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Limit theorems for random difference equations
driven by mixing processes

By

Tsukasa FUJIWARA

1. Introduction

The purpose of this paper is to study the weak convergence of laws of a sequence
of stochastic processes determined through random difference equations driven by sta-
tionary mixing processes. As concerns limit theorems for stochastic processes driven
by mixing processes, including the case of random ordinary differential equations, there
are a lot of studies on the central limit theorem and the diffusion approximation theo-
rem. These results can be found in Khas'minskii [15], Ibragimov-Linnik [8], Kesten-
Papanicolaou [14], Ethier-Kurtz [4], Kushner [19], Kunita [16], [17], and many articles
in their references. This work is much influenced by these papers while we would
like to emphasize that a notable feature of this paper is to develop these works to al-
low the limit processes to have jumps. In this point, we are strongly motivated by
the works of Gnedenko-Kolmogorov [7], and Samur [21], [22].

Let {¢};nEN, k= N*}, where N={1, 2, ---} and N*={0, 1, 2, ---}, be an array of
Re-valued random variables defined on a probability space (2, &, P). Throughout this
paper, we suppose that {&}; ke N*} is stationary for every n=N. Let {F"(x), G"(x);
ne N} be a sequence of functions on R%. Then, for each n= N, we determine an R¢-
valued stochastic process {¢f; k= N*} inductively by

gDonZXQE Rd
(1.1) {

oF—pi- 1 =F™i- )(EF —a™)+A/n)GYpi-1)  for k=1, 2, -

where we set a*=E[}/(n1s-)] for some positive constant 7 and I, denotes the indi-
cator function of the set A. Further, we define an interpolating process ¢" of {¢F}:
by

(1.2) <P?:§D€nt] fOl' tEI:O. OO)’

where [{] denotes the integer part of . Then, {¢"}.en is regarded as a sequence of
random variables with values in the space D,= D([0, o): R%) of cadlag (right contin-
uous with left hand limits) functions. As usual, we equip the space D, with the
Skorohod J,-topology.

The problem we would like to discuss in this paper is to show the weak conver-
gence of laws of {p"}, determined by (1.1) and (1.2) to a jump-diffusion (=strongly
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Markovian cadlag process). For this purpose, we will require several assumptions on
(1.1). Loosely speaking, they are stated as follows.

1) The family of random variables {¢}; k= N*} in (1.1) is not necessarily indepen-
dent but has certain mixing property, such as the strongly mixing property or the
uniformly mixing one. ‘

2) The random variables {£F; neN, ke N*} satisfy the condition ensuring the
weak convergence of the sums 3242 {67 —a™}.

3) The coefficients F*(x) and G*(x) tend to F(x) and G(x) in suitable function
spaces, respectively.

Then, we will show that the processes {¢"}, of (1.2) converge in the sense of laws on
D, to a solution of stochastic differential equation of jump type:

(1.3 p=rt| | Fpu B+ | (Cpu)+Glp ) du

[ €0,t]

o) Fipu)eN@uda+{ | [ Flp.)zNudz),

(1z1>7)

where B. is an e-dimensional centered Brownian motion, N(dudz) is a Poisson random
measure on (0, o)X R¢, and N (dudz) denotes the compensated measure. Also, C(x) is
a correction function arising from the dependence of {£}}, and the derivatives of the
function F(x). See Theorem 2.8 and a series of other theorems for the precise state-
ment.

In the above, note that the processes ¢" are not necessarily Markovian while the
solution of (1.3) is a jump-diffusion. Therefore, we can say that our problem is the
Jump-diffusion approximation for {¢"},. Also, the above jump-diffusion approximation
contains limit theorems for the sums of random variables, which are studied in the
classic textbook [7], and [21]. Indeed, put F"(x)=I (the eXe identity matrix) and
G"(x)=b(eR® in (1.1). Then ¢} of (1.2) is reduced to the sum 3523 {&p —a™} +([nt]/n)b
and we know from (1.3) that the limit process ¢, is represented as

(1.4) po=Botbt+| | eNaudn+|, | zN@uda).

(l1z1s7)

Hence, ¢, is a Lévy process and the right hand side of (1.4) is exactly the Lévy-Itd
decomposition. Therefore, in the class of finite dimensional stationary processes, our
result includes the results in [7], [21], and [22]. The precise discussion will be given
in the next section. On the other hand, in the previous paper Fujiwara [5], the jump-
diffusion approximation for {¢"}, determined by (1.1) and (1.2) has been studied under
rather restricted conditions. We will also see that the results in this paper improve
the previous ones.

Section 2 will be devoted to the case where {£}; k= N*} in (1.1) is uniformly mix-
ing. Main results are Theorem 2.8 and Theorem 2.12. The proof of them will be given
by applying a result essentially shown in Fujiwara-Kunita [6]. It will be stated as
Theorem 2.44, which enables us to treat limit theorems in this paper in a unified way.
Furthermore, the application of them will be discussed. See Theorem 2.82 and Theo-
rem 2.86.
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In Section 3, we will discuss the case of strongly mixing processes. Applying
Theorem 2.44 again, we will show a diffusion approximation theorem as a special case
where the jump part of (1.3) is degenerate.

The final Section 4 will be devoted to studying the possible application of the theo-
rems established in the previous sections to the case where {£F; k= N*}, is a sequence
of Markov chains. In other words, we will try to find a class of Markov chains for
which these theorems hold.

2. The case of uniformly mixing processes

First of all, we give precise definition of several mixing properties for the stationary
processes {£7; ke N*}, in (1.1). Set Fp=g[&}; Il N*, I<k], F™*=g[£};IcN* I=
k] and define

(2.1) ap=sup sup{| P(ANB)—P(A)P(B)| ; A€F}, Beg™!*},
n__ P(Af\B) . n n,l+k

2.2) é1= sup sup{‘—Pa—)———P(B)‘ ; Aegy, BeGni, P(A)>0},
n— M\_Bl_ . N n,l+k

2.3) gr= sup sup{ BB 1| . Aegp, Begnitk, P(A)P(B)>0},

for each n, ke N. Then obviously we have a}<¢r=¢p, and ¢p=0 if {£}}, is indepen-
dent. The sequence of stationary processes {&p; ke N*}, is said to be strongly mixing
(a—mixing), uniformly mixing (¢—mixing), or ¢p—mixing according as af, ¢, ¢F con-
verges to 0 as k—oo for each n, respectively. See Eberlein-Taqqu [3] for various
aspects of mixing processes. Throughout this paper, we will deal with the stationary
processes with one of the above mixing properties.

Now, the purpose of this section is to establish jump-diffusion approximation theo-
rems for the sequence of stochastic processes {¢";ne N} determined by (1.1) and (1.2)
when {&}: ke N*} in (1.1) is uniformly mixing. In order to state our main results,
Theorem 2.8 and Theorem 2.12, we introduce the following conditions (U.D~(U.III)
for {&F}..r, which are common to them.

(U.I): There exists a Borel measure g on R\ {0} such that for all geC(R®=": the set
of all bounded continuous functions vanishing on some neighborhood of 0,

2.4) 1| 8@PEeda-| s@uds)  as nooo
and that
@5) [ g mintlzl?, 1} pde)< oo,

(U.1II): (1) There exists a real number V?? for all p, g=1, -+, e such that

(2.6) lim lim sup|»E[785® 935 ]1— V34| =0,
¥ n-»00



766 Tsukasa Fujiwara

where i s=&F,—E[€R5], §Es=&F[1¢pisa, and 7@ denotes the p-th component of pf.

(2) There exists a real number V?? for all p, g=1, ---, e such that
@7 lim lim sup|n'$} B[yt qks®]— V4| =0,
N—00 =1

Let ¢} be the rate function defined by (2.2).
. : F=:3 P .
(U. TII) $=12 Sup(gf)/*<eo

Let C™(R%, R®) (me N*) be the set of all C™-maps from R%to R¢. For feC™(R¢,
R?), we define the norms ||| ms by

o= sup (PN L 53 sup e (o,

14+ x| 1s1a1sm zeRd

where a=(a,, -**, a4) is @ multi-index of nonnegative integers, |a|=a;+--+aq, 02f(x)
=(0'*'/(0x,)*1---(0x%)*2) f(x). We denote by CE(R?, Re) the set of all fe C™(R?, R®) such
that | f|m+<<oo. The space Cj(R%, R¢) and the norm | ||« are often denoted by C.(R?,
R°) and | ||+, respectively. We also denote by R4®R® the set of all dXe real matrices.

As a condition for the coefficients F* and G in (1.1), we introduce the following:

(€): (1) Fr=CYR¢ RQR°) for all neN. Further, there exists FeCL(R?, R QR")
such that lim ;.| F*—FJl,. k=0 for every compact set K in R¢, where ||Flox=]1a1<2
supsex |03 F(x)].

(2) G"eC'(R4, R®) for allne N, and there exists G CL(R?%, R¢) such that lim,_.||G®
—GJ,, k=0 for every compact set K in R¢.

Here, it should be noticed that Conditions (U.)~(U.III) and (C) are not sufficient
in general for the weak convergence of the processes {¢"},. Indeed, Theorem 3.2 in
Samur [22] tells us that it is necessary to hold that lim,..nP[|&}|>¢, || >e]=0 for
every ¢>0 even if {€7}, is 1-dependent and F", G" are constants. Therefore, we need
to find a sufficient condition which ensures at least the above property. In the next
theorem, we give the condition in terms of the uniform integrability of some class of
random variables.

(2.8) Theorem. Suppose that Conditions (U.I)~(U.III)and (C) are satisfied. Moreover,
we suppose

(U.IV): (XM =: aE[|&En|®IFP1]; n, k= N} is uniformly integrable for every N >0.
Also, take a™=E[&}.] in (1.1) for arbitrary reC(u)=":{r>0; pu(|z|=r)=0}. Then,
the sequence of Dgq-valued random variables {¢"}, determined by (1.1) and (1.2) converges
in law as n—oo to the unique solution ¢ of the stochastic differential equation (1.3), in
which

(i) B, is an e-dimensional Brownian motion with the mean 0 and the covariance
matrix

(2.9) (VPI=VEI+ VI VIP)p ot s
(ii) C(x)=(C*%))i=1...a is a function of class C*(R%, R?®) defined by
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e ) 0F%
'% Fie(x)Vvie % (x),

(2.10) 4 Ci(x)=

1

d
=1p

(ili) N(dudz) is a stationary Poisson random measure with the intensity measure
dup(dz) and N(dudz)=N(dudz)—dup(dz).

See Ikeda-Watanabe [10] for stochastic integrals based on Poisson random measures
and stochastic differential equations of jump type such as (1.3).

(2.11) Remark. Let {&7},., in Theorem 2.8 be given by &r=£"-0* for keZ=1{--,
—1,0,1, ---}, where {&"}, is a sequence of R¢valued random variables defined on
(2, F, P) and 0: 2—Q is a bimeasurable, bijective mapping such that P-§-'=P. Sup-
pose that {§}}, is a uniformly mixing process with the rate function ¢} defined by
P(ANB)

P(A)
wher Fp=¢g[é7:lcZ, I<k] and $»*=¢[é}; I€Z, [=k]. In this case, Condition (U.
1V), is simplified as

r—sup sup{‘ _P(B)|; Ac g}, Begn t+k, P(A)>o}
lez

(U.IV)¥: {(X™=:nE[|£}y|?|F}]; nEN} is uniformly integrable for every N>0.

In fact, if we note that E[|E} v|2|FF]1=E[|&% v|2|FF]-0*%}, it is clear that (U.IV)}
implies (U.IV),.

In the next theorem, instead of the uniform integrability condition (U.IV),, we
assume the ¢-mixing property.

(2.12) Theorem. Suppose that Condition (U.I)~(U.IIT) and (C) are satisfied. More-
over, suppose the following

(U.IV)2: sup ¢f < oo,

nenN

where ¢} is the rate function defined by (2.3). Then the conclusion of Theorem 2.8
still holds.

Let us mention the connection between this theorem and the preceding works. Let
{8}, » be an array of l-dimensional, independent, and identically distributed random
variables satisfying Conditions (U.I) and (U.II)-(1). Then, by Theorem 1 of §25 in
Gnedenko-Kolmogorov [7], it is known that a sequence of processes {¢"}, defined by

2.13) of =33 161 — B85 +(nt) m)b

converges in the sense of finite dimensional distributions to the Lévy process of (1.4)
with the characteristics (V,, b, #). Furthermore, we know from Samur [21] and [22]
that {¢"}, of (2.13) converges in law to the Lévy process of (1.4) with the character-
istics (V, b, p) if {&F}..» satisfies Conditions (U.I)~(U.III) and (C). Therefore, Theo-
rem 2.12 is regarded as an extension of them to the case where the limit process is a
solution of a stochastic differential equation driven by Lévy process because the pro-
cesses {p"}, of (2.13) are obtained by putting F"(x)=I (the eXe identity matrix and
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G"x)=b (€R® in (1.1).
Also, in the previous paper Fujiwara [5], the same assertion as Theorem 2.12 is
shown under extra conditions:

sanEflé.’,’,N12]<oo for all N>0,
3 sup ()P <0,
k=1 neN

and more restricted regularity condition on the coefficients F". See Theorem 1 and
Theorem 3 in [5]. Therefore, Theorem 2.12 is an improvement of the results in [5].

(2.14) Remark. Recently, limit theorems for a sequence of semimartingales have been
studied by many authors. See [11], [12], and [20] for the weak convergence of stochastic
integrals based on semimartingales. Furthermore, see [13], [18], and [23] for that of
solutions of stochastic differential equations driven by semimartingales. We can regard
the processes {¢"}, in Theorem 2.8 and Theorem 2.12 as a sequence of semimarting-
ales. But they do not seem to satisfy at least conditions given in [13] or [23] in general.

We will prove Theorem 2.8 and Theorem 2.12 in a unified way. To this end, we
introduce a technical condition (U.IV)* as follows.

Let {X?}, be a sequence of 1-dimensional cadlag processes. We say that {X"},
satisfies Condition (CT & UI) if {X"}, is C—tight, that is to say, {X"}, is tight in D,
and any weak limit law is supported in the space C([0, ), R') and if, further, {X?}, is
uniformly integrable for every ¢=0.

For each neN, 0<d< N, define nondecreasing cadlag processes X? and Y?(8) by

[nt]
(2.15) Xr= 3 Elnk wP'IF 1],
(nt] N
(2.16) Yi®)= X ELEEAIIF 2,

where E5A=6FTscigpisn-

(U.IV)*: (1) {X"}, of (2.15) satisfies Condition (CT & Ul) for every N.
(2) {Y™(); neN, 0<6<N} of (2.16) satisfies

(2.17) lim "ssu}? lim sup PLW(Y™(), 8)>¢]1=0,

60
for alll >0, where Wr(¢p, ) denotes the modulus of continuity defined by Wr(p, 8)=
sup{lg:—¢sl; t—s=6, s<t<T} for pcD,, and

(2.18) lim sup lim sup E[Y}(); Y?()>K]=0,

K10 dsN 00

for each t.

Next lemma gives us a useful characterization of C-tightness of a sequence of cadlag
processes.

(2.19) Lemma. Let {X"}, be a sequence of cadlag processes. Then the following (a)
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~(c) are equivalent.
(a) {X™}, is C-tight.
b) {X™}, satisfies that for all T>0 and >0

(2.20) lim lim sup P[sup| X7 |>K]=0,
Ko T 00 tsT
(2.21) l0im lim sup P{Wr(X", 6)>6]=0.
10 n—soco

(¢) {X™}, is tight and it satisfies that for all T, 6>0
(2.22) lim sup P[sup|AX¢|>d]=0,
tsT

n-00

where AX?=X?—X7..

Proof. See Proposition 3.26 in [11, p.315]. []

For nondecreasing cadlag processes X, and Y,, we say that X, is strongly majorized
by Y. and denote by X,< Y, if (Y,—X,) is also nondecreasing. Then it is clear from
Lemma 2.10 that {X"}, satisfies Condition (CT & UI) if there exists {Y "}, such that
X2« Y? for all n and that {Y"}, satisfies (CT & Ul). We will often use this property
without mentioning.

Next results, Lemma 2.23 and Lemma 2.26, enable us to treat Theorem 2.8 and
Theorem 2.12 in the same framework.

(2.23) Lemma. Condition (U.IV), implies Condition (U.IV)*.

To prove this lemma, we prepare a lemma which gives us a characterization of
uniform integrability.

(2.24) Lemma. Let {X"}, be a family of integrable random variables. Then the fol-
lowing are equivalent.

(a) {X™}, is uniformly integrable.

(b) There exists a positive, increasing convex function G(x) defined on [0, o) such
that lim,,,.{G(x)/x} =+ and that sup, E[G(|X"|)]<oo.

Proof. See Theorem 19 in Dellacherie-Meyer [1, Chapitre I, p.34]. O

Proof of Lemma 2.23. Define a cadlag process U? by Ur=(1/n)DfriXMm =
SEUELIEE vI*1Fro]. Then we have X7 «2{U?+E[U?]} and supssy Y7 (0)K U?. There-
fore, it suffices to show that {U"}, satisfies (CT & UI).

By (U.IV), and by Lemma 2.24, there exists a positive, increasing, convex function
G on [0, o) such that

(2.25) liry {G(x)/x} =00, sup E[G(X{)]<oo.
Then by the convexity of G, it is clear that sup, E[{G(U?)]< for each ¢, which im-
plies the uniform integrability of {U?},. We next show the tightness of {U"},. Set

Ft=%F ;- Let ¢ and r be arbitrary {F}}-stopping times such that ¢<7<T and that
t—o<r and let C be arbitrary positive number. Since

E[Ur—U3]
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Lntl
=E[(/n) 3 X{]

Cnrl

[n7l
=(/mE[ 2 Xlgn)jlxén’an]‘l‘(l/")E[ X,ﬁ")f(x’gnbc,]
k=[naol+1 +1

k=[na]
=CE[nr]—[no])/n]+1/n) Z ELXi" lix m>e)]
=Cr+1/m)+([nT1/m) sup ELX" Tixgmse ],

we have
lirg lim sup sup {E[U?—U}]; 6<t<T, r—0<r} gTsuE E[XM I ixmse)]
T N-s00 n,

Since Condition (U.IV), implies that the last term converges to 0 as C 1 o0, we see from
the theorem of Aldous that {U"}, is tight in D,. See Theorem 4.5 in [11, p.320].
Finally, me show that {U?}}, satisfies (2.22). Let G be the function given above. Since

Plsup AU?>0]1=P[ max (1/n)X (™ >4]
tsT 1sksinT]
<[nT] sup PLX ™ >nd]
=[nT] sup PLG(X{™)>G(no)]

[nT] no n
ST Cmay SR ELGLX™)],

(2.22) follows from (2.25). Thus, we see from Lemma 2.19 that {U"}, is C-tight. O
(2.26) Lemma. Conditions (U.I), (U.IT), and (U.IV), imply Condition (U.IV)*,

Proof. By the definition of ¢, we can see that for every n, k&N and 6<N
ELlpk "1 F i 1=(sup ¢T +DELInd vI*],

and that
ECI&p3121F 1< (sup ¢} + D EL & F12].

Since (U.I) and (U.II) imply that A= :sup,nE[|9{|*] is finite, X7 of (2.15) is strongly
majorized by the deterministic process A(sup, ¢f+1)X([nt]/n). Hence, it is obvious
that (U.IV)*~(1) is satisfied. Similarly, we can show that {Y7(d)}, s of (2.16) satisfies
(U.IV)*-(2) if we note the property.

: n,d |2 2 2
%lslg llT-»oSouP nE[l&o’N ]g?slle SU’SIZISN) 2] ‘Ll(dz)§5(|z|sN) 2] ,a(dz)<00. =

By Lemma 2.23 and Lemma 2.26, it is immediate that both Theorem 2.8 and Theo-
rem 2.12 follow from the next result.

(2.27) Theorem. Suppose that Conditions (U.I)~(U.III), (U.IV)*, and (C) are satisfied.
Then the conclusion of Theorem 2.8 holds.

In the following, we will give a proof of Theorem 2.27. For this purpose, we
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apply a limit theorem for stochastic processes determined by random difference equa-
tions of general form. Since it can be deduced from Theorem 2.1 of Fujiwara-Kunita
[6] by making a little improvement in the conditions and the proof, we restrict our-
selves to stating the assertion.

For each neN, let {f2(-); keN*} be a C*(R%, R%)-valued stochastic process with
parameter % defined on a probability spoce (2, &, P). We define a sequence of the
sub ¢-fields {F}; kEN*} ey of F by FE=0[f%, f2, -+, fE]. Let {gk(:); nEN, keN*}
be a sequence of deterministic functions of class C'(R¢, R%). Associated with the
sequence {f}, gf}., we consider the following stochastic difference equation:

{ ot=x,cR*
or— i =i D)+gk(ei), k=12, -,

(2.28)

and define a sequence of cadlag processes {¢"}, by (1.2). We now put the following
conditions (A.I)~(A.V) on {f}, gF}.
To make the notations simple, we often use the following abbreviations. For e,
M>0, we set
lecL.M(x)sz(x)lulf,’,‘u*sm, fl:','ff(x)zfg(x)[(s<||f,§‘;|.5M)y

FRu()=E[fEn(x)], FRu(0)=fEu(x)— FE u(x).

We denote by fp“ the i-th component of fF.
For each neN, let A" be the set of all real-valued cadlag processes A} satisfying

(i) A" is {FPu.;; t=0}-adapted,
(ii) t—>A} is nondecreasing,
(iii) E[A?]<oo for each t<[0, oo).

For A*e.*, it follows from Doob-Meyer’s decomposition theorem that there exists
a unique predictable process A™? of class 4" such that A?— AP is a martingale. We
call the process A™? the compensator of A”.

We also denote by S, the set of all dXd real, symmetric, nonnegative definite
matrices.

(A.I): For every compact set K in R? and for every T>0, and >0,
lim max P[su}[{)lf,’,‘(x)l>s]=0.
re

n—oo 0sks(nT)

(A.II): (1) For every compact set K in R? and for every positive constants M, T,
there exists a sequence of stochastic processes {D*=. A"}, satisfying the following pro-
perties (i), either (ii) or (ii)":

(i) For all sst<tU'<T,

[nt) tnt'] o ~
(2.29) ) > osup [EL 2 05fu(DIFENOLS v, u(2)]
laise, 1BIsl k=[(ns]l+l z,yEK I=k+1

S sup|affw(0)]?

181s1 k=[nsl+l zE€EK
<Dp—Dp.
(i) The sequence of compensators {D™?}, of {D"}, satisfies Condition (CT & UI).
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(i)’ {D"}, itself satisfies Condition (CT & UI).

(2) For every compact set K in R? and for every positive constants e<M, T,
there exists a sequence of stochastic processes {E™(¢)e.4"} satisfying the following
properties (i)~(iii):

(1)

Cntl
(2.30) 1 ggglaéfﬁ':,(x)l%E?(E)-

1B1S1 k=

(ii) For every £>0,
(2.31) lim sup lim sup PLW(E™?(e), 0)>£]1=0.

040 0sesM n—oo

(iii) For every t=0,

(2.32) lim sup limsup E[E}?(e); EP(e)>K]=0.

Kt 0sesM n-soco
(3) For every compact set K and for every positive constants ¢<<M, there exists

a sequence of deterministic nondecreasing functions {D"*}, satisfying the following pro-
perties (i) and (ii).

(i)
Cnt] - —
(2.33) S S Elsup|a8fi:4(0)11+suplagi(x)+3E71.(x) |} < D
1B1st k=1 zeK IEK
(ii) For every T>0
(2.34) sup D3 < oo, and lim lim supW(D*, 8)=0.
neN 00 n-oo

(A.III): (1) There exists a Borel measure v(df) on C,(R%, R%) satisfying the follow-
ing properties (i)~(ii):
(i) There exists some yCW)=:{r>0; v(||f|+=#)=0} such that

(2.35) [f5u(df)<oo,  and  w(|fll+>7)<oco.

Sul.ﬂusrl
(ii) For every M, e=C(v) and for every bounded continuous function & on R¢

[nt]
(2.36) lim E[Slé[;{l E[k=[§]Hh(fi'(x))lls(l,f{‘usﬁl) | F Pasa]

—=9| o M cisen(d)) 1=0.
Cpye(RE, R D
(2) There exists a function a,eCi(R?, S;) such that for every compact set K and
s<t
Cntl ~ . s
(2.37) lim limsup E[Sg,?‘E[,,=[§]+. FERR) B (O F fn]—(t—s)ai(x)] ]=0.

eeC (V)0 n-soo Z
(3) There exist functions a,€Ci(R%, R‘QR?®) and c=CL.(R%, R*) such that for
every compact set K, M>0, and st
Cntl-1 [nt]

(2.38) lim E[SLIII{)|E| > FEP TR ()| F ] —(t—s)at(x)] 1=0,

n-s00 k=[(ns8l+l l=k+1

and
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&

[atl-1 (nt] o~
(2.39) lim E[sup| E[ 23(0/0x) fisP )(x)
n—o0 reEK k=[n8]+1 l=k+1 j=1
X Fid ()| Ftas] — (t—s)c'(x) | 1=0,
respectively.
(4) There exists a function b= CL(R?, R*) such that for every compact set K and
st

[nt]

(2.40) limsup| > {gk(x)+FE,(x)} —(t—3)b(x)| =0,

n-oo xEK k=[ns8l+1

where 7 is as in (1)-(i).

(A.IV): For every compact set K, s<{, M>0, it holds that

1
Cnt] ~
(2.41) lim sup 3 E[suplE[ X 05fEu(x)|Fta]l]=0,
n—oo SEL0,t] 1A |52 reEK k=[ns]+1
(2)
[nt] [nt] ~
(2.42) lim 2 E[ S sup {|E[ 3 9970w F2IFEu(x)? =0.
n-oo |a|s2 k=(nsl+1 x,yeEK l=k+1

(A.V): For every >0, it holds that
(2.43) lim limsupP[ sup |f¢ll+>M]=0.

M- 7n-soo ksnt]
(2.44) Theorem. Suppose that Conditions (A. I)~(A.V) are satisfied. Then, the se-
quence of Dg-valued random variables {¢™}, determined by (2.28) and (1.2) converges in
law to the unique solution of the following stochastic differential equation :
(2.45) po=nt|  olp. B[ | (el

J (o,

0 AeoNaant|, §  fe.IN@udn),

S 1>7)
where (i) ¢ is a Lipschitz continuous function from R® to R°QR™ such that o(x)o(x)*=
ao(x)+ {a,(x)+a,(x)*} where a* denotes the transpose of the matrix a,
(i) B, is an r-dimensional standard Brownian motion,

(ili) N(dudf) is a stationary DPoisson random measure with the intensity measure
duy(df).

Before giving a proof of Theorem 2.27, we prepare basic inequalities which hold
for uniformly mixing random variables. The following result is shown in the proofs
of Lemma VIII.3.102 in [11] and Lemma 5.6.2 in [17].

(2.46) Lemma. Let {£.}rens be a stationary, uniformly mixing process with the rate
function @,. Suppose that & is an LP?, F*-adapted random variable for some p<[2, ],
where F*=g[&,, Exyy, -]. Then, it holds that for all 1<k

(2.47) [E[§1F.]—E[E]| =2(@, -V ELIEIP|F,]VP+EL|£]P]V7},

where F,=a(&,, -+, &] and q is the conjugate of p, that is, q=1/(1—1/p).
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Proof. Let Q(w, dw’) be a regular conditional probability of P(-|<,) on F*. Define
a signed measure p(w, do’) by po, do')=Q(w, do’)—P(dw’)|g., and let p(o, do')=p*(o,
dw’)—p~(w, dw’) be the Jordan-Hahn decomposition of u(w, dw’). Then, by the definition
of the rate function, we have for all BeF*|pu(w, B)| <¢is-. P—a.s., which implies that
1w, ), p (0, D)=¢$:-;. Hence we have

(2.48) REEARGIEI
R

<2, O 1617du )+, (1617}

§2““{\S€d#*

<zg, {feird )™
Moreover, since |g¢l(w, do")=Q(w, do' )+ P(dw’)|s., we have
{1erraim}™ s BLIE17 19,07+ ELIE 17},
Combining this with (2.48), we obtain (2.47). O

(2.49) Lemma. Let {£.}, be the same as in Lemma 2.46. Suppose that sup;,.|&:(w)| =
C. Then we have for all m<I<k

(2.50) IELen | Fm]—Elnen ]I S16CH @k )" *(@1-m)'?,
where n.=&,—E[&,].

Proof. Applying Lemma 2.46 for p=c (¢g=1), we have

(2.51) VE[nen | F n]—E[nen ]| =16C*@, - m.
Similarly, we have

(2.52) |E[neni| Fnl| SELIEDns | F 9 F n]S8C°Pr -1,
(2.53) |ELnsn:]| <8C -1

Therefore, by (2.51), (2.52), and (2.53), we obtain
|E[neni| F m]—Elnan.]I?
S|Een | Ful—ELpen I X AL ELnenu | Fm] |+ ELpen.J1}
<(16C*)’¢x-1P1-m,
which implies (2.50). O
Proof of Theorem 2.27. We first give a proof of Theorem 2.27 under additional

assumptions that lim,_.|F”—F||x=0 and that F is not identically 0. In this case F,;=
inf,|| F*|+>0. For each n=N and keN*, set

(2.54) fRx)=F"(x)g}, and gix)=(1/n)G"(x)—F"(x)a",

in (2.28). Also, define ¥} by ¢[&}, -+, é#]. Then, what we should do is to check that,
under Conditions (U.D)~(U.III), (U.IV)*, and (C), f} and gi defined as above satisfy
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(A.D)~(A.V) in Theorem 2.44. In the sequel, let K be an arbitrary compact set in R?
and let ¢, M be arbitrary positive numbers such that e<M.

(Check of (A.I)) By the stationarity of {£F}. and (U.I), it is obvious that (A.I) is
satisfied.

(Check of (A.II)) (1) For e<M, we set Fs=sup,||F"|s, F;=inf, | F"|s, F=sup,||F"|s &,
d(n)=c¢/||F*|+, 0=¢/Fs, Nm)=M/||F"|«, and N=M/F,. Then, since we see from
Lemma 2.46 that

[nt’]
sup|E[ 2 3Zf1,u(y)|9"?]|
VEK  L=F+1

[nt']
<sup > |E[O5F )0l v | FE]I
YEK l=k+1

[nt']

<2F

n
l=k+1

the left hand side of (2.29) is dominated by

(@E-0)' " AELInE won P FET*+HELI 98 v o 17117},

— Cntl Cnt'l
(2.55) 2FP( 3 3 @10 HEL 7k wen PS4

Lnt]
+ET| 7)51. N () |2]“2} X |7]I7ez, New +k=[§]+l | ﬂlﬁN(n) %)

- Cntl
<AFFE@GD'",_3 | Bl 9k o] 911

Cnt)

+(3+DX Uk vew P+HEL RS v oy 1711)

kE=[ns)+1

Hence if we define {D*'=._i"}, by
oo [(nt]
(2.56) DZ‘"=§0(¢?)”z§1E[7ﬂ+k,mm [21FE]

where we set ¢¢=1, we see from (2.55) that the left hand side of (2.29) is dominated
by C{D}'—D¥*+E[D»*— D]} for some constant C which does not depend on n, s, f.
Therefore, (A.I)-(1)-(i) is satisfied if we define {D"}, in (2.29) by

(2.57) Dp=C{D}'+E[D}']}.

In the sequel, we prove that the compensators {D™'?}, of {D™'}, satisfy (CT &
Ul) because it implies that (A.ID)-(1)-(ii) is satisfied with {D"}, of (2.57).
From the definition of compensator, we have

(2.58) Dg.l.p___‘li (@HEX D,
where X is a nondecreasing cadlag process defined by

Cnt]
(2.59) Xp =D E b v I F] -

We first show inductively that {X™®}, satisfies Condition (CT & Ul) for all [eN*.
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Since we may assume that N(n)>1 for all n, we have |9y |2<S4{|9Ex >+ |EEK 2+
E[1&8%1%]}, which implies that X @O <4{X?+Y P D)+E[Y ,(1)] for {X"}, of (2.15) and
{Y*(1)}, of (2.16). On the other hand, we see from Lemma 2.19 that {Y”(1)}, satisfies
(CT & UI). Hence, it is clear from (U.IV)* that the assertion holds for /=0.

We next consider the case of /=1. Associated with X™ > define a stochastic pro-
cess Z™M of class A" by

[nt]
(2.60) Z?'(l):kgE[lﬁgﬂ,N(n)|2|gl?:| .

Then it is easy to see that {Z™ "}, satisfies (CT & Ul) because so does {X™},. Also,
note that XpW=27p®? where Z;»®:? denotes the compensator of Z». Let ¢<7 be
{F?}-stopping times bounded by 7. Then, by Lenglart’s inequality ([11, p.35], we
have for arbitrary &, 6>>0

(2.61) PLXM®— X2 >4]
<(1/8) e+ ELsupA 2"} 4 P[220~ 23> ).

Since (CT & Ul) for {Z™ <}, implies that
(2.62) lim E[SUITDA ZpM]1=0,

n-s00 ts

}Iim limsup  sup ”P[Zé"“’-—ZJ"“’>a]=O,

i0 nooo ogrsTt-uz

we see from (2.61) that

}’im limsup sup 0P[X?"”—X.}"‘”>5]:O,
0

n-o ostsl,r-0s
Hence, by the Aldous criterion, we can conclude that {X™ ¢}, is tight.
In order to prove the C-tightness of {X™},, we need to show that (2.22) holds
for {X»®},.. Recall Lemma 2.19. Set

St=supAZ{ V= max E[[nis,vool*[FE].

tsT 1sks(nT]

Then we have
supA X = max E[E[Ipka v !®1FF]IFi- ] max E[S"|9},].

tsT 1sks(nT) 1sks[nT]
Since {E[S"|g},]; k=1, 2, ---} is a martingale, Doob’s inequality implies that for all
>0
P[§uzg AXPD>4E]
s

<P[ max E[S"|Fp,]>d]

1sksinT]

=(/OELE[S™ |Ftars-1]]=(1/0)E[sup A Zi V] .

Hence, we see from (2.62) that (2.22) holds for {X™ ¢} .
In order to prove that {X™ >}, satisfies (CT & UI), it remains to show that {X} <},
is uniformly integrable. For arbitrary C, M >0, we have

ELXP 5 X @ >C=E[Z1 75 27 >C]
SE[Z O Zp O SMILEZE O ZF PEM; ZF P >(]
SE[Zp O Zp O >M]+(M/C)sup ELZ} V] .
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Hence, by the uniform integrability of {Z} ’{,, we obtain lim¢..sup, E[X} 7 ; X+
>C]=0. Thus, we have shown that {X™ "}, satisfies (CT & UI).

Repeating this discussion, we can conclude that {X™ ¢}, satisfies (CT & UI) for all
leN.

We now prove that {DF"P=: (¢} X¥ 2}, is C-tight. For arbitrary ¢>0,
choose /, such that sup,3%,,..(¢F)"*<e. Then, since {X™®}, is C-tight for each /,
it is obvious that e (@F)/2 X ¥ is C-tight. On the other hand, note that for {<T

sup B[ 33 (@1 Xt V) <ssup(nTIEL 9hnen "= Crxe.
n =lg+ n
Then, we have for all T7>0 and >0
Ligx lim sup PLWr(D™"?, §)>4d]

T -s00

<lim lim sup P[Wr(liﬁo(qb?)‘”X"' @, 6)>5/2]

+lim lim sup PLW 1 lz“': (@D ©, 0)>5/2)
N—oo =lg+

<0+limsup P[ X (@12 X >6/2]

n-oo l=lg+1
<lim sup (2/8)E[_ lz“j (@D Xf PIL@/5)Cr, e -
n-»c0 =lg+

Since ¢ is arbitrary, we see that {D™"?}, satisfies (2.21). On the other hand, since
sup,E[D¥ " ?]<oo, it is obvious that {D™"?}, satisfies (2.20). Hence, we see from
Lemma 2.19 that {D™"?} is C-tight.

We next show the uniform integrability of {D*?},. For arbitrary ¢>0, choose
lo such that sup,2%,,+(¢F)"*<e, as before. Then we have for all C>0

(2.63) E[Dp?; Dp?>C]

SECH @D Xp©; SN XE©>C/2]
4 o
HE[Z @ EXP D S (@1XEO>C/2]
= =lg+1

FEL D (¢p)reXpw]

1=Tg+1

Lo Lo 0

S2E[D XP 0 B XPO>C/2]+2EL 32 (99X ]

=0 1=0 l=1p+1

1

IA

2L Xp llzj}oX>C/2] +2¢Cr v -

LM

Since {3i, X P}, is uniformly integrable as we saw before, by (2.63), we obtain

imsup E[D}"?; Dp"?>C]<2eCrp, n -

l.
C-oo n

Since ¢>0 is arbitrary, we can obtain the uniform integrability of {D}*?},. By the
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discussion above, we have shown that {D"}, of (2.57) satisfies (A.Il)-(1)-(ii).
(2) Define a stochastic process E™(¢) of class A" by
Cntl R
(2.64) Ex&)=(supl F" )X & 16871

where we set 0=¢/Fsand N=M/F, as before. Then it is obvious from (U.IV)*-(2) that
(A.ID)-(2) is satisfied with {E™(¢)} of (2.64) because E%}'P(e)L(sup.||F" |, &)X Y(d).
(3) Note that we may assume that d<r. Take

(2.65) Dy=2[nt]E[|&5:21] Xsup|[ £, x+H(Cnt1/m) sup[G"lls. & -

Then, by the stationarity of {£}}, it is clear that (2.33) holds. Since (U.l) implies
that sup, nE[|&32|]< o, it is also clear that (2.34) holds.

(Check of (A.Ill)) (1) Define a o-finite measure v on C(R¢, R*) by

(2.66) v(df)=p-M~'df),

where M is a mapping from R*to C(R¢, R?) defined by M(z2)=F(-)z for ze R°. Also,
set y=t||F|«. Note that yeC)={r>0; (r/||Fl«)€C(p)} because we assume that &
C(p). (2.35) is an obvious result from (2.5) and (C). To see (2.36), owing to the poly-
nomial approximation, it is enough to show it when h(x)=x™ for meN*. For ¢, M&
C(v), put o(n)=¢/||F*|l«, N(n)=M/||F"|.. Then, by Lemma 2.46, we have

Cntl
(2.67) EfsuplE[ 2 SR} ™ e<isfucan | Fins]
zeX k=[nsl+1
Cntl
—Elk=t§l+l {FRCN ™ ciftina ] 1]

[nt]
é(Fs)’”H%]HE[I ELERA)™ —ELERAG)™ ] F ] 1]
SAF)"GEERAMD)™]*—0  as n—oo,

because E[(E25)2™]<E[(3$)*™]. On the other hand, since (U.I) implies that

Lntl
5 EL@AR) 1 —9)] 2" acineviu(d2)
k=[(n8]+1
:(t—s)g Zm[(s<1‘F‘a=lzlsﬂl)#(dz) ,
we have
Cntl
lim E[sup| > E[{f{x)} m](s<u121usm]_(t_3)s f(x)m1(5<nju*smv(df)|]:O .
n-oo TEK k=[ns)+1

Combining this with (2.67) we obtain (2.36).
(2) Define a,=Ci(R%, S;) in (2.37) by

(2.68) af(x)= 3} FP@VEF),

where V, is the matrix defined by (2.6). Then, it is easy to see that (U.II)-(1) implies
(2.37).
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(3) Define a,=C;(R*, R*®QR*) in (2.38) by
(2.69) aP(n)= 3} FP@VIFQ),
where V, is the matrix defined by (2.7). Then, by Lemma 2.49, we have
3 ECUE0R R acn| ) — EL9Racacn] 1]
< TR0 Pl-cner) X 163(n)"
<16¢%e/F;)?*—>0 as |0,

where kZ<}l’ denotes the summation over (k, [) such that [ns]4+1Zk<IZ[nt].

(U.ID-(2) implies that

. . [ntl-1  [ntd
(2.70) lim limsup E[sup |E[ 3 3 FEO0)FED@X)] Flae
EEC(V)=0 N0 reK k=(n8)+1 l=k+1

—(t—s)a,(x)*|]=0.
Therefore, to show (2.38), it remains to prove that for each e<M
1-1 Lntd

[nt
@.71) lim sup E[sup |[E[,_3} 3 {fE (@19 ()

k=[n8]+1 I=

—FEP@F P (0} | F o] 110

But it is an immediate consequence from the facts that we have

(2.72) 1.msup2' ELEDEE® i v | Flanll1=0,
and
(2.73) lim sup Ef ELIEMEE®nlsm | Fhsnll1=0.

779

Hence

We give a proof of (2.72) only because (2.73) is similarly shown. By Lemma 2.46, we

have

@79 3 ELIBInEdE ke | Foa) )
<3 EL\ELEd@nt o 9411

SZ}' ECIphfa | X2A@E- ) AELI nhn cus 1PN FRT P+ ELI 98w cnr 1°1'2}]

=22 (@10 {ECIERR | ELl pEncnr || FE]' 1 4+3ELIE8R 1 1ELI 98 v o 1°11/2}

Ent]

IIA
™

2(¢")”2E[|5 ¥ ELlntee v oo |1 FE]]

k= [nn +1 1=

+64([nt]—nsDELIERIIEL 98 v 1711

Since it is clear that the second term converges to 0 as n—oo, we show that so does
the first term. For arbitrary {>0, take /, such that sup,3%;,..(¢})"/*°<{. Then we

have
Cnt]

(2.75) > (¢;‘)‘”E[|£ SV ECI 9Pk, nens |2 FET2]

k=[n81+1 I=lg+1

L[] —[nsDELIEER " ELI ns v cns P <Cr,2E
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On the other hand, set Z} =332 E[| 9k, v>|?|FE]. Then, for /<[, and the for
arbitrary {>0, we have

Cntl
@76) 3 ECIEEED Dk, ven | FE17]

Lntl
= X E[I&R1AZES)"]

k=[n3]+1

<U([nt]—[ns)ELIE041]
+ 3 BLIerE I EIA ZB s sup A Zp OS]
tsT

k=[n8j+1
<{([nt]—[ns])ELIE541]
+{([nt]—[ns)ELIE2R1* 1} P E[Z3 P ; sup A Zp OS],
s
Here, note that {Z™®}, satisfies (CT & UI) because so does {X™®}, of (2.59). So,

we have lim sup,..E[ZF# ©; sup,crA ZF 9 >L]=0, which implies that the right hand
side of (2.76) converges to 0 as n—oo. Therefore we obtain

. Cnt] lo
.77 lim 3 S (@HVELIERR | ELInls. v [P FE]*]1=0.
n-oo k=[n8]+1 l=1

Combining this with (2.75) we get (2.72).
Next, define ceCL(R%, R?) in (2.39) by

& & OFIP(x)
(2.78) c(x)-—jgy'q=1 FP% VPIF(x) .

Then, (2.39) follows by the same way as in showing (2.38).
(4) We will show that (2.40) holds with y=z||F].« and b(x)=G(x). Since f},(x)=
F"(x)Eféﬁ'I(|cg‘|5r||i'|1*l(r1v*"||*)1] and Fr'(x)a"=F"(x)E[§7],¢p1:], We have

sup |, 37 {gR(0+T 1,0} —(t—9)h(x)

Ssupl(1/)x, 30 G (0)—(t—9G)|

+Fs[nt]E[1&¢] |[llé")’lsr)—IlIégls.'ilF'il*l('lF"Ih)) I].

The first term converges to 0 by (C). We next consider the second term. Let {e,; %
€N} be a sequence of positive numbers such that 1+e,=C(y) for all £ and that
lim;..e,=0. Then for each ¢,, there exists n,&N such that ||F|./(|F"|.)—1|<e, for
all n=n,. Hence, we have

“n;l sup nE[|§<'>'||1«|5g|sn—‘]ue;‘|s.-uru*/(||1ﬁnu*)) 1]

éliT sup nELIER [ [icca-ep<igliscaseyn ]
={ 121 Tea-pcinceasepit(@2)

Since the last term converges to Slzll(m:,,,u(dz)zo as k—oo, we get the conclusion.

(Check of (A.1V)) (1) (2.41) is an immediate consequence from the facts that §<oo
and that sup, nE[| 9% ¥ |21 < o0,
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(2) Since we have

(2.89) E; E[IEEvew | FEUDE veny 2]
ék%' EL2(¢t- o) {ELI Nt w s I FRT P HELI 98 v > P12 DB N> 12D

we can show that the last term converges to 0 as n—oo by the same way as in the
proof of (2.72). (2.42) follows from this immediately.

(Check of (A.V)) First, note that
PL sup [If§ls>M]=P[ sup [&|>M/(IF"].)]
s[nt] kscnt]
S[nt]PLIE I >M/Fs]1<[nt]1P[|EF | >N"],

for all N'eC(p) such that N'<M/Fs. Since (U.I) implies that nP[&}|>N']-u(lz| >
N’) as n—oo, it is clear that (2.43) holds.

Thus we have proved Theorem 2.27 under the additional conditions stated in the
first paragraph of the proof of Theorem 2.27. We next consider the general case. But
we restrict ourselves to giving the idea of the proof.

Since it seems difficult to apply Theorem 2.44 directly to the processes {¢"}, deter-
mined by (1.1), we introduce the localized and truncated prcesses as follows. For each
L>0, let r.(x) be a smooth function such that 07, (x)<1, r.(x)=1 on {|x|<L}, and
that 7,(x)=0 on {|x|=L+1}. Set F}x)=r (x)F*(x), Gi(x)=r (x)G™(x). Let L>0, Ne
C(p) be fixed. Then, associated with (1.1), we consider the following stochastic differ-
ence equation :

(r]t. N, L=x
(2.80) { ¢ ’

Q1 ML L= PR R w—a™)+(1/mG (R D)

Define a sequence of cadlag processes {¢p™ ¥ I}, by ¢ ¥ E=¢¥* We apply Theorem

2.44 to this {p™ " },. Then, by the same way as in the first case, we can see that
¢™ ¥ converges in law to the process ¢"'* which is the unique solution of the sto-
chastic differential equation :

@8 gfi=xet| | FilpldB,+| | (Gi+Gieldu

€0, co,

N, LY,
+S(0.tJS(|zlsrl FL<§Du—- )ZN(dudZ)—'_S(O- l]S

where B., N(dudz), ﬁ(dudz) are the same as in Theorem 2.27, and we define C, by
(2.10) for F, instead of F. Furthermore, we can remove the restriction on N and L
by the similar way in the proof of Theorem 2.1 in Fujiwara-Kunita [6]. Thus we have
completed the proof of Theorem 2.27. O

Fr(p¥:")zN(dudz),

(t<1z1sN)

At the final stage of this section, we give two consequences from Theorem 2.8 and
Theorem 2.12 in the case where &} is of the form &f=¢&,/n'“ for some a<(0, 2]. As
we will see below, conditions required for {&,}, are much simpler than conditions in
Theorem 2.8 or Theorem 2.12.
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(2.82) Theorem. Let {&,; keN*} be a stationary, uniformly mixing process with the
rate function ¢, satisfying Xp.¢i/*<oco. Suppose that &, is an LP-function. Set &p=
Ex/vn, a®=E[§}y] for any NE(0, «]. Further, suppose that Condition (C) holds. Then,
the sequence of stochastic processes {¢"}, determined by (1.1) and (1.2) converges in law
to the unique solution ¢ of the following stochastic differential equation:

(2.8 p=rt | FpadB.+| | {Clpa+Glpaldu,

where B. and C(-) are the same as in Theorem 2.8, respectively, in which
(2.84) ViI=E[(&® — E[EP (&R — E[6#])] |

(@85 Vi=3 BLIEP—EI6PER —E§RD]  for b =1, e,

Proof. We will prove this theorem by checking conditions in Theorem 2.8. Since
lim, .. nP[|&}| >8]=0 for all >0, (U.I) is satisfied with ¢=0. It is also clear that
(U.1I) is satisfied with V, of (2.84) and V, of (2.85). We next show that Condition
(U.1V), is satisfied. Since |&,|? itself is uniformly integrable, by Lemma 2.24, there
exists a positive, convex, increasing function G on [0, ) such that lim,;(G(x)/x)=+ oo
and that E[G(]&|%)]<c. Then Jensen’s inequality implies that

sup EG(nEL &8 v|*| 11 =sup BIG(ELI&, [ gyrssnm | F-1])]
éﬁuf E[E[G(|&: |2Iue,,lsmlv;)| Fi-1]]
ssup E[G(1&: [D]=E[G(1& )] <,

where F,_,=0a[&. -+, &,_1]. Therefore, again by Lemma 2.24, we see that (U.IV), is
satisfied. Thus, we have completed the proof. [J

(2.86) Theorem. Let {£,; kEN*} bea stationary, 1-dimensional, uniformly mixing pro-
cess with the rate function ¢, satisfying 2p..@r'?*<co. Suppose that there exists some
a<s(0, 2) and nonnegative constants C., C_ such that

(2.87) lim x*P[&,>x]=C,, lir_n [x|“P[&<x]=C_.
Define {&F; neN, keN*} in (1.1) by

o Er
(2.88) &"_n‘/“f'

Suppose that {E}} of (2.88) satisfies Condition (U.IV); (i=1 or 2) and Condition (C) with
e=1 is satisfied. Then, the sequence of cadlag processes {¢™}, determined by (1.1) and
(1.2) converges in law to the unique solution of stochastic differential equation:

(2.89) got=x0+s Gl )du

o,

i) PN+ | oo FpuozNo(dud2)

(1z1>7)

where N,(dudz) is Poisson random measure with the intensity measure
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du- {Ci1 ;50 +C 1 <or} _a—dz .

|le+(¥

Proof. By Theorem 2.8 or Theorem 2.12, all that we have to do is only to check
Conditions (U.I) and (U.II). It is immediate from (2.87) that (U.I) is satisfied with

nldz)= {Cid 50 +C] <o} Tz%dz .

We next show that (U.Il) is satisfied with V,=V,=0. To this aim, it is sufficient to
prove limg,olim, .. nE[|&}512]1=0. But this easily follows from (2.87) because for suffi-
ciently large C we have

NEL 6851 7) =m0~ ELE ey enrios 1S~ 22 PL1g0| > x)dn
=gm-ero{["xPr1g)| > ) axt " L6 > 21 dx)
21D (CA((CoAC)/@—a) (73" —C 0} )
~Q2(C.+C)/Q2—a)s**—0, as 4]0,
where f(n)~g(n) means that lim,..(f(n)/g(n)=1. O

3. The case of strongly mixing processes

In this section, we will discuss the same problem as in the previous section when
{&#}, in (1.1) is strongly mixing. Let {&F; keN*}, be a sequence of strongly mixing
processes with the rate function aj defined by (2.1). Corresponding to Conditions
(U.1V), and (U.III) in Theorem 2.8, we introduce the following.

S.D: sup E[| vn €r12*%]< o0 for some 6>0.
neN

6. 1D): a=: 3 sup(af)?< oo
k=1 neN

for some p>0 such that (1/p)= (0, 6/24+0)N (0, 1/2], where ¢ is the positive number
given in (S.]).

Then we have the following result.

(3.1) Theorem. Suppose that Conditions (S.I), (S.1I), (U.II), and (C) are satisfied. We
take a"=E[£}] in (1.1). Then, the sequence of stochastic processes {¢"}, determined by
(1.1) and (1.2) converges in law to the unique solution ¢ of the stochastic differential equa-
tion (2.83) where B. and C(-) are the same as in Theorem 2.8.

(3.2) Remark. It should be noticed in the conclusion of this theorem that the limit
process ¢ is restricted to be continuous owing to Condition (S.1).

We will prove this theorem by applying Theorem 2.44 as in the proof of Theorem
2.27. We first prepare basic inequalities which hold for strongly mixing random vari-
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ables.
3.3) Lemma. Let {£.:}ren« be a stationary, strongly mixing process with the rate func-

tion a,. Suppose that & isan L?, F*-adapted random variable for some p(1, o], where
Ft=g[&,, Ersr, -]. Then, it holds that for all I<k

(3.4) E[|E[&|F ]—E[&]|"1V" 22" +1)as ) EL|£] 7117,
where F,=a[&, -, &1 and (1/p)+(1/q)=1/r.
Proof. See Lemma VIII. 3.102 in Jacod-Shiryaev [11, p.456]. [0

(3.5) Lemma. Let {&,}, be the same asin Lemma 3.3. Suppose that sup, ,|&x(w)| <C.
Then we have for all m<I<k

(3.6) EUEDM e | Fn]l—Elnen]11=224CH s ) ¥ (@i -m)"?
where ﬂkzsk—E[Ek].

Proof. This lemma can be proved by the similar way for Lemma 2.49. O

Proof of Theorem 3.1. As in the proof of Theorem 2.27, we will prove this the-
orem under the assumption that lim,..|F*—F|,=0 and that F is not identically 0.
Define f? and g} in (2.28) by (2.54), in which we take a®=FE[&}']. In the sequel, we
show one by one that Conditions (A.I)~(A.V) in Theorem 2.44 are satisfied. But we
will only check (A.ID)-(1), (A.III)-(1), and (A.1V)-(2) because the others can be checked
by applying Lemma 3.3 and Lemma 3.5 in a similar manner for the proof of Theorem
2.27.

We will use the notations, such as &y the 5%y, as in the previous section.

(Check of (A.Il)) (1) Since we have

[nt'] ~ Cnt']
SUPIE[l %1a§fln.M(y)lgl7:]|é”F"”z.Kl ?1 |E[nE v | FR]1,
=k+ =k+

yeK

SUPM?f?.M(x)] §"Fn||2,K|ﬂ?.N(n)| ,
reK

the left hand side of (2.29) is dominated by

[nt] Cnt']

3.7 P, 3 S I EDE e | FED Ik
[nt]
+, 31 200w+ EL&in e 11D

— [atl [2T] _ .
<(FU/mx S S EIvi 18es v | FEYI VA DE e |

k=[ns]+1 I=1
Cntl . —_
+(1/n)X k_[Z“ﬂ l2{1\/11 Eivaw IP+HE[vVn & nvem 1*1H)
where F=sup,|F*|,, x. Hence, if we define a nondecreasing cadldg process D} by the
right hand side of (3.7) for s=0, then it is clear that Condition (i) is satisfied. We
next show that (ii)’ is satisfied. Since D} defined above is the sum of D' and Dp?,
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where
— [ntl(nT] . .

3.8) Dz’."‘=1‘"2((1/71)><k2_1 IE_IIE[x/n Nie v | FRllvn Evan 1),
— [ntl . —

(3.9 D?’2=F2((l/")xl§l2{| Vi EE vy P+ EL vn vy IP1))

it is sufficient to show that {D"},(:=1, 2) satisfies (CT & UI), respectively. We first
consider {D™'},. For n, k, set

[(nT1 _ —
(3.10) K"(r’e)=l_2l LECvn nive v | FEII VR Dhve |

Then, since DP'=F2x(1/n) 52K *(k), we see that {D*'}, satisfies (CT & Ul) if {K™(k):
neN, keN*} is uniformly integrable. See the proof of Lemma 2.23. But it can be
shown by the similar way in the proof of (4.39) in [6] that for some ¢&=(0, 6/2)

(3.11) sup|| K" (&)l < o0 .

where |-||, denotes the L"-norm with respect to P(dw). Hence, {K"(k); n, k} is uni-
formly integrable.

We next consider {D"*?},. Since D! *«1/n) 22 2{| vn EEn*+ELl vn €8x |20}
and since {|~7n & nl|%; n, k} is uniformly integrable by (S.1), it is easy to see that
{D™?}, satisfies (CT & UI).

Thus we have checked Condition (A.II)-(1).

(Check of (A.lll)) We show that (1) is satisfied with v(df)=0. In fact, in (2.36). we
have

Cntl
ElsuplE[ X h(f?(x))l(s<uj’,§n*mn [ F sl l]
TEK k=[n8]+1
Cntl Cntl -
Slhlex, 3 PLe<IF. 1621 SMIS bl 3 PLIE >e/Fs]

F 2+43 o N
SIhlT(-=) T ELIVa @17 IXn 0P=0  as oo,
which implies the conclusion.

(Check of (A.IV)) (2) As in the check of (A.I[)-(1), it is sufficient to show that

Cnt]
(3.12) lim X3

Cnt]
n-soo k=1 I=

2 ELEME e | FEInEN121=0,

k+1

because sup,||F"|, k<o for each compact set /. By Hoélder’s inequality and by Lem-
ma 3.3, we have

ELIEMN v VFEIE v PISNEDD Eacay | FEIN A Ik v ens 15
SClai-)'"? 16 g 168 wl13q

where C is a positive number, (1/7)+(1/¢)=1, and (1/p")+(1/¢’)=1/r. We now note
that for arbitrary e<(0, 9)

65 vlIZe=EL1&0 N[22 1 &0 w[10H] 1
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< NO-OB[|€Ly |00+ ]S N0 ERIGHE .
Hence we have

Tntl [ntl
(3.13) El l=§1E[|E[7]ln,N(n)|9:I?]”7]I:'.N(n)|2]

(ntl [nt] . L
<3 3 C@i-)" 7 188l X N2 6 8

1
SCN-0xsup( S @) ) [ v &8l IV €52 Xn= 2
n =1

Further, if we take ¢’=2+44d, ¢=(2+40)/(1+¢), then 1/p'=1—(1/q¢")—(1/9)=(0—¢)/(2+9).
Hence we can take ¢,=(0, 0) so that p’ coincides with p in (S.1I). Therefore the left
hand side of (3.13) is dominated by

CING=0xsup(5)(@l)'?) | v €y X~ Cord
n k=1

which converges to 0 as n—co. Thus we have checked Condition (A.IV)-(2).
By the discussion above, we have completed the proof of Theorem 3.1. (O

4. Application to the case of Markov chains

In the previous sections, we have established several jump-diffusion approximation
theorems when {&}; keN*}, in (1.1) is a sequence of mixing processes. Since the
mixing property is sometimes induced by the ergodicity of Markov chain (i.e., Markov
process with a discrete time-parameter), we will study, in this section, a class of Markov
chains to which these theorems can be applied.

Let {£};neN, keN*} be an array of R°-valued random variables in (1.1) and set

4.1 F=vnék,

for all n, k. We suppose that for each neN {{}: k= N*} is a stationary Markov chain
on R¢ with the k-step transition probability P#({’, d{) and an invariant probability meas-
ure A™dQ).

For these sequences of measures {P}{’, dQ); ke N}, and {A"(d{)},.. we introduce
the following conditions (M. I)~(M. VII).

Associated with A", we define a Borel measure p*(dz) by

4.2) pMdz)=nA"(v/n dz).

(M.I): There exists a Borel measure g on R®\{0} such that for all geC(R*) (=the
set of all bounded continuous functions vanishing on some neighborhood of 0),

4.3) [ e@umda-| g@udz  as n—oo
and (2.5) holds.

(M.II): /™ converges weakly to a probability measure 4 on R°® satisfying S [L12A(d)
oo, R®

(M. III): For each p, g=1, - -, e, there exists a real number W?? such that



Random difference equations 787

4.4) lim lim sup lim supl| SmC“”C““I(1v<|cchﬁa»/1"(dC)— W =0.

M. 1IV): P, dl) converges weakly to a transition probability Py({’, d{) uniformly
on any compact set in {’'-space.

(M.V): For every neN, SRef(C)PI'(C’, dC) is bounded continuous in ' if so does f.

(M. VI): There exist k&N, ¢,(0, 1], and a family of probability measures {I™"; ne
N} on R¢ such that

(4.5) P, dD)zeol™(dD),
for all » and {'eR".

(M.VII): For every N>0, there exists p&(l, o) such that

(4.6) supl, {1, 1€ ucisemm PRQ, dO} AdL)< oo .

RE
Then we have the following result.

(4.7) Theorem. Suppose that Conditions (M.I)~(M. VII) and (C) are satisfied. Then the
conclusion of Theorem 2.8 holds, in which the matrices V, and V, in (2.9) are given by

(4.8) vie=(, (¢m =, cm @) (co | coa@0) A0+ wr,

(4.9 vi=|, (co={ ceaen)|, cose, doae),

respectively, where

4.10) S, dO=33 {Pu(C’, dO)—A@D} .

and Pu(C’, dl) denotes the k-step transition probability defined inductively by Pr({’, A)=
[ Proa(@”, P, d2.

(4.11) Remark. By (4.28) in the proof below, it is assured that the right hand side
of (4.10) converges uniformly in {’.

In order to prove Theorem 4.7, we first prepare a general result on a relationship
between the Markov property and the uniformly mixing property.

(4.12) Lemma. Let {{,; k=N*} be a stationary Markov chain with the k-step transi-
tion probability P.(L’, dl) and let A(dC) be an invariant probability measure of {Ci} .
Then it holds that

(4.13) ¢k=(1/2)/1-ess.sgpllP(C’. )= A lvar

where || - ||var denotes the total variation norm defined by ||Q|]va,=sup{lSRefdQl;fz's
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continuous, slépl FOI<1}.

Proof. We first note the relation:
$r=sup sup{|EL/5| F. ]~ El/s]ll=; BEF"""},

where F,=0[{, -, 2;], F*=0[&s, Ls+1, -], and | - |- denotes the essential supremum
norm with respect to P. See the proof of (17.2.10) in Ibragimov-Linnik [8]. Now, let
B be an arbitrary set of F'**. Then, by the Markov property of {{.}., there exists
a measurable function hg({) such that E[Iz|F,+,]=hs(+:) and that 0<hz(0)<1. We

fix w2 and denote by (u"—p~) the Jordan-Hahn decomposition of the signed measure
{PR(C (@), d0)—AL)}. Then we have

2| ELLa| F:)(@)— EL/s]|
=2| B3| %1411, 3(w)— ELI5)|
=21 Blha(Cion) | 5@~ EhalCron)]|
= 1| Aa©) {PA(C(@). dO— @O +1 {1 haO) PaCi(@), dD— 4D} |

<[ a1 @)+ (@O} + (1~ @) @O+ -0}
=t var = Po(G@), )= AC)lvar S A-e55. P P, )= AC)lvar

which implies that
(4.14) Pr=(1/2)A-ess.sup| P, )= AC)llvar -
On the other hand, note that for arbitrary Borel set B, we have
| Pe(&i, Bo)— ABo)| =1Ell )y e80 | FiIl—El ¢y peBpl | =@k

because {{;.. =B, €F!**. Since |P—Qllvar=2supseq| P(A)—Q(A)| if Pand Q are pro-
bability measures, we get (1/2)4-ess.supe || P(C’, -)—A()lvar<¢@s. Therefore, combin-
ing this with (4.14), we obtain (4.13). O

Proof of Theorem 4.7. This theorem is proved by applying Theorem 2.8. For sim-
plicity, we will check Conditions (U.1)~(U.III) and (U.1V), only in the case of e=1.

Concerning (U.1), we have nothing to do because (M.1) is only a translation of (U.I).

Let ¢F be the rate function of (2.2) for {§¢}.. In order to check (U.III), it suffices
to show that

(4.15) Pr<Cp*

for all # and %, where we set p=(1—¢o)"/*o and C=(1—¢o)"".

The proof is based on a result in Doeblin’s ergodic theory for Markov chains. Fol-
lowing Deuschel-Stroock [2], Exercise 4.1.48-(ii), it is stated as follows.

Let (E, ¥) be a measurable space and P(x, dy) be a transition probability on (E, F)
with the property P(x, dv)=aQ(dy) for some a<(0, 1] and a probability @ on (E, ¥).
Then it holds that



Random difference equations 789
[v1Pr—vo Pelvar<2(1—a)* .
for all probability measures v,, v, on (E, ¥) and for all kN, where qu(A):SEP,,(x, A)

v(dx) and P.(x, dy) denotes the k-step transition probability. Furthermore, there is a
unique invariant measure g on (E, &) such that [[yP,—pllvar <2(1—a)* for all kN and
probability measure v.

We apply this result with P({’, d0))=P¢ (', d§), Q=I"", a=¢,, vi=0,, and v,=1",
where 0., denotes the Dirac measure on {a}. Then we see from Condition (M. VI)
that A™ is the unique invariant probability measure and that

”Pgtko(cl' ‘)'—A'L(')Ilvar§2(1—€0)"" ’

for all {’eR¢ and m, neN. Furthermore, since supg | P*({’, -)—A™(-)|lvar is nonincreas-
ing in &, it holds that for all /=1, ---, ky—1,

(4.16) SgpllP%kou(C’, ‘)—A"(')llvar§sgpllP%‘uo(C', )= A™()llvar

§2(l—eo)m =2{(1—80)'/"°} mko+l-1L
gz(l'—&o)—l {(l——eo)l/ko} mko+l:20pmk0+l .

Hence, we get (4.15) from Lemma 4.12.
Let ¥} be the g-field a[L¢, -+, {}]. Then we have

nE[ISi‘,NIZIgi‘-n]=E[lC£‘1ncg|smmIzl‘I;?-J=SR8 ICIZI(Mls«ﬁN)P"(C}?—h dC) .

Hence, (M. VII) clearly implies (U.IV),.
Finally, we check (U.Il). To this end, we first show that (2.6) holds with V, of
(4.8). Note that

nECI98s|"]=nBL | €s—EL6:117]
=E[|C6'1(vc{}15«mx |2]_E[cg](1c6‘|s~/551]2
=gtz ar@0—{{¢hcsmn 4@}

Since Conditions (M.II) and (M.III) clearly imply that

@.17) lim lim sup| | 1€1%4.1<va0 4@ — {112 4@+ W™} 1 =0,

(4.18) lim |21z 47 (@0 =2 400

for every >0, we get the conclusion.
To prove (2.7) for V, of (4.9), it is sufficient to show that for every 6>0

(4.19) lim n 5 Epgania) = 0], 65, do Ay

Let ¢ be an arbitrary positive number and take k&N such that 3, ..(Cp*)/*<
e. We set {Fs=CF1¢2isvms for simplicity. Then for n>k,+1 we have
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n-1 n-1 n-1
(4.20) Cr=1n 2 [ndenkel=n 2 El&smksl= 2 [8aa(Cks—ELG06])]

= 3 BLChsC— ELGD+, 3, B Gk~ BLGaD)]

First, we consider the second term /7. Since {{}; k,=N*}, is, as we have seen
before, a sequence of uniformly mixing processes and the rate function ¢} satisfies
(4.15), we have

4.21) 13152 "5 @B ELICE 1] s20%,

where we set A=: sup,E[|{}'s12]"/%. Notice that A is finite because of (4.17).
We next show that for every k.

(4.22) J;fﬁ/l_kzzgc'gc{P,xc', 40— A0} ALY as n—oo .

For arbitary N>0, let py(x) be a nonincreasing, continuous function defined on {x=
0} such that py(x)=1 if 0=<x<N and that py(x)=0 if x=N+1. Using it, devide I},
into the sum 3%, /!y, where we set

Jen=E[L o188 D{CRson(ICE N —E[CSs0 (13 1)1}]
JEN=E[Lson(18 DRI — o n(1CF D) —E[C8:1—pon(1E NI,
Jin=E[Ls(1—pn(1C8INICE s —ELL 61} ] -

Then we can see that

@23)  Jiv=\Clucevmaoa(8D)
X |2lcisvmn pa(IEDAPEE, dO)— A" AMEL)

o= (o8 D|ConILIPAT, dD—AWDIAMET)  as neo

and that for 7=2, 3
(4.24) gm limsup|J#xl=0.

Indeed, (M.1V) and (M. V) imply that for every k=N Pp(’, d{) converges weakly to
P.(l’, d) uniformly on any compact set in {’-space and that Sf(C)Pk(C’, dQ) is bounded

continuous in ¢’ if so does f. Therefore, combining these properties with (M.1I), it is
clear that (4.23) holds.
To prove (4.24) for /=2, it is sufficient to show that

(4.25) lim 1im sup E[ICEa|1ELI G (L— (13 1)]=0.

(4.26) lim lim sup EL|C8s| 1Gks|(1—p(1Gk)]=0.
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Since A=sup,E[|{}5]*]"* is finite, (4.25) is immediate from (M.Il) because

lim lim supP[ |7 | 2 N]=lim lim supA"*(|1{] = N)<lim A(|{| =N)=0.

We next prove (4.26). Set XP=E[|{is|?|Fi,] for n, keN. Then, we have
(4.27) ECIG 18k 1 (1—pn(1ER 1]
<E[IG I ECICks I (1—pon (18 D) Fi-i]]
SAXELE[LIGE 11— pn(ICR DI FR-112]1"
SAXE[XRE[(1—pon(1CINIF-]]"?
<iX {CP[ICS'IZN]+Suka[X?; Xp>CIpve,
for arbitrary C>0. Since {X};n, kEN} is uniformly integrable as we have seen be-
fore, it is easy to see that (4.26) holds.
Similarly, we can show that (4.24) holds for /=3.
Now, let {{,: k=N*} be the Markov process determined by the transition probabili-

ties {P.(l’, dQ)}» and the initial distribution A(d{). Letting n—oo in (4.16), it follow
from (M.II) and (M.IV) that

(4.28) (1/2)Scl}p||Pk(C’, )= A )llvar=Cp* .

Moreover, note that 4(d{) is the unique invariant probability measure of {{.}.. Hence,
we see from Lemma 4.12 that {{.}, is a uniformly mixing process with the rate func-
tion ¢, satisfying ¢.<Cp"*. Therefore, if we set

(4.29) Je, N=SC’p~(IC'_I )SC(l—PN(ICI)){Pk(C/~ dQ)— A@dO)} AdC) ,
and
(4.30) Jov=\CU=px(LIEAPHE, A= AEOL AT,

we can easily see by the similar way for {/!y;i=2, 3} that for /=2, 3
(4.31) Evim | Ji,n1=0.

Since [ 15411, | S 1 JEw—Ju v |+ Jwl 418w |+ | +1 s, (4.22) follows from (4.23)
(4.24), and (4.31).
We now complete the proof of (4.19). Set
c=vfesw doaey, =, 35 [P, dO— @01 @)

Then, by the similar way for (4.21), we can show that
(4.32) |11 =2{ 1L 12 A%
Therefore, by (4.21), (4.22), and (4.32), we obtain

k1
lim sup|C*—C]| glirr,llfﬁp{kzl|m"_1"” |+ 113+ 11|} <constant Xe .

n-s00 —

Since ¢ is arbitrary, we get (4.19). Thus, we have completed the proof of Theorem
4.7. O
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We now consider Theorem 4.7 in some special cases. First, suppose that {&F}, is
independent for all n. Then, we only need Conditions (M.I)~(M.IIl) because it is easy
to see that Conditions (M.IV)~(M. VII) are satisfied. In this case, the assertion of
Theorem 4.7 holds with p(dz), V, of (4.8), V,=0, and ¢;=0.

Next, instead of Condition (M. VII), we suppose a stronger condition as follows.

(M. VID*: For every ncN, there exists a ({’, {)-measurable function P*({’, {) such
that PI(C’, dO)=P™(T', 0)A(dC) and sup | P, Q)| <L for some L>0.

In this case, we can show that {£}'}, , satisfies Condition (U.IV), in Theorem 2.12, that
is to say, it is a sequence of ¢-mixing processes and that the rate function ¢} defined
by (2.3) satisfies ¢F<(L+1)Cp* for all n, & where C and p are the same as in (4.15).
Therefore, we see that the assertion of Theorem 2.12 is valid if Conditions (M.~
M. VD), (M. VID*, and (C) are satisfied.

Here, let us give examples satisfying Condition (M.I)~(M.IlI), and so on.

(4.33) Example. Let & be a random variable with the property (2.87) for some a€e
(0, 2) and nonnegative constants C,, C_. For each neN, we define a probability meas-
ure A" by the law of of n¢/2-Y/®¢&,  Then, as pointed out in the proof of Theorem
2.86, Condition (M.I) and (M.IIl) are satisfied with

;z(dz): {Cid >0 +Cf <or} m%{dz

and W=0, respectively. Also Condition (M.II) is satisfied with A(d{)=d .

(4.34) Example. Let {/4"}, be a sequence of probability measures on R® satisfying
Conditions (M.D)~(M.III). Furthermore, for some meN, let {p?); =1, ---, m} be a
sequence of continuous functions on R“ with the following properties (i)~(iii).

(1) Sue HQA*(dL)=0 for all n, L.

(ii) For each [, p? converges to a function p, uniformly on any compact set on R‘.
(iii) |pMQI| L1 for all n, [, and L.

Put P, Q=1+ B2 pr({)pHE) for some B<(0, 1/m), and we denote by {{F; keN*}
a Markov chain determined by PX{’, dQ)=P™({’, {)A*(d{) for each n. Then Theorem
4.7 holds for the sequence of Markov chain {§}; k= N*}, determined by the relation
4.1).

Next result shows that if Condition (M.III) is slightly strengthened, then the limit
process can not have any jumps.

(4.35) Theorem. Suppose that Conditions (M.I), (M.I1I)y, M.IV)~(M.VI), and (C) are
satisfied. Moreover, we suppose the following.

(M. TIT)*: lim lim supg 112 ey AM(dD) =0 .
N teo n-sco RE

Then the conclusion of Theorem 2.8 holds with p(dz)=0,
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(4.36) vi={, {em-|, cnaaoee | coaentaa,
and the matrix V, of (4.9).

Proof. We first prove that (2.4) holds with p=0. Let <M be arbitrary posi-
tive numbers. Since

SIZIZ(,OM(Izl)—pa(IZI))/J”(dZ)=SICIZ(pmm(ICI)—pma(lCl))A"(dC)
gg|C|2(1—pm<|cn)/1"<dz>,

(M.I) and (M.III)* imply that SIzlZ(pM(lz[)—p,;(IzI))p(dz)zO. Since § and M are arbi-

trary, u(dz) must be zero.

Similarly, it is shown that (4.4) holds with W¥?1=0 for all p, g=1, -+, e. It is also
clear that (M.IID* implies (U.IV),. To complete the proof, it is necessary to check
(U.Il). In view of the proof of Theorem 4.7, we need only show that (4.24) holds for
=2, 3. But, owing to (M.IlI)*, we can easily show it. OO

Finally, we find a class of Markov chains for which Theorem 3.1 holds.

For each n€N, let {T}; k=N*} be a Markov semigroup and suppose that it has
an invariant probability measure A4". Then let us say that the sequence of semigroups
{T}: keN*}, is uniformly hypercontractive if there exists 2, &N such that

(4.37) I Tl cecaypacamy =1,

for all neN where |-l 2ci7y-11c47> denotes the operator norm from the space L*A™)
to Li(A™).

As in the previous theorems, we suppose that {{} ; keN*}, of (4.1) is a sequence
of Markov chains with its transition probability PZ({’, d{) and an invariant probability
measure A"*(d{). Our final result is stated as follows.

(4.38) Theorem. Suppose that {A"}, converges weakly to a probability measure A and
that

(4.39) sup| | 1C1m0 4@l < o0 for some >0

Moreover, we suppose that Conditions (M.IV) and (M. V) are satisfied and that the se-
quence of semigroups {T}; keN*}, determined by Py({’, dQ) is uniformly hypercontrac-
tive. In addition, if Condition (C) is satisfied, then the conclusion of Theorem 3.1 holds
with the matrices V, of (4.36) and V, of (4.9).

Proof. Since (4.39) is a translation of Condition (S.1), we show that (S.II) is satis-
fied. By Lemma 5.5.11 in Deuschel-Stroock [2], we see that the uniform hypercontrac-
tion property implies that

(4.40) I T8 S~ Fllrecan =<1/ VI fllecans ,
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for all bounded measurable functions f, where we set fzgmf(C)A"(dC) and || zzcam

denotes the L?(A™)-norm. Further, from (4.40), it holds that for all meN

T RS = Flleecas =N T (T tn-vr)f = F)=(T s = 1)l 2cams
=1/v ) T(“m—l)kof_f”LZ(A“) ,

which implies that for all k&N
(4.41) I T#f=Fllzcans SV 3 {1/~ 3) k0L F|| fll pacansy -

On the other hand, by the definition (2.1) of the strongly mixing rate function, it
holds that
(4.42) ai < sup (| TEf=Fllieiess

IfligoocAnysl

for all n, k. Therefore, by (4.41) and (4.42), we have af<+ 3 {1/~ 3)"*}* for all
n, k, which implies that (S.IlI) is satisfied. Applying Lemma 3.3, it can be shown by a
similar way in the proof of Theorem 4.7 and Theorem 4.35 that (U.Il) is satisfied with
the matrices V, of (4.36) and V, of (4.9). So we omit the proof. [J
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