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Hypoelliptic operators in R3  o f  th e  form V +

By

Yoshinori MORIMOTO

Introduction and main results

I t  is  w e ll-k n o w n  th a t a  differential operator Di + (xt D 2 + x ì  x7D 3 )2 i s
hypoelliptic in  R3 if  k, 1 (k 1 )  and m are non-negative integers. This is a direct
consequence of the famous W irmander Theorem (see [3]). If xt, x  and x 7

2n are
replaced by functions infinitely vanishing then the hypoellipticity of the operator
is  n o t  o b v io u s . I n  t h e  present paper, w e  sha ll f irs t s tudy  such  a  problem.
Secondly we shall generalize one result about the  above problem  by using the
symplectic geometry and give some sufficient conditions of the hypoellipticity for
differential operators o f  th e  form X  +  X i ,  where X . (j =  1, 2) a re  real vector
fields in R3 .

Let L ,  be  a  differential operator that has one of two forms

(1) L0 = 13? + a(x 1 )2 (D2 + f(x1)9(x2)D3) 2

(2) L o = D? + oc(x1) 2 (f(x1)D2 + g(x2)D3) 2

where a (t), f(t) a n d  g (t) a re  real-valued, C '-functions with a(t), f'(t), g(t) 0
except for t = O. In  what follows, we adm it th a t a , f '  and  g  vanish infinitely
a t t = O. Two forms (1) and (2) correspond to two cases k < I and 1 < k, respec-
tively, o f the  operator mentioned in  the  beginning.

Theorem 1. L et L o be a differential operator of  the form (1) or (2). Assume
that a(t) is monotone in half lines (—x, 0] and [0, on), respectively. I f  a , f and
g  satisfy

lim t log I g(t) I =
t•o

lim ta(t) log =

then Lo  is hypoelliptic in  R3 , furthermore,

(5 ) WF Lo y = WF y f o r any y e  ' ( R 3 ) .
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The condition of the type (3) was first introduced by Kusuoka-Strook [6],
w ho show ed  tha t the condition (3) is sufficient fo r  th e  operator IX + Di +
g(x 2 ) 2 Di  to  b e  hypoelliptic in  R3 a n d  also necessary if g  is  m onotone in half
lines (—cc, 0] and [0, co) (c.f., Theorem 3 of [ 7 ] ) .  We can also see the condition
of the type (4) in Hoshiro [4], where the hypoellipticity of the operator a(x 2 ) 2 M +
D i + f'(x 2 ) 2 D i was discussed. A s in [6 ], it seems that the assumptions (3) and
(4) are close to necessary condition for the hypoellipticity o f  Lo ( se e  th e  last
remark in Section 7  o f [8]).

We shall generalize Theorem 1 for L o  o f  th e  form (1) under the restriction
a 0  0 .  Let L  be  a  differential operator of the form

(6) L = + X3) ,

where Xi  ( j  = 1, 2) are real vector fields in R3 . Let /Mx, denote the symbol of
‘ / -1 X i  and set

(7) E  -= { (X ,  E  T * R3 0; M X ,  = PAX, =

(8) r = { (x , )G E; {Pi ,  P2} = 0}

where { p i, P2} = 111132(x, and  Hi  ( j  =  1, 2) denotes the Ham ilton vector field
of pi (x, tha t is, Hi  = 1v4 pi  • 17x — Fx pi . V. W e  assume that

(9) d4p1 and  (14 1)2 a r e  linearly independent o n  E

It follows from (9) tha t E n {l l=  1} consists of two connected components that
are submanifolds of codimension 3 in  T*R 3 parametrizedIm Tliz=ed by x e R 3 . Hence wez

denote by F(x) the restriction of {p i , p2 } o n 1} in  what follows.
The first result w e shall state fo r the  above L  corresponds to  Theorem  1

fo r  Lo o f  t h e  form  (1) in  th e  c a se  th a t f'(0) =  0 b u t  a  a n d  g  d o  not van-
ish. Assume th a t  F  i s  C'-hypersurface in  E  passing through po  = (xo, e
T*R 3 \ 0 and  that

(10) T F + (T ECIT E I ) = TE at every point of F .

H ere T E ' is  the orthogonal space o f  T E  w ith respect to  the  symplectic form.
Under the assumption (10) TFCITE -1- i s  of dimension 1 at every p o in t .  I f  V  is
a  sufficiently small conic neighborhood of p o  e F  then w e m ay assume without
loss of generality that

(11) H i is  transversal to  rn V

because, for each p e E , Tp E "  is equal to  a  linear subspace generated by 111 (p)
and H 2 (p). If p e Ffl P. and  if yp  is  an  integral curve of H , such that yp  = y p (s);
s exp sH 1 , y,,(0) = p then we assume that the following formula holds uniformly
with respect to  p e r n  V;

(12) lim s log I F(n„Y,,(s))1 = 0 •
s

Here it  i s  the natural projection from  T*Rx3 t o  R .
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Theorem 2. L et L  be a differential operator of  the form (6) satisfying (9). As-
sum e that F is a C '-hy persurface in E containing p o  = (x o , and that (10)— (12)
hold . If  v  e  9'(11e) and p o  W F  L v  then p o  W F  V.

N ext w e shall state th e  result corresponding to the case tha t bo th  f '  and
g  o f  L0  v a n is h  a t  th e  orig in  (but oc(0) 0 0). Assume th a t  F = I',U  F 2 , ri =
{(X, e E; fi (x) = 01 for f i (x) E Coe ( j  =  1, 2) satisfying

df, A  df2is  n o n - d e g e n e r a te  on a linear subspace
(13) of T(T*R 3 ) generated by H , and H2 .

It follows from (13) that Fi  a re  C"-hypersurfaces in E .  Let p0  = (x 0 ,  0 ) e F, n r2

a n d  le t  V c  c  W  be conic neighborhoods o f  p0 . By m eans o f  (13), inW \F
consists o f fou r connected components Ei  ( j  =  1, ..., 4). There exist a 5 0  >
a n d  a  vector (cl, E R 2 f o r  each j  = 1 , . . . ,  4  such that for any p e rn z ., n V
an  integral curve y (s); s exp (s{c1H 1 + c111 2 }), y (0 )  = p  satisfies

y (s) Ei f o r  0 < s < S0  .

Furthermore, we assume tha t for each j  = 1 , . . . ,  4  the  following formula holds
uniformly with respect to  p e Fn fl V;
(14) lim s log IF(7cx y (s))1 = O .

s-1.0

Theorem 3. L et L  be a differential operator of  the form (6) satisfying (9). As-
sum e that F = F, U r2 as  above and that (13) h o ld s . I f  p o  e F, n F2  an d  if  (14)
holds then p o  W F  Lv implies p o  W F  y f o r any  v  E 21 (1113 ).

The last result we shall state is in  a  different situation from the above three
theorems that required some growth order conditions such a s  (3), (4), (12) and
(14). W e  assum e th a t  F  i s  a  C"-submanifold o f  codimension 2 in  E  and
symplectic, tha t is,

(15) T rn T ri = 0 .

Under (15), both H , and H 2 are transversal to  F  because H 1 , H2 e T E  c  T F '.
If po  = (x o , E F  an d  if  V  is  a  conic neighborhood of p0  w e  assume that

{ there exist a So > 0 and a C " function E(x )> 0 defined in a
(16) neighborhood of x 0 such that, for any p e V, (EF)(7rx y p (s)) has

a unique extremum in ( — 60 , 60 ), which is C " with respect to p.

Here yp (s); s e x p  s i i  ,  y,(0) = p.

Theorem 4. L et L  be a differential operator of  the form (6) satisfying (9). As-
sum e that F is a C"-symplectic submanifold and of codimension 2 in E .  If  p o  e F
and v  E 21'(113 ) then p o  W F  Lv implies p o  W F  y , prov ided that the assumption
(16) holds.



464 Y oshinori Morimoto

Typical examples of L  in  Theorem 2 and 4 are, respectively, a s  follows:

D? + (D 2 + exp (-1x 1 1- 6 )D3 )2w i t h  0 <  6 < 1 ,

+ {D 2  + exp —42 + xi) - 6 /2 dtD 3

 

12 w ith 6 > 0 .

Those examples are inspired by the works of Sjbstrand [9] and Grigis-Sjeistrand
[2] who studied the analytic hypoellipticity by using the  F.B.I. o p e ra to r . More
precisely, Theorem 2 and 4 are  motivated by Theorem 4.2 of [9] and Theorem
4.1 o f [2], respectively. In relation to  the second example we remark that an
operator DT + exp ( — Ix, I - 6 )Di is hypoelliptic in R2 for any 6 > 0 (see Fedisi [1]).

Before talking ab o u t th e  p lan  o f  th is  paper, w e recall a  criterion of the
hypoellipticity given in  [7 ] .  Let Q b e  an  open  se t in  R" and  le t P = p(x, Dx )
be  a second order differential operators with C'(2)-coefficients, tha t is,

(17) p(x, Dx )  =  E ai k p i Dk + E ibi D;  + c ,
j,k = 1 j= 1

where aik (x), b(x) a n d  c(x) belong to  C "(Q ). W e assume th a t ai k (x), b(x) are
real valued and  aik (x) satisfy any x in  0

(18) E  ai k (x)M k 0 for all e R '.
j ,k = 1

Let log A  denote a  pseudodifferential operator with symbol log <0, where <> =
( 1  4_112)1/2. A s for pseudodifferential operators we refer the  reader to  [5].

Theorem 5. L et po  = (x,, e T*(Q)\ 0 and  le t V be a  conic neighborhood
o f  y. L et 0  tp(x, 1 belong to S7, 0  an d  satisfy  cp = 1 in If
f o r any  e > 0 the estimate

(19) 11(log A) 2 (p(x, D)uil + C aulk u e ,

holds w ith a constant C, then po  W F  Pv implies po  Et WF y f o r any  v e g'(0).

This is a  microlocal version of Theorem 1 of [7] and similarly follows from
the argum ent in Section 1 o f [7 ] .  In  fact, the  estimate (1.5) o f Lemma 1.1 in
[7] is derived from (19) instead of (3) of [7] because we have the estimate after
(1.13) in  [7 ] .  W e have the following corollary to Theorem 5 (cf., Corollary 2
of [7]).

Corollary 6. L et p, E  T*(Q)\0 and  le t cp(x, b e  the  sam e as  in  Theorem
5. I f  f o r any  e > 0 the estimate

(20) 11(log A)(p(x, D)u11 2 e  Re (Pu, u) + Ce llue u e ,

holds w ith a constant C, then p ,  WF Pv implies po  W F  y  f o r any  v e g'(Q).

T h e  estimate (19) is derived from  (20). Indeed, le t  cp0 (x, e  4 , 0  satisfy
supp cp0  c c V and 0 y9 0 1 . R e p la c e  u  in  (2 0 )  by (log A)cp0 (x, D)u. Then, in



Hypoelliptic operators 465

view of Schwartz's inequality, we obtain (19) with cp replaced by 9 ,  because the
principal symbol o f [P, log A ] is purely imaginary and  w e have

11(log A)9,1411 2( l o g  A ) 2  0 14 112

T he p lan  of th is paper is  a s  follow s: In  Section 1 w e prove one part of
Theorem 1, more precisely, Theorem 1 for Lo o f  th e  form (2). Indeed, another
part of Theorem 1 has been already proved in the previous paper [8]. Similarly
a s  in  [8], th e  criterion o f  hypoellipticity mentioned in  th e  above can not be
applied to the  proof of Theorem 1 for Lo o f  th e  form (2) because the estimate
type of (20) no longer holds in  genera l. In Section 1 we prepare a  degenerate
version of (20) (see (1.27)') by using arguments about the inequality o f Poincaré
type developed in Sections 1, 2 , 4  and  7  o f [8]. In  th e  help o f this estimate
we prove the hypoellipticity of Lo following the method in Section 5 of [8]. In
Section 2  we prove Theorem 2  a n d  3  by m eans o f Corollary 6. I n  order to
derive (20) from the hypotheses we also employ the inequality o f Poincaré type
in  [ 8 ] .  Theorem 4  is proved in Section 3. By taking suitable coordinates, we
search for inequalities between coefficients of L (see (3.1), (3.10) and (3.11)). Those
inequalities enable u s  to  estim ate  the  commutator o f  L  a n d  cut functions in
T*I2 3 . The proof of Theorem 4  is essentially confined in  th e  classical method
as  in  Fedii [1], differing from proofs of Theorem 1-3.

1. Proof of Theorem 1

A s stated in Introduction, w e shall prove Theorem  1  only  fo r  Lo o f  th e
form  (2) because th e  proof fo r  L ,  o f  th e  form  (1) w as already given in  the
previous paper [8] under an  additional assumption g  > 0. This hypothesis g  0
can be rem oved by com paring (7.1) o f  [8 ] w ith (1.1) in  th e  below . W e m ay
assume that f(0 )  =  0 . In fact, the form (2) with f(0) 0  is reduced to the form
(1) by replacing I  by Œf. S in c e  f '( t )  is of the definite sign in  half lines ( —co, 0]
and  [0, co), f ( t )  is  m onotone in each half lines. W e m ay also  assume that a,
f, g  and their derivatives of any order are all bounded because our consideration
is local.

F o r  a  real I/ set = f (x 1 )D 2  +  g(x 2 )11 and set

P,7 = D, + iG(x)Y,1 ,

where G(x) = (a 2ff ')(x i )g(x 2 ). Then we have

(1.1) P,I*P = D? + Y,I G2 17,1 +  iG [D  Y ] +  i{ [D ,, G ] — G]D 1 1 .

Since iG[D,, 17,i ] =  o t 2f ,2g y n  c 4 2  f  0 2 115 for any compact K 1 V  there exist con-
stants CK, CK > 0  such that

(1.2) 0 IIP„0 2

— ({±(a f'g ) 2 0y, y) + C x { IlD1v112 + 11 04x1)Y„v11 2 + 1101 2 },V  E  C (K )
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If  we choose a  suitable sign according to ri > 0 o r  t/ <O then it follows from
(1.2) that

(1.3) (1(af'g)211711v, CK{IlD1v112 + 11*-x1)Y„v112 + 11012 }

< C;({11Div112 + ila(x1)Y„v112 } , y e C(K )

Here the last estimate follows from the  usual Poincaré inequality,

11v11 C iV11 v e C(K ) .

If we replace G(x) in  (1.1) by Œ2f ' th e n  in place of (1.2) w e have

(1.4) 0 ± ({(x f) 2 D2}v, LI +  CK{11DIY112 + 1100011,012 } , y  G M K ).

If  we set 13(0 = g(t) 2 a n d  y(t) = (a(t)f (0) 2 then  from  (3) and (4) w e have

(1.5) lim t log fl(t) = O,
t -0

(1.6) lim ta(t) log y(t) = 0 .
t-o

In  view of (1.3), we prepare the following:

Lemma 1.1 (cf., Lemma 7.2 of [8 ]). L et a(t), A t) and y(t) e C(11 1 ) satisfy a,
fl, y > 0 except f o r  t O. A ssum e that (1.5) an d  (1.6) h o ld . F o r C > 0 set
V(x; =  y(x 1),6(x2 ) 4 . Furthermore, s e t  Y  = f(x 1 )D2 + g(x 2 ) n  f o r  f (t), g(t) E
C(R 1 )  and n e R .  A ssume that a  and f  are m onotone in half lines (-co, 0] and
[0, cc), respectively. Then f o r any s > 0 there exists a C s > 0 independent o f  n
such that i f  C > Cs th e  estimate

(1.7) ({Di + a(x 1 )2 1'12 + V(x; C)}u, u) s(a(x

holds f o r any u e C8)(10 ), where I = {(x 1, x2 ); ix» 1}.

P roo f. It follows from (1.6) tha t for any s > 0 there exists a  6(s) > 0 such
that

(1.8) 0 - ix i ia(x,) log y(x,) < 1/s if  ix1 1 < 6(s).

F o r  th e  brevity w e assume th a t  a  is even function because th e  proof in  the
general case will be obvious after proving this special c a s e .  Since a  is monotone
in  [0, co), for a n y  > 0 there exists a unique positive roo t xc such that

(1.9) sa(x) l o g  = xc
- 1  .

W e may assume tha t xc is sm aller than 6(s) if 4  is sufficiently large. It follows
from (1.8) tha t if xci x i i < 6(s) then

y(x,)C = exp { lo g  + log y(x,)}

exp { lo g  -  (s ix , a(x1 )) - 1  } 1.

)2f(x  )2 (lo g  02 u 5
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Since y(x i ) cs > 0 o n  {b(s) 1},  we see that

(1.10) A xig 1 o n  {x1 E  B i ; Xc x1 ,

if C > Cs for a sufficiently large Cs . B y  m eans of (1.5) we see for any s > 0 that

(1.11) 13(x2)C 1 o n  {(s log C)- 1 l x 21 1}

if C > Cs , by taking another sufficiently large Cs . Set yc =  (s log C)- 1  and  se t

(01 =  Ix E  /0 ;  I x 1  <  xc l

co2 =  Ix E  /0 ; IX21 < .

Then 10 \((o 1 U w2 )  is com posed of four congruent rectangles. We divide each
rectangle in to  four smiler congruent rectangles. W e repeat this cutting proce-
d u r e .  Let I  = Q  x Qv2  ( c :  R x , x R x2 )  denote one of congruent rectangles on

som e step, (that is, 1 0*-0 1 U(0 2) =
 W e repeat the cutting and stop it  if

satisfies

(1.12) w1/2 (diam /v)- 2  .

Then w e have C1/2 >  ( 2 diam /„) - 2 . N ote th a t diam I v is  equ iva len t to  diam 121
with j  =  1 , 2 . By means of (1.10) and (1.11) w e have

(1.13) V(x; C) C2o n  l v if is sufficiently large .

We also divide (7)1 \0) 2 (and (-52 \0) 1 ) into congruent smaller rectangles as follows:

(2), \co2 =  U
 J i '

 ,J 1 . = [ —xc , xc] X  Qv;
v'

(7)2 \C°1 = U J2v" J2v" = x .Yd

where th e  diameter o f  Qv;  (resp. Q 11- )  is  e q u a l to  th a t  o f  Qv2 (resp . V 1). Set
co, fl w2 = K o ( = Q j

 x  12(!, c R x , x R x2 ) and le t K','{ denote four times dilation of
Ko . If  u e C ( I 0 )  then w e have

(1.14) 4 0 ?  +  Œ(x 1 )2 12 +  V (x)}u,

f {ID1u12 +  la(x1)Y„u1 2 + V(z)lu1 2 }dx + E f {•}dx + E f {-}dx
Ic(;• v• j l v,

+ E l  {•}dx

EE t2o E ov -F E f2v, E Qv- ,

where J i v, =  [  2 x c , 2xc]  x  Qv2 '  a n d  J 1
2
.,„ = x  [  2 y c , 2yc]. L e t  G(x2 )  b e  a

primitive function of g(x2 ) and set

ifi(x) = u(x) exp fiG(x 2 )q/f(x, )1 for x ,  0  .
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Then it follows from Lemma 1.1 of [8] (cf., (2.17) of [8]) that

(1.15) 
f

 la (x 1 )Y„u12 dx d x  I f I c((x )fixi )D2 1,112 dx2}
ict Qô* Vol QV

c f Q(1)1{1(21,* v o i [fQ 8 , (21 *x i )2f (xi )2 -Y 2

Q6

X IÛ(Xi, x2) — 11(x 1, Y2)12 42dX21/1Q1j1dX1}

= C d x  { f k (y 1)2f (y 1)2y 2
K . K n œ ,

X  111(y 1, x2) — û (y 1 , Y2)1261YEK01} •

In view of the monotoness of a and f ,  it follows from (2.17) of [8] and (1.15) that

(1.16) Qoc {xc-21u(x)— u(y i , x2 )12

I K .L fK 8 V o liU O 2 )

+ (y ) 2f t y  y  2 û(y1, x2) — 17(Y)12 +  V (Y)lu(Y)12 1 K  d x

c /scc(x )2f(x )2 ( l o g  C)2 u(x)12dx
Ko

because of (1.9) and (1.13) with I, replaced by Kn(w i U 0)2 ). Similarly as in (1.15)
we have

la(x1)17„ul 2 dx c Id x  t i ftiv ,\ .1  E (Y 1 ) 2f(Y1)2 Y 2

X 117 (y1 , x2) — 11(y 15 Y2)12 dYYJW II

Hence we obtain

(1.17) Qv, > c'sa(x) 2f (x4)2 (log C)2lu ( x ) I2 d x  .

M ore easily we have

(1.18) Qv c"C1/2lu ( x ) 1 2 dx

Exchanging the  order o f  M and  a2 D i a n d  noting  that (diam Qvi-)- 2 C 1 / 2
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also have

(1.19) S25- >  c f [ 10(x1)2f (x1)2 1, 2 1ii(x) Y2)I2
J t2 , „  \0 2

+ C"2 1u(x 1, Y2) — u(Y)I 2 + V(Y)1u(Y)1 2 1c1Y111.1 2v-Idx

> c's(log C) 210(x1)/(x i)u (x)12dx
J 2 v

Summing up (1.16)-(1.19), in  view of (1.14) we obtain the desired estimate (1.7).
Q.E.D.

L e t h(t) b e  a  C (R ') func tion  such  tha t 0 < h < 1, h = 1  i n  Iti <  1  and
supp h {Itl 3/2} .  I f  w e se t Zog; = 1 — h(II/M) f o r  a  parameter M > 1
then xo  belongs to a  bounded set of the symbol class ,S 0  uniformly with respect
to  M.

Lemma 1.2. L e t 60  b e  an y  b u t  a f ix ed positiv e. L et x( ) satisfy
0  x 1, X = 1 in f lf l 2 6 01 311 n I 31 and supp x c 60131), where

= For any  s > 0  and any compact set K  R 3 there ex ist constants
M s ,K  and Cs ,K  such that i f  M  1115,K

(1.20) lia (x 1 )(log /15)x(D)x0(D; Mu11 2( L o u, + Cs,K u e

where xo(; M ) is the same as in the above.

Pro o f . Let x 2 , 3 )  denote the Fourier transform o f u(x) w ith respect
to  x3 .  Substituting a in to  (1.4) with n = we have w ith a  cK  > 0

(1.21) ± cijoe(x1) 2f (x1) 2 D2u, u) u112 + 110C(fD2 gD3)14112

= (L 0 u, U), u e C(K) .

Take cp, 1// e C A R D  such  that cp = 1  o n  K  a n d  g) c c  tk, (tha t is , 0 = 1  in  a
neighborhood of supp g)). L et x i ( ) e g oa such that

on { ± 2  60 (6  +  0 1 /2 1 n 1/2}

o n  {-± 26016 + 6/ 1/2 } { 1 2 1 1/3} ,

where double sign takes its order. Substitute ■//(x)x+ (D)u e Cò°  in to  (1.21) with
plus sign . N ote  tha t [D 1 , Ox+ ], [fD 2 + gD3 , tlix+ ] and [(ozf')2 D2 , x + ] belong to
S?, 0 a n d  th a t (1 — tii)x+ p , (1 — ik)(af')2 D2 x+ cp e S . T h e n  b y  u s in g  the  usual
Poincaré inequality we have

(1.22) ({a(xi)f '(x1)} 2 1D21Xi-(D)u, u) CK (Lo u, u), u E C ( K ) .

Since it follows from (1.21) w ith minus sign  tha t th e  similar form ula as (1.22)
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holds for x_ we have

(1.23) ({a(x1)fjx1)} 2 1D21(x+ + x2-)(D)u, u) CK (Lo u, u) , u e Co°(K) .

Set 22 (0 = X+( ) + X2- ( ) .  N ote that 2() can be written in  th e  form

AO = i(O, 25 3 )  ±  i  r ( )

fo r r( ) such that r(D)1D 2 1 is L 2 bounded operator. Since I D212 2 (D) e SI,o it
follows from (1.23) that

(1.24) ({ 0c(x1)f '(x1)} 2 1D21(i2 (0 , D2, D3)U, 14) CK (L014,14) 5u  e  C ( K ) ,

Here and in what follows we denote by the same C K  different constants depending
o n  K .  Since y(t) = {a(t)r (t)} 2 satisfies (1.6) for any s > 0 there exists a  ( s > 0
such that for any W E Coc ({1X1l CD with a  c > 0 we have

(1.25) Q M  +  {f } 2 2 } w , w) > s2 IIa(x1 )(log C)wII 2i f  C  _ >  s .

In  fa c t, this is nothing b u t  Lemma 7.1 o f  [8 ] .  L e t fi(x i , 2 , 3 ) denote the
Fourier transform o f  u(x) with respect to (x 2 , x3 ). Substitute 2(0, 2, 3 )(1 —
h(1 2 1/M ))(x 1 , 2 ,  3 ) into (1.25) with ICI = I21 112 . I f  M  satisfies M > 24'  fo r
s > 0 then in  view of (1.24) we obtain

(1.26) 11 0 (x1)(log ID21s )2(0 , D2, D3)( 1 — h(2 1D21/M))u112C K (L o u, u), u e C (K ) .

N ote that llog (IDI WO — h(2ID I I/M)(x(x i )u II is estimated above from P i  au II
CK (Lo u, u )  if M .> Ms f o r  a  sufficiently large M . S ince 2 (0 , 25  3)( 1 —
h(2 I 21/M) + 1 — h(2 I i I/M) is non-zero on supp xxo  we have

11(log As )X(D)X0(D; M)cL(x i)u 112 C I A O ,  0 , U G M K ) .

It follows from the expansion fromula o f  [(log A)x(D)Xo(D; M), *xi)] that the
estimate

11[(log A s )x(D)xo(D; M), *x i )] 4 2s C s ( 11(1 — h(2 ID I/M))u II -1 + II u II -s)

2s(Cs /M) II u II + sCs II u II -s

holds with a constant Ç .  I f  M  satisfies M > sCs , furthermore, we obtain the
desired estimate (1.20). Q.E.D.

If we apply the similar arguments as in the proof of Lemma 1.2 to estimates
(1.3) and (1.7) with I/ =  3 and C = 131 114 then for any s > 0 and  any compact
K  c  R3 there exists a  1115 , K  > 0 such that if M > Ms,K

112 (x1 i f (xi )(log (ID31s )( 1 — h(2ID3 I/M))uII 2 < u ) , u e q(K) .

The combination of this and  (1.20) shows that for any s > 0 and  any compact
K = R3 there exist constants M s , K  and  C,,„ such that if  M > Ms, K

(1.27) IIa(x i )f(x i )(log As)xo (D; M)uII 2 .. (Lou, u) + Cs,K 11u112-s , u E M K ) .
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From  this w e see that for any e > 0 and for some C E, K  the  estimate

(1.27)'1 1 (log A)cx(x1 )f(x 1 )u1126 (Lou , u) CE,KMU112 u e C (K ),

holds. By Corollary 6 in Introduction, (1.27)' yields the formula (5) in the region
{x 1 0 0}.

It follows from (1.27) th a t for any s>  0 and  any compact K  w e have

(1.28) lloc(x 1 )g(x 2 )(log As )Xo(D; M)u112( L o u , + Cs,K11U11 2- s u e C (K )

provided that M > M s , K  fo r  a  sufficiently large M „ K .  In fact, we get

Ilag(log As)Xoull 112 (1 0 g As)XoXu 11 + g(log As )Xo( 1 — X)1411 •

The first term  o f the  right hand side can be estim ated by using (1.20). Note
t h a t  th e  s e c o n d  te r m  is  e s t im a te d  a b o v e  f r o m  11a(f D 2  gD3 ) {D-3- 1 (1 —
X)Xo log + Ilaf(log As)xo {D2 DV(1 —  x)}1411. Since D ' (1 — x)x o (log /1 5 +
D2 ) is  a  L 2 bounded operator w ith a  fixed bound we obtain (1.28) in  the  help
of (1.27).

W e shall prove that if po ( x o , = (0, (0, 0, + 1)) and if y e g ' then

(1.29) p o  WF Lo y implies po W F  V.

We prepare some special cut functions as in Section 5 o f [8 ].  F o r  a  (5 > 0 let
14 ( ) e S?, 0 be real valued and satisfy t/i6 = 1 in  { ± 3/261 and
tfra = 0 in { ± 3 3  21'11 U {1 3 1 (5' }. H e re  w e  c h o o se  o n e  o f  +  signs
according to c = (0, 0, 1) o r  (0, 0, — 1). W e assume th a t 06 can  be  w ritten  as
Oa) = tTi ( 3 , 1 ) o ( 3 ,  2 ) f o r  so m e  Cf/6 (t, t') E  C ( R 2 ) s u c h  t h a t  t-fi, = 1 in
{±(5t {It' > 3/26} a n d  t/J, =- 0 in ± 36t 2 N/2 1 t' 11 Ull t1 6 - '1. Here

3
we also take one of +  signs following the above convention. Set p(x) = f l  h(X  k)

k =1
and set q(x) = cp(xfS). If we set W(c) = W (; M) = h((M - 1 3 1  — 3 )/6 )0 ( ) for
a  parameter M > 1, then for any multi-index )6' there exists a  Co such that

(1.30) 11=4 W3 1 Co M '<

w ith any real 0 s < 1f31 because with a  C > 0  w e  have C  on
supp

Fix a n  integer N  > 0. Take a  sequence Wi ( )}7_, S ? , ,  such that

= Vi o OE OE Pi OE OE W2 c c  • • •  c c  WN -1 c  c =  Vi za

and for any multi-index fi the  estimate

(1.31) IDM1 < C fi NIP1M '< 0 -1 "  , 0  s 

holds with a constant Co independent o f N  and j. It should be noted that W .;

can be taken o f the  fo rm  W.; =  hg 3 ; * O ( ) = M)1./;g 3 , with
= 1 i n  -FR 33 / 2 6 }. Here one of +  signs is chosen under the

above convention. Similarly, take a  sequence {(pi (x)}7=0 C ( R 3 ) such that

(Pa = (Po c (P2 c c  ••• c c  (PN  -1 c (Pat = (P2b
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and for any fi the  estimate

(1.32) I Dfc(Pil <

holds with a  constant C'f l independent of N  and j. W e m ay also assume that
3

(p;  can  be w ritten  a s  in  9; (x) = 11 hi (x,).
k =1

For the proof of (1.29) we need the following lemma corresponding to Lemma
5.4 of [8]. W e fix a  sufficiently small c5 > 0  such that t112 3 (D)9 2 ,(x)Lv e

Lemma 1.3. L et K =  {.X E R3 ; 1Xj1 4 6 } . There exist a constant Co  indepen-
dent o f  M  and N  such that f o r any s > 0  and some C, > 0  we have

(1.33) (log Ms) 2 Re (EL0 , 49;(x)Wi(D)]u, q(x)P(D)u)

(C 0 N)2 [(L 0 u, u) + C,{1114 2_, + N 2 s+ 8 H u e } ] u e Cco°(K) ,

provided that log M s  Co N  and M  M ,  f o r a  sufficiently large M, > O.

Proo f . N ote that

(1.34) [L0, (pi (x)Wi (D)] = [Lo , cpi (x)]Wi (D) + (,(x)[1. 0 , Vii (D)] .

We see that

Re ([cx2 ( fD 2g D 3 )2 , (pi (x)]u, Q(x)u) = Il [a( fD 2g D 3 ) ,  ( Pj] U112

(CM 2 { ŒfU112Ilagu 11 2 } for u E .

For a moment, we denote different constants independent of N , M  and s by the
same notation C .  From  this w e have

(1.35) (log Ms)2 Re ([oc2 ( f D 2 + gD 3 )2 , cpi (x)]Wi (D)u, cpi (x)V; (D)u)

(CN) 2 { il(log Ms) Wi (D)otfu 112 + Ms) Vii (D)ocgull 2

+ (log M s )2
 [ a f, Vii (D)]u11 2 + (log IVP)2 II [a g , Wi (D)]u11 2 1 .

It follows from (1.27) tha t for any s > 0 we have

I((log As )X0(D; M)a(x i )f(x i )ull 2( L o u, u) +  C,110, , u  e C (K ) ,

if M > Ms f o r  a  sufficiently large Ms . H e n c e

(1.36) 1((log Ms)Wi (D)czfull 2C iR lo g  As) W26(D)X0(D; ili)cxfu 2

C(L o u, u) + Cs Ilue_sf o r  u E C(K) .

i f  M  > M , fo r  a  la rg e  M, > O. H e r e  a n d  in  w hat fo llow s w e denote  by C,
defferent constants depending on s  but independent of N  a n d  M . By means of
(1.28) we see that (((log Ms) Wi (D)agull 2 is a lso  estim ated above from  th e  right
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hand side of (1.36). It follows from Lemma 5.3-0 o f [8 ] that

(log Ms )2 {11[0c.f, Vi(D)]u11 2 + 11[019, VYDnull 2 1
< (log M5 )2 (CN) 2 M - I 2  C5N2s + 8 1 1 4 — s 11U 11 2 }
< (log M 5 )4 M - 1 {CK (Lo u, u) + C5 N 2 5 + 8 M - s llu112 } u G Co° (K)

if log M S >
 C N . Therefore, if log M s  C N  and M  is sufficiently large such that

(log Ms)4 M - 1  <  1  then w e have

(1.37) (log Ms)2 Re goi2 ( fD 2g D 3 )2 , (pi ] Wi lt, (p.i Vi u)

(CN)2 E(L0 u, u) + N 2 S " m-
S 11 u 11 2 1] u e CZ3(K) .

N ote that

(1.38) (log Ms) 2 Re ([13q, pi (x)]Wi (D)u, Q(x)W(D)u)

(CN) 2 (log /145)2 11h (x 1) Vi(D)ull 2

(C M 2 { 11(log il
5

) V2a(D)ri(x1)ull 2

+ (log M
5

)2  Il [kx 1 ), Vi(D)Jul1 2 1 u G M K ) ,

where ii(t) is  Co' function  such  that 0  <  <  1 ,  s u p p  c  [S, 4(5]. If  M  is  large
enough then we have

11(log As )V126(D)F1(x Ilk-00(10g il s )Xo(D; M)1411 + IuM + -s , u  G C (K ) .

It follow s from  (1.27) th a t  th e  first te rm  o f  th e  r igh t hand  side  o f  (1.38) is
estimated above from Q. Applying (5.13) of [8] to  the second term of the right
hand side of (1.38), we obtain

(log Ms)2 Re ([Di, ço i (x)]Vii (D)u, 9; (x)Vi (D)u) Q , u e C'8)(K) ,

if M  satisfies the  same condition as in (1.37). From  this and  (1.37) we obtain

(1.39) Re ([4 ,  4(x)]W(D)u, 4(x)W;(D)u) , u  e Co
° (K) ,

if log M5 >  CN and  M > Ms f o r  a  sufficiently large M .  In  view of (1.34), the
proof of the  lemma will be completed if we show

(1.40) (log Ms) 2 Re (9; (x) [X 2 , Wi (D)]u, p i (x)Vii (D)u) ,U  e  Q ( K )  ,

where X = cx(x (x OD 2 + g(x 2 )D3 ). N ote that

(1.41) Re (9 ; [X 2 , WALL, (pi  Vi a) = Re (Xu, {[Ti ce, [X , Vi ]] + [X, Vi ] [ g fi , (pi
2 ]}u)

+ Re (EX, 91Vf.j u ,  [ X ,  ] u ) .

The first term  of the right hand side is estimated above from

C11Xu11{N3 M - 1  + C s N 2 s + 1 ° M - " 1 ) }111411

< CN 3 /M{11Xu11 2 + 1114112 + C5N 2 s + 8 M - s llu112 }

< (log M ) - 2 Q, u E Co° (K ) .
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if log M s > CN  and M  is sufficiently large such that (log Ms) 5 < M .  N ote that
the principal symbols o f [X , WA and [a, Vi ]  are contained in 61311 and

I 613II, respectively, because o f the  form of W . H e n c e  the second term
of the  right hand side of (1.41) is estimated above from

CN2 { ( l o g  
ms)-211(l

s

)X0(D; M M
• 112 + c s ms-F8m -s ow l  ,(logV ( D ) " 1 1 2 -111D lu

where x is the same as in  Lemma 1.3 with So < (5/10. By means of (1.20), those
terms multiplied by (log Ms)2  a r e  also estimated above from (CN) 2 f2. I n  view
of (1.41) we obtain (1.40). Q.E.D.

The im plication (1.28) follows immediately from Lemma 1.3 because the
arguments on and after Lemma 5.5 of [8] can be carried out quite sim ilarly. In
fact, the difference between Lemma 5.4 o f [8 ] a n d  Lem m a 1.3 is  the  presence
of II u II 2-s in (1.33). This term is harmless because we employ (1.33) with u replaced
by (pi Vi u  and hence we estimate 11(p; Vi u  _s by A i' 'lull (see the proof of Lemma
5.5 of [8]).

The im plication (1.28) also  holds even if  w e  replace po b y  ((0, x0 2 , x0 3 ),
(0, 0, +1 )) with (x 0 2 , x 0 3 ) (0, 0). In  f a c t ,  L em m a 1.3 s till h o ld s  f o r  p i(X )

3
corresponding to ep" 6 (x) = h(x 1 /(5) 11 h((x ;  — x 0 )/S). In  view o f Lemma 1.2, the

j=2
preceding argument also yields (1.28) for p o  = (x o , with c 0 (0, 0, + 1) if  we
modify V13(0  to  correspond to  the direction Thus the  proof of Theorem 1
is completed.

2. Proofs of Theorem 2  and 3

W e shall first prove Theorem  3 . It follows from  (13) th a t dx f ,  a n d  d x f 2

a re  linearly  independent. B y taking a  suitable coordinates, w e m ay assume
J%(x) = xi , j  =  1, 2. Write

(2.1) pi(x , ) = d i ,(x ) , + a 2 (x) 2 + a 3 (x) 3 , j  =  1, 2 .

It follows from (13) that

(2.2) D(x) a  a=--- ii 22 — a izaz i 0  0  •

If (b(x )) is  the inverse matrix of (au (x)) then we have

f
i — c(x) 3

G ( x ) 3  = —  C l(X )3 , C 2 (X )3 }

=  D(x) - 1 {P1, P2 } Otj(X)pi(X,
j=1

(2.3)
c2 (x )3  =  b 2 1 P 1 b22P2

for some c.(x)E C .  F ro m  th is  w e  have

= b11P1 b12P2
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for some oti (x)e C .  Under the  above choise of the coordinates we see that

(2.4) E = {(x, e T* R3 \O; —  c i (x)c, = 0, j = 1, 2}

(2.5) Fi = {(x, e E; xi  = 0} , j  = 1, 2 .

If po e r 1 fl F 2  then we m ay write po = (0, 4) with

(2.6) 6 = 3); C O 3 }

fo r a  sufficiently large Co  >  0 . Furthermore, the function F(x) defined in  Intro-
duction can be written a s  in  th e  form

(2.7) F(x) = D(x)G(x) 3w i t h  3 = 1/.\/1 C1(X)2 C2(X)2 .

Let z (x ) (j = 1, 2) be  a solution to

(Ozi /Ox i )(x) + zi(x)) = 0 , zi (x)i x1 =.0 = X3

where x' = (x 1 , x2 ). It is clear that  z (x ) exists in  a  small neighborhood of the
o rig in . L e t u e C(R 3 )  satisfy supp u c {1x1 2 6 1  fo r  a  sufficiently small (5> 0.
Then there exists a  C1 >  0  independent of x ' such that

(2.8) C'11u(x', • )q,2(R) •))1Ii.2(R)

C111u(x', •)11i,2(11)

Since Lemma 2.1 of [8 ] holds with the absolute value I' 1 replaced by the norm
11.11 we have

(2.9) IID1u(x', • )11 2
L 2( R ) dx'

(diam Q,) - 2

>  C 11/4(X I, x2, U (Y 1 5  x y , • )11,2(R )dx ' d y '

iII
Ç

for a n y  rectangle I = Q 1 X  Q 2  1 1 , 2 e .  N o t e  that D i u(x', zi.(x)) = {(Di —
c1 D3 )u} (x', z i (x)). In  view of (2.8), it follows from (2.9) that

(2.10) 1(D1 — c1D3)u(x', •)42 2( R) dx'

,(diam Q1 )- 2

> c ' 1 ,  x 2 ,  . )  — u(y 1 , x2 , 2( R) dxdy

if supp u {1x1 26}. Similarly we have

(2.11) J, 11(D2 — c2 D3 )u(x', • )11,2 2( „ ) clx'

>  c '

(diam Q2 ) - 2

Ilu(Yi, x2, •) — u(Yi, Y2 ,  . )11L
2 2( R ) dx'dy' .

I/I
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S e t  17 =  D — ci (x)D3 , j =  1 ,  2 .  Then, by  m eans o f  (2.3) w e  h av e  fo r  any
compact K  R 3

(2.12) Yi u 112 +  Y2u112c , {  X 1 u2 + mX214 2 }
< C'K  (Re (Lu, u) + due} u e C(K).

If  P = Y1 + iG(x) Y2 then

P* P = Yi* +  172*  G 2 Y2 + [  171*  G ] Y2 — [Y2* , G] Y1 }

+ iG{(Yi.* Y1)Y2 + (y2*  — Y2) 1711 + Y2] •

In  view of i[Yi , Y2 ] =  G(x)D3 w e  have

(2.13) ±(G(x) 2 D3 u, <  CK {  Y1u112 + Y2u1I 2 + 11/4112 } u e C̀c°,(K) .

L et h(t) E C (R 1)  b e  th e  sam e as in  Section 1. F o r a  la rg e  parameter M > 0
a n d  a  small ô > 0  set

x±(3; = 11(( ± 114 - %  — 3 )1(5 )

It follows from (2.13) that

(2.14) G(x)ID 31 112 h(x 316 )X±(D 3; Mull 2

< C K{11 170112 + 11 1'24 2 +  du e} u  Co° (K) .

Set x(3; = x+(3; M) + X-(3; (= h((M - 1  31 — 3 )/45 )). Since 2M
4M  o n  supp x  it follows from (2.14) that

(2.15) G(x)M2h(x3/6)03; M)u11 2

< C1(01 1704112 + Y2u1I 2 + 110 2 1 , u e Ct,(K) .

Assume that x  belongs to a  sufficiently small neighborhood 1;3 o f  th e  origin
such  tha t Vo c c  irx  V. H e r e  V is  the  conic neighborhood of P o  given between
(13) and (14) in  In troduction . In  view of (2.7), it follows from (13) and (14) that
for any e > 0  there exists a  SW >  0  such that

(2.16) 1G(x)1_-_. exp{— c/min I, I x211 if 0<  m in  (1x1 1,1x2 1) < (5(e)

Set x, = 4e/log M .  We may assume that xm  <  6(e) if M  is sufficiently large. It
follows from (2.16) that

I G(x)I 
m 1 / 2  >  m 1 / 4

o n  {X E Vo; Xm  <  min ( x lH x 2 1 )  6 (E)1 •
Since 1G(x)1 c, >  0  o n  {x E Vo ; min (1x1 1,1x2 1) Os)} we see that

(2.17) G(x)I M 1/2M 1 / 4 o n  {x E Vo ; xm  <  min (1x1 l, Ix21)}

if M > M, fo r  a  sufficiently large M, > 0.
L et .5 > 0  be sufficiently small such that

/ ,{ x '  .< 2.5 }  c c  rcx, V0 •
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H ere 7tx
, i s  a  natural projection f r o m  R  to  12.!,. S et co;  = tx e  1 0; 14  <  X M} ,

j  =  1, 2. Similarly as in the proof of Lemma 1.1, divide 10 \(0) 1 U co2 ) into congru-
ent squares I, = Qvi  x Qv2 su c h  th a t 10 \(co1 U w2 ) = H  / and-v

(2.18) M'12 < (diam Q;) -
2  <  4 m 1

1
2

We also divide (7.)1\w2 (and (.62 \w,) into congruent smaller rectangles as follows:

(7)1\C°2 
= U  `

1 10'
v'

-652\C°1 = U J20"

J l  = [—xm, xm ] x 12";

J2v" =  421-  x [—xm , xm ] ,

where th e  diameter o f  Qv;  (resp. Ql”) is  e q u a l to  th a t  o f  Q"2 (resp. Q1). Set
co, fl w2 = K o (=  Q,13. x Q(

2
) R x , x R x2 ) and let K t denote  four times dilation of

K o . If  u e C({Ix1 6 }) and  if h a  = h(x 3 /6)x(D 3 ; M) then w e have

(2.19) 4{11Yiluu11 2 + 11 17211,4/4 112 + 11G(x)M1/2116Xu112 }

J{ 11 Yi h au (x ', •)11 2 +  11 Y2 h6xu(x ', • )4;2 + 11GM 1 1 2 h6xu(x' , •)11,21dx'

+ 1.1dx' + {•}dx' + 1.1dx'
V '1

Qo + E Q, + E Q v, + E Q v - ,v, v"

where r i v , = [-2x m , 2xm ] x Q 2'  a n d  4 v ,, = x 2 x , ] .  Here
11 11L2(R3) 

a n d  11 111,2 = 11 11L2(R). It follows from  (2.10) and  (2.11) w ith  /
replaced by Kt and a hau, respectively, that

(2.20) Q, c {xi-%-1211ri(x% ) — 11(Yi .)q2
fK0[1„„.„u0,2)

11 11 =
a n d  u

+ x 2 11a(yi, x2, •) — + IIGIVP2 (1 (3/, 1Koldx' ,

because

f iec

,11G,./2„-,(x,,.)11,dx,=f [f .
.K0K t '

By means of (2.17) and (2.20) we obtain

(2.21) Q0 c'e- 2 (log M) 2 1111(x% ')4',2dY'1/1Koldx'
f ic . [.f4 V c o  i Uu)2 )

c"E- 2 (log M) 21117(x', *)11 2
1,2dx' .

L0
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It follows from (2.17) and (2.18) that

(2.22) S2.„, > c [ f lx211/1(x', ) - a(xi, Y2, .0 ,2
J i , 4 ,V ° ,

NI1120(xl, y2 , .) -  û ( y ',  .)q,2 + GM 112 (y',

c'E- 2 (log it4)2 f 1111(x', .)q2c/x' .

Similarly we have

(2.23) c'E-2(log M) 2 f ti(x', ,
J2v

(2.24) Qv c'M 1 1 2 fIlii(x% • )q2dx' .

Summing up (2.21-24), in  view of (2.19) we obtain

(2.25) Y1hxuM2 + Y2haX14 112 + IIG(x)M 112k3xu112

> c'E- 2 00g Ilhbxu112

if M  is large en o u g h . Note tha t [Yi , x(D3 ; M)] ( j  = 1, 2) are L2 bounded opera-
tors uniformly with respect to  M .  It follows from (2.12), (2.15) and (2.25) that
for any E  > 0  we have

(log M)2 I1h(x3/6 )203; M)I411 2E 2 11Xj02 110 2 }
j= 1

provided that M  M ,  fo r a  sufficiently large M E >  O . F rom  th is w e  see  tha t
for any M e [1, cc) th e  estimate

(log M) 2
 Il h (x 3 / 6 )X (D 3 ;  M)/411 2E 11X i14112C e 1114112 , U E Cco° ({1X1 (5} )

=1

holds w ith any E > 0  and some constant C .  Note th a t h(x3/6) = 1 on supp u
an d  2M 4 M  o n  supp x. Since M[h(x3/ 6 ), X(D3; M )] i s  L2 bounded
uniformly with respect to  M  we have

(2.26) II(log ID31)x(D3; MuIl 24 1 1 (lo g  M ) 2 x(D3; M)u11 2

< E Ilx ; 142 + cdu112 ,

Let tP() e S 0 b e  rea l va lued  and let satisfy = 1 in Co n
11 31 1} and supp tfr { 2 c o  3 1 } .  Here C o  i s  the same constant as in

3
(3.6). Set (p(x)= H h(2x k /6 ) a n d  X2,3(3; = h((M - 1 1 31 - 3 )/2 6 ). (N ote that

k =1
x ( 3 ; M )  =  x , ( 3; M )) . Let u e 99 and substitute 49 (x)X2(D3; M)IP(D)u into (3.26).

, u e CO° (llxl . 6 1),

E C({IXI 6 1) •
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Then we have

(2.27) 11)(6(1)3; M ) c p ( x ) i k ( D ) ( l o g  A)u112

< E 11X2(D3, M)X i1411 2 C,{ 11X 4(D3, M )14112 M-21114112}
i= 1

by noting the expansion formula of pseudodifferential operators. Integrate with
respect to  M e [1, a)) after dividing both sides of (2.27) by  M .  By Lemma 5.6
of [8] we have

(2.28) 11(log A)9(x)O(D)0 2 1 1 X  u 2  +  C e MuM2

.J=1
<  Re (Lu, u) + Cu M2 u e

By means of Corollary 6 in Introduction, (2.28) shows tha t po  =  (0 , ( ,)  W F  Lu
implies po  W F  u  for any u e 3'(123 ). We have completed the proof of Theorem
3.

Now the proof of Theorem 2 is an easy exercise. Taking a  suitable coordi-
nates, by means of (9) we may write

(2.29) Pi = • P2 = a 1(x) 1 +  a 2 ( x ) 2  + a 3 (x) 3

with a2 (x) 0 .  Then

(2.30) E = {(x, E T* R3 9 ;  i  = + b(x) 3 =  O},

where b(x) = a 3 (x)/a 2 (x). It follows from (11) that w e m ay assume

(2.31) F = {(x, )e E; x 1 = 0} .

If po  e F then we may write po  = (0 , (3 ) with satisfying (2.6). Setting G(x) 3 =
+ b(x) 3 } (= ax 1b(x)3), instead of (2.7) we have

(2.32) F(x) = a 2 (x)G(x) 3w i t h = 1/N/1 b(X)2 .

S e t y1 =  D , and Y2 = D2 ± b(x)D3 . Then w e also have (2.12) and  (2.15). Let
Vo  b e  a  sufficiently small neighborhood of the origin such that Vo c  c  rcx V, where
V is the conic neighborhood of po  given between (10) and (11) in Introduction. If
for a n y  > 0  we set x, = 4e/log M  then it follows from (12) and  (2.32) that

(2.33) IG(x)I/14"2 > M 114o n  { x  E  V o ;  Xm lx11}

if M > M c f o r  a  sufficiently large /1/I > 0. Using (2.33) w e obtain, in place of
(2.25),

(2.34) 1/2, 6x
171 ha l 4 1121 1 G ( X ) M  n u 112

c'e- 2 (log M)2 11/76 x0 2u  e Cco° ({1X1 6 }) •

Since (2.12) and (2.15) still holds we obtain (2.26) and  hence (2.28), which leads
us to  the conclusion of Theorem 2.
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3. Proof of Theorem 4

Similarly a s  in  th e  proof o f Theorem 3, it follows from (9) that we may
write without loss of generality

(3.1) Pi = P2 = a 1 (x) 1 + a2 (x) 2 + a 3 (x) 3

with a 2 (x) 0 0. Then

(3.2) E = 1(x, E T * R 3\0; = b (x )3  =

(3.3)T  = {(x, e E; 6„1 b(x) = ,

where b(x) = a 3 (x)/a 2 (x). I f  Po E = 11 then we may write p o  = (0, 4).
By taking the change of variables xi  = y i  ( j  = 1, 2), x 3  = b(0)y 2 + y 3 , if necessary,
we may assume that b(0) = 0. In  view of (3.2) we see p o  = (0, (0, 0, +1)). Since
H i, H y e TE ' T T '  it follows from (15) that we can find a  co > 0 satisfying
the  following; for any 0 < 6 < c o

(3.4) 0,r1b(x) 0 0 o n  {ix3 1 c o b} Fl 5,j = 1,2) .

Since 7rx r  i s  a  submanifold in  R3 o f  codimension 2, ex  1 b(x) has a  definite sign.
N ote that

lOxib(x)1 = ,s/1 + b(x) 2 1a2 (x)F(x)I (cf., (2.32)) .

It follows from (16) that there exists a  C  function t(x) > 0 defined in a neighbor-
hood of the origin such that (fax i b)(s, x2 , x3 ) has a unique extremum in (— So , So )
if  kJ '  are  small enough. F or each x" = (x 2 , x3 )  le t s(x") = s(x 2 , x3 )  denote the

x,
extremal p o in t . I f  we set b(x) = ax , x ")dr then in  a  small neighborhoodi s

1
NI.

soc") 
of the  origin we have

fs(x")

C' I(EOx i b)(x)1 C"lax,b(x)i -

L et z(y") = z(Y  ,Y 3) be a solution to

8z/ay2 = b(s(Y2, z), Y2, z) z(0, Y3) = Y3 •

I t  is clear that z(y") exists in  a  small neighborhood of the  origin in  R2 . Take
the change of variables

(3.6) x i = y i  ( j  = 1, 2) , x3 =  z(y 2 , y 3 ) .

Since b(x) = (x) + b(s(x"), x") we see that D I a n d  D y  b (X )D 3  are transformed
to  D , and D y  B(y)D 3 ,  respectively, where

(3.7) B(y) = .6(.Y 1, Y2, z(Y"))/(az/aY3)(Y") •

(3.5) (x)1 C l(fax,b)(s, x")idt



3,fs (y2 ,z (y "))
Ra„, ax3 b)(T, 372, z(y"))1ch

l(POx i b)(T, x")1 112 dt c' I ax , 1)( 4 112

xi

i s ( x " )

Hypoelliptic operators 481

Note tha t az/ay, is close t o  1 near y" =  0 . Since a„,B(Y ) = (ax, b)(Yi, Y2, z(Y"))/
(0z /4 3 )(y") it follows from (3.5) that

(3.8) Clay113(.01 for I y l small enough.

The direct calculation gives

la„B(Y)1

< C 1 10„1 b(s(Y 2 , Z(Y " )) , Y2, Z(Y " ))1 + C2

The first term of the right hand side is estimated above from C l a y i B ( Y ) I  because
i(fax,b)(s(x"), x")I l ( f a x 1 b)(x)1. S in c e  Ox i b  h a s  a  d e f in i te  s ig n  w e  have
I axi ax3 b(x)I < C lax , b(x)1'12 i n  a  neighborhood of the origin. The second term is
estimated above from

with x = (y i , y 2 , z(y")). The last estimate follows from the  similar argument as
in  (3.5). Hence we have

(3.9) 103B(y)1 C I ay , B(y)I
1/2

for ly I small enough .

From  now  o n  we denote new variables y in (3.6) and B(y) by  x and b(x),
respectively. Furthermore we assume that a(x ) in  (3.1) are written by new vari-
ables. S ince a, = a2 b  it follows from (3.8) and (3.9) that

(3.10) a3(x)I C b(x)1

(3.11) 3 a3 (x)1 C ax, b(x)11/2 for ix I small enough.

We may assume that (3.4) holds by taking another small c o > 0, if necessary. If
P = D, + i(D 2 + bD 3 ) then P*P = D? + (D 2  + D 3 b)(D2 + bD3) + qex,b)D +
(ex,  b)D 3). Since Ox i b  has a  definite sign we have

(3.12) u) C{1lDiu11 2 + IID2 + bD3u11 2 + 11u112 }

C' {Re (Lu, + 114 2 }

if ue Co°({1x11 0 0 6 } )  f o r  a  sufficiently small 6 > 0.
Since F n po  = (0, i:)) with = (0, 0, + 1) we prepare similar cut functions

as in Section 1 . F o r  a  6 > 0 le t 06 (0  a n d  W( ; M) be the  same as in Section
1. Considering (3.4), w e m odify  th e  definition of p o (x ) a s  follows; q ( x )

h(10x 3 /c0 6) h (x ,/6 ). F o r  any  in teger N  > 0 w e  ta k e  th e  same sequences

{!P )}70{ .g ) } - o  andi  {49;(x)}7=0 as in  S ec tion  1 . In  w hat follow s w e shall only use
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estimates

(3.13) CpM -s<>-
'P H s 0 s 1/31,

(3.14) Df 9;  I < C 3 ,

in  place of the precise estimates (1.31) and (1 .32). We still require that cp .; can

be written as in q (x ) = fl hi(xk)-

N o te  th a t 10 „1 b(x)192(x) 2 (1 31 M) W2,3() 20  belongs to  S1, 0 . B y  the
sharp Gdrding inequality (see Theorem 4.4 of [5]), it follows from (3.12) that

(3.15) 1/2926,x‘ V12(D)02 < C{Re (Lu, u) + 1114112  }

if u e C({1x1 < 1006 }) fo r a  sufficiently small 15 > 0. For the  proof of Theorem
4  we need the  following lemma that corresponds to Lemma 1.3 in Section 1.

Lemma 3.1. L e t  K  = 1/4  an d  le t  K = Ix e R 3 ; Ix' 1061. There exist a
constant Co independent o f  M  such that

(3.16) M '  Re (EL, yoi (x)Wi (D)]u, 9i (x)Wi (D)u)

Co {(Lu, +  114 2 } u e C(K ) .

Proof. N ote that

(3.17) EL, Q(x)W(D)] = [L, T i (x)]Vii (D) + cpi (x)[L, !P(D)] .

If  X = a i D i  +  a 2 D2  +  a 3 D 3  we see that

Re ([X 2 , goi (x)]u, 9i (x)u) = Re ([X* X, cpi ]u, (pp) + Re ([(X  — X*)X, (pi ]u, (pu).

Since the first term of the right hand side is equal to 11[X, (pi ]u112 and the second
term is not bigger than C11[X, (PA 4 1 1 4  we have

Re ([X 2 , 9i (x)]u, q(x)u) C {M2 "11[X, (P]ull 2 + M 2  41 112 } for u e

From this and  the  similar formula with X  replaced by D , we have

M 2 K  Re ( [L , ( x ) ]  i (D)u, (pi (x)Wi (D)u)

{

i  M  I l (x k)9 2 6 (x)W2 (D)u 112

k =1

+ MlIa3(x) 1/2 49 2.3(x) V126(D)u 11 2 +  11u112},u

where Ti(t) is the  same as in  (1 .38 ). In  view of (3.4) and (3.10), it follows from
(3.15) that

(3.18) M2" Re ([L, o(x)] Vii (D)u,p(x)W(D)u)

C {Re (Lu, u) + 1u11 2 }, u e C(K) .
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N ote that

(3.19) Re (tpi [X 2 , PAL', pi r i u)

= Re (pi [(X — X*)X, Ti ]u, tpi r i u) + Re ([X, t e r> ,  [X , r i ]u)

+ Re (Xu, a r i ce, [X , r i ]] +  [X , r i ] [ r i , tpl]lu) .

Since TA) has the form  r i = hi ( 3 ; M)ii/() we see that

[a 3 (x)D3 , Tf (D)] = [03 , IPA hi D3 + hAD3 .

N ote th a t the principal symbol o f  [a3 , is contained in t l 'l (5 1 11. The
first term of the  right hand side of (3.19) is estimated from

3a b o v e ! 

C [{M - 1 11D1 ull + M - 1  II92sT2D2ull + Ila3Q24T2sull

+ 11(ax3a3)49 23T23U111 u  +  M - 1  Ilu112 ]

< C'M'{ liD1u11 2 + 11Xu112 + 0 1 112 + MIla349 26T20112

+ M II(ax3a3)(P2a W20112 }

O n account of (3.10) and  (3.11), it follows from (3.15) tha t the first term  of the
rig h t h an d  s id e  o f  (3.19) is estim ated  above from  C" {Re (Lu, +1114 112 }.
Similarly we can estimate the second term of the right hand side of (3.19). Be-
cause the  third term  is not bigger than C we have

(3.20) M  Re (TAX 2 , rju, (pi r i u) < C {Re (Lu, +  due} E Co° (K) .

In  view o f (3.17) w e obta in  th e  desired estimate (3.16) from  (3.18) a n d  (3.20).
Q.E.D.

If 5 > 0 is sufficiently small then we have

(3.21) d u e  z  C Re (Lu, u), u G 0({IX1 106}).

In fact, if W is a  small neighborhood of the origin then there exists a  C(W) > 0
depending only o n  W such that

llDiull 2C ( W ) { R e  (Lu, u) + 110 2 } , u E CP° (W).

From  this w e have (3.21) because the  Poincaré inequality

c162 11Diu112 , u e C(11xl< 1061),

holds with a n  absolute constant c 1 . B y  (3.21) it follows from (3.16) that

(3.16)' M ' Re ([L, tpi (x )r i (D)]14, ç(x)P(D)u)

< C(Lu, , u E Co° ({1x1 106})
Using (3.21) and  (3.16)', b y  the  same method a s  in  th e  proof o f Lemma 5.5 of



484 Y oshinori Morimoto

[8] we obtain for any M  1

(3.22) 1142NK 119 8V16 14 112 C  t i t i 2 N K  11 L + M 2  44 2
}

W 2 (5 , 26-U

< Im4 N K  II w 2 ,5926
1-1411 2 + m 2 11u112  } u e .

Here constants C and C' depend on N , of course. Recall that N  > 0 is arbitrary
integer. Then the argument after (5.33) of [8] can be carried out by using (3.22)
in place of (5.32) of [8]. Thus the proof of Theorem 4  is accomplished.
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