (x€4), hy, ..., hjeb, put
U* = {exp (sx,); se C},
€= X, , Jii=x_q, fori=1, ..., 1.
Under these notations, we have the following well-known results.

Proposition 3.1 [8]. i) The normalizer N of H in G is generated by the
elements

W,(s) 1= exp (sx,) €xp (—s'x_,) exp (sx,)

with a e 4, and s C*.
ii) For any o€ A, se C*, the element

ha(s) 1= wy(1) T wi(s)
belongs to H, and the map
(S15--0s8) = hy (51)... By (s)
defines a Lie group isomorphism of (C*)' onto H.
We can define an involutive antilinear antiautomorphism on g by
e¥:=f;, ¥i=h fori=1, ..., 1.

For this involution and the Killing form B(-, ‘) on g, unique up to scalar
multiples as a non-degenerate, invariant, and symmetric bilinear form on g, put

BO(x’ y) = B(X, y*) fOI' X, VEG.
This sesquilinear form on g is Hermitian and positive definite.

3.2. Construction of a complete affine Lie algebra. Let §, = g(L,). The
bracket product [-, -], in §, is given by

(£, 91o(s) = [f(s), g(s)]  for f, g€@q.
We extend the bilinear form B(-, *), the involution x — x*, and the Hermitian

form By(-, *), from g to §,, by

B(f, g):= f L B(f(e V), gle ) dr

0
f*(s) == f(s)*
Bo(f,9):= B(f,g*) for f, g€ g, seS'.

Then, B(-, ) is a non-degenerate invariant symmetric bilinear form, f — f* is
an involutive antilinear antiautomorphism, and By(-, -) is an inner product on §;.
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We may assume the norm ||, on §, =~ (L,)*™ is given by

[/l = sup Bo(’f(s), 0f(s))"*  for feg,
Oséefék
where 0 is defined in the same way as in 1.1

From now on, we always assume k = 1.
Let us define a bilinear form Z(-, -) on §, by

Z(f,9):=B(f,g) for f, geg,.
We have the following
Lemma 3.2. Z(-, *) is a continuous 2-cocycle.

Proof. Continuity of Z(-, ) follows from those of the maps 0: §, — 8,
and B(', *): G-y x &~ C.
Let fie§, (i=1,2,3)and (r) := exp 2n/ — 1r). By definition, it holds that

B(af., f2) = Zn\/_J llm B(fl(t(r+5))—f1 (), fo(z(r)))dr

=5 \/—‘l,’f; 5 U B(f1(z(r), f2(z(r — 9)) — fz(f(r)))dr}

= —J B(f1(x(r), of2(x(r))dr = —B(f1, df;) .
0

Hence, Z(-, -) is antisymmetric because B(‘, ‘) is symmetric.
By a similar calculation, we have

B[ f1, f21os f3) + B(OLS2s f31os f1) + BOL S5, f1]o, f2)
= B([f1, f210, f3) + B([f1, 9210, f3) + BOOLS2, f31os f1) + BOL S5, f1lo, f2) -
Since B(-, *) is invariant, this is equal to

B(df1, Lf2, f3]o) + B(df2, [ f3, f11o) + BOLS2, f31o, f1) + BOLSs, 11, 12) -

Thanks to the above result i) and symmetricity of B(-, -), this sum equals 0.
Q.E.D.

Let §, be the 1-dimensional central extension of §, corresponding to the
2-cocycle Z(-, ). As a vector space, §, is equal to the direct sum §,+ Cc, where
c represents 1 € C. And the bracket product [, -] on §, is given by

Lfi +ric fo +roc] = [, 2o + Z(f1, fa)e for fied,, neC (i=12).

By definition, Z(g, §,) = 0, whence g can be regarded as a subalgebra of §,.
We define a norm ||, on §, by

|f + rele:=max (|fl,,|r)  for fe§, reC.
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Thanks to the continuity of Z(-, -), (§.,|'|,) is a Banach Lie algebra, and §, and
Cc are closed subspaces of §,.

We extend the bilinear form B(-, ) to §, trivially on the center Cc, and
*-operation by

(f+ro*:=f*+rc for feg, reC.
The following lemma is easily verified from definition.

Lemma 3.3. i) [&, §Jo = 8-
il) [8, 8x] = &k, and hence [§y, 8;] = &y

Remark 3.4. The 2-cocycle Z(-, -) coincides with the usual one (cf., [4], 7.1
and [3], 1.1) on the dense subalgebra §:= g ® C[{, {"'] = §, where {: S > S! =
C is the identity map. Hence, the Banach Lie algebra §, contains the usual
affine Lie algebra § as a dense subalgebra.

§4. An action of a loop group on the corresponding completed affine Lie
algebra

As in the preceding section, the completed affine Lie algebra §, is a non-trivial
1-dimensional central extension of the Lie algebra §, of C*loops in a finite-
dimensional complex simple Lie algebra g.

In the present section, we define—and describe explicitly—an extension of
the adjoint action on §, of the corresponding loop group G, to that on §,.

We further extend the action on §, to that on a Lie algebra §j, called the
extended affine Lie algebra, after the terminology in [2]. §f is a semi-direct sum
of §, and the “derivation” 0 on §,, and is the simplest Kac-Moody algebra of
infinite-dimension.

4.1. A 1-cocycle for the adjoint action of loop group G,. Let k be a positive
integer. Let G, = G(L,) be the group of C*-loops in the finite-dimensional con-
nected and simply connected complex simple Lie group G, and let Ad, be the
adjoint action of G, on the loop algebra §,, which is denoted in §2 simply by
Ad. Put

Aut (§) = {TeL@.8); Tlxyl=[Tx,Ty] for 'x, ye§}.

We define Aut(§,) in the same way. The group Ad, (G,) is a subgroup of
Aut (gy).

At first, we calculate how deforms the 2-cocycle Z(-, ') by the Ad,-action
of G,.

Lemma 4.1. For each g in G,, there exists a unique element 2z, in §y—; such
that

Z(Ad, (9)x, Adg (9)y) = Z(x, y) + B(z, [x,¥lo)  for "x, y € §s.
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Proof. The uniqueness of z, is clear if it exists, because B(‘, ") is non-
degenerae.

Since the set of g satisfying the lemma forms a subgroup of G,, it is enough
to prove the assertion for members of a generating set of G,. We can take
exp (fz), zeg, feL,, as generators of G,, because G is assumed to be simply
connected (cf., Theorem 2.5 ii)).

For an element g =exp(fz), expanding Ad, (exp(fz)) into the series

1 .
Yo ! f™(@ady z)™ and using the invariance of B(-, ‘), we have the equality

B(3(Ad, (exp (f2))x), Ad, (exp (/f2))y) = B([(2f)z, x]o + 0%, ) -

Again by invariance of B(-, -), the right hand side of this equality equals Z(x, y) +
B((9f)z, [x, y]o)- And so the assertion of the lemma is valid with z, = (9f)z.
Q.E.D.

Corollary 4.1.1 (of Proof).

l) zexp f2z) = (af)z fO" Yfe Lk’ Vz € g
il) The mapping Gkag—-»zgegk_l is a normalized 1-cocycle for the Ad,-
action of G,, that is, it holds that

z;, =0, z;1 = —Ad, (9)z, for “ge G,‘,

zglgz = zgz + AdO (gZ_I)Zgl for Vgl, g, € Gk .
Corollary 4.1.2. The mapping 5,, 39> 2,€8,-, is of class C*.

Proof. Thanks to Corollary 4.1.1 ii), it is enough to prove the assertion in
a neighbourhood of 1 in G,.

Let x,, ..., x, be a basis of g. For a sufficiently small ¢ > 0, the pair of
the set

U:={ef= . el f=(f1,.... ) e L) | fl <€},
and the mapping
Usel™ . .ef™ = (f,...., f) e (L)

is a local coordinate of 1 in G,.
For g = e/*'...e/"* by Corollary 4.1.1, it holds the equality

2y = ()%, + Ado(e /™) ((9f,-1)%,-1) + -+ + Adg (7). e7/2*2)((0f1)x,) -

Since the mapping 0: L, —» L,_, is continuous and linear, it is of class C®.
Moreover, Ad, is a C®-mapping from G, into GL(§,_,). Hence, the above
equality implies the assertion. Q.E.D.

4.2. An extension of Adg-action of G, to §,. Now, we can extend the
adjoint action of G, on §, to the central extension §,.
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For each g € G,, define the linear operator Ad(g) on §, by
Ad (9)(x + rc) :== Ad, (g)x + (B(z,, x) + r)c for xe g, reC,
This definition gives actually an action of G, on §, as follows.

Theorem 4.2. Ad:g— Ad (g) is a group-homomorphism of G, into Aut (§)
of class C*.

Proof. Let g be an arbitrary element in G,. By Lemma 4.1, it holds that,
for any x, y € g,

[Ad (9)x, Ad (9)y] = [Ad, (9)x, Ad, (9)y]o + Z(Ad, (9)x, Ad, (9)y)c
= Ad, (9)[x, ¥1o + Z(x, y)c + B(z,, [x, y])c

= Ad (9){[x, y]o + Z(x, y)c} = Ad (9)[x, y] .

Hence, Ad, (g) is an element of Aut (§;).
Let g’ be another element of G,. By definition, we have

Ad (9) Ad (¢9)x = Ad (9){Ad, (¢')x + B(z,, X)c}
= Ad, (g9) Ad, (9')x + B(z,, Ad, (9')x)c + B(z,, X)c .
By invariance of B(-, -) and Corollary 4.1.1 ii), for any x € §, this equals
Ad, (99')x + B(zyy, x)c = Ad (gg')x ,

and so Ad is a group homomorphism.
The smoothness of Ad follows from Corollary 4.1.2. Q.E.D.

For each x € §,, we obtain a 1-parameter group Ad (e”*), t € R, of operators
on §,. This l-parameter group is equal to the usual one defined by the adjoint
action of the Lie algebra §,, that is, there holds that

1
Lemma 4.3. Ad(e*)=e*:=) 50 W(ad x)"  for "x € §,.
Proof. Tt is enough to prove that the infinitesimal generator of the 1-

parameter group Ad (e'), t € R, is equal to ad x. For any y, z € §,, by definition
of z,x, we have

d
B <£§ (ze‘x)

d
0’ [y’ Z]0> = 'd—tB(ze"h [,V, Z]O)

t= =0

d
—Z(Ad, (e™)y, Ad, (€7)2)

t=0

T dt
= Z([x, y1o-2) + Z(y, [x, 2]o)
= Z(X, [y, Z]o) = B(ax’ [y, Z]O) .
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Since B(-, *) is non-degenerate and §, is generated by the elements of the form
[y. 2], ¥, z € §g, it holds that

= 0x.

t=0

d
a (Ze"‘)

Hence, for any y € §,, we have by definition of Ad (e”*) on §,

d tx
2 Ad ()

Corollary 4.3.1 (of Proof).

=[x, ylo + B(0x, y)c = [x, y]. Q.E.D.

t=0

%(zeu) = Ad, (e7¥)dx  for "x€g, .

o

d V4
dt etx

Proof. By Corollary 4.1.1 ii), we have

d ([
Eze"‘ - Ado (e ){(a ze"‘)

And, as we showed in the proof of Lemma 4.3,

equals 0x. Q.E.D.

t=0

4.3. Extended affine Lie algebras §§. Since the 2-cocycle Z(:,-) is
J-invariant:

Z(0x,y)+ Z(x,0y)=0  for "x, ye§,,

0 defines, by dc = 0, a continuous linear map from §, into §,_,, denoted by the
same symbol 0, and satisfies the derivation property, that is, it holds that

[0x,y]+ [x,0y]=0  for "x, ye@§,.

We put §;:= C0 + §,, and extend the bracket product on §, to a bilinear
map §; x §; 3 (x, y) > [x, y] € i, by

[ri0+xy,7r0 +x,]:=r0x; —ry0x, + [x,, x,] for ry, r,eC, x{, x, €8, .

In the same way, we also extend the bracket product [, -], on §, to a bilinear
map §; X g — §¢_,, where §¢:= Cd + §,.

Though §; is not really a Lie algebra, we call § the extended affine Lie
algebra after the terminology in [2] for simplicity, because the bilinear map
[, -]: 6% x §x = a;-,, satisfies the properties of the usual bracket product,
antisymmetricity and Jacobi identity. From the same reason, we call “action”
the linear map Ad (g): §; — d;_, defined below for each g € G,.

We obtain the relation between the action of d and those of elements in
G, under Ad, as follows.

Lemma 4.4. For each element g in G,, there holds that

Ady(g)odoAdy(g7") =0 + ad (z,-1) .
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Proof. Because of the invariance of B(-, ), for any x, y € §,, we have the
equalities

B((0 + adg (z5-1))x, y) = Z(x, y) + B(zg-1, [x, y]o)
= Z(Ado (¢7")x, Adg (7))
= B(d Ad, (97)x, Ad, (971)y)
= B((Ad, (9) 0 0 0 Ady (971))x, ¥) ,
and this implies the lemma, because B(-, ) is non-degenerate. Q.E.D.

For each g € G,, we extend the operator Ad (g) on §, to the linear map from
g into g, by

Ad (9)0:=0 + z,-1 — 3B(z,, 2,)c ,

Lemma 4.5. Let k= 2.
i) For any g€ G,, it holds that

[Ad (9)x, Ad(g)y] = Ad (g9)[x.y]  for "x, ye&;.
ii) Moreover, letting g' be another element of G,, there holds the equality
Ad(g) Ad (¢))x = Ad (gg')x  for "x e @ .

Proof. 1t is enough to prove the two equalities
(1) [Ad(9)9, Ad (9)x] = Ad (9)0x for "x € §,,

(2) Ad(g)Ad(g')d = Ad (g99")0.

The left hand side of (1) equals

[0 + z,-1, Adp (9)x] = @ Ad, (9)x + [2,-1, Adg (9)X]0 + Z(z,-1, Ad, (g)x)C .
This is equal, by Corollary 4.1.1 ii) and Lemma 4.4, to
0(Ad, (9)x) + Ado (9)[—2z,, x]o + Z(z,-1, Adg (9)x)c
= Ad, (9)(0x + [z,, x]o) + Adg (9) [ —2,, x]o + Z(z,-1, Ado(g)x)c
= Ad, (9)0x + B(0z,-, Ad, (9)x)c .
By invariance of B(-, *), Corollary 4.1.1 ii), and Lemma 4.4,
= Ad, (9)0x + B(Ad, (9)(0x + [z,, x]o), Ad, z,)c
= Ad, (9)0x + B(0x, z,)c + B([z,, x]o, z,)c = Ad (9)0x ,

and thus (1) holds.
The left hand side of (2) is equal, by Corollary 4.1.1 ii), to

Ad (9){0 + z, — 3B(z,, 2,)c} = Ad (9)0 + Ad (9)z,-1 — 3B(z,, z,/)c .
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By definition of Ad (g)

=0+ z,-1 — 3B(z,, z,)c + Adg (9)(z4-1) + B(z,, 25-1)c — 3B(2y, 2,)c
=0+ Ziggyr t B(Zy’ Zo"‘)c - %{B(Za’ za) + B(zy” Za’)}c :

On the other hand, the right hand side of (2) is equal, by invariance and
symmetricity of B(-, -) and again by Corollary 4.1.1 ii), to

0+ Ziggy1 — 3B(2,y, 249)C
=0 + ziy)1 — 3{B(z,, 2,) + B(z,, z,/) + 2B(Ado (9" ')z, 2,) ¢
=0 + 241 — 3{B(z,, 2,) + B(zy, 2,)}c + Bz, 2,_y)C
and so (2) holds. Q.ED.

Since this new Ad-action stabilizes all the central elements in §f, it defines
an action of G, on §§ = §;/Cc. Obviously, this new action on §; is an extension
of Ad, on §,. So, we denote it by the same symbol Ad,. By definition, we have

Lemma 4.6. Ad,(9)d =0 +2z,. for "geG,.

§5. Weyl group of the completed affine Lie algebra

In this section, as an application of the results in §4, we calculate explicit
forms of the normalizers and centralizers, in the loop group G,, of the Cartan
subalgebras of the affine Lie algebras §, and §;. We see that, in both cases,
the quotient groups of the normalizers by the centralizers are canonically
isomorphic to the usual affine Weyl group.

5.1. Cartan subalgebras of §, and §5. The dense subalgebra §°:=§ + Co
of §¢, is one of Kac-Moody algebras of affine type with tier number 1 (see [4],
7.1), and its Cartan subalgebra bh° is given by

A

=+ Cc+Co.
We denote by f the intersection of fe with § =[§°% §°]. Clearly, it holds that
h=h+Cc.

Moreover, we see that ) and §° are maximal abelian subalgebras of &, and §¢
respectively.
We define one more commutative Lie algebra h° by

h:=h+Co.

Then b° is an abelian subalgebra of g;.
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5.2. Centralizers in G~,, of Cartan subalgebras. Define subgroups Z, 72, Ze
and Z¢ of G, by

Z:={geGy; Ady(9)h=h  for "heb},
Z:={geG,; Ad(gh=h for "heb},
Ze:={geG; Ady(9ph=h  for "heb},
Ze:={geG,; Ad(gph=h  for "he bey .

Let H:=exp}h be the Cartan subgroup of G corresponding to b, and H =
H(L,) = G,. We can easily show

Lemma 5.1. Z = H,.

Next, to determine other centralizers, we calculate z, for g € H, as follows.
By Proposition 3.1 and Theorem 2.8, we see that

(L) % 0 % (L) 3 (fis s /1) = B (i) ho(f) € Hy
is a Lie group isomomorphism. Here, for a € 4 and fe(L,)",
ha(f) 1= wo(1) 7' wo(f)
w,(f) = exp (fx,) exp (—f "'x_,) exp (fx,) ,
and hy, ..., hyeb, x, € g* (x € 4), are the Chevalley basis of g as in §3. We have
Lemma 5.2. z, ., = —f"'(@f)h, for "ae 4, f € (Ly)*, where h,:=[x,,x_,] €

Proof. Because h,, x,, and x_, form an sl,-triplet, there hold the equalities
Ad, (exp (fx))X_q = X_o + fhy — f?x,,
Ado (exp (X))o = hy — 2%, s
Ad, (exp (—f T'x)h, = h, — 2f 'x,
Ad, (exp (—f 7' x )Xy = X, + f Ty — fTx_,
Further, by Corollary 4.1.1 i) and Lemma 4.4, we have
Ad, (exp (fx,))0 = 0 — (I )x, »
Ad, (exp (—f T'x_ )0 =8+ (f )x_g =0 — f2(f)x_, .
Hence, it holds that
Ady (w,(£))0 = Ad, (exp (fx,)) Ado (exp (—f 7'x_,))(@ — (9f)x.)
= Ad, (exp (fx.))(@ — (8 )x, — f 7 (@f)hy)
=0— T (h,,
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and so,
Ad, (h,(1))0 = Adg (e™™e™e™™)(0 — [~ (2f)h,)
= Ad, (e™*e*)(@ — f 71 h, — 2f 1 (9f)x,)
= Ad, (€7*)(@ + £ 7(9Nh, — 2f TH(@f)x.)
=0+ 71 (Nh, .

On the other hand, by Lemma 4.4, Ad, (h,(f))0 is equal to 0 + z, ;-1 =
0+ zp-1- So, we have

Zhny = (TH7HOS D= —f 1@ )h, - QED.
From this lemma, and Corollary 4.1.1 ii), it follows immediately that
Proposition 5.3. For 7, ..., fie(Ly)*,
Zh (fo- ey = ST @Ry = = LT A
Now, we can describe the centralizers explicitly as follows.

Theorem 5.4.

) Z = {hy,(f)- b (i) frs o, Sy € exp (L)}
ii) Z¢=2Z°=H.

Proof. i) Let ge Z. By definition, Ad (g)h = Ad, (g9)h + B(z,, h)c for any
heb, and so ge H(L,) by Lemma 5.1. Hence, g is written as

() g=h,(fi)...h(f) for If;, ..., fie(Ly)™ .
Therefore, by Proposition 5.3, we have
Z = {hy,(f1)---ho (£ i B (@) i) =0 for “heb}.
For any fe(L,)*, the integral

1
2n/ —1

f f(eV10)71(af)(e2*V19)dp
(4]

is equal to O if and only if the winding number of f around the origin of C is
equal to 0. And this is equivalent, by Theorem 2.5, to the condition that f is
in the connected component of 1 in (L,)* = C*(Ly).

On the other hand, exp (L,) is an connected open subgroup of (L,)*, and
so coincides with the connected component of 1.

Therefore, i) follows from the definition of B(-, *) on §,, and the two facts
that {h,,..., h;} is a basis of b and that B(:, -) is non-degenerate on b x b.

ii) Let g be an element in Z°. By the same reason for Z, g is of the form
(¥). Since g centralizes 9, z, is equal to 0 by definition. Hence, by Proposition
5.3, it holds that —f;*(9f)=0 for i=1, ..., I, and so df;=0 for "i. This
means that all the f’s are constant functions, and hence g belongs to
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H. Therefore, Z° is contained in H. The inclusion Z¢ < H is proved in the
same manner, and the converse inclusions are obvious. Q.E.D.

5.3. Normalizers of Cartan subalgebras. We denote by N (resp. N, N¢, and
N¢) the normalizers in G, of b (resp. b, be, and b°):

N :={ge Gy Ado (9)h = b},
N:={geG;Ad(g)h < b},
Ne:={g e Gy; Ady (9)h° = b°},
N¢:= {g e G,; Ad (g9)b° = b°} .
Theorem 5.5. Let N be the normalizer of b in G as in 3.1. Then,
i) N = NA = N.Hk,
ii) N°=N°®=N.{h, (C;{™)...h (CL")ny,....meZ,Cy,...,C,eC*}.
Proof. i) Obviously, N.H, normalizes § and . And, since Ad (9)x —
Ad, (g)xe Ccc b for any g and x, it is clear that N = N.

Let ge N. Then, for any hel, Ady(g)h belongs to b and, in particular,
Ad, (g)h is a constant map. Hence, it holds that

Ad (g(s))h = Ad (g(1))h for se S!

in g, and so Ad, (g(1)"'g) centralizes . Therefore, g, := g(1)"'g belongs to H,
by Lemma 5.1, whence g = g(1)g, is an element of N.H,. So, N < N.H,.

ii) By the same reason as for i), we see that N° = Ne.

Let g e N°. By definition of Ad,y(g) on §;, Ady(g) normalizes §). Hence, by
i), g is written as

g = g"hal(fl)"'ha,(ﬁ)

with g'e N, f,, ..., fie(L,)*. And so, by Corollary 4.1.1 and Proposition 5.3,
there holds that

Adg (9)0 =0 + f ' (0f )hy, + -+ + £ (f)hy, -

Since this belongs to b® there exist n;, ..., n,e C such that f,"'(df;) = n; for
Yi=1, ..., . These differential equations are easily solved as

fi(e*™ V1% = C, exp 2n/— 1n;0)

with some constants C;e C* (i=1,...,1). Hence, n;, € Z, because f; are functions
on S'. Therefore, g belongs to the rightest side of ii).

Conversely, every element of the rightest side of ii) obviously normalizes b
and f)e. Q.E.D.

Now, we consider the quotient groups N/Z and N¢/Ze.

By the above theorems, N°NZ equals to H =Z° Moreover, every element
in N is congruent with an element in N° modulo Z. Hence, N¢/Z¢ is isomorphic
to N/Z canonically.
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Put W:= N¢/Z¢ and
T:= {h, (C,{™)...h (C{"imyy ..., m €L, Cy, ..., CiE C*}.

Since NNT = H = Z¢ and N normalizes T, we have W = (N/H) x (T/H). From
the proof of Theorem 5.5 ii), we see that the mapping T3 g — Ad,(g)d — 0 gives
an isomorphism of T/H onto the coroot lattice of (g,b). Thus, we get the
following theorem.

Theorem 5.6. The quotient groups 1\7/2 and N¢/Z¢ are both isomorphic to
the affine Weyl group W =W x Q canonically, where W and Q are the Weyl
group and the coroot lattice of (g, b) respectively.

Remark 5.7. In the case k = oo, in [7], the Lie algebra h ®¢L, and the
group Z = exp (h ®cL,,) play essential roles to realize the basic representation
of the affine Lie algebra. In [1], the dense subalgebra h®cC[(,{™'] appears
in the same context. The fact that Z appears as the centralizer of the Cartan
subalgebra, seems to have a close relation with their works.
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