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Hypoelliptic operators in R® of the form X7 + X7
By

Yoshinori MORIMOTO

Introduction and main results

It is well-known that a differential operator D? + (x¥D, + x{x7D;)* is
hypoelliptic in R? if k, I (k # I) and m are non-negative integers. This is a direct
consequence of the famous Hérmander Theorem (see [3]). If x¥, x| and x3 are
replaced by functions infinitely vanishing then the hypoellipticity of the operator
is not obvious. In the present paper, we shall first study such a problem.
Secondly we shall generalize one result about the above problem by using the
symplectic geometry and give some sufficient conditions of the hypoellipticity for
differential operators of the form X2 + X3, where X; (j =1,2) are real vector
fields in R3.

Let L, be a differential operator that has one of two forms

(1) Lo = D} + a(x1)*(D; + f(x1)g(x2)D3)?
@ Lo = D} + a(x;)*(f(x,)D; + g(x2)D3)?,

where a(t), f(t) and g(t) are real-valued, C®-functions with a(t), f'(t), g(t) # 0
except for t =0. In what follows, we admit that o, ' and g vanish infinitely
at t =0. Two forms (1) and (2) correspond to two cases k < I and | < k, respec-
tively, of the operator mentioned in the beginning.

Theorem 1. Let L, be a differential operator of the form (1) or (2). Assume
that a(t) is monotone in half lines (—oo, 0] and [0, o0), respectively. If o, f and
g satisfy

(3 lim ¢ log |g(t)] = 0
t—=0
4 lim ta(t) log | f'(t)] = 0
=0

then L, is hypoelliptic in R>, furthermore,

5) WF Lov=WFuv  for any ve 2'(R%).
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The condition of the type (3) was first introduced by Kusuoka-Strook [6],
who showed that the condition (3) is sufficient for the operator D? + D} +
g(x,)*>D3 to be hypoelliptic in R® and also necessary if g is monotone in half
lines (—o0, 0] and [0, o) (c.f., Theorem 3 of [7]). We can also see the condition
of the type (4) in Hoshiro [4], where the hypoellipticity of the operator a(x,)*D} +
D% + f'(x,)?D3 was discussed. As in [6], it seems that the assumptions (3) and
(4) are close to necessary condition for the hypoellipticity of L, (see the last
remark in Section 7 of [8]).

We shall generalize Theorem 1 for L, of the form (1) under the restriction
a#0. Let L be a differential operator of the form

(6) L= —(X1+X3),

where X; (j = 1,2) are real vector fields in R3. Let p;(x, &) denote the symbol of

Vv —1X; and set
(7 2 ={(x, &) e T*R*\0; p, (x, &) = p,(x, &) = 0}
®) I'={(x,&)eZ;{py, p2}(x, &) =0},

where {p,,p,} = H,p,(x, &) and H; (j = 1,2) denotes the Hamilton vector field
of pi(x, &), that is, H; = V;p;-V, — V,p;-V;. We assume that

9) d.p, and d.p, are linearly independent on X'.

It follows from (9) that 2N {|£| = 1} consists of two connected components that
are submanifolds of codimension 3 in T*R?® parametrized by x € R3. Hence we
denote by F(x) the restriction of {p,, p,} on ZN{|£| =1} in what follows.

The first result we shall state for the above L corresponds to Theorem 1
for L, of the form (1) in the case that f'(0)=0 but « and g do not van-
ish. Assume that I' is C®-hypersurface in X passing through py = (xq, &) €
T*R3\0 and that

(10) Tr +(TXNTXY)=TX  at every point of I'.

Here TX! is the orthogonal space of TX with respect to the symplectic form.
Under the assumption (10) TI'NTZ* is of dimension 1 at every point. If V is
a sufficiently small conic neighborhood of p, e I then we may assume without
loss of generality that

(11) H, is transversal to I'NV

because, for each pe X, T,Z* is equal to a linear subspace generated by H,(p)
and H,(p). If pe'NV and if 7, is an integral curve of H; such that y, = y,(s);
s —exp sH,, ,(0) = p then we assume that the following formula holds uniformly
with respect to pe I'N'V;

(12) lim s log |F(m,7,(s))| = 0.

s—0

Here 7, is the natural projection from T*R} to RZ.
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Theorem 2. Let L be a differential operator of the form (6) satisfying (9). As-
sume that I is a C®-hypersurface in X containing py = (xq, &,) and that (10)—(12)
hold. If ve 2'(R3?) and p, ¢ WF Lv then p, ¢ WF v.

Next we shall state the result corresponding to the case that both f’ and
g of L, vanish at the origin (but a(0) #0). Assume that I'=TI,UTl,, I;=
{(x,&) e Z; fi(x) = 0} for fi(x)e C® (j=1,2) satisfying

(13) df, A df, is non-degenerate on a linear subspace
of T(T*R3) generated by H, and H, .

It follows from (13) that I'; are C*-hypersurfaces in . Let po = (xo, So) € [1N 15
and let V cc W be conic neighborhoods of p,. By means of (13), ZNW\I
consists of four connected components Z; (j=1,...,4). There exist a §, >0
and a vector (ci, cj)e R? for each j=1, ..., 4 such that for any pe 'NZ,NV
an integral curve y, {(s); s — exp (s{c{H, + ciH,}), 7,,;(0) = p satisfies

Y8 for 0<s<d,.

Furthermore, we assume that for each j =1, ..., 4 the following formula holds
uniformly with respect to pe 'NZ,NV;

(14) lifn slog |F(m,y, () =0.
sv0

Theorem 3. Let L be a differential operator of the form (6) satisfying (9). As-
sume that I'=I'yUT, as above and that (13) holds. If poe I''NT, and if (14)
holds then p, ¢ WF Lv implies p, ¢ WF v for any ve 2'(R?).

The last result we shall state is in a different situation from the above three
theorems that required some growth order conditions such as (3), (4), (12) and
(14). We assume that I' is a C®-submanifold of codimension 2 in X and
symplectic, that is,

(15) TrNTr+=0.

Under (15), both H, and H, are transversal to I” because H,, H, e T+ < TI'*.
If po=(x9, &) €l and if V is a conic neighborhood of p, we assume that

there exist a §, > 0 and a C® function E(x) > 0 defined in a
(16) neighborhood of x, such that, for any peV, (EF)(n,y,(s)) has
a unique extremum in (— do, o), which is C* with respect to p.

Here y,(s); s —exp sH,, ,(0) = p.

Theorem 4. Let L be a differential operator of the form (6) satisfying (9). As-
sume that I' is a C®-symplectic submanifold and of codimension 2 in X. If poel
and ve D'(R3) then p, ¢ WF Lv implies p, ¢ WF v, provided that the assumption
(16) holds.
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Typical examples of L in Theorem 2 and 4 are, respectively, as follows:

D? + (D, + exp(—I|x,/7%)D;)*> with 0<dé<1,

x| 2
D} + {Dz + f exp — (12 + x§)“‘/2dtD3} with § > 0.
0
Those examples are inspired by the works of Sjostrand [9] and Grigis-Sjostrand
[2] who studied the analytic hypoellipticity by using the F.B.I. operator. More
precisely, Theorem 2 and 4 are motivated by Theorem 4.2 of [9] and Theorem
4.1 of [2], respectively. In relation to the second example we remark that an
operator D? + exp (—|x,|?)D? is hypoelliptic in R? for any & > 0 (see Fedii [1]).
Before talking about the plan of this paper, we recall a criterion of the
hypoellipticity given in [7]. Let Q be an open set in R" and let P = p(x, D,)
be a second order differential operators with C*(2)-coefficients, that is,

n

(17 p(x,D,)= Y a;D;D,+ Y ibD;+c,
. A

Jk=1

where a;(x), bj(x) and c(x) belong to C*(22). We assume that a;(x), b;(x) are
real valued and a;(x) satisfy any x in Q

(18) Y ap(x)¢iE =0 for all {eR".
Jrk=1
Let log A4 denote a pseudodifferential operator with symbol log <¢), where () =

(1 + |€12)Y2. As for pseudodifferential operators we refer the reader to [5].

Theorem 5. Let py, = (xq, &o) € T*(Q)\O and let V be a conic neighborhood
of 7. Let 0<o(x, &) <1 belong to S, and satisfy ¢ =1 in VO{|¢|>1}. If
for any ¢ >0 the estimate

(19) I(log A)*p(x, D)ul| < el|Pull + Cllul, ue?,
holds with a constant C, then p, ¢ WF Pv implies p, ¢ WF v for any ve 2'(R).

This is a microlocal version of Theorem 1 of [7] and similarly follows from
the argument in Section 1 of [7]. In fact, the estimate (1.5) of Lemma 1.1 in
[7] is derived from (19) instead of (3) of [7] because we have the estimate after
(1.13) in [7]. We have the following corollary to Theorem 5 (cf, Corollary 2
of [7]).

Corollary 6. Let p,e T*(2)\O and let ¢(x, &) be the same as in Theorem
5. If for any ¢ >0 the estimate

(20) l(log A)p(x, D)u||* < & Re (Pu, u) + C,|ul*, ue,
holds with a constant C, then p,¢ WF Pv implies p, ¢ WF v for any ve 2'().

The estimate (19) is derived from (20). Indeed, let @q(x, &) e Sy, satisfy
supp o =< V and 0 < ¢, < 1. Replace u in (20) by (log A)@q(x, D)u. Then, in
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view of Schwartz’s inequality, we obtain (19) with ¢ replaced by ¢, because the
principal symbol of [P, log A] is purely imaginary and we have

I(log A)poull® < &ll(log A @oull® + C,[lul®.

The plan of this paper is as follows: In Section 1 we prove one part of
Theorem 1, more precisely, Theorem 1 for L, of the form (2). Indeed, another
part of Theorem 1 has been already proved in the previous paper [8]. Similarly
as in [8], the criterion of hypoellipticity mentioned in the above can not be
applied to the proof of Theorem 1 for L, of the form (2) because the estimate
type of (20) no longer holds in general. In Section 1 we prepare a degenerate
version of (20) (see (1.27)') by using arguments about the inequality of Poincaré
type developed in Sections 1, 2, 4 and 7 of [8]. In the help of this estimate
we prove the hypoellipticity of L, following the method in Section 5 of [8]. In
Section 2 we prove Theorem 2 and 3 by means of Corollary 6. In order to
derive (20) from the hypotheses we also employ the inequality of Poincaré type
in [8]). Theorem 4 is proved in Section 3. By taking suitable coordinates, we
search for inequalities between coefficients of L (see (3.1), (3.10) and (3.11)). Those
inequalities enable us to estimate the commutator of L and cut functions in
T*R3. The proof of Theorem 4 is essentially confined in the classical method
as in Fedii [1], differing from proofs of Theorem 1-3.

1. Proof of Theorem 1

As stated in Introduction, we shall prove Theorem 1 only for L, of the
form (2) because the proof for L, of the form (1) was already given in the
previous paper [8] under an additional assumption g > 0. This hypothesis g > 0
can be removed by comparing (7.1) of [8] with (1.1) in the below. We may
assume that f(0) =0. In fact, the form (2) with f(0) # 0 is reduced to the form
(1) by replacing « by af. Since f'(¢) is of the definite sign in half lines (—oo, 0]
and [0, o0), f(t) is monotone in each half lines. We may also assume that o,
f, g and their derivatives of any order are all bounded because our consideration
is local.

For a real n set Y, = f(x,)D, + g(x,)n and set

P,=D, i iG(x)Y, ,
where G(x) = (22ff')(x,)g(x,). Then we have
(L) P*P, =D} + Y,G*Y, +iG[D,, Y,] + i{[D,, G1Y, — [Y,, G1D,} .

Since iG[D,, Y,] = o«*f'?gY, — a?(f'g)*n, for any compact K = R? there exist con-
stants cg, Cx > 0 such that

(12) 0<|Pyl?

< —({x@f'9)n}v, v) + C{lIDyvlI* + llalx,) Yol ® + llvl*},  ve C(K).
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If we choose a suitable sign according to # >0 or n <0 then it follows from
(1.2) that

(1.3) ({(@f gy Inl}v, v) < Ci{ID,vlI* + fleelxy) Yyoll2 + o)1 ?}
< Cx{IDyol? + lla(x,) Yo}, ve CF(K).
Here the last estimate follows from the usual Poincaré inequality,
ol < CkliDyoll,  veCF(K).
If we replace G(x) in (1.1) by a?f’ then in place of (1.2) we have
(14)  0< +({(&f")*D;}v,v) + Cx{lIDyv]* + llalx ) Yol 2}, ve CRK).
If we set B(f) = g(t)*> and y(t) = (a(t)f'(¢))* then from (3) and (4) we have

(1.5) lim ¢t log (t) =0,
t—0
(1.6) lim ta(t) log y(t) = 0.
t—0

In view of (1.3), we prepare the following:

Lemma 1.1 (cf, Lemma 7.2 of [8]). Let a(t), f(t) and y(t) e C(R') satisfy «,
B, y>0 except for t#0. Assume that (1.5) and (1.6) hold. For [ >0 set
V(x; &) = y(x,)Bx;)(*.  Furthermore, set Y, = f(x,)D, + g(x)n for f(t), g(t)e
C(R!) and neR. Assume that o and f are monotone in half lines (—oo, 0] and
[0, ), respectively. Then for any s >0 there exists a {,> 0 independent of n
such that if { > {, the estimate

1.7 ({D} + a(x,)2 Y, + V(x; ) }u, u) > s(a(x,)*f(x,)* (log {)*u, u)
holds for any ue Cg(l,), where I, = {(xy, x,); |x;| < 1}.

Proof. It follows from (1.6) that for any s > 0 there exists a d(s) > 0 such
that

(1.8) 0 < —|x;|a(x,)logy(x;) < 1/s if |x,] < d(s).

For the brevity we assume that a« is even function because the proof in the
general case will be obvious after proving this special case. Since a is monotone
in [0, c0), for any { > O there exists a unique positive root x, such that

(1.9 sou(x;) log { = x; 1.

We may assume that x, is smaller than 4(s) if { is sufficiently large. It follows
from (1.8) that if x, <|x,| < é(s) then

y(x;)¢ = exp {log { + log y(x,)}
> exp {log { — (slxla(x,)) "} = 1.
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Since y(x;) > ¢, >0 on {d(s) < |x,| < 1}, we see that
(1.10) p(x ) =1 on {x; e RY;x, < x| <1},
if { > {, for a sufficiently large {;. By means of (1.5) we see for any s > 0 that
(L.11) B(xy)¢ =1 on {(slog )™ <I|x,| <1}
if { > (,, by taking another sufficiently large {,. Set y, = (s log {)7! and set

oy = {x€lo; x| <x},

w, = {x€lp; x| <y}

Then I \(w;Uw,) is composed of four congruent rectangles. We divide each
rectangle into four smiler congruent rectangles. We repeat this cutting proce-
dure. Let I, = Q] x Q3 (= R,, xR,)) denote one of congruent rectangles on

some step, (that is, Io\(w,Uw,) ={J I,). We repeat the cutting and stop it if
I, satisfies
(1.12) {? < (diam I,)"2.

Then we have {2 > (2 diam I,)"2. Note that diam I, is equivalent to diam Q}
with j =1, 2. By means of (1.10) and (1.11) we have

(1.13) Vix; () > ¢? on I, if { is sufficiently large.
We also divide @,\w, (and @,\w,) into congruent smaller rectangles as follows:
o\, = Ule" Jiv =[=xg x] x 0y

0\0; = U Jovrs Jyy =07 x [—yoyd,

where the diameter of Q% (resp. Q)7) is equal to that of Q% (resp. Q}). Set
o, Nw, =K, (=05 x Q3 =R, x R,)) and let K¥ denote four times dilation of
K,. If ue C¥(,) then we have

(1.14)  4({D? + a(x,)?Y;? + V(x)}u, v)

> j {IDyul* + |a(x,) Yul® + V(x)|ul*}dx + Zj {-}dx + ZJ {-}dx
K} v JI, v Ja,

+3 | e
v J
=Q+YQ+Y 02+,

where J], = [—2x;2x] x Q5 and J},. = Q) x [—2y,2y]. Let G(x,) be a
primitive function of g(x,) and set

i(x) = u(x) exp {iG(x)n/f(x;)}  for x; #0.
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Then it follows from Lemma 1.1 of [8] (cf, (2.17) of [8]) that

(1.15) J |°‘(x1)x,“|2dx-2j dx1{J' |“(x1)f(x1)D2ﬁ|2dxz}
K3 Q4" \w, f

ch dy1/|Qé|{j [f ox, )2 (x1)?y; 2
0 oi"\e; LJ03* =03

X [i(xy, X5) — d(xy, YZ)|2dYde2:|/|Q(2)|dx1}

=cj de " Ly, )2 (y1)%y 2

X [h(yy, xz) — @y, Y2)|2dY]/|Ko|} .

In view of the monotoness of a and f, it follows from (2.17) of [8] and (1.15) that

(1.16) @, > cj U {xz 2 u(x) — u(yy, x5)I?
Ko KE\(w1Uwy)

+ a(y )2 f (1) 2 li(yy, x5) — 3(0)I* + V(y)lu(y)lz}dy]/IKoldx

> ¢'sa(x,)*f(x;)*(log {)? j

K

lu(x)|2dx

because of (1.9) and (1.13) with I, replaced by K \(w; Uw,). Similarly as in (1.15)
we have

j Ia(xl)Y.,ulzdeCf dX{J a(y1)?f (1) 2y
J',v. Jiv J'w\wl

x |a(yy, x) — #(yy, Y2)|2d)’]/|-]1v'|}

Hence we obtain

(1.17) Q, > c'sa(x)*f(x,)*(log {)? f |u(x)|?dx .

Jyy
More easily we have

(1.18) Q2 d’C‘“j lu(x)|2dx .
I,

Exchanging the order of D? and «2D3 and noting that (diam Q}")> ~ {** we
g
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also have

(1.19) Q. > CJ I:,[* . {o(x1)2 (1) 2 li(x) — di(xy, yo)I?
Jay Ja2v\w2

+ P ulxy, y2) — u()® + V(y)lu(y)lz}deI/lszldx

> ¢’s(log ¢)? J

Jav

|t 1) f (e Ju(x) | 2dx .

Summing up (1.16)—(1.19), in view of (1.14) we obtain the desired estimate (1.7).
Q.ED.

Let h(t) be a CP(R') function such that 0<h <1, h=1 in |t|<1 and
supp h = {|t]| < 3/2}. If we set xo(&; M)=1— h(|{|/M) for a parameter M > 1
then y, belongs to a bounded set of the symbol class S¢ , uniformly with respect
to M.

Lemma 1.2. Let 8, be any but a fixed positive. Let x(¢)eS?, satisfy
O<y<l,g=11in{|&]>26,&I}N{|€] > 3} and supp 1 < {|&] = 8,|&,1}, where
& =(,,¢&,). For any s >0 and any compact set K = R? there exist constants
M, x and C, g such that if M > M, g

(1.20) [la(x,)(log A4°)x(D)xo(D; M)ul|* < (Lou, u) + Cokllull2,,  ue CH(K),
where xo(&; M) is the same as in the above.

Proof. Let ii(x,, x,, &;) denote the Fourier transform of u(x) with respect
to x;. Substituting 4 into (1.4) with n = ¢; we have with a ¢x >0

(1.21) +ex(o(x,)2f"(x1)?Dau, u) < Dy ull® + |a(fD, + gD3)ull?
= (Lou, u), ue C3(K).

Take ¢, Y € C2(R2) such that ¢ =1 on K and o ccy, (that is, y =1 in a
neighborhood of supp ¢). Let x.(£)€S?, such that

xe=1 on {£& > 6,1 + &N {1&,1 = 1/2},
22 =0 on {£& <25,(& + &3)HU{1E,] < 173},

where double sign takes its order. Substitute Y(x)yx.(D)u e Cy into (1.21) with
plus sign. Note that [D,, ¥x.], [fD, + gD3, ¥x.] and [(af’)?D,, x+] belong to
59 o and that (1 —y)x+e, (1 —Y)(af')?D,x+@ € S™. Then by using the usual
Poincaré inequality we have

(1.22) ({o2er)f (x1)}? 1Dy £ (D)u, ) < C(Lou, u),  ue CF(K).

Since it follows from (1.21) with minus sign that the similar formula as (1.22)
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holds for y_ we have

(1.23)  ({alx)f"(x1)}? D4l (xF + x2)(D)u, w) < Cy(Lou,u),  ue CH(K).

Set 72(¢) = 12(6) + x2(¢). Note that 7() can be written in the form
X&) = %0, &3, &3) + &1 (©)

for r(£) such that r(D)|D,| is L? bounded operator. Since |D,|#*(D)€ S}, it
follows from (1.23) that

(124)  ({o(x)f"(x1)}?1D21(#2(0, Dy, Dy)u, u) < C(Lou, u),  ue CF(K),

Here and in what follows we denote by the same Cj different constants depending
on K. Since y(t) = {a(t)f'(t)}* satisfies (1.6) for any s > 0 there exists a {,> 0
such that for any we C§({|x,| <c}) with a ¢ >0 we have

(1.25) (Dt + {of '}20%}w, w) > 2 |la(x;)(log Owl?  if (=,

In fact, this is nothing but Lemma 7.1 of [8]. Let ii(x,, &,, £;) denote the
Fourier transform of u(x) with respect to (x,, x3). Substitute §(0,¢&,, &3)(1 —
h(|&,1/M))ii(xy, &,, &) into (1.25) with |{| = |&,|Y2. If M satisfies M > 2{* for
s> 0 then in view of (1.24) we obtain

(1.26) lla(xy)(log [D,)7(0, Dy, D3)(1 — h(2|D,|/M))ull* < Cx(Lou, u), ue CF(K).

Note that |log (|D,|)*(1 — h(2|D,|/M)a(x,)u| is estimated above from ||D,au| <
Ci(Lou,u) if M>M, for a sufficiently large M,. Since F(0,¢&,, &;)(1 —
h(21&,1/M) + 1 — h(2|&,]/M) is non-zero on supp xxo, we have

I(log A4%)x(D)xo(D; M)a(x;)ul|* < Ce(Lou,u),  ue CF(K).

It follows from the expansion fromula of [(log A)x(D)yo(D; M), a(x,)] that the
estimate

IL(log A%)x(D)xo(D; M), a(x;)ull* < sC,(II(1 — h(2|D|/M))ull_, + llull )
< 25(Cy/M) |lull + sCllull

holds with a constant C,. If M satisfies M > sC,, furthermore, we obtain the
desired estimate (1.20). Q.E.D.

If we apply the similar arguments as in the proof of Lemma 1.2 to estimates
(1.3) and (1.7) with n =&, and { = |&;|"* then for any s > 0 and any compact
K = R? there exists a M, x > 0 such that if M > M, «

(1) f(x,)(log (I1D5)(1 — h(2|Ds|/M))ull? < (Lou, u),  ue CF(K).

The combination of this and (1.20) shows that for any s > 0 and any compact
K = R? there exist constants M, x and C, y such that if M > M, »

(1.27)  llo(x,)f(x,)(log A4%)xo(D; M)ull® < (Lou, ) + C, gllul?,,  ue C3(K).
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From this we see that for any ¢ > 0 and for some C, x the estimate
(1.27y Ilog A)ar(x,)f(x1)ull® < e(Lou, u) + C.gllul?,  ue CHK),

holds. By Corollary 6 in Introduction, (1.27) yields the formula (5) in the region
{x, #0}.
It follows from (1.27) that for any s >0 and any compact K we have

(128) [la(x,)g(x;)(log 4%)xo(D; M)u|?® < (Lou, u) + C, glull2,,  ueCF(K),
provided that M > M, ¢ for a sufficiently large M; . In fact, we get

lag(log A°)xoull < lla(log A%)xoxull + llag(log A%)xe(1 — x)ull .
The first term of the right hand side can be estimated by using (1.20). Note
that the second term is estimated above from |a(fD, + gD;){D3'(1 —
0o log A°}u|| + [laf(log A°)xo{D;D3* (1 — Y}ull. Since  D3'(1 — Y)xo(log A° +
D,) is a L? bounded operator with a fixed bound we obtain (1.28) in the help
of (1.27).
We shall prove that if py = (xq, &) = (0, (0,0, +1)) and if ve &’ then

(1.29) po ¢t WF Lo implies p, ¢ WF v.

We prepare some special cut functions as in Section 5 of [8]. For a 4 >0 let
Yo(&) € S9 o be real valued and satisfy Y, = 1 in {+d&; > €|} N{|&5] = 3/26} and
;=0 in {+36&; <2|&|JU{|&31 <87}, Here we choose one of + signs
according to &, =(0,0,1) or (0,0, —1). We assume that ¥, can be written as

Us(&) = UslEss E)Wa(Es, &) for some Yy(t, t') € C°(R?) such that ¢, =1 in
(+£6t>|t'[}N{|t] > 3/26} and Y, =0 in {+36t <2./2]r'|}U{jt| <67'}. Here
3

we also take one of + signs following the above convention. Set ¢(x) = [] h(x,)
k=1

and set @,(x) = @(x/06). If we set ¥y(&) = ¥5(&; M) = h(M ™" &3] — 3)/6),(¢) for
a parameter M > 1, then for any multi-index f there exists a C; such that

(1.30) IDEW,| < CyM™s(Ey A+

with any real 0 < s < |B| because with a C >0 we have C™' < M/{¢() < C on
supp DE¥;.
Fix an integer N > 0. Take a sequence {¥;(¢)}}_, <= S?, such that

V=¥ ccW cacW,ccrcac¥Py_cc V="V,
and for any multi-index p the estimate
(131) IDIW| < C,NPIM™(E) T+ 0<s<|pl,

holds with a constant C,; independent of N and j. It should be noted that ¥;
can be taken of the form ¥; = hj(&3; M)Y,(E) = hi(&s; MW(Es, &1)Yi(E5, &5) with
Y;=1in {£6&5 > [&}N{|&] = 3/26}. Here one of + signs is chosen under the
above convention. Similarly, take a sequence {¢;(x)}}_o = CF(R?) such that

Ps=PoCC PSSP CETTCT PN ©S Oy = P2
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and for any § the estimate
(1.32) |DEg;| < C;N"!

holds with a constant Cj independent of N and j. We may also assume that

3
@; can be written as in @;(x) = [] h(x).
k=1

For the proof of (1.29) we need the following lemma corresponding to Lemma
54 of [8]. We fix a sufficiently small § > 0 such that y,;(D)@,5(x)Lv € &.

Lemma 1.3. Let K = {x € R%|x;| <48}. There exist a constant C, indepen-
dent of M and N such that for any s >0 and some C,> 0 we have

(133) (log M*)? Re ([Lo, ¢;(x) %(D)]u, ¢;(x) ¥(D)u)
< (CoNP[(Low, u) + C,{ul?, + N***M~|u|?}],  ueC3(K),
provided that log M* > CoN and M > M, for a sufficiently large M, > 0.
Proof. Note that
(1.34) [Lo, #,() ¥(D)] = [Lo, 9,1 %(D) + ¢;(x) Lo, H(D)]
We see that
Re ([22(fD; + gD3) ¢;()]u, ¢;()u) = [ [(fD; + gD3), ¢;]ull®
< (CNY{laful® + logull?} for ue &.

For a moment, we denote different constants independent of N, M and s by the
same notation C. From this we have

(135)  (log M*)* Re ([2*(fD; + gD3)%, ¢,(x)1¥(D)u, ¢;(x) ¥(D)u)
< (CN)*{ll(log M*) ¥|(D)aful* + [|(log M*)¥(D)ogu|*

+ (log M*)? || [of, ¥(D)]ull* + (log M*)*|[[g, ¥;(D)]ul*} .

It follows from (1.27) that for any s >0 we have
(log A%)xo(D; M)a(x,)f(x,)ull> < (Low, ) + C,llull,,  ue CFK),
if M > M, for a sufficiently large M,. Hence
(1.36) (log M*) #(D)afu|> < Cli(log A4%) ¥25(D)xo(D; M)atful*
< C(Lou, u) + C,|lull?, for ue C3(K).

if M> M, for a large M;>0. Here and in what follows we denote by C
defferent constants depending on s but independent of N and M. By means of
(1.28) we see that |/(log M‘)'I’J-(D)ozguu2 is also estimated above from the right
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hand side of (1.36). It follows from Lemma 5.3-i) of [8] that
(log M*)*{II[+f, #(D)]ull* + l|[ag, ¥,(D)]ul?}
< (log M*)*(CN*M " {(l|u]|* + C,N****M~*||u|*}
< (log M*)*M Y {Cx(Lou, u) + C,N**8M~5||u| 2}, ue Cy(K),

if log M* > CN. Therefore, if log M* > CN and M is sufficiently large such that
(log M*)*M~! < 1 then we have

(137) (log M*)* Re ([o*(fD; + gD3)?*, ¢;1¥ju, ¢;¥ju)
< (CN)*[(Lou, u) + C{ lull2, + N2‘+8M"||u||2}] =Q, ue C3(K).
Note that
(1.38) (log M*)? Re ([D3, ¢;(x)] #(D)u, ¢;(x) ¥(D)u)
< (CN)*(log M*)? ||(x,) %(D)u|*
< (CN)*{||(log A°) ¥35(D)h(x,)ul?
+ (log M*)?|[[A(x,), %(D)]ul*},  uweCE(K),

where h(t) is CZ function such that 0 <h <1, supp h < [§,48]. If M is large
enough then we have

(log A%) ¥35(D)h(x,)ull < |[A(x,)(log A4*)xo(D; M)ull + llull + C,llul s, ue CFK).

It follows from (1.27) that the first term of the right hand side of (1.38) is
estimated above from . Applying (5.13) of [8] to the second term of the right
hand side of (1.38), we obtain

(log M*)* Re ([D3, ¢;(x)]1 ¥(D)u, 9;(x) ¥i(D)u) < 2,  ue CF(K),
if M satisfies the same condition as in (1.37). From this and (1.37) we obtain
(1.39) Re ([Lo. ¢i(x)]1¥(D)u, pi(x)¥y(D)w) < 2,  ue CF(K),

if log M*> CN and M > M, for a sufficiently large M,. In view of (1.34), the
proof of the lemma will be completed if we show

(1.40)  (log M*)* Re (¢;(x)[ X2, ¥(D)]u, ¢;(x) D)) < 2,  ue CFK),
where X = a(x,)(f(x,)D, + g(x,)D;). Note that
(141) Re (9,[X% ¥u, ;%) = Re (Xu, {[¥0. [X, %11 + [X, BI[¥, 0?1 }u)
+ Re ([X, ¢} ¥1u, [X, ¥]u).
The first term of the right hand side is estimated above from
ClXu|{N*M™" + C,N¥+1OM~6+D} |y
< CN3/M{| Xul? + [lull* + CN***SM~*|lu|*}
< (log M*)72Q, ue Cy(K).
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if log M*> CN and M is sufficiently large such that (log M*)> < M. Note that
the principal symbols of [X, ¥;] and [«, ¥;] are contained in {|¢'| > d|£;3|} and
{I€,1 = 81¢&51}, respectively, because of the form of ¥. Hence the second term
of the right hand side of (1.41) is estimated above from

CN?*{(log M*)~*||(log A°)xo(D; M)x(D)ou||* + M~*||Dyul|> + CN***SM ™ |u||*}

where y is the same as in Lemma 1.3 with 6, < 6/10. By means of (1.20), those
terms multiplied by (log M*)* are also estimated above from (CN)2Q. In view
of (1.41) we obtain (1.40). Q.E.D.

The implication (1.28) follows immediately from Lemma 1.3 because the
arguments on and after Lemma 5.5 of [8] can be carried out quite similarly. In
fact, the difference between Lemma 5.4 of [8] and Lemma 1.3 is the presence
of |lul|2, in (1.33). This term is harmless because we employ (1.33) with u replaced
by ¢;%u and hence we estimate ||@;Wull_, by M~*|u|| (see the proof of Lemma
5.5 of [8]).

The implication (1.28) also holds even if we replace p, by ((0, X053, X03),
(0,0, £1)) with (xo2, Xo3) #(0,0). In fact, Lemma 1.3 still holds for ¢;(x)

3
corresponding to @,(x) = h(x,/8) [ | h((x; — x0,;)/6). In view of Lemma 1.2, the
j=2

preceding argument also yields (1.28) for pg = (x4, &) with &5 # (0,0, +1) if we
modify ¥(£) to correspond to the direction &,. Thus the proof of Theorem 1
is completed.

2. Proofs of Theorem 2 and 3

We shall first prove Theorem 3. It follows from (13) that d.f, and d.f,
are linearly independent. By taking a suitable coordinates, we may assume
fix)=x;, j=1, 2. Write

@1 pi(x, &) = a;; ()& + a;p(X)8; + a(x)es ., j=1, 2.
It follows from (13) that

(2.2) D(x) = a,,a,, —ay,a,; #0.

If (b;j(x)) is the inverse matrix of (a;;(x)) then we have

{51 — ¢ (x)&3=by1p; + b12p2

2.3
@3) §y — €2(x)83 = by py + by,p,

for some c;j(x)e C*. From this we have

G(x)¢; = {'51 —c;(x)&3, &8, — Cz(x)f:;}

2
= D(x)_l{l’l, Pz} + ; “j(x)Pj(xa )
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for some a;(x) e C*. Under the above choise of the coordinates we see that
24 Z={(x, e T*R’\0; & — ¢j(x)¢; = 0,j = 1,2},

2.5) Ii={(x&eX;x;=0}, j=12.
If poe I NI, then we may write py = (0, &) with
(2.6) Coe{€=1(£, &)1 < Colésl}

for a sufficiently large C, > 0. Furthermore, the function F(x) defined in Intro-
duction can be written as in the form

@.7) F(x) = DX)G(x)&,  with & = +1//T + ¢;(x) + ¢, (x)? .

Let zi(x) (j = 1,2) be a solution to
(azj/axl)(x) + Cj(x/, Zj(x)) =0, zj(x)lx,=0 = X3,

where x’ = (x;, x,). It is clear that zj(x) exists in a small neighborhood of the
origin. Let ue CH(R?) satisfy supp u = {|x| < 28} for a sufficiently small é > 0.
Then there exists a C, > 0 independent of x' such that

23) CTH ', ) 2agmy < ', 2,0, )
< Cyllulx’, I, -

Since Lemma 2.1 of [8] holds with the absolute value || replaced by the norm
II-] we have

(2.9) f 1Dy u(x’, )| Z2mydx’
1

(diam Q,)~2 'dy’
> MOV [ sy, ) = g5 Wm
Ix1I

for any rectangle I=Q, x Q, =RZ. Note that D,u(x’,z,(x))={(D,—
¢ Dy)u}(x’,zy(x)). In view of (2.8), it follows from (2.9) that

(2.10) f I(Dy — ¢, D3)u(x’, ')||i2(k)dxl
I

,(diam Q)2 ‘dy’
>c Tl (s, X2, °) = u(yy, X2, M2 mydx'dy’
IxI

if suppu < {|x| <26}. Similarly we have
(2.11) j (D — c2D3)ulx’, ‘)”iumdxl
1

,(diam Q,)7? ‘dy’
>c —TZ— lu(yi, x5, ) — u(yy, y2s -)||i2(n)dx dy’.
Ix1I
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Set Y;=D;—cj(x)D;3, j=1, 2. Then, by means of (2.3) we have for any
compact K = R?

(212) 1Yyull? + [ Yull> < Ce{ 1 X 1ul? + X ,ul?}
< Ci{Re (Lu, u) + |u|*}, ue Cy(K).
If P=Y, +iG(x)Y, then
P*P = Y}*Y, + Y*G*Y, + i{[Y* G]Y, — [Y5*, G]Y,}
+iG{(Y* - Y)Y, + (Y* — Y,)Y,} +iG[Y,, Y,].
In view of i[Y,, Y,] = G(x)D; we have
(2.13)  +(G()’Dyu u) < Ce{IVull®> + | Ypu)® + |ull*},  ue CHK).

Let h(t)e C3(R') be the same as in Section 1. For a large parameter M >0
and a small > 0 set

1:(&3; M) = h((£ M7'&5 - 3)/9).
It follows from (2.13) that
(214 IG(x)| D3| "2h(x3/8)x +(D3; M)u]?
< Ce{lIYul? + [ Yull® + [ul?},  ueCFK).

Set x(&3; M) = 1+(&3s M) + x-(E3; M) (= h(M™' &3] — 3)/8)).  Since 2M < |, <
4M on supp y it follows from (2.14) that

(2.15) IG()M2h(x3/0)x(D3; M)ul?
< C{lIYyull® + | Youl? + Jul’},  ue CE(K).

Assume that x belongs to a sufficiently small neighborhood V, of the origin
such that ¥, cc n, V. Here V is the conic neighborhood of p, given between
(13) and (14) in Introduction. In view of (2.7), it follows from (13) and (14) that
for any ¢ > 0 there exists a d(¢) > 0 such that

(2.16)  |G(x)| = exp {—¢/min (|x,], |x,|} if 0 <min (|x,], |x,]) < d(e).

Set x,, = 4e/log M. We may assume that x,, < §(¢) if M is sufficiently large. It
follows from (2.16) that

|G(x)| M'? = M on {x € Vy; xp < min (|x,], [x,]) < 8(e)} .
Since |G(x)| = ¢, >0 on {x e V,: min (|x,], [x,|) > d(¢)} we see that
(2.17) IG()I M2 =M™  on {xe Vy; xp < min (x,], |x,)}

if M > M, for a sufficiently large M, > 0.
Let 6 > 0 be sufficiently small such that

Io={Ix'| <20} ccn,V,.
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Here 7, is a natural projection from R3 to R2Z. Set w;= {x€ly;|x;l < Xy},
j=1,2. Similarly as in the proof of Lemma 1.1, divide I,\(w, Uw,) into congru-
ent squares I, = Q) x Q% such that I \(w, Uw,) = U I, and

(2.18) M'? < (diam Q})"2 < 4M'?,

We also divide @,\w, (and @,\w,) into congruent smaller rectangles as follows:
W \w, = Lv) Jiv s Jiv = [—xp x4 x Q%
W\w, = U Javrs  Jawr =07 x [—Xp, Xp],
where the diameter of QY (resp. Q}') is equal to that of Q% (resp. Q). Set

o, Nw, =Ky (=08 x Q3 =R, xR,) and let K¥ denote four times dilation of
Ko. If ue C3({|x| <4}) and if hyx = h(x3/6)x(D3; M) then we have

219) 4{11Y hsqull® + | Vahsqul® + 1GOM 2 hyqul*}

ZJ {1 Yy hygu(x', |2 + | Yahsqu(x', lIF. + IGMPhyyu(x', )7 }dx’
K3

+zf{-}dx/+zf {-}dx/+zf (-}
=i, s & ).
=Q+) Q2+ 2, +)Q,

where J1, = [—2x,, 2x,] x Q% and J1,. = Q)" x [—2xy, 2xy]. Here || | =
I ll2msy and || ll2 = 2w, It follows from (2.10) and (2.11) with I and u
replaced by K¥ and i = hs;xu, respectively, that

(220) Q> cj U (2l ) — iy, Xz, )ia
Ko K§\(w1Uwy)

+ 2 Iy, X2, 0) = @Y Iz + IGMPa(y', ')Iliz}dY']/lKoldx',

because

j ”GMI/Za(x/, ')”izdx, - j |:J‘ ”GMI/Za(y/, )llildy’jl/lK()ldXI .
K% Ko LJKE

By means of (2.17) and (2.20) we obtain
(2.21) Qo = c'e”*(log M)? J [J lla(x’, ')Ilizdy’]/lKoldx’
Ko LJKg\(@,Uw))

> ¢”e"2(log M)? f l(x', *)))22dx’ .

Ko
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It follows from (2.17) and (2.18) that

222) Q,>c j

Jiv

{xa la(x, -) = @(xy, ya, )72
J'lv'\wl
+ M |d(x,, yp, ) = (Y, )2 + IGMPa(y, ')Iliz}dY']/Ile«ldx'

> c’'e”2(log M)? J ld(x', )| Zdx" .
Jiv
Similarly we have

(2.23) Q,. > c'e2(log M)? J li(x', )| 22dx’

Jay

(2.24) Q, > c' M J (', -)l|2.dx" .

1,
Summing up (2.21-24), in view of (2.19) we obtain
(2.25) 1Yy hsxul® + I Yahsxul® + |G(x)M 2hsxu|?
> c'e72(log M) |lhsqull*,  ue CF({Ix| <4})

if M is large enough. Note that [Y], x(D3; M)] (j = 1, 2) are L? bounded opera-
tors uniformly with respect to M. It follows from (2.12), (2.15) and (2.25) that
for any ¢ > 0 we have

2
(log M)? | h(x3/8)x(D3; M)ul* < 82{; I1Xul? + IIuIIZ} . ueC({Ix| <é}),

provided that M > M, for a sufficiently large M, > 0. From this we see that
for any M e [1, o) the estimate

2
(log M)?||h(x3/8)x(D3; Mu||* <& 21 IXul? + Cllul?,  ueC5({Ix| <4},
F=

holds with any ¢ > 0 and some constant C,. Note that h(x;/6) =1 on suppu
and 2M < |&;] <4M on suppy Since M[h(x;/8), x(D3; M)] is L? bounded
uniformly with respect to M we have

(2.26) |[(log | Ds))x(D3; M)ull?> < 4||(log M)*x(D3; M)ul|?
2
<e 21 IX;ul? + Cllul*,  ue C5({Ix| <d}).
I=

Let y(£)eS?, be real valued and let y satisfy Y =1 in {|&']| < Col&31}N

{|&31 > 1} and supp ¥ = {|&'| <2C,|&5]}. Here C, is the same constant as in
3

(3.6). Set o(x) = [ h(2x/8) and x,5(¢5: M) = h((M™|&;] — 3)/25). (Note that
k=1

x(E3; M) = x5(&5; M)). Let ue & and substitute @(x)x,5(D3; M)Y(D)u into (3.26).
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Then we have

(2.27) lxs(D3; M)@(x)y(D)(log A)ul?
2
<e¢ 21 l25(D3; M)X;ull> + C{llxas(D3: M)ul® + M~ |[u||?}
=

by noting the expansion formula of pseudodifferential operators. Integrate with
respect to M € [1, o) after dividing both sides of (2.27) by M. By Lemma 5.6
of [8] we have

2
(2.28) Ilog A)@(x)y(D)ull* < e Zl I1Xul? + C,llul?
P=

< e Re (Lu, u) + C.||lul?, ue .

By means of Corollary 6 in Introduction, (2.28) shows that p, = (0, &;) ¢ WF Lu

implies p, ¢ WF u for any u e 2'(R®). We have completed the proof of Theorem
3.

Now the proof of Theorem 2 is an easy exercise. Taking a suitable coordi-
nates, by means of (9) we may write

(2.29) Pr=2¢&1,  P2=a,(x)&; + ax(x)&; + a3(x)¢s
with a,(x) #0. Then
(2.30) Z={(x, ) e T*R*\0; &, = &, + b(x)&; = 0},

where b(x) = as(x)/a,(x). It follows from (11) that we may assume
(2.31) ={(x,¢ex;x, =0}.

If po € I' then we may write p, = (0, £,) with &, satisfying (2.6). Setting G(x)¢; =
{€1, & + b(x)&5} (= 0,,b(x)¢&;), instead of (2.7) we have

(2.32) F(x) = a,(x)G(x)¢é;  with & = +1//1 + b(x)?.

Set Y, =D, and Y, =D, + b(x)D;. Then we also have (2.12) and (2.15). Let
Vo be a sufficiently small neighborhood of the origin such that V, c< n, V, where
V is the conic neighborhood of p, given between (10) and (11) in Introduction. If
for any e > 0 we set x,, = 4¢/log M then it follows from (12) and (2.32) that

(2.33) |G(x)| M > M"™  on {xe€ Vy; xp <|x,|}

if M > M, for a sufficiently large M, > 0. Using (2.33) we obtain, in place of
(2.25),

(2.34) 1Yy hsxull® + |G(x)Mh,yul
> c'e 2(log M)?||hsxu|?, ue C3({|x| <46}).

Since (2.12) and (2.15) still holds we obtain (2.26) and hence (2.28), which leads
us to the conclusion of Theorem 2.



480 Yoshinori Morimoto
3. Proof of Theorem 4

Similarly as in the proof of Theorem 3, it follows from (9) that we may
write without loss of generality

(3.1) Pr=¢1,  pa=a(x)&; + a(x)¢; + as3(x)¢5
with a,(x) # 0. Then

(3.2) 2 ={(x,&) e T*R\0; &, = &, + b(x)¢; =0},
(33) I'={(x,¢) e Z;0,blx) =0},

where b(x) = as(x)/ay(x). If poe 'N{|&| =1} then we may write p, = (0, &)
By taking the change of variables x; = y; (j = 1, 2), x5 = b(0)y, + y;, if necessary,
we may assume that b(0) = 0. In view of (3.2) we see po =(0,(0,0, +1)). Since
H,, Hye TX* c Tr* it follows from (15) that we can find a ¢, > 0 satisfying
the following; for any 0 < d < ¢,

(3.4) 2, b(x) £0  on {Ix;| < cod}N{Ix;} = 6,j=1,2}.

Since n,I" is a submanifold in R* of codimension 2, , b(x) has a definite sign.
Note that

10,,b(x)| = /1 + b(x)*|a,(x)F(x)| (cf, (2.32)).

It follows from (16) that there exists a C* function E(x) > 0 defined in a neighbor-
hood of the origin such that (Eaxlb)(s, X, X3) has a unique extremum in (—dy, )
if |x;| are small enough. For each x” = (x,, x;3) let s(x”) = s(x,, x3) denote the

extremal point. If we set b(x) = J 0,,b(r, x")dt then in a small neighborhood
s(x'’)

of the origin we have

(3.5) |b(x)| < C

J " (o, b)(x, x") de

s(x'’)
< C'(Ed,,b)(x)| < C"18,,b(x)! .
Let z(y") = z(y,, y3) be a solution to
az/a})Z'__b(s(yZ’z)’YZ’z)’ Z(Os)’3)=Y3-

It is clear that z(y”) exists in a small neighborhood of the origin in R%. Take
the change of variables

(3.6) xp=y; (j=1, 2), x3 = z(y2, ¥3) -

Since b(x) = b(x) + b(s(x"), x") we see that D, and D, + b(x)D, are transformed
to D, and D, + B(y)D,, respectively, where

(3.7) B(y) = b(y1. y2, 2(y"))/(92/0y3)(y") -
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Note that 0z/dy, is close to 1 near y” = 0. Since 0, B(y) = (0;,b)(y1, 2, 2(¥"))/
(0z/dy5)(y") it follows from (3.5) that

(3.8) |B(y)| < Cld,,B(y)| for |y| small enough .

The direct calculation gives

10,,B(y)l

Y1
J |(axlax3b)(‘[, yZ’ Z(y”))ld‘[ .

s(y2,2(y"'))

< Cy10:,b(s(y2, 2(y")), y2, 2(y"NI + C,

The first term of the right hand side is estimated above from C|J, B(y)| because
I(Eaxlb)(s(x”), x") < I(Eaxlb)(x)l. Since 0, b has a definite sign we have
|0,,0,,b(x)| < C|8,,b(x)|"* in a neighborhood of the origin. The second term is
estimated above from

(o

j " (B0, b)(x, x)|dr

s(x"")

< C'18,,b(x)|"

with x = (y,, y2, 2(»")). The last estimate follows from the similar argument as
in (3.5). Hence we have

(3.9) 10,,B(y)| < C|d, B(y)|** for |y| small enough .

From now on we denote new variables y in (3.6) and B(y) by x and b(x),
respectively. Furthermore we assume that a;(x) in (3.1) are written by new vari-
ables. Since a; = a,b it follows from (3.8) and (3.9) that

(3.10) la;(x)| < C0,,b(x)l,
(3.11) 10,,a3(x)| < C|0,,b(x)|"? for |x| small enough .

We may assume that (3.4) holds by taking another small ¢, > 0, if necessary. If
P=D, +i(D,+ bD;) then P*P=D?+(D,+ D3b)(D, + bD3) + ((6,,b)D; +
(0,,b)D3). Since 0, b has a definite sign we have
(3.12) +(10,,b1D3u, u) < C{|D,ul® + [ Dy + bD3u|* + |lul?}

< C'{Re (Lu, u) + |lu||*}

if ue CF({|x| <1008}) for a sufficiently small é > 0.

Since I's po = (0, &) with &, =(0,0, +1) we prepare similar cut functions
as in Section 1. For a 6 >0 let Y4(&) and ¥s(¢; M) be the same as in Section
1. Considering (3.4), we modify the definition of ¢@,(x) as follows; @s(x) =

2

h(10x3/cod) [] h(x,/8). For any integer N >0 we take the same sequences
k=1

{¥(&)}o and {@;(x)}}~o as in Section 1. In what follows we shall only use
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estimates
(3.13) IDEF| < CMEY P, 0<s<IBl,
(3.14) Do < Cp,

in place of the precise estimates (1.31) and (1.32). We still require that ¢; can
3
be written as in @;(x) = [ h(x,).
k=1
Note that |6xlb(x)|<p2‘,(x)2(|{3|—M)?’z,,(é)ZZO belongs to Si, By the
sharp Garding inequality (see Theorem 4.4 of [5]), it follows from (3.12) that
(3.15) M [[10,,b1"2@25(x) P25(D)u)|*> < C{Re (Lu, u) + [lul?},

if ue CZ({|x| <1006}) for a sufficiently small 6 > 0. For the proof of Theorem
4 we need the following lemma that corresponds to Lemma 1.3 in Section 1.

Lemma 3.1. Let k =1/4 and let K = {x e R?;|x| < 108}. There exist a
constant C,, independent of M such that

(3.16) M?* Re ([L, ¢;(x) ¥/(D)]u, ¢;(x) ¥(D)w)
< Co{(Lu, u) + |lul?*}, ue C3(K).
Proof. Note that
(3.17) [L, ¢;(x)¥(D)] = [L, ¢;(x)]1¥(D) + ¢,(x)[L, ¥(D)] .
If X=a,D,+a,D, + as;D; we see that
Re ([X2 ;001w 9;(x)u) = Re ([X*X, ¢;Ju, ;u) + Re ([(X — X*)X, ¢,]u, o).

Since the first term of the right hand side is equal to ||[X, ¢;]ull* and the second
term is not bigger than C|[X, ¢;Jul[lu] we have

Re ([X2, ¢;(x)Ju, @j(x)u) < C{M*™|[X, @;]ul® + M~ >*|u|?}  for ue &.
From this and the similar formula with X replaced by D; we have

M*Re([L, ¢;(x)] ¥{(D)u, ¢;(x)¥;(D)u)

2 ~
<C {kzl M |[h(x,) @ 25(x) S[lz‘s(D)““z

+ Mlas(x)"Pp,5(x) Pas(D)ul® + ||“||2} ) ued,

where h(f) is the same as in (1.38). In view of (3.4) and (3.10), it follows from
(3.15) that
(3.18) M?**Re([L, 9;(x)] ¥;(D)u, ¢;(x) ¥;(D)u)

< C{Re (Lu, u) + |lul*}, ue C3(K).
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Note that
(319)  Re (¢,[X% ¥]u, ¢, %)
= Re (g;[(X — X*)X, ¥/]u, ;%) + Re ([X, 0} ¥/]u, [X, ¥]u)
+ Re (Xu, ([0} [X, %11+ [X, ¥1[¥, 0} 1}).
Since ¥(¢) has the form ¥, = h(&5; M)y;(€) we see that
[a3(x)Ds, ¥y(D)] = [as, ¥;1h;D5 + Y;[as, h;1D5 .

Note that the principal symbol of [as, ;] is contained in {|{'| > (&0}, The
first term of the right hand side of (3.19) is estimated above from

CI{MUIDull + M7 925 W25 Doull + llas @z Pasul
+ 11(0xy@3) @25 Pasul }lull + M [|uf|*]
< CM7H{Dyull® + [ Xul? + ([ul® + Mllayp,s Psull®
+ M|(0x,a3) 025 ¥sul}

On account of (3.10) and (3.11), it follows from (3.15) that the first term of the
right hand side of (3.19) is estimated above from C'M™'{Re (Lu, u) + |lu|?}.
Similarly we can estimate the second term of the right hand side of (3.19). Be-
cause the third term is not bigger than C|Xu| |u|/M, we have

(3.20) M Re (¢;[X?, ¥lu, ¢;ju) < C{Re (Lu, u) + lul?}, ue Cy(K).

In view of (3.17) we obtain the desired estimate (3.16) from (3.18) and (3.20).
Q.E.D.

If 6 > 0 is sufficiently small then we have
(3.21) lull? < C Re (Lu, u), ue Cy({|x| <108}).

In fact, if W is a small neighborhood of the origin then there exists a C(W) >0
depending only on W such that

[Dyul? < C(W){Re (Lu, u) + |lul|*}, ue Cy(Ww).
From this we have (3.21) because the Poincaré inequality
lull <¢,8%1Dull?,  ueCE({Ix| <108}),
holds with an absolute constant c,. By (3.21) it follows from (3.16) that
(3.16) M?* Re ([L, ¢;(x) ¥(D)]u, ¢,(x) ¥/(D)u)
< C(Lu, u), ue Cy({Ix| <108}).
Using (3.21) and (3.16), by the same method as in the proof of Lemma 5.5 of
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[8] we obtain for any M > 1

(322) M |g;Full> < C{M*™ || ¥y50 5 Lul llull + M? u]*}
SC({M“M||'1yz¢s(1’zaL“||2'*'MZNMHZ}, ue .

Here constants C and C’' depend on N, of course. Recall that N > 0 is arbitrary
integer. Then the argument after (5.33) of [8] can be carried out by using (3.22)
in place of (5.32) of [8]. Thus the proof of Theorem 4 is accomplished.
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