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Structure of solutions for the Lewy type equations
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§1. Introduction

Let L be an real analytic vector field in R®. It is called a differential operator of
Lewy type if it enjoys the following properties:

(@.1) L, L and [L, L] are linearly independent.
(a.2) 3real analytic functions X and Y such that
(1) X=X, (ii) L(Y)=0, (iii) L(X+iYT)=0 and (iv) dX AdY AdY #0.

Suppose L be a differential operator of Lewy Type. Taking a suitable analytic
change of coordinates, one can transform L to this: a(x){1/2(3/0x,—i(0/0x.))+
i(x,—ix,)0/0x,}, where a(x) denotes a nonvanishing real analytic function. The operator
1/2(0/0x,—i(0/0x,))+i(x,—ix,)0/0x; is the celebrated H. Lewy one ([3]); it is hereafter
denoted by L,. Then the equation of Lewy type Lu=f is reduced to the Lewy
equation L,u=f. Sato [6] and Greiner-Kohn-Stein [2] gave the micro-local solvability
conditions and the local solvability ones for the Lewy equation, respectively. In
Greiner-Kohn-Stein [2], the following results are included: Let 9 and 09 denote
{(z1,2,)€C?; Imz,>|2,|% and {(z,,2,)=C?; Imz,=|z,|?}, respectively. R*={(x,, x,, x3)}
is identified with 09 by z,=x,+ix, and z,=x,+i(x?+x}). Let 2 be an open set in R*.

[G-K-S-I] Let fe&’(2), then the Lewy equation L,u=f has a solution u€&’ in
a neighborhood of a point P in @ if and only if C,(f) given by Cy(f)=C(f)z1, 22)|s9
is real analytic in a neighborhood of P, where C(f)(z,, z,) is the Cauchy-Szego Integral
defined by

C(f )z, zz)=SmS(z1. Zy; Wy, Wo)fdow,

where S(z,, z,; w,, wy)=1/{n(@(0,—2,)—2i0,2,)}* and do..,—d Re w,dImw,d Re w,.
[G-K-S-I] —L.L,-K=K-(—L.L,)=I—C, when acting on &’, where the operator
K is defined by

. {log (|z,1°—ixs)—log (12, |*+ixs)}
K)=1+ 27%(|2,|*—ixy)

provided that the convolution is with respect to the Heisenberg group.
[G-K-S-III] Suppose that the condition of [G-K-S-I] for f is satisfied. If f belongs
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to one of the spaces (see Folland-Stein [1] for definition) S2(£2, loc), [ "(2, loc),
L>(£2, loc) or C=(2), then one can find a ¥ which belongs to S2,,(w, loc), I's..(w, loc),
I'(w, loc) or C=(w), respectively, where o denotes an neighborhood (C£) of P.

In this article, nevertheless, we investigate the structure of classical solutions for
the Lewy equation from a different viewpoint: in [5], the author gave a characteriza-
tion that the solvability of the Mizohata equation is reduced to that of the Cauchy
Problem for the Cauchy-Riemann equation; the same is valid for the Lewy equation;
that is, the solvability of the Lewy equation can be reduced to that of the Cauchy
problem for the Cauchy-Riemann equation; more precisely, for the Cauchy-Riemann
equation with two (or three) parameters, which is assured by the property of “Heisnberg
group” attached to the Lewy operator; as a result, it seems that it has become far
more obvious why the Cauchy-Szegé kernel appears in solving the Lewy equation; and
moreover, we have obtained delicate terms which are not in [2] or [6].

Now we shall state our results. First, denoting through by % a positive integer
or oo, we state the following

Theorem I. Every C* solution u of the homogeneous Lewy equation L,u=0 in a
neighborhood of P(x, x3, )8R can be expressed in the following fashion: p: a
constant >0 ; ’

u(x,, xq xn)=n2_]0w’,'-h,,(w2) in w,,

where wy=x,—ix,—(x]—1x3), wo=w, |*+1(x;—x§—2x52,4+2x0%,), ©,= {(x1, X5, X3); |w,|?
<. |Imw,|<p} and h,(2) (n=0, 1, 2, --) are holomorphic in a complex domain D,=
{zeC; 0<Rez<p, |Imz|<p}, furthermore h,(z) (m=0,1,2, -, k) are continuous in
{zeC;0<Rez<p, |Imz|<p}. (The summation is uniformly convergent on compact sets
in w,.)

Remark. It follows that every C' solution of the homogeneous Lewy equation is
“a function” of the independent two solutions w, and ws,.

Next we have obtained the following another expression which corresponds to
[G-K-S-I7:

Theorem II. Given f(x)=f(x,, x,, x;)EC'(R?), then the Lewy equation L u(x)=f(x)
has a C' solution u(x) in a neighborhood of P(x}, x3, x3)ER® if and only if there is a
positive constant c¢(+# |x3|) such that the function Af(x) given by

Af(x)=SmS(x () dyidy.dy,

=tim | S.x; ) dyidydys,

xeR.={xER%; |x,—x2<ec, k=1, 2, 3}, is Lipschitz continuous in 2. and extends holo-
morphically in x, to the complex domain {x;=C; Rex;#x3%c} uniformly for x, and
for x5, where S(x; y)=1/{z[x}+x3+ i+ y—2(x,+ix)(y1—iy2)+i(ys—x)]}?%, Se(x; ¥)=
Azl + 23234+ 31+ vi—2(x, +ix )y — i y)+ i s — x3)]} 5, 0={(31, Yo, ¥2)ER®; (31— x,)°
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F(Ya—xo)2< €2, | a—23—2x,9,+2x, .| <c} and ¢, denotes a positive constant such that
co=min {¢, ¢/[2Q2c+ x|+ 1x21)]}.

Notice that S(x; y) is just the Cauchy-Szegd kernel: S(x; ¥)=S(z,, 2»; w,, w»)
where z,=x,4+ix,, Z,2=x3+712:|% w,=v,+iy, and w,=v,+7|w,|?. Therefore we get
the following

Theorem III. Let f(x)eC'(RYNLAR®). Assume Af(x) satisfies the above condi-
tion. Then Co(f)=C,f(x) is real analytic in a neighborhood of P; that is,

Cof(2)={ (x5 )/ (9)dyidyads

=im | S.xr: 9)f()dy.dyadys

is real analytic in a neighborhood of P.

Notation. For a function g(x)=g(x,, xs, x3), g%(¥1, V2. ¥s; X1, X,) denotes g(x,+
Vi. Kot Yo, YsF+2X291—2%1 V).
We note that

Af(x)=

1 S fH(V Ecosf, vV Esinb, n; x,, x,)
272 )y {E+i(n—x9)}?

_ _1__1. S f#(+v/Ecos, v Esinb, n; x,, x,)
N J {2 +-E+i(p—xs)}?

27[2 =0
where J={(¢, 7. 0); 02¢=Z¢,, xi—c=n=xitc, 050=2x}.
Next we obtain the following theorem which, in a sense, corresponds to [G-K-S-II].

dedydo

dedydo,

Theorem 1V. Let f(x)=C*(R®). For Ypositive constants ¢ and c, it holds that

—1 Cﬁ .rgq.c f]f(e,iﬂ;‘{l_,_xg)‘ . _ _
L"'{an So dégxg-c E4i(n—xa) d’i}—f(x) Af(x)—Rf(x),

where

e (v Ecosf, VEsinh, p; x,, x5)
0 + Eexp(—if)

HfE p:x, xe)ES ao,

and Rf(x) is a certain function which belongs to C*(D.) and extends holomorphically in
X3 to the complex domain {x,=C ; Rexy#x}+c} uniformly for x, and for x,. Here D,
denotes {(x,, x,, x3)ER*; [x;—x§| <c}.

Now our main theorem is as follows:

Theorem V. Let f(x)eC*(R*). Assume f(x) satisfies the solvability condition in
Theorem II. Then every C™ solution u(x) of the Lewy equation in a neighood of
P(x%, x5, x3) can be expressed in the following fashion, provided me{l, 2, -, -, -, k} :

u(x)=n(x)+Crf(x)+ R {Af(x)+Rf(x)},

where n(x) denotes a C™ solution of the homogeneous Lewy equation which has a form
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stated in Theorem I and C.f(x) denotes

—Lqed L(zsre HEGE, 75 x4, o)
27:25 d S:g-c E+i(n—xs) 7
and R {Af(x)+ Rf(x)} is given by

-1 {Af(E", 9, )+ Rf(EF, 9%, ©P)}
RulAS+RI@I =], (o P

T

0

dédy,

where &F, pF. tF and S; denotes &E+xi, n+x3, —ix,+& 4 —xt—xj+(x)+H(x3)2+2x3¢
+2x3n and {(§, n)ER?; £+ 1°< 8%, respectively; provided 0 is a suitably choosen positive
constant such that the above integral can be defined.

Remark V.1. C.f(x)eC**', R {Af(x)+Rf(x)} €C*, if f(x)eC*t.

We mention that Treves ([7] and [8]) gave an integral representation of solutions
of “solvable” linear PDEs.

Finally, about the proofs; first Theorem [ is proved in §2. Next we prove
Theorem IV in §3. To prove necessity part of Theorem II, we prepare the following
“key Lemma” which is proved in §4:

Lemma A. Given f(x)eC'(R?®), assume the Lewy equation L,u(x)=f(x) has a C’
solution u(x) in a neihgborhood of P. Then, there is a positive constant c(s|x3]) such
that, taking a constant c, such that 0<c,<min{c, ¢/[22c+ |x}|+|x3|)]}, it holds that

0

f(x):L,{P.V.%S:g;:u(xu Xa, ﬂ)/(ﬂ—xs)dﬂ}

1 S Oué, ; x1, Xs)
2% ) {E+i(p—x,)}

where ¢ 1s the oriented path ABCD; A0, x3—c), B(ck, x}—c), C(cix$+c) and D(0, x3+c),
and Qu(&, n; x,, x,) denotes

+ Lo dE+im}+LaACLf (),

S:ﬁu*(x/?cos 6, vV Esinf, y: x,, x,)d6 .

Theorem IV and Lemma A explain why the Cauchy-Szeg6 kernel appears in solv-
ing the Lewy equation. The sufficiency of Theorem II follows from Theorem IV and
the subsequent Corollary to Proposition B:

Proposition B. Let U be a neighborhood of (x¢, x3) in R* and I an open interval
in R' containing x3. Let h(x)e Lip (UXI) and be continuously differentiable in x,.
Taking a suitable positive constant 8, the function R;h(x) given by
—1 S (&P, 7]P, xP)
m Jss [E—in—{x,—x}—i(x,—x3)}]

Rih(x)= dédy (xeUy)

satisfies the equation

L {Rzh(x)} E{—;—(—a% —i %)+(xl—ix2)ai%}1?5h(x)=h(x) in Us,
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where XP=&4n?—xi— x5+ (2 +(x9)*+x,+2x384+2x3n and Us={x; (x,— 2+ (x.—x3)"
<0 xs&l}. (&%, 9f and S; are the same notations as in Theorem V.)

Remark B.1. If A(x)eC*, then Ryh(x)esC*k*',

Corollary B.1. Same notation as above. Let h(x)eLip (UXI) and extend holomo-
rphically in x, to a complex domain {x,=C; Rex,#x3+c} (c: a positive constant such
that ¢+ |x3|) uniformly for x, and for x,. Then, *a positive constant & such that the
function Rph(x) satisfies the Lewy equation L, {R.h(x)}=h(x) in Us,.

Theorem V thus results from Theorem IV and Corollary B.1; Proposition B is
proved in §5. Finally, though Theorem III results from Theorem II and [G-K-S-I], a
direct proof to it is given in §6.

§2. Proof of Theorem I
Let u(x) satisfy the homogeneous Lewy equation
2.1) L.u(x)=0

in a neighborhood of P. Set x°=(x}, x%, x}). We denote u(x,+x?, x,+x, xs+x2+
2x3x,—2x%x,) by wu(x%xx°). Then u(x*x° is a C*(0) solution of (2.1) in a neighbor-
hood O of the origin in R*, where O={x; x}+x3<p, |xs] <p} (Pp: a positive constant).
Introducing the polar coordinates x,+ix,=rexp(6), (2.1) becomes to

0 i a0 .0 ). o
{-(—77—7-30+227’a-h}u(7’, 0. xs)—O
where 7i(r, 6, x;)=u(x%x°. Considering the Fourier series of #(», 8, x;), from (2.2),
we have the following:

2.2)

(2.3) u(xkx=a(r, 0, xs)=n§ a(r. x3)exp(ind),
0 .0 A _
(2.4) {’a‘r’ +2ir +7}un(r, x3)=0

in {(r, x0); 0<r<+/, [x:| <p} =0.
Notice that

oo n . 2
(2.5) 2 | —ia(r, xs),
n=-co| ¥
is uniformly convergent on compact sets in (. Now (2.4) are rewritten as follows:

(2.6) (% +ia%){\/—l'"ﬁ,,(\/7, x)=0 ina,,

where @,={(t, x5); 0<t<p, | x:| < p}.
Therefore (2.6) give the following Lemmas:

Lemma 2.1. #,=0 for "n>0.

Lemma 2.2. For "n<0 't "ii,(v'1. x5) is holomorphic in 1+ix,€5,.
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On the other hand, we easily obtain the following
Lemma 2.3. /' { ™i_.(v, x)€C° (3,U{t=0}) for n=0, 1, ---, k.
Therefore, putting h,(t+ix,)=+"t *#_,(0<n), we have

u(xkx)= 3 (51—ixe) ha(xt+i+ixs.
That is,

u(xy, xs, xa)=§0u’7-hn(wz) in w,

which converges on compact sets in w,, by virtue of (2.5). Taking Lemma 2.3 into
consideration, we have thus proved Theorem I,

Remark. From H. Lewy [4] it is known that every C' solution of (2.1) can locally
extends holomorphically in a complex domain

{(z1, 2)€C?; Imz,>|2,|%, 2,=x,+ix,, Rez,=x} .

§3. Proof of Theorem IV
First we easily see the following
Lemma 3. Let f(x)eC'(R®). Then,
:Tlf”(x/?cos 0, VEsinb, n; x,, x,)

;_e_%g%_i%}f*(\/?cos 6, vV Esinb, n; x,, x5)

=x/—$—exp(—i()){
—iél%f“(\/?cos 0, VEsinb, n; x,, x1),

0 1/, 0 .0
where —a—zT-——?(—a—xT —1 6,\;)'

Now, for simplicity, we use the following notations :

a=c}, p=xt+e, r=x3—c; 0, 77)=%—i£}-;
= fi \/—— g, \/— inf, ; x,,
RESAE xlxz):S: - ’525_»\_/?“%?212.0)7) £t a4,

where X denotes & or 7;

61 7; % x=| fH(Ecos0, VEsing, y; x,, %)d0;

Ofe& n; xi, xz)=S:Hf§(\/?cos 0,V E&sinb, y; x,, x.)d6.
Then
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I(’-yc Hf(& xl,iza)_dﬂ}

azl Sdeg e Bty —xo)
Hf(E, 5; %y, %,
= o i g ) e )
HfE, 7; %1, %,
=tim g e e )

L(a(B o )OS n; %1, Xs)
= lim {2 Zgogr e +E+i(n—xs) dedn

NI GRIETED,
 DE et E+ily —x) BT

“Sﬂ Hfy (& n; %1, x5) de”}

N
B |
> l\’l
— :/ﬂ
—

+‘§§_‘or et il —%s)

= tim { (" an " a0(" L GW“"SQSﬁ(Z‘“is)” £ 52) g
sl LT i,
+ g S Sf [ifﬁﬂ(;hxf;) dEd’?}

e e e

FCLTE e

iz, (a(B Hf (&, 7; %1, Xo)
—Af()+lim 2 S & e e el L

1 Sﬂ Of(a, n x,_x_2)d77+P V.

T2t )y ati(

27?0

B f(xy, Xxs, 77)
er N—Xx; a7

a+i(n—xs)

+f(xy, x4, Xg)—Af(x,, X4, X3)
iz (o] OF(E, n; x1, x5) |1=8
| E+iln—xy) I e

iz, (8 ny;(f: VST X2)
) Ay e

On the other hand,
0 [ —Ll(ed =3+ Hf(§, 73 %1, Xo)
—ax—a{ 2n® So d§§rg—c E+i(n—xs) —dY]}
BHfE, n; x,, x5)
“‘“‘{2;:2 So 5& e +&+z(n—xs) d”}

axs -0

9 —Ilim
3x3 ew0 22

oor |1 de]] tiog Le+etitn —xIh HIG, 75 3 5y
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= 2otim oL Tog (et il 116, 73 1, x0T5AdE

d
— tim ot a6l og ettt —xl HE 6, 75 31, 2y

21:2 [TtHre 1550 ) te+in—x - T7etde

1 S Sﬂ Hf, (& 5; %y, %) dedy.

C2mthedr Eti(p—xy)

Therefore we have:

—1(ef (za+e Hf b Xs
L’{ 27L'12 So dégxg —c S(f-z(yiy xxs)x ) dr}}

1 Sla Of(a Xy, xz)
2n? a+z(77 X3)

+P.V.—%Sf%’ldn+ [ 94 75w 1t

iz

o S [HfE, 7 %1 x)E+i(n—x2)} ' Tiebde

E+i(n—xy)

n=r

Therefore it is proved that Rf(x) defined by

b (73 Hf(G, 75 %1, x0)
RAR)=Lof g ey A E ) g 4

belongs to C*(D.) and extends holomorphically in x; to the complex domain {x,=C:
Rex;#x3+c¢} uniformly for x, and for x,. This completes the proof of Theorem IV.

§4. Proof of Lemma A
Let u(x) be a C! solution of the Lewy equation
4.1) Lou(x)=f(x)

in a neighborhood £ of P. We may assume 2={x; |x;—xY|<2¢c, j=1, 2, 3}, where ¢
is a suitably chosen positive constant such that c;&lx . Set 2.={x;|x;—x%<c}.
Take Y(x,, x5, x;) in Q.. Let (x,, x,) be fixed for a while. Taking a positive constant ¢,
such that ¢,<min. (¢, ¢/[2@c+|x}|+]x31)]), we see u*(y,, ¥, X3; X1, x9)EC({y2+y3
<c&} X {lxs—x3|<c}). Then from (4.1) we have:

1/, 0 .0 . . 0
4.3) {7<a—%—zm)+1(y1—zyz) axa}u”(yl‘ Yoo X5 X1, X)=F# (Y1, Yor Xas Xy, Xo).

Set y,+iy,=rexp(if#). Then (4.3) becomes to

1 7 0

@49 {W ar  2r* 00

i, 0. 55 31, 2= {rexp (i) 4 0, 503 x50,

where g¥(r, 0, x5; x,, x,)=g%*(@rcos @, rsin 0, x;; x,, x,), where g denotes u or f. Con-
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sequently, from (4.4), we have:

4.5) (aarz +i ai)@u(r?, Xs; Xy, X)=Hf(?, x5 %1, X2)

Putting t=r* (r=+/1), (4.5) is rewritten as follows:

(4.6) (% +z‘—a§c—3)@u(t, Xa; Xy, X)=Hf(t, 245 x4, %)

in 9={(t, x5); 0<t<cd, | xs—x3| <c}.
(4.6) gives the following:

. ) _ L0 OQuE gy x,x) 0 10 HfE 75 x,, %)
I s MR sw sl = Erin—(itiny BT
=é+iy.
Letting t—0 and noticing that Qu(0, x;; x,. x,)=2mu(x), we thus obtain:
. 1 (e5-e u(xy, xs, ) 1 (Oué, 5; %, x2)
@7 ux)=P.V. m'ngu n—xs dn+ 271:21'8 E+i(n—xs) i+ Crf(x)

for YxeL..

We thus have the conclusion of Lemma A by operating L, to the both handsides
of (4.7).

§5. Proof of Proposition B
First we prove Proposition B in case of x{=x3=0: that is, we shall prove that

h(g®, p¥, XP)
S E—in—(x,—ix,)

Rgh(x):—rc"g dédy

is a C! solution of
G.1) L AR th(x)} =h(x)

in Us, by taking a suitable positive constant . In the actual case, &”, »%, X¥, S; and
U; denotes &, , &2+ 9 —xi—xj+x,, {E pER?; &4+9*<d®t and {x=R*; x}+x3<0°,
xs&1}, respectively.

Now first we choose a positive constant ¢ so that the above integral can be defined.
Then we easily obtain the following Lemmas:

Lemma 5.1. Putting z,(=x,+ix,)=rexp (), it holds that

S(lCl<|zm &, 7. IC|2_|Zl|2+x9)/(€—21)d$d7]

=— § r‘“"exp{z’(n+1)0}S:z‘"“l‘zn(r, 7, X3)dt,

n=0

where h,(z, r, xs)—z—gznh(r cos @, tsing, t2—r*+xy)e”"dg ({=E&+1in).
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Lemma 5.2. Same notation as above.

Su?>|C|>|zlu h&, 7, 181* =1z "+ x3)/(C—21)dEdy

o0 0
= 3 rrexp{—ind} | o haoi(r, 7, 2T

By these Lemmas we have:

TRih(x)= i__")ur-n-'exp{z‘(n+1)0}S;’r““hn(r, 7, xo)dr

— E r"exp{—znﬁ}g " ho, (7, 7, X3)dT .

n=

Therefore, we see

Rih(x)eC'(U;) and

e 8 id
(5

L(RLh(x))_-—— ~ - ao yor 0 )R h(rcos 0, rsin 6, x3)

o,
=Q@a)™ B {halr. 7, 2o (r, 7, e

=h(rcos @, rsin @, x;)=h(x,, x5, X3).

Finally, in case of (x}, x3)#(0, 0), the proof is as follows:
We put A*(t)=h(t,+x?, t,+x3, t:4+2x%,+2x3t,), where t=(t,, l,, ;). Then, by virtue
of the result proved above, ?a positive constant § so that

R h*(t) satisfies L {Rzh*®}=h*@®)  in Us,
~ 1ls0 .0 L, 0
where Ltzf(a—tl—z-ag>+(t,_,t2)a_h,
Set x;=t;+x} (j=1,2) and x,=t,+2x3,+2x3t,. Then R h*(t)=Rih(x) is a C' solu-
tion of L {R;h(x)}=h(x) in U;. This completes the proof.

§6. Proof of Theorem III

Suppose Af(x) satisfies the condition of Theorem Il. Then C,f(x) satisfies the
same condition; that is, C,f(x) belongs to Lip (2.) and extends holomorphically in x,
to the compex domain {x;&R*®; Rex,#x{+c} uniformly for x, and for x,. Set M=
{(x1, X, X3, x)ER*; x,=x3+ 2%}, xi=(xD?+(x)* and P*=(x}, x93, x3, x}). We can extend
C,f(x) to the function C,f(x,, x5 xs+i(x,—x2—x%) which is defined in a neighborhood
© of P*=R*, where C,f(x,, x,, w) is holomorphic with respect to w. Let us denote
Cof(xy, Xo, x3+i(x,—x2—x3)) by CY(f). We note Ci(f)|u=Csf(x,, x2, x5)=Cy(f). It is
known that C,(f) is the boundary function of

= G D)
ClPan 2=\ e S dyidyidy,

which is holomorphic in HM,={(z,,z,)=C?; Imz,>|z,|%}, where (w,, Re w)=(y,+7y2, ¥s).
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Now let L denote the tangential Cauchy-Riemann operator 0/0z,—21z,(0/0%Z,) to 0 M.
which is identified with M. We denote the inner product

|, f8dyidyudys in LX) by (/. &).
Then we easily see the following:

Lemma 6.1. Let u, veC'{U), where U is an open set in R*'. Suppose u=v on
UNM, then Lyu=L v on UNAH.

Corollary 6.2. Let usC'(M). Suppose ut is an C'(R*) extension of u, then L qu'
=L,u on M.

Since C}(f)| aa=C,(f) is the boundary function of C(f)(z,, z,), by virtue of Corollary
6.2, it follows that

6.1) (LACKNHY, v)=0 for YveCHMH).

On the other hand, we see the following
Lemma 6.3. (L.{Cy()}, v)=(La(Cif}, v) for "veCH(M).

Proof. If CifeC!, by virtue of Corollary 6.2, (L4{CLf}, v)=(L.{C}f}, v)=
(L ACKF)}, v). In the actual case, we have only to approximate C}f by appropriate
C! functions.

We thus obtain (L 4{C}f},v)=0 for Yo C5(M). Here, (Ly{C}f},v)=(0/0z,{C}f},v)
—21(2,(0/02,){C}f}, v)=(3/0Z,{C}f}, v). Therefore 0/0z,{C}f}=0 in distribution sense.
Therefore C}f is holomorphic in z, and in z, in a neighborhood of Pt which is identified
with P*; and hence, we conclude that C,(f)=C,f(x) is real analytic in a neighborhood
of P. This completes the proof of Theorem III.

Appendix

We here consider C' solutions of the homogeneous Lewy equation (H.L) L u=0
in a neighborhood of P. Any holomorphic function of w, and w, is a solution of
(H.L); but, of course, the converse is not true. As is already remarked, however,
every C' solution is “a function” of them. Suppose that there exist two independent
solutions W, and W,, namely, such that rank (W ,, W,)/d(x,, x,, x;)=2 satisfying (H.L),
such that every C! solution is a holomorphic function of W, and W,. Then we easily
see that every C' solution is a holomorphic function of w, and w,. Therefore it is
not true that there exist two independent solutions W, and W, of (H.L) such that every
C' solution is a holomorphic function of them. From Theorem I we see the following

Proposition A. Let u be a C! solution of (H.L) in a neighborhood of P. Then u
is a holomorphic function of w, and w, if and only if 3a positive constant c¢ such that
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2n
Sﬂ u(x‘l’+rcos a, x9+rsind, xa)e-—in()d”
is real analytic in x,& {x3—c<x,<xi+c} for 'n=0,1,2, - and 're{0<r<c}.

Now let A be an real analytic vector field in R". Suppose that it enjoys the
following properties :

(A.1) A, A, A; are linearly independent, where A;o=[A, A;] =0,1,2,---,n—3)
and A,=[A4, A].

(A.2) 3X,,3X,, -, 3X,-,€C” sucht hat X;y=1, 2, --, n—1) are complex-valued
solutions of AX;=0.

(A.3) rankd(X,, Xy, -+, Xoo)/0,, ty, -+, t,)=n—1, where t;(j=1, 2, ---, n) denote
coordinates variables.

We propose questions: under what conditions can every C' solution of Au=0 be a
holomorphic function of the X, X,, ---, X,_,? Is it true that every C! solution of Au=0
is “a function” of them?
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