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Remarks on torus principal bundles
By

Thomas HOFER

In this paper we study principal bundles X 5> M over a compact complex
manifold M whose structure group is a compact complex torus T = V/A4. The
total space X of such a principal bundle is usually not a Kihler space even
if the base manifold M is.

Typical examples are Hopf manifolds, or the Calabi-Eckmann manifolds
diffeomorphic to a product of spheres. These are principal bundles over a prod-
uct of projective spaces, the fibre is an elliptic curve. Those and other special
examples have been studied in detail, see [Cal-Eck], [Maeda], [Nakamura],
[Akao].

We develop the theory starting from the base manifold M, often assuming
that it (i.e. H*(M)) has a Hodge decomposition. For a T-principal bundle X > M
we define a characteristic class ¢Z e H2(M, A4) (1.3) and invariants &: H}! - H%?,
y: HL® - HL! (1.5). It will turn out that these can be computed from c¢* and
determine the d, differentials of the Leray spectral sequence converging to
H'(X, C) and of a spectral sequence converging to Hy* (with a variant computing
H'(@y)). This spectral sequence was constructed by Borel in his appendix to
[Hirzebruch] and was used there to compute the Hodge ring of Calabi-Eckmann
manifolds. Since in our case all those spectral sequences degenerate on E;-level,
Betti numbers, Hodge numbers, and the space of infinitesimal deformations of
X can be computed in general (Theorem 1.6).

In bundles with ¢ =0 the torus T can be replaced by any other torus
of the same dimension (e.g. Calabi-Eckmann manifolds), whereas for ¢ # 0 (e.g.
Iwasawa manifold) the periods of T must be related to intrinsic data of M
(Chapter 7, Chapter 8).

If M is simply-connected, then it is fairly easy to construct simply-connected
bundles, even with first Chern class c¢,(X)=0. They do not carry a Kéhler
metric by Blanchard’s theorem (1.7), in fact they cannot carry a complex Kéhler
structure for purely topological reasons (11.4).

If moreover M is a complex surface and T an elliptic curve, then we get
a lot of interesting simply-connected complex threefolds with ¢, = 0. Accord-
ing to Wall’s classification of real six-dimensional manifolds, the only diffeomor-
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phism invariant is the Betti number b,(M). So we find complex structures with
different Kodaira dimension on the same C® manifold (Chapter 13).

Small deformations of Calabi-Eckmann manifolds have been described in
[Akao], those of the Iwasawa manifold in [Nakamura]. Suwa has studied in-
finitesimal deformations of holomorphic Seifert fibre spaces in general [Suwa, ],
[Suwa,]. In our special situation things are fairly easy, and we can describe
the infinitesimal deformations using the invariants ¢ and y.

This paper is mainly a result of my stay in Japan. I had many interesting
discussions with Japanese mathematicians there but in the first place I would
like to thank Kenji Ueno who invited me to Kyoto University and helped me
in many ways to understand both mathematics and the way of life of that
fascinating country.

1. Notation, basic facts, and main theorem

1.1. Notation. T = V/A always denotes an n-dimensional compact complex
torus, defined by a lattice 4 = V in the n-dimensional complex vector space
V. M is a compact complex manifold of dimension m, and n: X - M denotes
a T-principal bundle.

Canonical identifications concerning the torus will be made frequently. In
particular we use T,o(T)=H%@;)=V, H(@;)=H% ®V, H:°=HQ}) =
H%(Or)" = VY, Hp? = HE° ® HY, 4 = H,(T, Z), Hy(T, Z)" = H'(T, Z).

Whenever there is a Hodge decomposition for the cohomology, pr,,:
HP*4(Y, C) - H{? denotes the projection onto the (p, g)-component, pr,,(w) =: w?.

Hodge numbers and Betti numbers of X will be written in the form

hy!t b,(X)
hy° hy! b, (X)
h?{'o bo(X)

1.2. Cocycles. Such principal bundles are described by elements of
HY(M, 0,(T)). For a Cech 1-cocycle (¢y) the function ¢;: UNU; > T identifies
(z,t)e U; x T with (z,t') = (z, ¢;(z) + t) € U; x T in different trivializations.

1.3. The characteristic class. Taking local sections of the constant sheaves
0->A4-V—>T-0 we get an exact sequence of sheaves on M

0-A4A-0,@V > 0,(T)—0
and from this the exact cohomology sequence

> HY(M, ) > HY! @ V - H(Op(T)) S HAM, A) > HY2 @ V — -
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So the defining cocycle of the bundle in H!(0)(T)) determines a characteristic
class

¢Z=c%(X)=c3 X S M)e H} M, A) = HX M, Z)® A .

The inclusion 4 = ¥ =~ C" induces a map from the Z-module H*(M, A) (of rank
b,(M)-2n) to the (b,(M)-n)-dimensional vector space HA(M, V) = H*M, C) ®c V.
The image of c¢Z defines a characteristic class

c=c(X)=c(X SM)eH} M, C)® V

1.4. Basic facts. (a) The translation invariant vector fields H*(@r)=V on T
induce an n-dimensional space of everywhere linear independent vector fields on
X. This gives exact sequences

(*) 0-205y,®cV-o>6Ox—->1*0, -0
(*)V 0o 1*QL - Q) - 0y ®cH¥* > 0.

(b) For the sheaves of relative vector fields and of relative differentials and for
the canonical bundle this means

@X/M = (OX ®C V =~ 0;?”

Qim = Oy ®c Hy® = Of"

Ay =n*Hy
(c) eX)=0 ¢, (X)=mn*c, (M)
x(2%) =0 c3(X) = n*c,(M)
c;(X)=0

(d) Furthermore
Rin, Oy = Oy ®c HY'
Rin* @X/M = Oy ®c¢ H(%'i ®cV =0y ®c Hi(@r)
Rin, Oy = 1,05 ®c HY!
Rin, Q4 = Oy ®c HY @c HY® = 0y ®c HY
Rin, Q} = 7,Qx ®c 01

(¢) The long exact sequences obtained by pushing forward (x) split up and all
the extensions coincide:
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0— Rn0Oyy - R0, - 6,0HF -0
I | I
0-0,®VRHY 5>, 6,HY > ©6,8HY -0
0> QL®HY - R0l - Rk, -0
I [ |
0> Qy®H} ->n,Q%@HY ->0,@HF’®HY -0

Proof. The invariant vector fields on T are also invariant under changes
of bundle coordinates, so they define global vector fields on X. This gives (x),
and the second sequence in (a) is just the dual. (b) follows directly from the
exact sequences defining Oy, and Qj

0 Oy — Oy > %0y —0
0 - n*Qy — Q5 = Q4 — 0

and A™>Q} = 1*A™Qy ® A™*Qy . (©) is a direct consequence of the muiti-
plicative property of the Euler characteristic (resp. of the y,-genus) (cf. [Borel] =
[Hirzebruch] App. I1.8) and x,(T) = 0. The Chern classes come from downstairs
because @y is an extension of a trivial sheaf by n*@,,. The first equation in
(d) holds because transition functions act trivially on the cohomology of a fibre,
the rest is an easy consequence. For (e) observe that since the bundle is locally
trivial, locally (on M) @,,(U) ® H¥ is a direct summand of H(x"}(U), Oy) in a
canonical way. Therefore Rin, 05 - @, ® H¥' is surjective.

1.5. Invariants. The relevant information on the bundle X 5 M is contained
in the following invariants of a T-principal bundle:
(a) The extension class of the sequence 0— Q) — 1, Q- 0, ® H}° >0, that
is y € Bxt! (0, ® H¥°, QL) = HY(Q4) ® (H:%)Y or equivalently

7 HEO~ HY'

(b) The transgression of the fibre bundle, ie. the first possibly nontrivial d,-
homomorphism E$'' — E%° in the Leray spectral sequence of the constant
sheaf Cy

0 H'(M, C) - H'(X, C) » H'(T, C) > H*(M, C) .

Together with the transgressions in integral cohomology and homology there are

8: H(T, C) » H2(M, C)
62 HY(T, Z) » H*(M, Z)
8, Hy(M,Z)>H,(T, Z).




Torus principal bundles 231

(c) The first possibly nontrivial d,-homomorphism H°(R'rn, Ox) » H?(n, Oy) in the
Leray spectral sequence of Oy

e H¥' > HY? .

(d) The characteristic classes ¢Ze H* (M, A) and c € HX (M, C)® V of the bundle
as defined in 1.3.

All these invariants are related to each other, they determine Hodge and Betti

numbers and also the space of infinitesimal deformations of X. The main general

results that we will prove in this paper are:

1.6. Theorem. Let X 5 M be a T-principal bundle as described above. Then:

(a) Borel’s spectral sequence P9ES'=Y Hif '@ HE “'"P*' which computes the
Hodge numbers of X degenerates on Ej-level, and the d,-differential is deter-
mined by ¢ and y (4.3).

(b) The same holds for Borel’s spectral sequence computing the cohomology h'(Ox)
(14.7).

(c) Leray spectral sequence E3' = H'(M, C) ® H'(T, C) which computes the Betti
numbers of X degenerates on Ej-level, and the d,-differential is determined
by é (5.1).

(d) Under the identification H' (T, Z) = Hom (A, Z) the characteristic class c*e
H*M,Z)® A and the map 6% H*(T, Z) - H*(M, Z) coincide (6.1).

(e) & is obtained from 6% by scalar extension (6.2).

(f) Assume that H2(M) is has a Hodge decomposition. Then & determines ¢ and
y, and vice versa (Chapter 6).

The invariant & somehow measures the twisting of the bundle modulo torison,
and it also appears in

1.7. Blanchard’s Theorem [Blanchard]. Assume that the base space M is a
Kihler manifold. Then the total space X is a Kdahler manifold if and only if 6 = 0.

According to (c) and (d) of the previous theorem, 6 =0 if and only if the
characteristic class ¢Z is torsion, and then all the invariants behave like for a
trivial bundle. So from our point of view, this is the less interesting case. In
contrary, we will construct simply-connected spaces (which requires a simply-
connected base and & injective, see Chapter 11), mainly as elliptic principal
bundles over algebraic surfaces (Chapter 12, Chapter 13), where the topological
structure of X is determined by simple invariants.

2. Example: Calabi-Eckmann manifolds

These are (non-Kéahler) principal bundles with fibre T = C/(Z @ tZ) over a
product M = P™ x P™2 of complex projective spaces whose total space is diffeo-
morphic to a product of spheres S>™*! x §2™*1 If (xp:...:1X, 5 Voi-. Vm,) A€
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homogenous coordinates of M, the bundle is trivial over the standard affine
coordinate patches U; = {x; # 0, y; # 0} and the transition functions are given by

— 1 X . b1
Gi.a([x1, [¥]) = E(lOgZ + 1-log ;,> .

Since ¢ R it is easy to show that the bundle is diffeomorphic to §2™*! x
§2m2tl = Cm*1 x C™*! with the standard projection to P™ x P™ via
1

§2mitl o g2matl 5 (x, y)r—»([x], [v], %(log x;+ t-log y;) mod Z ® rZ) eU;xT.
The Hodge algebra has been investigated in [Borel], I1.9. The Hodge numbers
are (0 <m; <m,)

1 f p<m,and g=p,p+1

h$?=<1 if p>m, and gq=p, p—1
0 otherwise

(see 9.4). In 4.3 we investigate the spectral sequence that Borel used for his
computation. m,; = 0 defines a Hopf manifold. In the easiest simply connected
case m, =m, =1 we get a complex threefold difffomorphic to S* x $* with
Hodge numbers

0 1 0
010 0
0110 2
010 0
10 0

1 1

Akao has studied the small deformations in [Akao]. He starts from the descrip-
tion of Calabi-Eckmann manifolds as a quotient of (C™*! — 0) x (C™*! — 0) by
an action of the additive group C via diagonal matrices (e'!, e"*!). Deforming
the identity matrices to pairs (4, B) and dividing out scalar multiples (uA, uB)
(defining biholomorphically isomorphic manifolds) one gets all small deformations
(see 15.4).

3. Example: Iwasawa manifold (cf. [Nakamura])

Let G be the complex Lie group biholomorphic to C* but with multiplication
defined by
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1 z, z4 1 a, a, 1 z,+a, z3+a;+z,a,
0t z|-]0 1 a| =10 1 zy + ay
0 0 1 0 0 1 0 0 1

A denotes the lattice of Gaussian integers Z @ i-Z, and I is the discrete subgroup
of G consisting of those matrices with all entries in 4. Then via (zy, z,, z3)—
(z4,2,) we get a map

X=GII'SM:=C/AxC/A=TxT.

This is an analytic T-principal bundle, T = C/4 acting by the matrices of the
form a, =a, =0, a;e T. Fixing a local lifting Z, for the coordinate z, on T
local trivializations are

17 (U) 3 (21, 22, 23) (24, 225 1) = (21, 22,23 — 2,2,) e U x U x T
mod I mod A x A x A

The inverse mapping is given by z; =t + z,Z,. So the transition functions are
¢ =z, A; for some ;e A representing the difference between two liftings of
z,. The G-invariant holomorphic 1-form —z,dz, + dz; on G descends to a form
o on X which in local bundle coordinates is

(,0=dt+§2‘dzl .

The invariants are ([Nakamura] or Chapter 10)

1 1
3 2 4
3 6 2 8

2 6 3 8
23 4
1 1

Another example of Nakamura shows that our results hold only for principal
bundles. He constructs a parallelizable manifold with h}'! = 1 which is a non-
principal 2-torus bundle over an elliptic curve. But by 7.4 we know h%! =3
in the principal bundle case.

4. Spectral sequences of 0%

4.1. Bundle coordinates. Under a change of bundle coordinates as described
in 1.2, the leading term of a differential form w = dz; A dz; A dt; A dt; remains
unchanged but there are additional components coming from the derivatives
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of ¢;:

jo =dzy A dZp Adty Adi;+ ), frrepdzg A dZg A dtg A dig
KKLL
with of course |K| + |L| = |I| + |J|, |K| + |L| = |I| 4+ |J|, but only summands with
higher base degree occur, i.e. only those with [K| + |K|> |I| + |I| and |K| > |I|,
K| > |J].

4.2. Borel spectral sequence. The sheaf 2% can be resolved by the Dolbeault
complex (&/2°,0) of C®-(p,.)-forms. The direct image complex n,/f" can be
filtered by the base degree of the forms: F'm, .o/f'? consists of those forms that
in local bundle coordinates (z,t) can be written as a linear combination of
dz, A dz; A dty A dt; with |I] + |I| > s.

Taking global sections A%? = I's/Z% we get a filtered complex (4%°,d) of
modules and from this the spectral sequence as usual. This is the filtration
introduced in [Borel] 4.1, and we keep the notation from there. The usual
spectral sequence graduation is given by (s, t), corresponding to the filtration, i..
to the total base and fibre degree of differential forms. We also include (p, q)
denoting the (4, )-type but p is constant in each of the sequences and we always
have p+g=s+t

{w e FFA}%|0w € FS*r A%}
Fs+1A§,q + E(Fs—r+1A§,q—l)

P,IIESJ f; p.q+1Es+r,l—-r+1
r r

p,qES,l —
r

hd — B 24
GrHy = @ "E

s+t=p+q

Note that p is not changed by the differential, and g is determined by p + g =
s+t, so in fact there is a single spectral sequence for each p, computing the
cohomology of Qf%.

Let o/%ji, denote the bundle of global C*-(i, j)-forms on the fibres. Then
the first levels can be interpreted as follows [Borel]:

PES = @ N ™ @ g ™)
i

p.qul.r — @ Akls_-i ® H;%-i,t-pﬁ
1

Y Syt i,s—i p—i,t—p+i
p qEz - (_D HM ® HT P
13

0: POES! = H5® ® HYO
0:

q
p=0: OBy =HY @ HY'

The map from A%? to P9Ey" is given by locally taking only the well-defined
terms with lowest base degree in each fibre; these are glued together to a section
of ol ® oE,*J. The differential d, is then 0 in fibre direction, so the map to
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PagsSt is taking Dolbeault cohomology on the torus. The bundle consisting of
the Hodge spaces Hi,,, is trivial, and we are left with a form on M times a
cohomology class of T. The next differential d, equals & of these forms in base
direction. These facts are described in [Borel]. We will now investigate d, in
our special situation. The basic maps are

d
.0,10,1 __ 0,1 “2 0,212,0 _ 0,2
g ©1EQ! = HY! 3 0.2E2.0 — HY,
d;
p: l.OEg,l — H%‘.O 3 l.lE%.O — H]lu.l .

4.3. Proposition. (a) d, is a derivation on the product of Hodge algebras
T pramste 2 Hif 7 @ HE 0754

d(wAn)=d,oAn+wnad,n.

(b) dy(Hjf) =0.

() y:HL® s HL! is the invariant introduced in 1.5(a).

(d) e:HY'—> HY? is the invariant introduced in 1.5(c), i.e. the d, map from
Leray spectral sequence for Oy. It vanishes if and only if the spectral séquence
for p =0 degenerates at E,-level, i.e. if h%? = hy'-hy~"

€) d,=0 for r>2.

Proof. d,(w) is computed by lifting the cohomology class to a global C*
form on X, then taking & and projecting back to E,. Since the projection
respects wedge products, d, behaves like a differential. This proves (a). Because
we Hi/ can be lifted to the d-closed form n*w, all d,(w) vanish for r >2. So
(b) holds. (e) follows because statements (a) and (b) hold also for r > 2, and
the generators dt; and dt; of H}' are not affected by higher d, because of their
degrees.

(c): We resolve

0> Q> n,02% -0, ®HF° >0
by
O Ay - F - LY @HM -0

where #%(U) consists of those (1, g)-forms on #n*(U) that are harmonic in fibre
direction, i.e. which in local bundle coordinates can be written as Y w; A dt; + 7
with w; and 7 being forms on M. The map to /%7 ® HL? is the (well-defined)
projection to Y w; A dt;. Then y as defined in 1.5 is the connecting homomor-
phism HO(«/%" ® H3:0) > H}(oZ)"), it is the obstruction to lifting dt; to a global
section of m,Q4: Locally on a system of trivializing neighbourhoods (U,) for
the bundle on M, it can be lifted to dt;, and the difference of two liftings on U,
is dt; — ¢¥dt; and defines a 1-cocycle in «,® which must be a boundary since
the sheaf is acyclic. Thus there is a 0-chain (p,) € H°(«/)") such that (dt; — p,)
is a global form, the lifting to I'#° and its differential dp, is y(dt;). But this
is exactly how the differential in the spectral sequence works.
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So it remains to show (d): The d, differential H°(M, R'n, 0y) - H*(n, O)
of Leray spectral sequence may be computed by using the same resolution of
Oy as above: Rm, Oy = (n, 3", 0). An element of H(M, R'n, 0y) is represented
by a cocycle (8y,) where Y, € I'(n™'U,, o¢°). Its image in H%(n,Oy) is repre-
sented by the cocycle (8%) = (xup), Xap € I(m7'(U,NUp), ). The same argu-
mentation as in (c) but with df; instead of dt; proves the assertion.

4.4. Corollary. The spectral sequence degenerates at Ei-level and the d,-
differential is wholly determined by the two maps H¥° 5 HY' and H}' 5 HY2.

4.5. Remark. The Leray spectral sequence for Q% also converges to H%?
but has E,-term Ej/ = H(R/n,Q%). Except for p=0 the higher direct image
sheaves are non-trial, the twisting being measured by y. The d,-differential, on
the other hand, is determined by ¢ and the Leray spectral sequence should
degenerate if ¢ = 0.

5. Leray spectral sequence of Cy

Taking de Rham cohomology (with complex valued forms) instead of Dolbeault
cohomology, we get the usual Leray spectral sequence converging to H'(X, C).
Here the constant sheaf Cy is resolved by the de Rham complex («/y,d) of
C=®-forms, the filtration is again defined by base degree. Everything works like
described above, now defining a spectral sequence with

E3'=HM, Q)@ H(T. C).

The basic map is 6: EY'! = H(T, C) 3 E2° = H>(M, C). With the same argu-
ments as in 4.3 we get:

5.1. Proposition. (a) d, is a derivation on the product of cohomology rings
H'(M, C)® H'(T, C), i.e. dy(wUn) =d,oUn + wUd,n.

(b) dy(H'(M, C))=0.

(¢) d,=0 for r>2.

5.2. Proposition. The following statements are equivalent:
(i) The Leray spectral sequence for Cy degenerates at E,-level
(ii) 6:HY(T, C)— H*M, C) is the zero map
(i) The restriction map H*(X, C) » H(T, C) takes a non-zero value in H}'
By Blanchard’s Theorem (1.7), for a Kdhler base space these statements are equiva-
lent to X being a Kdhler manifold.

Proof. All the R'n,Cy are constant, and any element of Hy' =« H*(T, C) =
H°(M, R?*r,Cy) is a Kihler class and therefore induces isomorphisms in the
cohomology of the fibres. So (i) <> (ii) <> (iii) is the statement of [Deligne], (2.11).

5.3. Proposition. Let 1: T — X denote the inclusion of a fibre.
(a) For each p there is an exact sequence

HP~2(M, C) ® H!(T, C) 3 H?(M, C) % H(X, C)
where d,(0 ® 0) = wUH(0).
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(b) There is an exact sequence
0-H'(M,C)5 H(X, C) 5 HY(T, C) > HAM, ©) 5 H3(X, C).

(c) If & is non-zero, then the pull-back n*: H*"(M, C) > H?*™(X,C) from top
dimensional cohomology of the base space (m = dimcM) is the zero map.

Proof. The pull back map occurs in Leray spectral sequence as the compos-
ite H?(M) = E5° — E",° = H?(X) ([Whitehead], XIIL.7.2*). Since the spectral
sequence degenerates on E;-level, the first map only divides out the image of
fiEB 21 4 3 E2° For p=2 we can extend the sequence to the left by the
standard spectral sequence argument. In top dimension, since the target space is
one-dimensional, it suffices to show that f is non-zero. But if be H!(T) is any
element with 8(b) # 0, and ae H?™" %(M) is the Poincaré dual of §(b) ([Dold]
VIIL8.13), then f(a® b) = aUb is non-zero in H*™(M).

5.4. Leray-Serre spectral sequence in (integral) homology. (see [Whitehead],
XIIL.49, XIIL7) This is a first quadrant spectral sequence with E2 =
H,(X, H,(#)) (H, (%) the local coefficient system of the fibration) converging to
the homology of X with differentials d,: Ef, , — E,_, ;. Always Ej , = H,(T)
and, since Hy(%) is trivial, Ef,,o = H,(M). There is a commutative diagram
([Whitehead] XIIL.7.8, 7.9)

H,(X. T)

VRN

2 dy 2
EZ,O EO,I

where m, is the surjective ([Whitehead] XIIL.7.3) projection map to H.(X, pt) =
H.(X) in relative homology and 9, is the connecting homomorphism from the
long exact homology sequence of the pair (X, T). The transgression is by defini-
tion the (well-defined) map 0, o m .

5.5. Leray-Serre spectral sequence in integral cohomology. This is dual to
5.4. The transgression is now the composition of the connecting homomor-
phism HY(T, Z) » H*(X, T; Z) and the inverse of the injective map H*(M, Z) =
HX(M, pt; Z) S H3(X, T: Z).

Since there are no higher differentials or possibly nontrivial local coefficient sys-
tems involved, statement 5.3(b) holds also in integral cohomology and homology:

5.6. Proposition. There are exact sequences

(a 0-H! (M Z) 5 H! (X Z) 57! (T Z)—»HZ(M Z) B HY(X, Z).
(b) H,(X,Z)3 H,M, Z)->H1(T, Z)5H,(X,Z)5H,M,Z)-0

5.7. Corollary. c,(X) = n*c,(M) is zero if and only if c¢,(M)eim §Z
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6. Relations between the invariants

6.1. Theorem. Under the identification H'(T, Z) = Hom(A, Z) the character-
istic class c2e H* (M, Z)® A and the map 6%: HY(T, Z) - H*(M, Z) coincide.

Proof. We resolve Cy by the de Rham complex and compute 6% analogous
to the proof of 4.3(d). It is easy to see that this corresponds to a Cech cocycle
representing cZ.

6.2. Proposition. & is obtained from 6% by scalar extension:
0=062®idc: HY(T,C) = HY(T,Z)® C - H*(M,Z) ® C = H*(M, C)..
In particular, & commutes with complex conjugation.

Proof. This follows from the universal coefficient theorem (e.g. [Dold], VI.7.8)
because 6 and 5% are the transgressions in cohomology with complex and integral
coefficients (Chapter 5).

6.3. Theorem. Assume that H*(M) has a Hodge decomposition. Let = de-
note complex conjugation. Then identifying H*(T, C) with H:°® H%! we can
write

5=Pr02°5|H‘;~‘» €0 Ppro; =Proy°9,
Yy =PI ° 5|H;~° )

8(al® + a°') = (a'®) + y(a'°) + y(@®") + &(a®")  (a'® e HX®, a°' € HY)

Proof. All the maps follow the same pattern: Take a closed 1-form w on
T, lift it to a global 1-form & on X that locally can be written as @|,-1y, = @ + 1,
where 7, is a 1-form on U,. Then the exterior derivatives of the n, define a
closed global 2-form on the base which represents the image of w. For & we
have to take de Rham cohomology while ¢ and y are defined by Dolbeault
cohomology. The claims follow from

8(dt) = d(ni) = 3(nd) + 3(ni) = e(dzy) + y(dt,)
8(dt}) = d(nl) = 8(ni) + B(nl) = y(dt;) + e(dF)

6.4. Corollary. (@) 6=0 < y=0and ¢=0.
(b) ¢ injective <> 0 injective.
(c) & injective <> &% injective.

Proof. (a) and (c) are obvious. (b): 0= d(a) = 8(a'® + a°')=¢(a'®) = 0,
e@®)=0=a'"=a’"=0=a=0. So ¢ is injective.

The first Hodge numbers are
h$' = h$;' + dim ker ¢
hy® = hy;° + dim ker y
b,(X) = by(M) + dim ker 6
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6.5. Relation between integral and complex structure on the torus. (cf. [GH]
p. 300 ff or [Wells] VI.1.6) We have to connect integral structure and Hodge
decomposition of the cohomology of the torus.

Let (4,...4,,) be a basis of 4 =H,(T, Z), embedded in the complex vector
space V with basis (e, ...e,) and corresponding complex coordinates (t;...t,). Let
Q = (w;,) be the (n x 2n) period matrix, ie. its v-th column contains the ¢-
coordinates of A,. So Q is the matrix of the C-linear map

Yy H(TC)=4C->V '/’('lv)=zwivei

induced by the inclusion 4 = V with respect to the bases (4,...4,,) of A®C
and (e;...e,) of V. If (x,...x,,) is the real coordinate system of ¥ whose unit
vectors are the A,, then the coordinate change is

ti = Z w,—vxv .
v

Coordinates of V descend to coordinates of T = V/A. So we get two bases of
the de Rham cohomology H(T, C). The first one consists of (dx,...dx,,) and
reflects the integral structure H(T, Z) = HY(T, C), it is dual to the basis (1,...4,,)
of A® C=H,(T,C). The second basis is formed by (dt,...dt,, dt, ...dt,), where
the first vectors span H}® and the last ones span H}!. The differential forms

are transformed as

dti = Zwivdxv

dfi = Z@ivdxv

So the change of basis H-°@® H%! 5 HY(T; C) is described by ‘@ = ('Q 'Q), where
‘Q and 'Q correspond to the injections of HX® and HY'!, respectively. The
inverse of & is usually denoted by /7 = (JlI|IT), IT = (n,;). So Q- M =1, Q-IT =
0, 1T-Q+1-Q=1,, and

dxv = vaidt,‘ + Zﬁvidii .

Let ¢ =Y &, ® A, € H*(M, Z) ® 4 be the characteristic class, ie. 6% H (T, Z) -
H?(M, Z) is given by the integral (b,(M) x 2n)-matrix D := (,,) with respect to
the dual basis of (4,...4,,) and some basis (a;...a,,) of H%(M, Z) (ignoring
torsion) (6.1).

The invariant 6 is described by D with respect to the (dx,) (6.3) and by
D-'Q with respect to the (dt,, d,):

o(dt;) = ; <Z 5kvwiv> A = zk: G

where ({,;) is the (b,(M) x n)-matrix D-'Q.
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The characteristic class ¢Z e H*(M, Z) ® A can be considered as an element
of H3 (M, C) ®¢ (4 ® C). The invariant ¢ defined in 1.3 is then ¢ =id ® y(c%) e
H2 M, O)®V, ie.

c= kavak ®Y(4,) = Zikvwiv“k ®e = Z{kiak ®e; .

Now assume that H*(M) has a Hodge decomposition, the projections to the
different components being described by matrices P,y, P;;, Py, with respect to
the (x,) and some bases of the Hodge components such that P,, = P,;. Then
the composite matrix has the form

Py E
P-D-'Q=|P,| D(QQ=|C

m Qo

where E and C describe ¢ and v, respectively (6.3). The symmetry in the matrix
comes from the fact that 6 commutes with complex conjugation.

The characteristic class ¢Z had been defined by the cohomology sequence of
04— 0,®V—>0,T)—>0. Since the first inclusion of sheaves factorizes over
AcVcO,®V, in cohomology we have

L HYO,(T)) == HXM, 4) — HG2®V ——
H*M,O)®V

Thus the obstruction map for a given cZ being the characteristic class of some
bundle sees only ¢ =Y {,x ®e; and projects the H*(M, C)-part to its (0, 2)-
component. In matrix notation this is Py, D-‘Q, ie. the 0-block in the matrix
for P-D-'Q above. This proves

6.6. Proposition. Consider any element ¢%e H%(M, Z)® A or, equivalently,
5Z:HY(T,Z) > H*(M, Z). This is the characteristic class of some T-principal
bundle on M if and only if the obstruction

A = pro, o d|gpo: HZ% - Hy?

is zero, where § = 62 ® id¢: H(T, C) » H3(M, C).

6.7. On the other hand, if we start with two maps §: H}°—>H)' and

& HY!' > HY?, we define 6: H(T, C) » H3(M, C) by the formula in 6.3. Then

thcse invariants come from a bundle iff § = §Z®id¢ for some 6% HY(T, Z) -
H2(M, Z).
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7. Bundles with ¢ =0

7.1. Proposition. There is an injective map
@: Pic(M) ®z A4 = H' (Ox) ®z 4 — H' (O(T))

compatible with taking characteristic classes, i.e. if Y. % ® A; is a combination of
line bundles in Pic (M)® A then the characteristic class c* of @3 %, ® A;) equals
ch(Z) ® 4 € HX(M, A).

Pic(M)® A4 <2, HYOW(T))

lcl ®id lcz

H3*M,Z)® A —— H3*(M, A)

Proof. Consider the following diagram of Z-modules (with exact rows) ob-
tained by tensoring the exponential sequence by A and applying the inclusion
A< V. The rightmost vertical homomorphism maps Y {;® 4,€C*®z 4 to
Y log {;-A;€ V mod A.

0 A > CRA4 =25 C*®,4 —— 0
0 > A >V — T ——0

Sheafifying over M and taking cohomology yield the following diagram. Short
diagram chasing shows that @ is injective.

H'(A)— HY' ®, A —> H (0}) @2 4 —» H*(M, A)— Hy;> @, 4

I I H |

H!'(A)— HY' ®c V— HY(0(T)) — HAM, 4)— HY? ®c V

7.2. Corollary. If H*(M) has a Hodge decomposition, then the image of ®,
i.e. the set of isomorphism classes of principal bundles constructed in the previous
proposition, equals

im @ = {Isomorphism classes of T-principal bundles with
cteH'NH*(M, Z)) ® A}

= {Isomorphism classes of T-principal bundles with ¢ = 0}

Moreover, any ¢%e(H)'NH*(M,Z))® A is the characteristic class of such a
bundle.

Proof. This follows from c¢,(H!(0}%)) = Hy;* N"H?(M, Z), 6.2, 6.3, and 6.6.

7.3. Remark. The torus itself does not play any particular role here.
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7.4. Fibre bundles over curves. If dim M = 1, then ¢ vanishes for dimension
reasons. So the Hodge numbers hy? behave like for a product. The Betti
numbers, however, can be smaller: Consider for example the primary Kodaira
surfaces (cf. [BPV] p. 147) which are bundles over an elliptic curve with h%! =2
and b,(X) = 3.

7.5. Elliptic fibre bundles over P™. Here of course ¢ =0, so in the non-
trivial case y must be a surjective map onto Hj;' = C. But then multiplication
by y(dt) is an isomorphism except in first and top cohomology of P™. This

means hy® = hy! = hjpm*tl = pptlm*l — | the other Hodge numbers are zero.

8. Bundles with ¢+ 0

8.1. The image of the map H?(M, Z) -» H$? induced by the inclusion Z <»
0, is an additive subgroup 4 = (H*(M, Z))°? =« HY%2. Usually 4 is dense in HY2.

HY(T. C) /H%‘

H{T,Z) —— A’

e N\

H3(M, C) > HY;?

The above diagram implies

8.2. Proposition. Let A’ = pry, (HY(T, Z)) = H%! be the dual lattice of A.
Then e(A') = ANg(HS ).

So the cohomology classes connected to bundles with ¢ # 0 are those not coming
from line bundles on M.

For fixed M, there is a restriction on the periods of a torus T which is the
fibre of a principal bundle over M with ¢ # 0: The dual lattice must be mapped
to the (countable) set 4. This means that in contrast to y for a given M there
are only few possible tori T for which a T-principal bundle with, say, injective
€ exists.

9. Fibrations by elliptic curves

9.1. Now suppose the fibres are 1-dimensional. Then after choosing a gen-
erator dt for H}® the d, differentials become (up to sign) multiplication by y(dr)
and ¢(df) in the Hodge algebra of M (4.3). The only possibly non-zero terms
and differentials are
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p‘q_1E5+q_3’2 — H,‘{[l"’_z ® H}'l

Y —&

p,qE;27+q—1,l — Hﬁ,}q_l ® Hg-'l @ Hi{—l,q@ H;,O

& Y

p,q+1Eg+q+l,0 — Hﬁiq+1 ® H(;‘.O
The Hj%" are all 1-dimensional but they help to remember the effect of d, on
the Hj: The map starting at Hj ® H*! is multiplication by e&(df), the one

starting at Hj; ® H¥° multiplies by y(dt) and the last one starting at Hy; ® H:?
by y(dt) — e(dk).
9.2. We take (1, 1) as basis of 4, 1 as a generator of V and use the notation

from 6.5. The change of bases is now

1
X, +1-dx, X F——

(T dt — t-di)

_ 1
dt =dx, + 7-dx, dx2=;(—dt+df).

Thus any A€ A can be written as

A=ri—tl‘1

T—1

i—2
+ = T,
T—1

With c2=a®1+b®1eH’(M,Z)® 4 and c=n®1eH*(M,C)® V we can
write the relations between the invariants as follows. A4 is the obstruction for
c? being the characteristic class of a bundle (6.6).

cZ=a®l+b®‘t=T rz—t'n
7 _

w11
T—17T

®1 ®1

c=@+1hR1=n®1
4=(a+ 1t b =7y

o: dx,—a= -
T—71

@Tn—11)

1
dx;—>b=—(—n+17)
T—1

dt—a+1tb=n
di—sa+7Tb=7
e di—(a+ 7 b)°% =52

y: dt—(a+ bt =t
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9.3. In order to construct an elliptic principal bundle with ¢ # 0, we have
to find a, be H*(M, Z) and 1€ C — R such that 4 = (a + 7-b)°? = 0 and &(d?) =
(@a+7-b)°2#0, ie. a®® = —1-b°2 but b°2# 0. This is equivalent to finding a,
b e H*(M, Z) such that a°* and b°? are linear dependent over C but independent
over R, and 1 is the ratio between them.

9.4. Elliptic bundles over M = P™ x P™, Since h{;' = h%? = 0, the charac-
teristic class map is bijective in this case. If we vary the transition functions
defining the Calabi-Eckmann manifolds by parameters 4, =1, + k;t, A, =1, +
k,te A

_ 1 RP R/
dia([x], [¥]) = %<11 IOg;i + 4, log ;})
we get a family of fibre bundles with characteristic classes
CZ = Hl ®111 + H2 ®12 = (llHl + 12H2)® 1 + (lel + k2H2)®T S HZ(M, A)

where H, and H, are generators for the integral cohomology of the two factors
(the Chern classes of the hyperplane bundles). These are all elliptic principal
bundles over M. Now & =0 and y(dt) = A, H, + A,H, e H);.

Since the Hodge numbers of M are concentrated in the diagonal

r+1 O<r<m
hyf =<m; +1 m; <r<m,
mi+my,—r+1 m <r<m;+m,

(assuming m, < m,), for a given p the only contributions to the spectral sequence
are

p,pEgp—Z.Z — H{[l"’_l ® H%-’l - Hﬂ;”H(}'l = p.p+1E§p.1
p,p-lEgp—Z,l — Hﬂl_l‘p_l ® HIT.O - HEP = p,pEgp.O

Both are multiplication by y(dt) in the first factor. So if A, and 4, are both
non-zero, the maps are injective for p < m, and surjective for p > m,; + 1 which
implies the result stated in Chapter 2 (even if m; = 0).

10. Iwasawa manifold

10.1. We are now able to compute the invariants of the bundle introduced
in Chapter 3. The global holomorphic form w is a lifting of dt with dw =0
which means y = 0 in the spectral sequence. On the other hand, if superscripts
distinguish between the two factors of M =T x T, for the complex conjugate
0B = 0w = —di' A dt? e HY?, so 6(df) = e(df) = —dt* A dt? e HY? and 6(dt) =
e(df) = —dt' A dt* e H%O in this example. We can compute the characteristic
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class:

1
8(dx,) = 5 3(dt + di)
= —%(dtl A dt? + di' A di?)

= —%((dx} + i-dx}) A (dx} + i-dx3) + (dx} — i-dx}) A (dx} —i-dx3))
= —dx} A dx? + dx} A dx3

8(dx,) = —7’5((1: —dp)
- %l(—dtl A di? + dit A di?)

= (=} +idx}) A @]+ ivde) + (dx] — idx) A (dx} — i dx3))

= —dx! Adx3 —dx} A dx}
Thus
cZ=(—dx! Adx? +dxi Adx})® 1+ (—dx} Adx:—dxi Adx})®i
eH)M,Z)® A

10.2. T-bundles over T x T. Let us investigate to which extent the GauB
lattice can be replaced by a different one in the above construction. So we
start with an elliptic curve T, set M =T x T and ask if there is a T-principal
bundle on M with y=0 and ¢#0. Thus cZ=a®1+b®1 with a, be
(H%° @ HY2)NH2(M, Z) such that a®? + tb°? = 0 but b # 0 (see 9.2). If we write

a=o-di' Adt* +a-di* Adi*, b=pf-dt' Adt®+ B-di* A dP?
then by dt' = dx! + tdx} and & + 18 = O the integrality condition is equivalent to
iB+tfel, Pp+PeZ,
B+ P)eZ, 1B+iPeZ,
wtp+1B)eZ, *p+7TPel.

Since the equations are homogeneous, it suffices to find f e C such that all the
expressions are rational. One of f + B, tf + Tff must be non-zero, so the lattice
must satisfy the conditions

T+7€Q, 7eQ.

These are also sufficient because 128 + 7282 = (1 + 7)(tf + ) — 2t%(B + B), any
0# BeZ with 77 and (r + 7)f integral will do.
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The invariants can be computed from the spectral sequence (9.1), see 13.6.
They are the same as for the Iwasawa manifold (with T =i and f = —1) given
in Chapter 3.

11. Topology of the total space

We will now investigate homotopy and homology properties of the bun-
dle. Since =n,(T) is the only nontrivial homotopy group of a torus, the long
exact homotopy sequence of the bundle yields

11.1. Proposition. 7;(X) = n,(M) for i > 3. The first homotopy groups fit
in the exact sequence

0- 7,(X) » n,(M) - 7y (T) » n(X) >, (M) - 0.
11.2. Proposition. (a) If b;(M) =0, then there is an exact sequence
0 H!(X, C) S HY(T, C) > HX(M, C) 5 H2(X, C) 5 H(T, C).
(b) If m,(M) =0, then there are exact sequences
0-HY(X,Z) 5 HY(T, 2) 5 H2 (M, 2) 5 HA(X, Z) 5 HX(T, Z)
H,(T, Z) 5 Hy(X, Z) 5 H,(M, Z) BH(TZ)3H,(X,Z)>0.

Proof. 1f b;(M) =0, then we can extend the sequence from 5.3(b) one step
further to the right because E}'! =0 (Serre spectral sequence, [Whitehead] XIII
7.10). But for Z-coefficients (5.6) we must assume that the base space is simply
connected in order to conclude that the local coefficient system is trivial.

11.3. Proposition. (a) b,(X) =0 if and only if b;(M)=0 and é6: H(T, C) »
H2(M, C) is injective.

(b) In that case, the restriction to the fibre H*(X, C) » H*(T, C) is zero, the
pull-back H*(M, C) - H*(X, C) is surjective, and

by(X) = by(M) — by(T) = b,(M) — 2n..

Proof. (a) follows directly from the preceeding theorem. For (b) note that
with & = d,: ES' - E20 also d,: EY'? —» E3'! is injective. Thus b,(X) = b,(M) —
b,(T), and H*(M, C) » H*(X, C) is surjective.

114. Corollary. If b,(X)=0, then m-fold products H*(X,0)® " ®
H?(X, C) » H?™(X, C) are zero. In particular, there is no Kdhler structure on the
topological manifold underlying X.

Proof. By the proposition, all those products come from downstairs. So
(m + 1)-fold products vanish for dimension reasons. By 5.3 this holds already
for m.

11.5. Proposition. (a) X is simply connected if and only if mn,(M) is zero
and 6, is surjective.
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(b) In that case the inclusion of a fibre induces zero in homology: H,(T, Z) 5
H,(X, Z), thus H,(X, Z) = ker d,.

Proof. If M is l-connected, then 6, coincides with n,(M)— n,(T) in the
homotopy sequence. So (a) follows from 11.1. The proof of (b) is dual to the
proof of 11.3.

Analogously:

11.6. Proposition. Assume that M is simply-connected. Then HY(X,Z) =0
if and only if 6% is injective, and in that case H*(X,Z) > H*(T, Z) is zero.

Note that by the universal coefficient theorem (e.g. [Dold], VI.7.8) if M is simply-
connected then 6% is the dual of 5. So if §, is surjective, then 6% is injective.
The converse is by no means true, however. But if 6% is an injection onto a
direct summand of H?(M, Z), then J, is surjective.

11.7. In general, if we only assume that M is simply connected, then the
universal covering X of X is also a fibre bundle over M, with connected fibres
since 7,(T) generates 7,(X). The fibre T is a covering space of T, it is compact
exactly if this covering is finite, i.e. if X has finite fundamental group. In fact,
T is an Abelian complex Lie group, and X->Misa ’T"—principal bundle. If, for
example, T is an elliptic curve, then X is the quotient of a C*-bundle (total
space of a line bundle with zero section removed) by a linear Z-action exactly
if m,(X) is not finite. The most extreme case is that b,(X) equals the fibre
dimension n. Then T is C" and the bundle is the quotient of an affine principal
bundle by the lattice A.

If, on the other hand, =,(X) is finite, then we can replace the torus T by
a finite covering T which is a compact complex torus again and get a principal
bundle with simply-connected total space.

12. Elliptic fibrations over surfaces

This might be the easiest interesting case. Since the total space is a complex
3-manifold, we can use C.T.C. Wall’s results on the topology of real 6-manifolds:

12.1. Theorem (C.T.C. Wall’s classification of 6-manifolds). Let X > M and
X 5 M be two elliptic principal bundles with structure groups T and T' over
compct complex surfaces M and M'. Assume that X and X' are simply-connected
with torsion-free homology and that the second Stiefel-Whitney classes of the under-
lying real 6-manifolds (w,(X) = n*c,(M) mod 2, w,(X’) = n'*c,(M’) mod 2) are zero.
Then the following statements are equivalent:
(@) X and X' are diffeomorphic.
(b) X and X' are (orientend) homotopy equivalent.
(©)  by(X) = by(X') and by(X) = by(X").
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Proof. This is [Wall], Thm. 5 and 6, applied to our situation. Here triple
products in H2(X) are always zero (11.4). Since the characteristic classes of X
are pull-backs from M and the pull-back morphism H*(M) —» H*(X) is zero (5.3),
the first Pontrjagin class always vanishes. Therefore the Betti numbers b, and
by are the only remaining parameters in the classification.

12.2. Theorem (Almost complex structures on 6-manifolds) ([Wall, Thm. 9).
The homotopy classes of almost-complex structures on the 6-manifold underlying
a compact complex 3-manifold X are in 1-1 correspondence to elements in H*(X, Z)
that reduce to the second Stiefel-Whitney class of X.

12.3. Proposition. Let X be an elliptic principal bundle over a simply-
connected compact complex surface M and assume that the transgression 0y:
H,(M, Z) - H (T, Z) is surjective with torsion-free kernel (or that 6%: HY(T, Z) —»
H?(M, Z) is an injection onto a direct summand). Then:

(@) m(X)=0.

(b) H,(X,Z) is a free abelian group of rank b,(X)= b,(M) — 2.

(¢) H3(X,Z) is a free abelian group of rank by(X)=2-b,(M) — 2.

(d) X is diffeomorphic to a connected sum (S3 x S3)# -+ #(S3 x S3)# Y where

Y is obtaned from S® by disjoint surgery operations S* x D3 — S5,

(e) There is no Kdihler manifold diffeomorphic to X.

Proof. (a) and (b) follow from 11.5. Poincaré duality and Universal Co-
efficient Theorem ([Dold], VIIL8.1, VL7.10) imply H;(X,Z)~ H3X,Z)=
(H5(X, Z))” @ Ext (H,(X, Z), Z), so from (b) we deduce that H;(X, Z) is torsion-
free. The rank is determinded by e(X) = 0. (d) is contained in [Wall], () is 11.4.

124. Remark. So in order to construct interesting bundles on a simply-
connected surface M, we start with a candidate for a characteristic class c¢Z =
a,®A +a,®A4, e HX(M,Z)® A. A corresponding principal bundle exists iff
the obstruction 4 = 4,-a%? + 1,-a3% € HY? vanishes (6.6). This is always fulfilled
if the a; are Chern classes of line bundles.

By the preceeding proposition, X will be simply-connected if a,, a, form a
basis of a direct summand of H2(M, Z). Moreover, if ¢,(M) is in the span of
the a; then ¢ (X) will be zero (5.7). Then by 12.1 the diffeomorphism class of
the total space is determined only by b,(M). If H?*(M) has a Hodge decomposi-
tion, then ¢ and y are determined by c% (9.2).

12.5. Computation of the Hodge numbers. According to 9.1 the only non-
trivial terms in the spectral sequence of Oy are °9E{':' — ©9*1E%0  Contribu-
tions come from

0'3E§'1 — Hg{.Z ® Hg"l
O.ZEé.l — H?il ® H?—’l
O,IE;,O — H[('il,l
O‘OEg’O =C

0.1EQ. L — HO1 5 HY2 = 0:2E2.0
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Thus
hy' =h%' + dimkere h%?=h%' + h? —dimime hY3 = h$;?

hy® =1
The other Hodge numbers are not so easy to compute, because multiplication
in the Hodge ring of M is involved. For p =1 the information is contained in

(see 9.1):
HY @ H!

l,q—lE%—Z,Z —

l'qE%‘l — Hllviq_l ® H?-'l @ Hg,’q ® H%_.O

€ Y

1,q+1E3+2.0 — Hllu,q+l ® Ht%,o
In this case, the only nontrivial terms

12.6. Surfaces with h};° = h$;! = 0.
in the spectral sequence of Q4 appear in

1,350,2 __ 0,2 1,1
E>“=H)y*®H7y

1,150,2 _ gyt 1 Y87 1111 0,1 0,2 1,0 _ 1,2p2,1
Ey*=Hr — Hy ®Hry' @ Hy*® Hy” = V2E3

Y
l,OEg.l — H}..O RA Hlltil — I,IE%,O

The morphism y @ —¢ is injective iff one of the maps is nonzero, ie. iff § # 0.
Assuming this (otherwise all Hodge numbers equal those of M x T) we get

yO=dimkery hy'=hy'—dimimy h¥2=h4'+hy> -1 kL3 =hG?.

If moreover 6: H'(T, C) » H%(M, C) is injective, the Betti numbers are determined
by 11.3 (and e(X) = 0). Then the invariants are (with e := dim im ¢, g := dim im )
1 1
0

l1—g 1—e
by(M) —2

Wit Wit —g K-

h%?2 hyt +hy? — 1 hyt+ K% -1 B2 2b,(M) — 2
Wi —e hy'—g K% ba(M) — 2
l—e 1—9g 0

1

13. Examples of elliptic fibrations over surfaces
Surfaces with b, = 0 and b, = 2. Let M be a compact complex surface

13.1
with b; =0 and b, = 2, consequently with Euler characteristic e =c, =4. A
look on the classification table ([BPV], Chapter VI) shows us that Miyaoka-Yau
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inequality ¢? <3-c, holds, and that x(Oy) =1 — h%' + hj*> must be positive
(in the algebraic case this is clear because 2h});° = b;(M) = 0, and for the possibly
non-algebraic elliptic surfaces we know x>0 unless alle fibres are (possibly
multiple) non-singular elliptic curves, which would imply e(M)=0 ([BPV],
I11.11.4, V.12.2 and the remark preceeding it)). Together with Noether’s formula

1 .
E(cf + ¢,) = x(Oy) € Z this only leaves the invariants

=8, c,=4, yOn=1, hy°=h}°=0.

So M is either rational, ie. a (simply-connected) Hirzebruch surface 2, (for r =1
a blown-up P2, otherwise M is minimal), or it is surface of general type with
these special invariants. In the latter case M can either be the blow-up of a ball-
quotient surface with ¢ =9, ¢, = 3 (the only known example being Mumford’s
fake P?) which must have infinite fundamental group, or it is minimal. For
minimal surfaces of general type with those invariants two constructions due to
Beauville and Kuga (cf. [BPV], VIL11) are known, but both lead to infinite
fundamental groups. In any case for a bundle with y # 0 the invariants are
those of Calabi-Eckmann manifolds:

1 1

0 1 0
010 0
0110 2
010 0
1 0 0

1 1

13.2. Bundles over Hirzebruch surfaces. Let M be one of the Hirzebruch
surfaces .. Then n,(M) = 0, h%4° =0, and b,(M) =2. So for any given charac-
teristic class in H3(M, Z) ® A there is a unique bundle. If 6% is an isomorphism,
then the total space of this bundle is diffeomorphic to S$* x S* and the Hodge
numbers are the same as in the Calabi-Eckmann case.

Such bundles have been constructed by Maeda, also in higher dimensions
over base spaces which are P™-bundles over P™ ([Maeda]).

13.3. Bundles over other rational surfaces. Every blow-up adds a direct
summand Z to H*(M, Z). Let o: M — X, be a k-fold blow-up of Z,. If we take
the pull-back of the characteristic class of a bundle on Z, and add all the classes
of exceptional divisors (in order to kill ¢,(X)), we can define a lot of simply-
connected bundles with torsion-free homology and ¢;(X) =0 on M. The in-



Torus principal bundles 251

variants are

1 1
0 1 0
0 by(M)—1 0 b,(M) — 2
0 by(M)y—1 byM)—1 0  2-by(M)—2
0 byM)—1 0 by(M) — 2
10 0
1 1

with b,(M) = k + 2, the diffeomorphism type is determined by this invariant.

134. Simply connected surfaces. Since the minimal model M of a simply
connected compact complex surface M is again simply connected, the Enriques-
Kodaira classification ([BPV], Chapter VI) tells us that the minimal model must
be either rational or K3 or proper elliptic (i.e. of Kodaira dimension x = 1) or
of general type. In any case b,(M) > b,(M) > 1. Since there is always a rational
surface with isomorphic second cohomology (the intersection form does not play
any role here), the total space of any simply-connected elliptic principal bundle
(with torsion-free homology and w, = 0) over any simply-connected surface is
diffefomorphic to a bundle over a rational surface, which means that there are
complex structures of different Kodaira dimension on the same differentiable
manifold. If the second Stiefel-Whitney classes coincide, they are even homotopic
as almost-complex structures.

135. Remark. If X is any complex 3-fold diffeomorphic to S* x S with
Kodaira dimension x(X) = 2, then its algebraic dimension is also 2 and by [Akao]
Part I, Theorem 1 and (the proof of) Corollary 3, it admits a torus action with
possibly singular quotient space M of general type whose minimal resolution is
a (then simply-connected) surface M with h%? = 0. By [Akao], Corollary 4, the
rational cohomology ring of M equals the one of P! x P!,

13.6. Bundles over an abelian surface. Now we consider an elliptic fibre
bundle over an abelian surface, assuming 6 # 0. As before, we set e:=rank ¢,
g:=rank y. But now we also have to consider the map HY%' ® H:° - H};?,
multiplication by y(dt). Its rank h can take the values 0 (<>g = 0), 1 (e.g. y(dt) =
dt' A dt?), or 2 (e.g. y(dt) a Kihler form). Furthermore we need f := rank(H3° @
HY! - H}?) (induced by multiplication by &(df) on the first and by y(dt) on the
second summand). But f=2 if e=1 and f=h if e=0, and g is determined
by h, so the parameters for the spectral sequence are only ee {0, 1} and he
{0, 1,2}, not both zero. Then the invariants are:
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For ¢ # 0, ie. e =1, there are three possible sets of Hodge numbers, and they
all occur for small deformations of the Iwasawa manifold, see 14.6.

13.7. Fibrations over a K3 surface. According to 12.6, the invariants of a
bundle with ¢ injective can take three different sets of values depending on the
ranks g and e of y and & In any case X is simply-connected with trivial
canonical bundle.

1 1

1—g 1—e 0
1 20—g l1—e 20
1 20 20 1 4
1—e 20—¢g 1 20
1—e l—g 0

1

For example, one can take the Calabi-Eckmann fibration over P! x P! and pull
it back to a K3-surface which is a 2-sheeted cover ramified along a smooth
curve of bidegree (4, 4).

But this is only one example. The most interesting ones may be those with
¢ # 0, which should be quite numerous if the Picard number is small.

14. Infinitesimal deformations

14.1. We will now study the space H!(®y) of infinitesimal deformations
of X. Combining the exact sequence from Leray spectral sequence for @y,
@y and 7*60,, (horizontal) and cohomology sequences from 1.4(e), we obtain the
diagram
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0- H%O,) - H1*0,)- 0
1 1 !
0> H'(n,04) — H'(Oyp) - HOR'n,0y) — H2(n, Oy )
1 1 1 1
0-» H'(n,0) - H'(6y) — HR'mn,6y) - H(n,0y)
1 1 ! 1
0- HY@y) -H\(*6,)-H'R'm, 1*0,)—> H2(6,)
1 l 1
- Hm,Oyy) — H*Opy)  H(R!'m,04)
l
H?(, 6y)

14.2. With all the isomorphisms from above this becomes

0> H%O,) —» H°®,) - 0

I 1 1
0-HY'®V->HY'@V > HX®V 5SHYEV

! 1 ! !
0-H'(m,0y) > H'(6y) - HY' ®H%6Oy) —H*(n,64)

l ! ! 1
0— HY®,) - H!'(1*0,)—> HYX'@H%O,) 5> H%6,)

I ! I

S5HY®V - HY2®V HY' ®VE®HY!
!
H?(n, Oy)

14.3. Remark. The vertical connecting homomorphisms y!, y*, y* are in-
duced by (the dual of) y (1.5(a), 1.4(e)), y° is y', tensored by the identity of
H}'. The horizontal d,-map ¢* is e®id,. The maps with a superscript occur
in Borel spectral sequence which we will investigate in 14.7.

144. In the much more general situation of a holomorphic Seifert fibre
space Suwa considers the following decomposition of H!(@y) derived from the
above diagram [Suwa,]:
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0 0 0
O > AT D —> AF 0
| |
0 I > H'(Oy) - J 0
|
0 Ap > G Ap 0
0 0 0
Here
Aq = coker y° deformations preserving the T-action with quotient
space M
Ap = ker & deformations of T
Ap:= ker y* deformations of M preserving the fibration

Ap:=ker y! Nker &2 deformations destroying the fibre structure

Ay is the space of infinitesimal ‘twist deformations’, i.e. deformations which are
still T-principal bundles with the same structure group over the fixed base space
M. All of them are unobstructed ([Suwa,;], Thm. 3.3). &* is the obstruction
map for a deformation of T inducing a global infinitesimal deformation. The
deformations in Ay @ A @ Ap are still torus principal bundles.

14.5. Invariants of the deformations. Under a deformation in A:=A;®
Ap @ Ap, the characteristic class ¢Z (and therefore also 6) remains unchanged if
the cohomology of the deformed manifolds M’ and T’ is identified with that of
M and T, respectively. For Aj-deformations M and T are not changed, so ¢
and y also remain the same.

14.6. Deformations of the Iwasawa manifold. For the Iwasawa manifold
the computations are very easy because the tangent sheaf is trivial and y is
0. The connecting homomorphisms in the vertical sequences are also 0, and
we compute dim H!(0y) = dim H'(n,0x) = 6, dim Ay = 2, dim Ap =4 and A, =
Ap = 0. Therefore each infinitesimal deformation of M induces an infinitesimal
deformation of X which is still a T-principal bundle. But deformations of T
cannot be globalized—anyway A is a very special lattice. In fact, the small
deformations have been computed by Kodaira and Nakamura, see [Nakamura],
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Sect. 3. The Hodge numbers of the deformations are also given there. ¢ remains
nonzero in all cases while y can take different values, see 13.6. Depending on
y (i.e. h=0, 1, 2 in 13.6), three different sets of values for the Hodge numbers
occur (Ay, Ap — 0, and the complement):

2 6 3 2 5 2 2 51 8
2 3 22 2 2 4
1 1 1 1

(Recall that while Hodge numbers are constant in complex-analytic families of
Kihler manifolds, they are only upper-semicontinuous in the non-Kéahler case,
see [Wells], V.6.5, V.6.6.)

14.7. Spectral sequence converging to H'(©4). In general we can compute
Hi(@y) = H" "*(Q% ® n*A,)" using Borel spectral sequence for p =1 but with
a twist by . Such twists with vector bundles on the base space have been
included in [Borel]. Writing the twisted Hodge space HY(2f; ® #},) as H3%(H3y)
the spectral sequence is (again p + g = s + t but only considering the case p = 1)

ME3' = HY () @ HE' ™' @ Hy*™' (o) ® HY!
— (H(Iil’m—s ® Hn-—t+1(@T) @ Hm—s+1(@M) ® H?-’"_')V

— (H%m—s ® H(%.n—l+l ® 1 %4 @ Hm—s+l(@M) ® H(7)_,n—t)v

H™™9(0y)" = GrHY(Ay) = D “E

stt=1+q

(v here means Serre duality.) The spectral sequence has no ring structure any
more but still a Hj/-module structure Hy/(,,) ® Hf —» Hif»/*5(1,,). With the
same arguments like in 4.3 one can show

14.8. Proposition. Let & Hy - HY2 @ HY ™! and §: HY » HY;'QH " be
the iterates derived from ¢ and y by Leibniz’ rule. Then dy(0 ® 9) = w-E(9) + 7(9)).
The higher differentials are zero.

The differential is thus
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TES! HY () @ HE' L @ Hy* ™ (o)) @ HY'
l&z 18 \ le
DOl = M) @HE'TE @ HH () @ HE'
(hHEy ety = HYm 2 @ Y2 @ V @ H 574 (6,) @ HY" !
[ P
(MEgHY = HE"P®HP" ™MV @ H" ' (6,) @ Hy"
A careful consideration of those maps shows

14.9. Proposition. (a) 7V is the connecting homomorphism in the cohomology
sequence of 1.4(e).

(b) £V is the dy-morphism HY™ "2 @ H¥""*2 5 HYy™* @ HY"™'*! from the
spectral sequence of Oy, tensored by id,.

() &Y is not so easy to describe but it vanishes if ¢ = 0.

In order to compute H!'(@4) we have to take s+t—1=gq=n+m— 1
Since only s<m+ 1 and t <n+ 1 can give contributions, we need to consider
only s=m—1, m, m+ 1 and get the following spaces and d,-differentials (first
in spectral sequence notation, then their duals):

1,n+m~2E’m—1,n 1,n+m—lEr;+1,n—1
2

— —0

1.n+m—2Em—2,n+l 1.n+m—1Er;,n
2

— —0

Lintm=1Fm=1,n+1
2

00—

— 1,n+mE72n+1.n

HY™ () ® HE" @ Hy™ () ® HY"— HE"(#5) ® HY" ' — 0
HY;" (o) ® Hy"— HYy"() ® Hy" ™' @ Hy" ™! (o) ® HF"— 0
0— HY™ () ® Hy"— HL"(A),) © HE"

H' @ HY' @ V @ H2(6,) +22 HO(0,) ® Hi «—0
HY2 @ VELHY' @ V@ HY(6)y) —0
0—HY' ® V<L—H%6))

15. Special cases

15.1. If the spectral sequence degenerates, the invariants are

h'(@x) = i+j;—1 <n<J _:l_ 1>‘h24"' + <';->'hi+l(@M)>

Y (;)(n-h,?,"'+h"(@M))

i+j=r
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15.2. Remark. In the case h%?= 0 for g > 0, all the y-differentials are zero.
All remaining differentials come from e, but this is zero because h%? = 0. There-

fore the spectral sequence degenerates, and h'"(@y) = <:> + Z<r i i> hi(@y).

15.3. Bundles over curves. In this case always ¢ =0, and
E5' = HY(4) @ HY 7 @ Hy 7 (o)) ® HY!

is non-zero only for s=0, 1, 2. The only possibly non-zero maps are j":
HY () @Hy T = Hy ' (A3 )@HF . But HY (o) =H*(Hy,) and Hy " (H)) =
Hs*!(A,2), so the only case where both are non-zero is M an elliptic curve,
s =0. Therefore the spectral sequence degenerates for non-elliptic curves, and
the cohomology is given by 15.1.

If M is an elliptic curve, then Hij(X,) = Hi/. The first summand of 9E5’
is the starting point of §* (for s = 0) and the second one receives j'! (for s = 2),
and 7' is nothing but y ® idyg.-:: Hi° @ HY' ' > HL;' @ HY'"'. So in the non-

trivial case this map is surjective with a kernel of dimension (n — 1)<t j 1).
In the spectral sequence we still have

Lagot  ker '

Lagt.e, HY' @ HY' ' @ HY° ® HY!

Lag2.. coker 7-'*1

1
Assuming y # 0 we get h""'179Oy) = (n — 1)(”) + n( " ) + <n> = n<n + )
q q—1 q q

Depending on the genus g of the curve, the result is thus

h’(@x)=(n+3)('r‘> (9=0

1
h’(@x)=<n+1)<"“:> (g=1,7=0)
h'(@x)=n("’:1> (g=17#0)

h'(@x)=n<">+< " )«n+3)g—3) (9>2)
r r—1

154. Calabi-Eckmann manifolds. Here h°(0,;) = m? + 2m; + m3 + 2m,, and
hi(@,) = 0 if i > 0, and the spectral sequence degenerates by 15.2. Thus H'(0y)
H!(@;) ® H(®,,). Only ‘fibre deformations’ (dim Ar = 1) and ‘fibre destroying
deformations’ (4, = H°(@),), dim A, = (m; + 2)m, + (m, + 2)m,) occur. While
all small deformations have Kodaira dimension —oo, the algebraic dimension
drops for the ‘fibre destroying deformations’ ([Akao], Part II, Prop. 2 and 3).
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15.5. Elliptic fibrations over manifolds with hy;' =0. Here the diagram
reduces to

0 0
0o —— H¥Y — Cc —5 HY?

0 —— H'(n,6y) —— H!(6y) —— H%6y) —— H’(r,0y)

0 —— H'Y6y) —— H'(1*6,) —— H%6,) —— H(6))

H?(n, Ox)

If we assume that in addition h$;? =0, then H!(Oy) = H!(O)) ®H(O;) @
H°(@)). If X is a nontrivial elliptic fibration with ¢ =0 over a K3-surface,
h°(Oy) = 1, h'(By) = 20, h*(Oy) = 19, h*(@x) = 0. Besides the 1-dimensional A
only Ap-deformations coming from the base space exist, but y* gives an obstruc-
tion for lifting those deformations to X.

15.6. If M is a surface of general type with h! = h$;? = 0, then H°(@,) =0
and x(0@,) = 6 by Hirzebruch-Riemann-Roch.

15.7. Rigid spaces. In order to construct a rigid total space, we must get
' @ &% and € + y* injective and y° surjective. Any bundle on a rigid surface
of general type with h%' =0 such that &: H¥! - H%? is non-zero will do, e.g.

1
any ball quotient surface with 0 # p, = x(Oy) — 1 = gcz(M) -1
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