Free complexes defining maximal quasi-Buchsbaum graded modules over polynomial rings

By

Mutsumi Amasaki

Introduction

In the study of homogeneous ideals defining two codimensional locally Cohen-Macaulay subschemes of a projective space, any knowledge of maximal generalized Cohen-Macaulay graded modules over a polynomial ring R (i.e. graded modules M of the same Krull dimension as that of the ground ring R such that $l_{R}\left(H_{\mathrm{m}}^{i}(M)\right)<\infty$ for all $i<\operatorname{dim}(R), \mathrm{m}$ denoting the irrelevent maximal ideal of R) is very useful in two respects. First, for a homogeneous ideal a of height two in a polynomial ring $R=k\left[x_{1}, \ldots, x_{r}\right]$ having the property $l_{R}\left(H_{\mathrm{m}}^{i}(R / a)\right)<\infty$ for $i<r-2$, there is an exact sequence

$$
0 \rightarrow N \xrightarrow{\tau} M \rightarrow \mathfrak{a} \rightarrow 0
$$

with a maximal generalized Cohen-Macaulay graded R-module M and a graded free R-module N such that $H_{\mathrm{m}}^{r-1}(M)=0$, so that once the structure of M, such as its syzygies, is fully understood, the problem can be reduced to the analysis of the linear mapping τ. Second, denoting by t_{0} the minimum of all t such that $\mathfrak{a}_{t} \neq 0$, let M^{\prime} be the module over $R^{\prime}=k\left[x_{2}, \ldots, x_{r}\right]$ defined by the exact sequence

$$
0 \rightarrow M^{\prime} \rightarrow \bigoplus_{l=0}^{t_{0}-1} R^{\prime}(-l) \xrightarrow{\left(1, x_{1}^{1}, \ldots, x_{1}^{t_{1}^{0-1}}\right)} R / a \rightarrow 0
$$

where the linear forms x_{1}, \ldots, x_{r} are chosen sufficiently generally. Then $H_{\mathrm{m}^{\prime}}^{i}\left(M^{\prime}\right) \cong H_{\mathrm{m}}^{i-1}(R / \mathfrak{a})$ for each $i<r-1$ as an R^{\prime}-module, so M^{\prime} is a maximal generalized Cohen-Macaulay R^{\prime}-module satisfying $\mathrm{e}_{\mathrm{m}^{\prime}}\left(M^{\prime}\right)=t_{0}$, which bears a lot of information on the generators of \mathfrak{a}. In fact, applying Goto's structure theorem for maximal Buchsbaum modules over regular local rings (see [G2, (3.1)], [EG, Theorem 3.2]) to the above M, M^{\prime}, we could give a complete classification of homogeneous prime ideals that define arithmetically Buchsbaum subvarieties of codimension two in projective spaces (see [A1, §7]).

Keeping that in mind, we will investigate the structure of maximal quasiBuchsbaum graded modules over polynomial rings (i.e. graded modules M over R with $\mathfrak{m} H_{\mathrm{m}}^{i}(M)=0$ for all $i<\operatorname{dim}(R)$), especially in a simple case where $t(M):=$
$\#\left\{i \mid H_{\mathrm{m}}^{i}(M) \neq 0, i<\operatorname{dim}(R)\right\} \leq 2$ as the first step. Our main results, described in section four, are obtained in the following manner. Given a finitely generated graded module M having no free direct summand over a noetherian graded k-algebra R and its minimal free resolution

$$
\cdots \rightarrow L_{2}^{\prime} \rightarrow L_{1}^{\prime} \xrightarrow{\partial_{1}^{L^{\prime}}} L_{0}^{\prime} \rightarrow M \rightarrow 0
$$

let L. denote the minimal complex such that $H_{i}\left(L_{\text {. }}\right) \cong \operatorname{Ext}_{R}^{b-i}(M, R)$ for $0 \leq i<$ $b:=\operatorname{dim}(R)-\operatorname{depth}_{\mathrm{m}}(M)$, which is obtained by connecting the dual of L^{\prime}. and the complex $L^{\prime \prime}$. giving a minimal free resolution of the kernel of the dual of $\partial_{1}^{L^{\prime}}$ (see (4.2)). Then L. is the minimal part of the mapping cone of a certain system of successive chain maps (see (1.6)), which forms the basis of our approach. When R is a polynomial ring and M is a maximal quasi-Buchsbaum graded R-module with $l(M) \leq 2$, only one chain map is involved, and besides, it can be handled by the linear algebra over k (see (2.1), (2.5)). Thanks to C. M. Ringel's theorem (see (3.3)) and an explicit formula for the chain maps from a direct sum of Koszul complexes to another provided in (2.6), we thus get detailed results for the case $l(M) \leq 2$, along with some observations in the case $l(M)=3$. Note that the same method applies also to generalized Cohen-Macaulay R-modules satisfying $t(M)=1, \mathfrak{m}^{2} H_{\mathrm{m}}^{i}(M)=0$ for $i<\operatorname{dim}(R)$.

One may naturally feel inclined to give a necessary and sufficient condition for those successive chain maps mentioned above to correspond to a maximal Buchsbaum module, in order to generalize Goto's structure theorem. It is possible indeed at least over Gorenstein rings, which will be discussed in a forthcoming paper.

The idea of making use of mapping cones and its first applications (2.5), (4.6), (4.10) were reported for the most part at the conference held in Kyoto in autumn, 1990 (see [A2]). After that meeting, a joint work [CHP] was sent to me, which contains another treatment of maximal quasi-Buchsbaum modules over regular local rings. Also, Y. Yoshino argued about the same subject, laying stress on equivalence of categories, mainly over Gorenstein local rings in [Y]. He pointed out, among other things, that Schenzel's characterization of Buchsbaum modules in terms of dualizing complexes (see [SV, Chapter II, Theorem 4.1]) is false, unless the ground ring is regular. I am grateful to him for stimulating discussions and for providing me with some elementary knowledge of representations of quivers, especially Ringel's results.

§ 1. Mapping cones

Throughout this paper R denotes either a local noetherian ring with maximal ideal \mathfrak{m} and residue field $k=R / \mathfrak{m}$, or a graded ring $\bigoplus_{t \geq 0} R_{t}$ with $\mathfrak{m}=\bigoplus_{t \geq 1} R_{t}$ which is generated over a field $k=R_{0}$ by a finite number of homogeneous elements as a k-algebra. In the second case, R-modules are always assumed to be graded and $\operatorname{Hom}_{R}(M, N)=\bigoplus_{t \in \mathbf{Z}} \operatorname{Hom}_{R}(M, N)_{t}$ for all pairs of R-modules M, N, where $\operatorname{Hom}_{R}(M, N)_{t}$ denotes the additive group consisting of homomor-
phisms of degree t. Moreover when we consider a homomorphism $f: M \rightarrow N$, it is assumed that $f \in \operatorname{Hom}_{R}(M, N)_{0}$, unless otherwise specified. Let $L .=\left(L_{i}\right)_{i \in \mathbf{Z}}$ be a complex of R-modules with differentials $\partial_{i}^{L}: L_{i} \rightarrow L_{i-1}(i \in \mathbf{Z})$. We say that L. is minimal (resp. split exact) when $\operatorname{Im}\left(\partial_{i}^{L}\right) \subset \mathfrak{m} L_{i-1}$ (resp. $H_{i}\left(L_{.}\right)=0, L_{i} \cong$ $\left.\operatorname{Im}\left(\partial_{i}^{L}\right) \oplus \operatorname{Ker}\left(\partial_{i}^{L}\right)\right)$ for all $i \in \mathbf{Z}$. Let L^{*}, and for an integer n, let $L[-n]$., $L[\geq n]$. denote the complexes obtained by setting $L^{* i}=\operatorname{Hom}_{R}\left(L_{i}, R\right), \partial_{L^{*}}^{i}=\left(\partial_{i+1}^{L}\right)^{*}: L^{* i} \rightarrow$ $L^{* i+1}$ (dual map), $L[-n]_{i}=L_{i-n}, \partial_{i}^{L[-n]}=\partial_{i-n}^{L}$ and

$$
L[\geq n]_{i}=\left\{\begin{array}{l}
L_{i}(i \geq n) \\
0(i<n)
\end{array}, \quad \partial_{i}^{L[\geq n]}=\left\{\begin{array}{l}
\partial_{i}^{L}(i>n) \\
0(i \leq n)
\end{array}\right.\right.
$$

respectively. We set

$$
\alpha\left(L_{.}\right)=\sup \left\{i \mid H_{i}\left(L_{.}\right) \neq 0\right\}, \quad \beta\left(L_{.}\right)=\inf \left\{i \mid H^{i}\left(L^{* \cdot}\right) \neq 0\right\},
$$

where $\alpha\left(L_{.}\right)=-\infty\left(\right.$ resp. $\left.\beta\left(L_{.}\right)=\infty\right)$ if and only if L. (resp. $L^{* *}$) is exact. The mapping cone of a chain map $\mu_{.:} L_{.} \rightarrow L^{\prime}$. will be denoted by con $\left(\mu_{\text {. }}\right)$. Recall that

$$
\operatorname{con}\left(\mu_{.}\right)_{i}=L_{i+1}^{\prime} \oplus L_{i}, \quad \partial_{i}^{\operatorname{con}(\mu .)}=\left[\begin{array}{cc}
-\hat{i}_{i+1}^{L^{\prime}} & \mu_{i} \\
0 & \partial_{i}^{L}
\end{array}\right]
$$

for all $i \in \mathbf{Z}$. Further, we denote the set of chain maps μ. as above by $\operatorname{Hom}_{R}\left(L_{.}, L^{\prime}.\right)$, the set of sequences $v_{.}=\left(v_{i}\right)_{i \in \mathbf{Z}}$ with $v_{i} \in \operatorname{Hom}_{R}\left(L_{i}, L_{i}^{\prime}\right)$ by $\operatorname{hom}_{R}\left(L_{.}, L^{\prime}.\right)$ and the set of chain automorphisms (resp. chain endomorphisms) of L. by $\operatorname{Aut}_{R}\left(L_{\text {. }}\right)\left(\right.$ resp. $\operatorname{End}_{R}\left(L_{\text {. }}\right)$). There is a natural identification of the sets $\operatorname{hom}_{R}\left(L_{.}, L^{\prime}.\right)$ and $\operatorname{hom}_{R}\left(L[-n] ., L^{\prime}[-n]\right.$.) obtained by shifting subscripts from i to $i+n$, under which the element of $\operatorname{hom}_{R}\left(L[-n] ., L^{\prime}[-n]\right.$.) corresponding to $v_{.} \in \operatorname{hom}_{R}\left(L_{.}, L^{\prime}.\right)$ will be denoted by $v[-n]$. Let $\mathscr{C}(R), \mathscr{C} m(R), \mathscr{C} x(R), \mathscr{C}_{y}(R)$, $\mathscr{C}_{0}(R), \mathscr{C} x m(R), \mathscr{C}_{m_{0}}(R)$ be sets of complexes defined by

$$
\begin{aligned}
\mathscr{C}(R) & =\left\{L . \mid \text { each } L_{i} \text { is a finitely generated free } R \text {-module }\right\}, \\
\mathscr{C} m(R) & =\{L . \in \mathscr{C}(R) \mid L . \text { is minimal }\}, \\
\mathscr{C} x(R) & =\left\{L . \in \mathscr{C}(R) \mid \operatorname{Im}\left(\partial_{i}^{L}\right) \subset \mathfrak{m} L_{i-1} \text { for all } i \leq 0, \alpha(L .)<\beta(L .)\right\}, \\
\mathscr{C} \mathscr{y}(R) & =\left\{L . \in \mathscr{C}(R) \mid \operatorname{Im}\left(\partial_{i}^{L}\right) \subset \mathfrak{m} L_{i-1} \text { for all } i \leq 0\right\}, \\
\mathscr{C}_{0}(R) & =\left\{L . \in \mathscr{C}(R) \mid L_{i}=0 \text { for all } i<0, H_{i}(L .)=0 \text { for all } i>0\right\}, \\
\mathscr{C}_{x m}(R) & =\mathscr{C} x(R) \cap \mathscr{C} m(R), \quad \mathscr{C}_{0}(R)=\mathscr{C}_{0}(R) \cap \mathscr{C} m(R) .
\end{aligned}
$$

The $\mathscr{C}_{m_{0}}(R)$ is nothing but the set of the minimal free resolutions of finitely generated R-modules. Under this identification we will denote the element of $\mathscr{C}_{m_{0}}(R)$ which gives the minimal free resolution of a finitely generated R-module E by $\operatorname{res}(E)$.
(1.1) Lemma. For each complex $L . \in \mathscr{C} x(R)\left(\right.$ resp. $\left.\mathscr{C}_{y}(R)\right)$, there are a minimal $P . \in \mathscr{C} x m(R)($ resp. $\mathscr{C} m(R))$ and a split exact $Q . \in \mathscr{C}_{0}(R)$ such that $L . \cong P . \oplus Q .$. Moreover these $P_{.}, Q$. are determined uniquely by this condition up to isomorphism.

Proof. For each $i \in \mathbf{Z}$, let L_{i}^{\prime} be a free direct summand of L_{i} such that

$$
\operatorname{rank}_{R}\left(L_{i}^{\prime}\right)=l_{R}\left(\partial_{i}^{L}\left(L_{i}^{\prime}\right)+\mathfrak{m} L_{i-1} / \mathfrak{m} L_{i-1}\right)=l_{R}\left(\operatorname{Im}\left(\partial_{i}^{L}\right)+\mathfrak{m} L_{i-1} / \mathfrak{m} L_{i-1}\right)
$$

and put $L_{i-1}^{\prime \prime}=\partial_{i}^{L}\left(L_{i}^{\prime}\right)$. Observe that $\left.\partial_{i}^{L}\right|_{L_{i}^{\prime}}: L_{i}^{\prime} \rightarrow L_{i-1}^{\prime \prime}$ is an isomorphism. The relation $\partial_{i}^{L}\left(L_{i}^{\prime \prime}\right)=0$ implies that $\left(L_{i}^{\prime}+\mathfrak{m} L_{i} / \mathfrak{m} L_{i}\right) \cap\left(L_{t}^{\prime \prime}+\mathfrak{m} L_{i} / \mathfrak{m} L_{i}\right)=0$ in the vector space $L_{i} / \mathfrak{m} L_{i}=L_{i} \otimes R / \mathfrak{m}$, therefore

$$
L_{i}=L_{i}^{\prime \prime \prime} \oplus L_{i}^{\prime} \oplus L_{i}^{\prime \prime}
$$

with a suitable free R-submodule $L_{i}^{\prime \prime \prime}$ of L_{i}. Let us replace $L_{i}^{\prime \prime \prime}$ with another free submodule $P_{i} \subset L_{i}$ for each i, constructing P_{i} in the following manner. First, put $P_{i}=L_{i}^{\prime \prime \prime}$ for $i \leq 0$. Since $L_{i}^{\prime} \oplus L_{i}^{\prime \prime}=0, P_{i}=L_{i}^{\prime \prime \prime}=L_{i}$ for $i<0$, we have

$$
\left\{\begin{array}{l}
\operatorname{rank}_{R}\left(P_{i}\right)=\operatorname{rank}_{R}\left(L_{i}^{\prime \prime \prime}\right), \tag{1.1.i}\\
P_{i}+L_{i}^{\prime}=L_{i}^{\prime \prime \prime}+L_{i}^{\prime} \\
L_{i}=P_{i} \oplus L_{i}^{\prime} \oplus L_{i}^{\prime \prime} \\
\partial_{i}^{L}\left(P_{i}\right) \subset \mathfrak{m} P_{i-1}
\end{array}\right.
$$

for $i \leq 0$. Suppose there are P_{i} satisfying (1.1.i) $(i \leq l)$ for some $l \geq 0$. Then the equality $\partial_{l}^{L}\left(\partial_{l+1}^{L}\left(L_{l+1}^{\prime \prime \prime}\right)\right)=0$ and (1.1.l), (1.1.l -1) imply

$$
\partial_{l+1}^{L}\left(L_{l+1}^{\prime \prime \prime}\right) \subset P_{l}+L_{l}^{\prime \prime}=P_{l}+\partial_{l+1}^{L}\left(L_{l+1}^{\prime}\right),
$$

so that modifying free bases of $L_{l+1}^{\prime \prime \prime}$, we obtain a free submodule P_{l+1} which satisfies $(1.1 . l+1)$. Thus we get a minimal complex $P . \in \mathscr{C} m(R)\left(\partial_{i}^{P}=\left.\partial_{i}^{L}\right|_{P_{i}}\right)$ and a split exact complex $Q . \in \mathscr{C}_{0}(R)\left(\partial_{i}^{Q}=\left.\partial_{i}^{L}\right|_{Q_{i}}, Q_{i}=L_{i}^{\prime} \oplus L_{i}^{\prime \prime}\right)$ such that $L .=P . \oplus Q$. It is clear that $P . \in \mathscr{C} x m(R)$ if $L . \in \mathscr{C} x(R)$. Let $P^{\prime} . \in \mathscr{C} m(R), Q^{\prime} . \in \mathscr{C}_{0}(R)$ be another pair of minimal and split exact complexes satisfying $L . \cong P^{\prime} . \oplus Q^{\prime}$. and let $\pi .: L . \rightarrow$ P^{\prime}. be the natural projection. Then $\varphi .:=\left.\pi_{\cdot}\right|_{P}: P . \rightarrow P^{\prime}$. is a chain map such that

$$
\varphi_{i} \otimes R / \mathfrak{m}: P_{i} \otimes R / \mathfrak{m} \xrightarrow[\rightarrow]{\rightarrow} H_{i}(L . \otimes R / \mathfrak{m}) \stackrel{\sim}{\rightarrow} P_{i}^{\prime} \otimes R / \mathfrak{m}
$$

is an isomorphism for all $i \in \mathbf{Z}$, since both P. and P^{\prime}. are minimal and free. Hence $P . \cong P^{\prime}$., in particular $\operatorname{rank}_{R}\left(P_{i}\right)=\operatorname{rank}_{R}\left(P_{i}^{\prime}\right)$ and $\operatorname{rank}_{R}\left(Q_{i}\right)=\operatorname{rank}_{R}\left(Q_{i}^{\prime}\right)$ for all $i \in \mathbf{Z}$. As a result, $Q_{i}^{\prime}=0$ for $i<0$ and $Q . \cong Q^{\prime}$. .
(1.2) Definition. With the notation of (1.1), we put $\min \left(L_{.}\right) .=P ., \operatorname{se}\left(L_{.}\right) .=Q$.
(1.3) Lemma. Let $L ., L^{\prime} . \in \mathscr{C} y(R)$ satisfy $l_{R}\left(L_{i} \otimes R / m\right)=l_{R}\left(L_{i}^{\prime} \otimes R / m\right)$ for all $i \in \mathbf{Z}$. Then $L . \cong L^{\prime}$. if and only if $\min \left(L_{.}\right) \cong \min \left(L^{\prime}.\right)$.

Proof. Almost the same as the last part of the proof of (1.1).
In the argument below, let a and b denote nonnegative integers with $a<b$.
(1.4) Lemma. Given complexes $L . \in \mathscr{C} y(R), G . \in \mathscr{C}_{0}(R)$ satisfying $\alpha(L)<$.$a and$ a chain map $\mu_{.:} L . \rightarrow G[-a-1]$., we have $H_{i}\left(\operatorname{con}(\mu\right.$.$) . \cong H_{i}\left(L_{.}\right)$for $i<a$, $H_{a}\left(\operatorname{con}\left(\mu_{\mathrm{o}}\right).\right) \cong H_{0}\left(G_{\text {. }}\right)$ and $H_{i}\left(\operatorname{con}\left(\mu_{\mathrm{o}}\right).\right)=0$ for $i>a$. In particular $\alpha\left(\operatorname{con}\left(\mu_{\mathrm{o}}\right).\right) \leq a$,
with equality if and only if $H_{0}\left(G_{.}\right) \neq 0$. Moreover if $b \leq \beta\left(L_{\text {. }}\right)$ and $b-a \leq \beta\left(G_{\text {. }}\right)$, then $H^{i}\left(\operatorname{con}\left(\mu_{.}\right)^{* \cdot}\right)=0$ for $i<b$, i.e. $b \leq \beta\left(\operatorname{con}\left(\mu_{.}\right).\right), \operatorname{con}\left(\mu_{\cdot}\right) . \in \mathscr{C} x(R)$.

Proof. Easily verified by the long exact sequences arising from the short exact sequence

$$
\begin{equation*}
0 \rightarrow G[-a] . \rightarrow \operatorname{con}\left(\mu_{.}\right) . \rightarrow L . \rightarrow 0 \tag{1.4.1}
\end{equation*}
$$

and its dual.
For a complex $L . \in \mathscr{C}(R)$ and an integer n, we define a complex $\sigma_{n}\left(L_{.}\right)$. by

$$
\sigma_{n}(L .)_{i}=\left\{\begin{array}{l}
L_{i}(i<n) \\
P_{i-n}(i \geq n)
\end{array}, \quad \partial_{i}^{\sigma_{n}(L .)}=\left\{\begin{array}{l}
\partial_{i}^{L}(i<n) \\
\varepsilon^{P}(i=n) \\
\partial_{i-n}^{P}(i>n)
\end{array},\right.\right.
$$

where P. $=\operatorname{res}\left(\operatorname{Im}\left(\partial_{n}^{L}\right)\right)$. and ε^{P} is the map $P_{0} \rightarrow P_{0} / \operatorname{Im}\left(\partial_{1}^{P}\right) \cong \operatorname{Im}\left(\partial_{n}^{L}\right) \subset L_{n-1}$. Note that $\sigma_{n}(L.) . \in \mathscr{C} m(R)$ if $L . \in \mathscr{C} m(R)$ and that $\alpha\left(\sigma_{n}(L)..\right) \leq \alpha(L$.$) with equality if and$ only if $\alpha\left(L_{.}\right)<n$.
(1.5) Proposition. Let $L . \in \mathscr{C} x m(R), G . \in \mathscr{C} m_{0}(R)$, and suppose $\alpha(L) \leq a<$. $b \leq \beta\left(L_{.}\right), \quad G .=\operatorname{res}\left(H_{a}\left(L_{.}\right)\right) ., \quad \operatorname{Ext}_{R}^{i}\left(H_{a}\left(L_{.}\right), R\right)=0$ for all $i(0 \leq i<b-a)$. Then $\sigma_{a}\left(L_{.}\right) . \in \mathscr{C x m}(R), \alpha\left(\sigma_{a}\left(L_{.}\right).\right)<a<b \leq \beta\left(\sigma_{a}\left(L_{.}\right).\right)$and there is a chain map $\mu_{.} \sigma_{a}\left(L_{.}\right) . \rightarrow$ $G[-a-1]$. such that $L . \cong \min \left(\operatorname{con}\left(\mu_{\mathrm{o}}\right).\right)$.

Proof. Put $G .=\operatorname{res}\left(H_{a}(L).\right) ., \quad P .=\operatorname{res}\left(\operatorname{Im}\left(\partial_{a}^{L}\right)\right)$. Since

$$
\begin{equation*}
0 \rightarrow H_{a}(L .) \rightarrow L_{a} / \operatorname{Im}\left(\partial_{a+1}^{L}\right) \xrightarrow{\partial_{d}^{L}} \operatorname{Im}\left(\partial_{a}^{L}\right) \rightarrow 0 \tag{1.5.1}
\end{equation*}
$$

is exact, there is a chain map $\mu^{\prime}: P . \rightarrow G[-1]$. such that $E:=L_{a} / \operatorname{Im}\left(\partial_{a+1}^{L}\right) \cong$ $\operatorname{Coker}\left(\partial_{1}^{\operatorname{con}\left(\mu_{.}\right)}\right)$. Moreover $(L[\geq a])[a] . \cong \min \left(\operatorname{con}\left(\mu^{\prime}\right).\right)$. since both $(L[\geq a])[a]$. and $\min \left(\operatorname{con}\left(\mu^{\prime}.\right)\right.$). give minimal free resolutions of E. Let $\mu_{:}: \sigma_{a}\left(L_{0}\right) . \rightarrow$ $G[-a-1]$. be the chain map obtained by setting $\mu_{i}=\mu_{i-a}^{\prime}$ for $i \geq a, \mu_{i}=0$ for $i<a$. Then $\operatorname{con}\left(\mu_{\mathrm{o}}\right)_{i}=\operatorname{con}\left(\mu^{\prime}\right)_{)_{i-a}}$ for $i \geq a, \operatorname{con}\left(\mu_{.}\right)_{i}=L_{i}$ for $i<a, \partial_{a}^{\operatorname{con}(\mu .)}$ coincides with the composite map $\operatorname{con}(\mu .)_{a}=G_{0} \oplus P_{0} \rightarrow E \rightarrow \operatorname{Im}\left(\partial_{a}^{L}\right) \subsetneq L_{a-1}$ and $\operatorname{Im}\left(\partial_{a}^{\operatorname{con}(\mu .)}\right) \subset \mathfrak{m} L_{a-1}$, therefore $L . \cong \min \left(\operatorname{con}\left(\mu_{.}\right).\right)$. Clearly $\quad \alpha\left(\sigma_{a}\left(L_{.}\right).\right)<a<b$, while $b \leq \beta\left(\sigma_{a}\left(L_{\text {. }}\right)\right.$.) follows from the long exact sequences arising from the dual of (1.4.1) with L. replaced by $\sigma_{a}\left(L_{.}\right)$., since $\beta\left(L_{.}\right)=\beta\left(\operatorname{con}\left(\mu_{\text {. }}\right)\right.$.) and $b-a \leq \beta\left(G_{\text {. }}\right)$ by hypothesis.
(1.6) Corollary. For a complex $L . \in \mathscr{C} x m(R)$, suppose $\operatorname{Ext}_{R}^{i}\left(H_{j}\left(L_{.}\right), R\right)=0$ for all $i, j(0 \leq i<b-j, 0 \leq j \leq a), \alpha(L) \leq a<.b \leq \beta(L$.$) . \quad Put G^{(j)} .=\operatorname{res}\left(H_{j}\left(L_{.}\right)\right) . \in$ $\mathscr{C} m_{0}(R)$ for each $j(0 \leq j \leq a)$. Then $\sigma_{0}(L.) . \in \mathscr{C} x m(R), \alpha\left(\sigma_{0}\left(L_{.}\right).\right)<0<b \leq$ $\beta\left(\sigma_{0}(L)..\right)$ and there are inductively defined chain maps $\mu^{(0)}: \sigma_{0}(L.) . \rightarrow G^{(0)}[-1]$., $\mu^{(j)} .: \operatorname{con}\left(\mu^{(j-1)}.\right) . \rightarrow G^{(j)}[-j-1] .(1 \leq j \leq a)$ such that $L \cong \cong \min \left(\operatorname{con}\left(\mu^{(a)}\right).\right)$.. Moreover $\sigma_{0}\left(L_{.}\right) .=0$ if $L_{i}=0$ for all $i<0$, and $H_{i}\left(\sigma_{0}(L).\right)=0, H^{i}\left(\sigma_{0}\left(L_{.}\right)^{* \cdot}\right)=0$ for all $i \in \mathbf{Z}$ if R is Gorenstein and $H_{i}\left(L_{.}\right)=0$ for all $i<0$.

Proof. The case $a=0$ follows from (1.5). Suppose that $a>0$ and that our assertion is true for $a-1$. Put L^{\prime}. $=\sigma_{a}(L$.$) . By (1.5) there is a chain map$ $\mu_{.:} L^{\prime} . \rightarrow G^{(a)}[-a-1]$. such that $L . \cong \min \left(\operatorname{con}\left(\mu_{.}\right).\right), \quad \alpha\left(L^{\prime}.\right) \leq a-1, \quad b \leq \beta\left(L^{\prime}.\right)$. Since $H_{j}\left(L^{\prime}.\right) \cong H_{j}(L),. \operatorname{Ext}_{R}^{i}\left(H_{j}\left(L^{\prime}.\right), R\right) \cong \operatorname{Ext}_{R}^{i}\left(H_{j}\left(L_{.}\right), R\right)=0$ for all $i, j(0 \leq i<b-j$, $0 \leq j \leq a-1)$ by hypothesis and (1.4), there are chain maps $\mu^{(0)}: \sigma_{0}\left(L^{\prime}\right) . \rightarrow G^{(0)}$, $\mu^{(j)}:: \operatorname{con}\left(\mu^{(j-1)}.\right) . \rightarrow G^{(j)}[-j-1] .(1 \leq j \leq a-1)$ such that $L^{\prime} .=\min \left(\operatorname{con}\left(\mu^{(a-1)}.\right).\right)$, $b \leq \beta\left(\sigma_{0}\left(L^{\prime}.\right)\right.$.) by the induction hypothesis. Let $\mu^{(a)} .: \operatorname{con}\left(\mu^{(a-1)}.\right) . \rightarrow G[-a-1]$. be the chain map extending $\left.\mu_{\text {. by }} \mu^{(a)} \cdot\right|_{\operatorname{se}\left(\operatorname{con}\left(\mu^{(a-1}\right)\right), \text {, }}=0$. Then $\operatorname{con}\left(\mu^{(a)}\right)$.). $=\operatorname{con}\left(\mu_{\text {. }}\right), \oplus$ $\operatorname{se}\left(\operatorname{con}\left(\mu^{(a-1)}\right)_{0}\right)$. , so that $L . \cong \min \left(\operatorname{con}\left(\mu_{0}\right).\right) \cong \min \left(\operatorname{con}\left(\mu^{(a)}.\right).\right)$. Since $\sigma_{0}\left(L^{\prime}.\right) .=$ $\sigma_{0}(L$.$) ., the inequality \alpha\left(\sigma_{0}(L)..\right)<0<b \leq \beta\left(\sigma_{0}(L\right.$.$) .) follows. It is clear that$ $\sigma_{0}\left(L_{.}\right) .=0$ if $L . \in \mathscr{C} m_{0}(R)$. When R is Gorenstein, its injective dimention is finite, therefore $\beta\left(\sigma_{0}\left(L_{.}\right).\right)=\infty$ if $\alpha\left(\sigma_{0}\left(L_{.}\right).\right)=-\infty$, which implies the last part.
(1.7) Remark. As is seen by the proofs, the existence of the chain maps $\mu_{.}, \mu^{(j)} .(0 \leq j \leq a)$ with the property $L . \cong \min \left(\operatorname{con}\left(\mu_{.}\right).\right), L . \cong \min \left(\operatorname{con}\left(\mu^{(a)}\right).\right)$. stated in (1.5), (1.6) is a consequence of the hypothesis $\alpha\left(L_{.}\right) \leq a$ only and other conditions such as the inequality $\alpha\left(L_{.}\right)<\beta\left(L_{\text {. }}\right)$ appearing in the definition of $\mathscr{C} x(R)$ have nothing to do with it.
(1.8) Lemma. Let L., $L^{\prime} . \in \mathscr{C} m(R), G ., G^{\prime} . \in \mathscr{C} m_{0}(R)$ be complexes with $a>$ $\max \left(\alpha(L),. \alpha\left(L^{\prime}.\right)\right)$ and let $\mu_{.:} L . \rightarrow G[-a-1] ., \mu^{\prime} .: L^{\prime} . \rightarrow G^{\prime}[-a-1]$. be chain maps.
(1) If $\min \left(\operatorname{con}\left(\mu_{.}\right).\right) \cong \min \left(\operatorname{con}\left(\mu^{\prime}.\right).\right)$., then $L . \cong L^{\prime}$. and $G . \cong G^{\prime}$.
(2) We have $\operatorname{con}\left(\mu_{.} \oplus \mu^{\prime}\right)$. $\cong \operatorname{con}\left(\mu_{0}\right) . \oplus \operatorname{con}\left(\mu^{\prime}\right)_{\text {. }}$. for the chain map $\mu_{.} \oplus \mu^{\prime}$: $L . \oplus L^{\prime} . \rightarrow G[-a-1] . \oplus G^{\prime}[-a-1]$.

Proof. (1) Since $L_{i}=\min \left(\operatorname{con}\left(\mu_{\mathrm{O}}\right)\right)_{i}$ for all $i<a, \quad \operatorname{Im}\left(\partial_{a}^{\text {con }(\mu .)}\right)=\operatorname{Im}\left(\partial_{a}^{L}\right)$, $(L[\geq a])[a] .=\operatorname{res}\left(\operatorname{Im}\left(\partial_{a}^{L}\right)\right)$. and the same holds for L^{\prime}., one finds that the hypothesis $\min \left(\operatorname{con}\left(\mu_{.}\right).\right) \cong \min \left(\operatorname{con}\left(\mu^{\prime}\right).\right)$. implies $L . \cong L^{\prime}$. . To prove $G_{.} \cong G^{\prime}$., it is enough to observe that G. (resp. G^{\prime}.) gives a minimal free resolution of $H_{a}\left(\min \left(\operatorname{con}\left(\mu_{\mathrm{o}}\right)\right)_{)}\right)$) (resp. $H_{a}\left(\min \left(\operatorname{con}\left(\mu^{\prime}\right).\right)\right.$).)) by (1.4).
(2) Obvious.
(1.9) Proposition. Given chain maps $\mu_{.,} \mu^{\prime}: L . \rightarrow G[-a-1]$. with $L . \in \mathscr{C}_{y}(R)$, $G . \in \mathscr{C}_{0}(R), a>\alpha(L),$.$a necessary and sufficient condition for \min (\operatorname{con}(\mu)..) . \cong$ $\min \left(\operatorname{con}\left(\mu^{\prime}\right).\right)$) is that there are chain automorphisms $\varphi . \in \operatorname{Aut}_{R}(L),. \psi . \in \operatorname{Aut}_{R}\left(G_{.}\right)$ such that $\mu^{\prime} . \varphi . \simeq \psi[-a-1] . \mu$. (chain homotopic).

Proof. If there are chain automorphisms φ. and ψ. satisfying the condition, we have

$$
\begin{equation*}
\mu_{i}^{\prime} \varphi_{i}-\psi_{i-a-1} \mu_{i}=\partial_{i-a}^{G} v_{i}+v_{i-1} \partial_{i}^{L} \quad \text { for all } i \in \mathbf{Z} \tag{1.9.1}
\end{equation*}
$$

with suitable $v_{i} \in \operatorname{Hom}_{R}\left(L_{i}, G_{i-a}\right)(i \in \mathbf{Z})$. The maps

$$
\lambda_{i}:=\left[\begin{array}{cc}
\psi_{i-a} & v_{i} \\
0 & \varphi_{i}
\end{array}\right] \quad(i \in \mathbf{Z})
$$

therefore give a chain isomorphism $\lambda_{.}: \operatorname{con}\left(\mu_{0}\right) \rightarrow \operatorname{con}\left(\mu^{\prime}\right)$. . Hence $\min \left(\operatorname{con}\left(\mu_{0}\right).\right) \cong$ $\min \left(\operatorname{con}\left(\mu^{\prime}.\right)\right)$. . Conversely, suppose $\left.\min \left(\operatorname{con}\left(\mu_{\mathrm{O}}\right).\right) \cong \min \left(\operatorname{con}\left(\mu^{\prime}\right).\right).\right) . \quad$ Then there is a chain isomorphism $\lambda_{.}: \operatorname{con}\left(\mu_{0}\right) . \rightarrow \operatorname{con}\left(\mu^{\prime}.\right)$. by (1.3). Put $\partial_{0}=\partial_{.}^{\operatorname{con}\left(\mu_{\mu}\right)}, \partial^{\prime} .=$ $\partial^{\operatorname{con}\left(\mu^{\prime}\right)}, M=\operatorname{Coker}\left(\partial_{a+1}\right), M^{\prime}=\operatorname{Coker}\left(\partial_{a+1}^{\prime}\right), E=H_{0}(G),. N=\operatorname{Im}\left(\partial_{a}^{L}\right), \eta^{N}=\left.\lambda_{a-1}\right|_{N}$, and let $\eta: M \rightarrow M^{\prime}\left(\right.$ resp. $\delta: M \rightarrow N, \delta^{\prime}: M^{\prime} \rightarrow N$) denote the isomorphism (resp. homomorphisms) induced by λ_{a} (resp. $\partial_{a}, \partial_{a}^{\prime}$). We have a commutative diagram

Since $H_{i}\left(L_{\text {. }}\right)=0$ for all $i \geq a$ by hypothesis, one finds $\operatorname{Ker}(\delta) \cong E \cong \operatorname{Ker}\left(\delta^{\prime}\right)$, moreover $\eta^{N} \delta=\delta^{\prime} \eta$ by (1.9.2). There exists therefore an automorphism $\eta^{E}: E \rightarrow E$ which makes the diagram

commutative. Now observe that $G ., L[\geq a]$. give free resolutions of E, N respectively and that M (resp. M^{\prime}) is the module defined by the element of $\operatorname{Ext}_{R}^{1}(N, E)$ represented by $\varepsilon^{G} \mu_{a+1}$ (resp. $\varepsilon^{G} \mu_{a+1}^{\prime}$), where $\varepsilon^{G}: G_{0} \rightarrow E$ is the natural surjection. Let $\psi ., \varphi^{\prime}$. be chain automorphisms of $G ., L[\geq a]$. compatible with η^{E}, η^{N} respectively and let φ. be the chain automorphism of L. defined by $\varphi_{i}=\varphi_{i-a}^{\prime}$ $(i \geq a), \varphi_{i}=\lambda_{i}^{\text {con }(\mu .)}(i<a)$. The diagram (1.9.3) implies that $\eta^{E} \varepsilon^{G} \mu_{a+1}=\varepsilon^{G} \psi_{0} \mu_{a+1}$ and $\varepsilon^{G} \mu_{a+1}^{\prime} \varphi_{1}^{\prime}=\varepsilon^{G} \mu_{a+1}^{\prime} \varphi_{a+1}$ represent the same element of $\operatorname{Ext}_{R}^{1}(N, E)$, in other words there are $v_{i} \in \operatorname{Hom}_{R}\left(L_{i}, G_{i-a}\right)(i=a, a+1)$ such that

$$
\mu_{a+1}^{\prime} \varphi_{a+1}-\psi_{0} \mu_{a+1}=\partial_{1}^{G} v_{a+1}+v_{a} \partial_{a+1}^{L} .
$$

Since $L . \in \mathscr{C}(R)$, this can be completed to the form (1.9.1), therefore $\mu^{\prime} . \varphi . \simeq$ $\psi[-a-1] . \mu$, as desired.

Given complexes $L_{.,} L^{\prime} . \in \mathscr{C}(R)$, a chain map $\mu .: L . \rightarrow L^{\prime}$. and homomorphisms $\varphi . \in \operatorname{hom}_{R}\left(L_{.}, L_{.}\right), \psi . \in \operatorname{hom}_{R}\left(L^{\prime} ., L^{\prime}.\right), v_{.} \in \operatorname{hom}_{R}\left(L_{.}, L^{\prime}[1].\right)$, we define $\theta\left(\psi ., \varphi_{.}, v_{.}\right), \in$ $\operatorname{hom}_{R}\left(\operatorname{con}\left(\mu_{\text {. }}\right), \operatorname{con}\left(\mu_{.}\right).\right)$by

$$
\theta\left(\psi ., \varphi_{.}, v_{\bullet}\right)_{i}=\left[\begin{array}{cc}
\psi_{i+1} & v_{i} \\
0 & \varphi_{i}
\end{array}\right] \quad \text { for all } i \in \mathbf{Z}
$$

Also, we put ${ }^{-} v_{0}=\left((-1)^{i} v_{i}\right)_{i \in \mathbf{Z}} \in \operatorname{hom}_{R}\left(L ., L^{\prime}[1].\right)$.
(1.10) Lemma. Let $L_{.,} L^{\prime}$., μ. be as above and put $L^{\prime \prime} .=\operatorname{con}\left(\mu_{\mathrm{o}}\right)$. .
(1) For $\varphi_{.,} \varphi^{\prime} . \in \operatorname{Aut}_{R}\left(L_{.}\right), \psi, \psi^{\prime} . \in \operatorname{Aut}_{R}\left(L^{\prime}.\right), v_{.} \in \operatorname{hom}_{R}\left(L_{.}, L^{\prime}[1].\right)$ satisfying the condition $\varphi_{.} \simeq \varphi^{\prime} ., \psi . \simeq \psi^{\prime} ., \theta\left(\psi_{.}, \varphi_{.}, v_{.}\right) . \in \operatorname{Aut}_{R}\left(L^{\prime \prime}.\right)$, there is a homomorphism $v^{\prime} . \in \operatorname{hom}_{R}\left(L ., L^{\prime}[1].\right)$ such that $\theta\left(\psi^{\prime} ., \varphi^{\prime} ., v^{\prime}.\right)$. is a chain automorphism which is chain homotopic to $\theta\left(\psi ., \varphi ., v_{.}\right)$.
(2) Let $\varphi . \in \operatorname{Aut}_{R}\left(L_{0}\right), \psi . \in \operatorname{Aut}_{R}\left(L^{\prime}.\right)$, v., $v^{\prime} . \in \operatorname{hom}_{R}\left(L_{.}, L^{\prime}[1].\right)$ and suppose $\theta\left(\psi_{.}, \varphi_{.}, v_{.}\right), \in \operatorname{Aut}_{R}\left(L^{\prime \prime}.\right)$. Then $\theta\left(\psi_{.}, \varphi_{.}, v^{\prime}{ }^{\prime}\right), \in \operatorname{Aut}_{R}\left(L^{\prime \prime}.\right)$ if and only if ${ }^{-} v_{.}-{ }^{-} v^{\prime}$. is a chain map. Moreover, when this is the case, $\theta\left(\psi_{.}, \varphi_{.}, v_{.}\right) . \simeq \theta\left(\psi_{.}, \varphi_{.}, v^{\prime}\right)$. if ${ }^{-} \nu .-{ }^{-} \nu^{\prime} . \simeq 0$.

Proof. (1) By hypothesis there are $\zeta . \in \operatorname{hom}_{R}(L ., L[1]),. \zeta^{\prime} . \in \operatorname{hom}_{R}\left(L^{\prime} ., L^{\prime}[1].\right)$ such that

$$
\varphi_{i}^{\prime}-\varphi_{i}=\partial_{i+1}^{L} \zeta_{i}+\zeta_{i-1} \partial_{i}^{L}, \quad \psi_{i}^{\prime}-\psi_{i}=\partial_{i+1}^{L^{\prime}} \zeta_{i}^{\prime}+\zeta_{i-1}^{\prime} \partial_{i}^{L^{\prime}}
$$

for all $i \in \mathbf{Z}$. Put

$$
v_{i}^{\prime}=v_{i}+\mu_{i+1} \zeta_{i}-\zeta_{i}^{\prime} \mu_{i} \quad(i \in \mathbf{Z})
$$

Then we have

$$
\theta\left(\psi^{\prime} ., \varphi^{\prime} ., v^{\prime} .\right)_{i}-\theta\left(\psi ., \varphi_{.}, v_{.}\right)_{i}=\partial_{i+1}^{\operatorname{con}(\mu .)}\left[\begin{array}{cc}
-\zeta_{i+1}^{\prime} & 0 \\
0 & \zeta_{i}
\end{array}\right]+\left[\begin{array}{cc}
-\zeta_{i}^{\prime} & 0 \\
0 & \zeta_{i-1}
\end{array}\right] \partial_{i}^{\operatorname{con}(\mu .)}
$$

for all i by direct computations.
(2) Clear by definition.

The following lemma follows from the proof of (1.9).
(1.11) Lemma. Given $L . \in \mathscr{C}_{y}(R)$ with $a>\alpha(L),. G . \in \mathscr{C}_{0}(R)$ and a chain map $\mu_{\mathrm{A}}: L . \rightarrow G[-a-1]$., put $L^{\prime \prime} .=\operatorname{con}\left(\mu_{\mathrm{o}}\right)$. For each $\lambda_{.} \in \operatorname{Aut}_{R}\left(L^{\prime \prime}.\right)$, there are $\varphi . \in$ $\operatorname{Aut}_{R}\left(L_{.}\right), \psi_{.} \in \operatorname{Aut}_{R}\left(G_{.}\right), v_{.} \in \operatorname{hom}_{R}\left(L_{.}, G[-a].\right)$ such that $\theta\left(\psi[-a-1] ., \varphi_{.}, v_{.}\right)$, is a chain automorphism of $L^{\prime \prime}$. which is chain homotopic to λ.
(1.12) Lemma. Let $L . \in \mathscr{C} y(R), L^{\prime}, \in \mathscr{C}(R), P .=\min (L$.$) and let \mu_{.,} \mu^{\prime},: L . \rightarrow$ L^{\prime}. be chain maps. Then $\mu_{.} \simeq \mu^{\prime}$. if and only if $\left.\mu_{.}\right|_{P_{.}} \simeq \mu^{\prime} .\left.\right|_{P .}$.

Proof. Put $Q .=\operatorname{se}(L).$. Since every chain map from a split exact complex to an arbitrary complex is chain homotopic to zero, we have $\left.\mu_{.}\right|_{Q .} \simeq 0, \mu^{\prime} .\left.\right|_{Q .} \simeq 0$. Hence the conclusion.

§ 2. Complexes whose homology modules are vector spaces

From now on K. denotes the complex giving the minimal free resolution of the residue field $k=R / \mathrm{m}$, i.e. $K .=\operatorname{res}(k)$. Let p be a nonnegative integer and $G .=K .{ }^{p}$. In the graded case, let $p_{n}(n \in \mathbf{Z})$ be nonnegative integers such that $p_{n}=0$ for all but a finite number of n and put $G .=\oplus_{n} K .(n)^{p_{n}}$. Note that $G . \cong K . \otimes_{R} G_{0}$, where $G_{0}=R^{p}$ in the first case and $G_{0}=\bigoplus_{n} R(n)^{p_{n}}$ in the second.
(2.1) Lemma. Let L. be a complex in $\mathscr{C}_{y}(R)$ and c an integer.
(1) For chain maps $\mu_{.}, \mu^{\prime}: L . \rightarrow G[-c]$, the following conditions are equivalent.
(i) $\mu . \simeq \mu^{\prime} .$,
(ii) $\left.\left.\mu_{c}\right|_{\left(\sigma_{c}^{L}\right)^{-1}\left(m L_{c-1}\right)} \equiv \mu_{c}^{\prime}\right|_{\left(\partial_{c}^{L}\right)^{-1}\left(m L_{c-1}\right)} \quad(\bmod \mathfrak{m})$,

(2) For a chain map $\mu_{.}: L_{.} \rightarrow G[-c]$., we have $\mu_{c} \partial_{c+1}^{L} \equiv 0(\bmod \mathrm{~m})$. Conversely, given a linear map $h \in \operatorname{Hom}_{R}\left(L_{c}, G_{0}\right)$ satisfying $h \partial_{c+1}^{L} \equiv 0(\bmod m)$, there is a chain map $\mu .: L . \rightarrow G[-c]$. such that $\mu_{c}=h$.
(3) For every $g \in \operatorname{Aut}_{R}\left(G_{0}\right)$, we have $i d_{K .} \otimes g \in \operatorname{Aut}_{R}\left(G_{.}\right)$. Moreover for each $\lambda_{.} \in \operatorname{Aut}_{R}\left(G_{.}\right)$, there is an automorphism $g \in \operatorname{Aut}_{R}\left(G_{0}\right)$ such that $\lambda_{.} \simeq i d_{K .} \otimes g$.

Proof. (1) Since $\mu_{.} \simeq \mu^{\prime}$. if and only if

$$
\left\{\begin{array}{l}
\mu_{i}-\mu_{i}^{\prime}=\partial_{i+1-c}^{G} v_{i}+v_{i-1} \partial_{i}^{L} \quad \text { for all } i \in \mathbf{Z} \\
\text { with } v_{\mathbf{t}} \in \operatorname{hom}_{R}\left(L_{.}, G[-c+1] .\right),
\end{array}\right.
$$

the implications (i) $\Rightarrow($ iii $) \Rightarrow$ (ii) are clear. Suppose (ii) holds and put $P_{.}=\min \left(L_{\text {. }}\right)$. Then $\operatorname{Im}\left(\left.\mu_{c}\right|_{P_{c}}-\left.\mu_{c}^{\prime}\right|_{P_{c}}\right) \subset \mathfrak{m} G_{0}=\operatorname{Im}\left(\partial_{1}^{G}\right)$, so there is a map $v_{c} \in \operatorname{Hom}_{R}\left(P_{c}, G_{1}\right)$ fulfilling $\left.\mu_{c}\right|_{P_{c}}-\left.\mu_{c}^{\prime}\right|_{P_{c}}=\partial_{1}^{G} v_{c}$. This can be completed to a chain homotopy $\left.\mu_{.}\right|_{P_{.}}-\left.\mu^{\prime}\right|_{P .} \simeq$ 0 , therefore $\mu_{.} \simeq \mu^{\prime}$. by (1.12).
(2) It is clear that $\mu_{c} \partial_{c+1}^{L}=\partial_{1}^{G} \mu_{c+1} \equiv 0(\bmod m)$. Conversely, let $h \in$ $\operatorname{Hom}_{R}\left(L_{c}, G_{0}\right)$ satisfy $h \partial_{c+1}^{L} \equiv 0(\bmod \mathfrak{m})$. Since $\operatorname{Im}\left(h \partial_{c+1}^{L}\right) \subset \mathfrak{m} G_{0}=\operatorname{Im}\left(\partial_{1}^{G}\right)$, there is a linear map $\mu_{c+1} \in \operatorname{Hom}_{R}\left(L_{c+1}, G_{1}\right)$ satisfying $\partial_{1}^{G} \mu_{c+1}=h \partial_{c+1}^{L}$. Hence the existence of μ. as stated.
(3) The first part is obvious. The second follows from (1).
(2.2) Remark. By (2) of (2.1), we can associate with each $h \in \operatorname{Hom}_{R}\left(L_{c}, G_{0}\right)$ satisfying $h \partial_{c+1}^{L} \equiv 0(\bmod m)$ complexes $\operatorname{con}\left(\mu_{\mathrm{o}}\right), \min \left(\operatorname{con}\left(\mu_{\mathrm{o}}\right).\right)$., taking a chain map $\mu_{:}: L . \rightarrow G[-c]$. such that $\mu_{c}=h$. The property (1) of (2.1) implies that they are determined uniquely by h up to isomorphism.
(2.3) Lemma. Assume R is graded. For a complex $L . \in \mathscr{C} m(R)$ and an integer c, suppose that $L . \cong \bigoplus_{n} L^{(n)}$. with $L^{(n)}, \in \mathscr{C} m(R)(n \in \mathbf{Z}), L^{(n)} .=0$ for all but a finite number of n and that each $L_{c}^{(n)}$ is isomorphic to the direct sum of a finite number (possibly may be zero) of copies of $R(n)$. Then for every chain map $\mu_{.:} L . \rightarrow G[-c]$, we have $\mu_{.} \simeq \oplus_{n} \pi^{(n)} .\left.\mu_{.}\right|_{L^{(n)}}$, where $\pi^{(n)}: G[-c] . \rightarrow K[-c] .(n)^{p_{n}}$ denotes the natural projection for all $n \in \mathbf{Z}$.

Proof. Put $\nu^{n, n^{\prime}} .=\left.\pi^{(n)} \cdot \mu_{.}\right|_{L^{\left(n^{\prime}\right)}}$. We see $\nu_{c}^{n, n^{\prime}} \equiv 0(\bmod m)$ for $n \neq n^{\prime}$, therefore $\mu . \simeq \bigoplus_{n} \nu^{n, n}$. by (1) of (2.1).

Let q be a nonnegative integer and $F .=K .{ }^{q}$. In the graded case let q_{m} ($m \in \mathbf{Z}$) be nonnegative integers that are zero for all but a finite number of m and set $F_{.}=\bigoplus_{m} K .(m)^{q_{m}}$. As in the case of G. , we have $F .=K . \otimes_{R} F_{0}$ with $F_{0}=R^{q}$ or $F_{0}=\bigoplus_{m} R(m)^{q_{m}}$. Fix a positive integer a and denote by $\left\{v_{1}, \ldots, v_{s}\right\}$ a free basis of K_{a+1}, where we assume that each v_{l} is a homogeneous element of K_{a+1} in the graded case.
(2.4) Definition. A minimal complex $L . \in \mathscr{C} m(R)$ is called decomposable if there are minimal complexes $L^{\prime},, L^{\prime \prime} . \in \mathscr{C} m(R)$ different from zero such that $L \cong$ $L^{\prime} . \oplus L^{\prime \prime}$. When L. is not decomposable, we call it indecomposable.
(2.5) Proposition. Given chain maps $\mu_{.,} \mu^{\prime} .: F . \rightarrow G[-a-1]$., put $h=\mu_{a+1}, h^{\prime}=$ μ_{a+1}^{\prime} and let $h_{l}, h_{l}^{\prime}(1 \leq l \leq s)$ be the elements of $\operatorname{Hom}_{R}\left(F_{0}, G_{0}\right)\left(\operatorname{Hom}_{R}\left(F_{0}, G_{0}\right)_{\operatorname{deg}\left(v_{l}\right)}\right.$ in the graded case) such that $h=\sum_{l=1}^{s} v_{l}^{*} \otimes h_{l}, h^{\prime}=\sum_{l=1}^{s} v_{l}^{*} \otimes h_{l}^{\prime}$.
(1) We have $\min \left(\operatorname{con}\left(\mu_{0}\right).\right) \cong \min \left(\operatorname{con}\left(\mu^{\prime}\right).\right)$. if and only if there are $g \in$ $\operatorname{Aut}_{R}\left(G_{0}\right), f \in \operatorname{Aut}_{R}\left(F_{0}\right)$ such that

$$
\begin{equation*}
g h_{l} f \equiv h_{l}^{\prime} \quad(\bmod \mathfrak{m}) \quad \text { for all } l(1 \leq l \leq s) . \tag{2.5.1}
\end{equation*}
$$

(2) Suppose R is graded and that $\operatorname{deg}\left(v_{l}\right)=d$ for all $l(1 \leq l \leq s)$. Then

$$
\min \left(\operatorname{con}\left(\mu_{\cdot}\right) .\right) . \cong \bigoplus_{m} \min \left(\operatorname{con}\left(\mu(m, m-d)_{\cdot}\right) \cdot\right)
$$

where $\mu(m, n)$. denotes the composite map $K .(m)^{q_{m}} \hookrightarrow F_{.} \xrightarrow{\mu} G[-a-1] . \rightarrow$ $K[-a-1] .(n)^{p_{n}}$ for each pair $(m, n) \in \mathbf{Z}^{2}$.
(3) Suppose R is a local ring. The minimal complex $\min \left(\operatorname{con}\left(\mu_{\text {. }}\right)\right.$). is decomposable if and only if there are $g \in \operatorname{Aut}_{R}\left(G_{0}\right), f \in \operatorname{Aut}_{R}\left(F_{0}\right)$, integers $p^{(j)}, q^{(j)}(j=1$, $\left.2,0 \leq p^{(j)} \leq p, 0 \leq q^{(j)} \leq q,\left(p^{(j)}, q^{(j)}\right) \neq(0,0),(p, q)\right)$ such that

$$
\left\{\begin{array}{l}
p^{(1)}+p^{(2)}=p, \quad q^{(1)}+q^{(2)}=q \tag{2.5.2}\\
g h_{l} f \equiv\left[\begin{array}{cc}
h_{l}^{(1)} & 0 \\
0 & h_{l}^{(2)}
\end{array}\right] \quad(\bmod \mathfrak{m}) \\
\text { with } \quad h_{l}^{(j)} \in \operatorname{Hom}_{R}\left(R^{q^{(j)}}, R^{p^{(j)}}\right) \quad \text { for all } l(1 \leq l \leq s)
\end{array}\right.
$$

where the linear maps are identified with matrices.
(4) Suppose R is graded, $\operatorname{deg}\left(v_{l}\right)=d$ for all $l(1 \leq l \leq s), F .=K .(d)^{q}$ and $G .=K .{ }^{p}$. Then the above (3) holds, with " $\equiv(\bmod m) ", \operatorname{Aut}_{R}\left(G_{0}\right), \operatorname{Aut}_{R}\left(F_{0}\right)$ and $\operatorname{Hom}_{R}\left(R^{t}, R^{t^{\prime}}\right)$ being replaced by " $=$ ", $G L(p, k), G L(q, k)$ and $\operatorname{Hom}_{k}\left(k^{t}, k^{\left.t^{\prime}\right)}\right.$ respectively.

Proof. Put $P .=\min \left(\operatorname{con}\left(\mu_{.}\right).\right), P^{\prime} .=\min \left(\operatorname{con}\left(\mu^{\prime}\right)_{)}\right)$. .
(1) By (1.9), we have $P . \cong P^{\prime}$. if and only if there are chain automorphisms $\varphi . \in \operatorname{Aut}_{R}(F),. \psi . \in \operatorname{Aut}_{R}(G$.$) satisfying \mu^{\prime} . \varphi . \simeq \psi[-a-1] . \mu_{.} . \quad$ On the other hand, for such $\varphi ., \psi$. there are $f \in \operatorname{Aut}_{R}\left(F_{0}\right), g \in \operatorname{Aut}_{R}\left(G_{0}\right)$ with the property $\varphi . \simeq i d_{K .} \otimes$ $f^{-1}, \psi . \simeq i d_{K .} \otimes g$ by (3) of (2.1). Therefore $P . \cong P^{\prime}$. if and only if $\mu^{\prime} .\left(i d_{K}, \otimes f^{-1}\right) \simeq$ $\left(i d_{K[-a-1] .} \otimes g\right) \mu$. for some $f \in \operatorname{Aut}_{R}\left(F_{0}\right), g \in \operatorname{Aut}_{R}\left(G_{0}\right)$. Moreover this condition is equivalent to

$$
\begin{equation*}
\mu_{a+1}^{\prime}\left(i d_{K_{a+1}} \otimes f^{-1}\right) \equiv\left(i d_{K_{0}} \otimes g\right) \mu_{a+1} \quad(\bmod \mathfrak{m}), \tag{2.5.3}
\end{equation*}
$$

by (1) of (2.1). Since $\mu_{a+1}^{\prime}\left(i d_{K_{a+1}} \otimes f^{-1}\right)=\sum_{l=1}^{s} v_{l}^{*} \otimes h_{l}^{\prime} f^{-1}, \quad\left(i d_{K_{0}} \otimes g\right) \mu_{a+1}=$ $\left(i d_{R} \otimes g\right) \mu_{a+1}=\sum_{l=1}^{s} v_{l}^{*} \otimes g h_{l}$, one sees that (2.5.1) and (2.5.3) are the same.
(2) Since $K_{a+1}(m)^{q_{m}} \cong R(m-d)^{s q_{m}}$, our assertion is an immediate consequence of (2.3) and (2) of (1.8).
(3) Suppose $P . \cong L^{(1)} . \oplus L^{(2)}$. with minimal complexes $L^{(j)} .(j=1,2)$. Then each $L^{(j)}$. satisfies $L_{i}^{(j)}=0$ for all $i<0, H_{i}\left(L^{(j)}.\right)=0$ for $i \neq 0, a$ and $m H_{i}\left(L^{(j)}.\right)=0$ for $i=0, a$, since P. has the same property. There are therefore chain maps $\mu^{(j)}: K .^{q^{(j)}} \rightarrow K[-a-1] \cdot{ }^{p^{(j)}}(j=1,2)$ for suitable nonnegative integers $p^{(j)}, q^{(j)}$ such that $L^{(j)} .=\min \left(\operatorname{con}\left(\mu^{(j)}.\right).\right)$. by (1.6), (1.7). Thus

$$
\begin{equation*}
\left.P . \cong \min \left(\operatorname{con}\left(\mu^{(1)} . \oplus \mu^{(2)}\right)\right) .\right) \tag{2.5.4}
\end{equation*}
$$

by (2) of (1.8). We see $p^{(1)}+p^{(2)}=p, q^{(1)}+q^{(2)}=q$ by (1) of (1.8), so that the "only if" part of our assertion follows from (1). Conversely, if (2.5.2) holds, there are chain maps $\mu^{(j)} .(j=1,2)$ as above defined by the condition $\mu_{a+1}^{(j)}=$ $\sum_{l=1}^{s} v_{l}^{*} \otimes h_{l}^{(j)}$ by (2) of (2.1), for which we have (2.5.4) by (1). This together with (2) of (1.8) shows the "if" part.
(4) As stated at the beginning of section one, all homomorphisms are homogeneous of degree zero in the case R is graded.

When R is a regular local ring (resp. a polynomial ring over k), the complex K. is the Koszul complex of R with respect to a regular system of parameters (resp. indeterminates over k), so the chain map μ. can be expressed by an explicit formula.
(2.6) Lemma. Assume R is a regular local ring of dimension r with $\mathfrak{m}=$ $\left(x_{1}, \ldots, x_{r}\right)$ or a polynomial ring $k\left[x_{1}, \ldots, x_{r}\right]$ with $\operatorname{deg}\left(x_{j}\right)=1(1 \leq j \leq r)$. Let $\left\{u_{1}, \ldots, u_{r}\right\}$ be a free basis of K_{1} such that $\partial_{1}^{K}\left(u_{j}\right)=x_{j} \quad(1 \leq j \leq r), \quad \Gamma_{l}=$ $\left\{\left(j_{1}, \ldots, j_{l}\right) \mid 1 \leq j_{1}<\cdots<j_{l} \leq r\right\}$ for $0 \leq l \leq r$ and $u_{I}=u_{j_{1}} \wedge \cdots \wedge u_{j_{1}}$ for $I=$ $\left(j_{1}, \ldots, j_{l}\right) \in \Gamma_{l}$, where $\Gamma_{0}=\{\varnothing\}, u_{\varnothing}=1$. Given an R-linear map $h=\sum_{I \in \Gamma_{c}} u_{I}^{*} \otimes$ $h_{I} \in \operatorname{Hom}_{R}\left(F_{c}, G_{0}\right)$ with $1 \leq c \leq r, h_{I} \in \operatorname{Hom}_{R}\left(F_{0}, G_{0}\right)\left(\operatorname{Hom}_{R}\left(F_{0}, G_{0}\right)_{c}\right.$ in the case $\left.R=k\left[x_{1}, \ldots, x_{r}\right]\right)$, we set

$$
\begin{aligned}
\mu_{i} & =0 \quad \text { for } i<c, \\
\mu_{c} & =h, \\
\mu_{c+l} & =\sum_{I \in I_{c+1}} \sum_{\substack{\in \in \Gamma_{i} \\
J \in I}} \operatorname{sgn}\binom{I}{J, I \backslash J} u_{I}^{*} \otimes u_{J} \otimes h_{I \backslash J} \quad \text { for } l \geq 1 .
\end{aligned}
$$

Then $\mu_{.} F_{.} \rightarrow G[-c]$. is a chain map satisfying $\mu_{c}=h$.
Proof. Note that $\partial_{.}^{F}=\partial_{.}^{K} \otimes i d_{F_{0}}, \quad \partial_{\bullet}^{G}=\partial_{0}^{K} \otimes i d_{G_{0}}, \quad \partial_{i}^{G[-c]}=\partial_{i-c}^{G} . \quad$ Clearly $\partial_{i}^{G[-c]} \mu_{i}=0=\mu_{i-1} \partial_{i}^{F}$ for $i \leq c$. Suppose $l \geq 0$. First

$$
\left(\partial_{l+1}^{K} \otimes i d_{G_{0}}\right) \mu_{c+l+1}=\sum_{I \in \Gamma_{\Gamma_{c+1+1}}} \sum_{\substack{\Gamma_{i+1} \\ J \subset I^{\prime}}} \operatorname{sgn}\binom{I}{J, I \backslash J} u_{I}^{*} \otimes\left(\partial_{l+1}^{K}\left(u_{J}\right)\right) \otimes h_{I \backslash J}
$$

On the other hand,

$$
\begin{aligned}
& \mu_{c+l}\left(\partial_{c+l+1}^{K} \otimes i d_{F_{0}}\right) \\
& \quad=\mu_{c+l}\left(\sum_{\substack{j \in I \\
I \in I_{c+1+1}}} \operatorname{sgn}\binom{I}{j, I \backslash j} u_{I}^{*} \otimes\left(x_{j} u_{I \backslash j}\right) \otimes i d_{F_{0}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{\substack{j \in I \\
I \in I_{c+l+1}}} \sum_{\substack{J \in I \in \Gamma_{i}}} \operatorname{sgn}\binom{I}{j, I \backslash j} \operatorname{sgn}\binom{I \backslash j}{J, I \backslash(j, J)} u_{I}^{*} \otimes\left(x_{j} u_{J}\right) \otimes h_{I \backslash(j, J)} \\
& =\sum_{\substack{j \in I \\
I \in \epsilon_{c+1-1}}} \sum_{\substack{J \in I_{1} \\
J \subset I \backslash j}} \operatorname{sgn}\binom{I}{(j, J), I \backslash(j, J)} u_{I}^{*} \otimes\left(x_{j} u_{J}\right) \otimes h_{I \backslash(j, J)} \\
& =\sum_{I \in I_{c+l+1}} \sum_{\substack{ \\
J \in I_{I+1} \\
J \subseteq I}} \sum_{j \in J} \operatorname{sgn}\binom{I}{J, I \backslash J} u_{I}^{*} \otimes\left(\operatorname{sgn}\binom{J}{j, J \backslash j}\left(x_{j} u_{J \backslash j}\right)\right) \otimes h_{I \backslash J} \\
& =\sum_{I \in \Gamma_{c+l+1}} \sum_{\substack{\boldsymbol{J} \in \bar{K}_{I+1} \\
J \in I}} \operatorname{sgn}\binom{I}{J, I \backslash J} u_{I}^{*} \otimes\left(\partial_{l+1}^{K}\left(u_{J}\right)\right) \otimes h_{I \backslash J},
\end{aligned}
$$

therefore $\partial_{i}^{G[-c]} \mu_{i}=\mu_{i-1} \partial_{i}^{F}$ for $i>c$ also.
For the rest of this section we confine ourselves to the case R is graded. We will denote the set $\left\{t \mid H_{i}\left(L_{.}\right)_{t} \neq 0\right\}$ by $T_{i}\left(L_{.}\right)(i \in \mathbf{Z})$ for each $L . \in \mathscr{C}(R)$. Given integers $i_{1}, \ldots, i_{l}, t_{1}, \ldots, t_{l}$ with $i_{1}<\cdots<i_{l}, l \geq 1$, let $C_{t_{1}, \ldots, t_{l}}^{i_{1}, \ldots, i_{l}}$ denote the set of minimal complexes $L . \in \mathscr{C} m(R)$ satisfying the condition

$$
\left\{\begin{array}{lc}
H_{i}\left(L_{.}\right)=0 & \text { for } i \neq i_{1}, \ldots, i_{l} \\
m H_{i}(L .)=0 & \text { for } i=i_{1}, \ldots, i_{l} \\
T_{i_{j}}\left(L_{.}\right) \subset\left\{t_{j}\right\} & \text { for all } j(1 \leq j \leq l)
\end{array}\right.
$$

(2.7) Corollary. Assume that R is a polynomial ring $k\left[x_{1}, \ldots, x_{r}\right]$ with $\operatorname{deg}\left(x_{j}\right)=1(1 \leq j \leq r, r \geq 2)$ and that $0<a \leq r-1$. Let $L . \in \mathscr{C} m(R)$ be an indecomposable minimal complex different from zero satisfying $L_{i}=0$ for $i<0$, $H_{i}\left(L_{.}\right)=0$ for $i \neq 0, a, m H_{i}\left(L_{.}\right)=0$ for $i=0, a$. Then $L_{\dot{r}} \in C_{-m}^{0}, L_{r} \cong R(m-r)$ for some $m \in \mathbf{Z}$ or $L . \in C_{-m,-m+a+1}^{0, a}, \quad L_{r} \cong R(m-r-1)^{\left(r_{-a}^{r}\right)^{p}}$ for some $m \in \mathbf{Z}$, $p \geq 1$.

Proof. If $H_{a}\left(L_{.}\right)=0\left(\right.$ resp. $\left.H_{0}\left(L_{.}\right)=0\right)$, the complex L. coincides with $K .(m)$ (resp. $K[-a] .(m-a-1)$) for some $m \in \mathbf{Z}$, since L. is indecomposable by hypothesis. Hence our assertion in that simple case. Suppose that neither of $H_{0}\left(L_{\text {. }}\right)$ and $H_{a}\left(L_{.}\right)$is zero. By (1.6) and (2) of (2.5), there are integers $m, p, q(p \geq 1$, $q \geq 1)$ and a chain map $\mu_{:}: K .(m)^{q} \rightarrow K[-a-1] .(m-a-1)^{p}$ such that $L . \cong$ $\min \left(\operatorname{con}\left(\mu_{\mathrm{o}}\right).\right)$., therefore $L_{.} \in C_{-m,-m+a+1}^{0, a}$. Let $h_{I} \in \operatorname{Hom}_{R}\left(R(m)^{q}, R(m-a-1)^{p}\right)_{a+1}=$ $\operatorname{Hom}_{k}\left(k^{q}, k^{p}\right)\left(I \in \Gamma_{a+1}\right)$ be the linear maps determined by the condition $\mu_{a+1}=$ $\sum_{I \in \Gamma_{a+1}} u_{I}^{*} \otimes h_{I}$. Then

$$
\mu_{r}=\sum_{J \in \Gamma_{r-a-1}} \operatorname{sgn}\binom{(1, \ldots, r)}{J,(1, \ldots, r) \backslash J}\left(u_{1} \wedge \cdots \wedge u_{r}\right)^{*} \otimes u_{J} \otimes h_{(1, \ldots, r) \backslash J}
$$

by (2.6). Since $\left\{h_{(1, \ldots, r) \backslash \backslash} \mid J \in \Gamma_{r-a-1}\right\}=\left\{h_{I} \mid I \in \Gamma_{a+1}\right\}$, the indecomposability of L. implies that $\operatorname{rank}_{k}\left(\mu_{r} \otimes k\right)=q$ by (4) of (2.5). In other words,

$$
\operatorname{rank}_{k}\left(\left.\partial_{r}^{\operatorname{con}(\mu .)} \otimes k\right|_{K_{r}(m) q}\right)=q,
$$

so that $\operatorname{se}\left(\operatorname{con}\left(\mu_{\mathrm{o}}\right)\right)_{r} \cong R(m-r)^{q}, L_{r} \cong \min \left(\operatorname{con}\left(\mu_{\mathrm{o}}\right)_{.}\right)_{r} \cong K[-a]_{r}(m-a-1)^{p} \cong$ $R(m-r-1)^{\left(r_{-a}^{r}\right)^{p}}$ as desired.
(2.8) Lemma. Let R be as in (2.6), F. be as above and $L . \in \mathscr{C} m(R)$. For each linear map $\tilde{h}: F_{r} \rightarrow L_{r}$, there exists a chain map $\mu_{:}: F_{.} \rightarrow L$. such that $\mu_{r}=\tilde{h}$. In particular, there is a chain automorphism $\lambda_{.} \in \operatorname{Aut}_{R}(F . \oplus L$.) such that

$$
\lambda_{r}=\left[\begin{array}{cc}
i d_{F_{r}} & 0 \\
\tilde{h} & i d_{L_{r}}
\end{array}\right] .
$$

Proof. Passing to the duals, set $F_{i}^{\prime}=F^{* r-i}, L_{i}^{\prime}=L^{* r-i}$ for $i \in \mathbf{Z}$ and let F^{\prime}., L^{\prime}. be the complexes in $\mathscr{C} m(R)$ whose differentials are induced naturally from those of $F_{\text {. }}, L_{\text {. respectively. Since }} F^{\prime}$. has the same structure as $G_{\text {. }}$, there is a chain map $\mu^{\prime}: . L^{\prime} . \rightarrow F^{\prime}$. such that $\mu_{0}^{\prime}=\tilde{h}^{*}$ by (2) of (2.1). It is enough to put $\mu_{i}=\mu_{r-i}^{*}: F_{i} \rightarrow L_{i}$ for all $i \in \mathbf{Z}$.
(2.9) Proposition. Let R be as in (2.7) with $r \geq 3$ and a be an integer satisfying $0<a<r-1$. For every $L . \in \mathscr{C} m(R)$ having the property $L_{i}=0$ for $i<0, H_{i}\left(L_{.}\right)=0$ for $i \neq 0, a, r-1, \mathfrak{m} H_{i}\left(L_{.}\right)=0$ for $i=0, a, r-1$, there are $L^{\prime(m)}, \in C_{-m,-m+r}^{0, r-1}, L^{\prime \prime(m)} . \in C_{-m,-m+a+1,-m+r+1}^{0, a, r-1}(m \in \mathbf{Z})$, which are zero for all but a finite number of m, such that

$$
L . \cong\left(\bigoplus_{m} L^{\prime(m)} \cdot\right) \oplus\left(\bigoplus_{m} L^{\prime \prime(m)} \cdot\right)
$$

Proof. By (1.5), there is a chain map $\mu_{.}: \sigma_{r-1}\left(L_{.}\right), \rightarrow G[-r]$. for suitable p_{n} $(n \in \mathbf{Z})$ such that $L_{.}=\min \left(\operatorname{con}\left(\mu_{0}\right).\right)$. . Since $\sigma_{r-1}\left(L_{.}\right)_{i}=0$ for $i<0, H_{i}\left(\sigma_{r-1}\left(L_{.}\right).\right)=$ 0 for $i \neq 0, a, \mathfrak{m} H_{i}\left(\sigma_{r-1}(L)..\right)=0$ for $i=0, a$, it follows from (2.7) that

$$
\sigma_{r-1}(L .) . \cong\left(\bigoplus_{m} P^{\prime(m)} .\right) \oplus\left(\bigoplus_{m} P^{\prime \prime(m)} .\right)
$$

for some minimal complexes $P^{\prime(m)}, \in C_{-m}^{0}, P^{\prime \prime(m)}, \in C_{-m,-m+a+1}^{0, a}(m \in \mathbf{Z})$, which are zero for all but a finite number of m, satisfying $P_{r}^{\prime(m)} \cong R(m-r)^{l_{m}^{\prime}}, P_{r}^{\prime \prime(m)} \cong$ $R(m-r-1)^{\left(r_{-a}^{r}\right) l_{m}^{\prime \prime}}\left(l_{m}^{\prime}, l_{m}^{\prime \prime} \geq 0\right)$. Put $P^{(n)} .=P^{\prime(n+r)} . \oplus P^{\prime \prime(n+r+1)}$. and let $\pi^{(n)}$. be the projection as in (2.3) with $c=r(n \in \mathbf{Z})$. We have $\mu_{.} \simeq \oplus_{n} \nu^{(n)}$. with $v^{(n)}::=$ $\pi^{(n)} .\left.\mu_{.}\right|_{p_{(n)}}$ by that lemma, so that

$$
\begin{equation*}
L . \cong \bigoplus_{n} \min \left(\operatorname{con}\left(v^{(n)}\right) .\right) . \tag{2.9.1}
\end{equation*}
$$

Fix n and let $P .=P^{(n)} ., P^{\prime} .=P^{\prime(n+r)}, P^{\prime \prime} .=P^{\prime \prime(n+r+1)} ., v_{0}=v^{(n)} ., p=p_{n}$. Obviously there is an automorphism $g \in \operatorname{Aut}_{R}\left(R(n)^{p}\right)=G L(p, k)$ such that

$$
\left.g v_{r}\right|_{P_{r}^{\prime \prime}}=\left[\begin{array}{c}
0 \\
h^{\prime \prime}
\end{array}\right]
$$

with a surjective $h^{\prime \prime} \in \operatorname{Hom}_{R}\left(P_{r}^{\prime \prime}, R(n)^{p^{\prime \prime}}\right)$ for some $p^{\prime \prime}\left(1 \leq p^{\prime \prime} \leq p\right)$. Write

$$
\left.g v_{r}\right|_{P_{r}^{\prime}}=\left[\begin{array}{c}
h^{\prime} \\
h^{\prime \prime \prime}
\end{array}\right]
$$

with $\quad h^{\prime} \in \operatorname{Hom}_{R}\left(P_{r}^{\prime}, R(n)^{p^{\prime}}\right), \quad h^{\prime \prime \prime} \in \operatorname{Hom}_{R}\left(P_{r}^{\prime}, R(n)^{p^{\prime \prime}}\right) \quad\left(p^{\prime}=p-p^{\prime \prime}\right)$ and let $\tilde{h} \in$ $\operatorname{Hom}_{R}\left(P_{r}^{\prime}, P_{r}^{\prime \prime}\right)$ be a linear map such that $h^{\prime \prime \prime}+h^{\prime \prime} \tilde{h}=0$. Then (2.8) guarantees the existence of a chain automorphism $\lambda_{.} \in \operatorname{Aut}_{R}\left(P_{.}\right)$such that $\lambda_{r}=\left[\begin{array}{cc}i d_{P_{r}^{\prime}} & 0 \\ \tilde{h} & i d_{P_{r}^{\prime \prime}}\end{array}\right]$, for which we have $g v_{r} \lambda_{r}=h^{\prime} \oplus h^{\prime \prime}: P_{r}^{\prime} \oplus P_{r}^{\prime \prime} \rightarrow R(n)^{p^{\prime}} \oplus R(n)^{p^{\prime \prime}}$. Let $v^{\prime}: P^{\prime} . \rightarrow$ $K[-r] .(n)^{p^{\prime}}, v^{\prime \prime}: P^{\prime \prime} . \rightarrow K[-r] .(n)^{p^{\prime \prime}}$ be the chain maps satisfying $v_{r}^{\prime}=h^{\prime}, v_{r}^{\prime \prime}=h^{\prime \prime}$. Since $\left(i d_{K[-r]} . \otimes g\right) v_{.} \lambda . \simeq v^{\prime} . \oplus v^{\prime \prime}$. by (1) of (2.1), one finds that
(2.9.2) $\min \left(\operatorname{con}\left(v^{(n)}.\right).\right) .=\min \left(\operatorname{con}\left(v_{0}\right)\right) . \cong \min \left(\operatorname{con}\left(v^{\prime}.\right)\right) . \oplus \min \left(\operatorname{con}\left(v^{\prime \prime} .\right)\right)_{)}$.
by (1.9) and moreover that

$$
\left\{\begin{array}{l}
\min \left(\operatorname{con}\left(v^{\prime}\right) .\right) . \in C_{-(n+r),-(n+r)+r}^{0, r-1} \tag{2.9.3}\\
\left.\min \left(\operatorname{con}\left(v^{\prime \prime} .\right)\right) .\right) . \in C_{-(n+r+1),-(n+r+1)+a+1,-(n+r+1)+r+1}^{0 . a,-1}
\end{array}\right.
$$

This holds for all $n \in \mathbf{Z}$. Our assertion therefore follows from (2.9.1)-(2.9.3).
The above (2.7) and (2.9) are special results. Unlike the cases treated there, in general it cannot be expected that every indecomposable minimal complex $L . \in \mathscr{C} m(R)$ satisfying $L_{i}=0(i<0), H_{i}\left(L_{.}\right)=0\left(i \neq i_{1}, \ldots, i_{l}\right), \quad m H_{i}\left(L_{.}\right)=0(i=$ $\left.i_{1}, \ldots, i_{l}\right)$ is contained in $C_{t_{1}, \ldots, t_{1}}^{i_{1}, \ldots, i_{1}}$ for suitable t_{1}, \ldots, t_{l}, even though R is a polynomial ring (see (2.12) below). The following proposition gives a general formulation. For a set $T \subset \mathbf{Z}$ and an integer n, let $T+n$ denote the set $\{t+n \mid t \in T\}$.
(2.10) Proposition. Assume that R is graded and that K_{i} is the direct sum of a finite number of copies of $R(-i)$ for every $i \geq 0$, namely, the residue field k has a linear free resolution over R. Let $L . \in \mathscr{C} m(R)$ be a minimal complex satisfying $a:=\alpha\left(L_{.}\right)<\infty, L_{i}=0$ for $i<0$, and $\mathfrak{m} H_{i}\left(L_{.}\right)=0$ for $0 \leq i \leq a$. If there are subsets $T_{i}^{(j)} \subset T_{i}(L).(j=1,2,0 \leq i \leq a)$ such that

$$
\begin{align*}
& T_{i}^{(1)} \cup T_{i}^{(2)}=T_{i}(L .), \quad T_{i}^{(1)} \cap T_{i}^{(2)}=\varnothing \quad \text { for all } i, \tag{2.10.1}\\
& \left\{\begin{array}{l}
\left(T_{i}^{(1)}+\left(i^{\prime}-i+1\right)\right) \cap T_{i^{\prime}}^{(2)}=\varnothing, \quad\left(T_{i}^{(2)}+\left(i^{\prime}-i+1\right)\right) \cap T_{i^{\prime}}^{(1)}=\varnothing \\
\text { for all pairs } i, i^{\prime} \text { with } 0 \leq i<i^{\prime} \leq a,
\end{array}\right. \tag{2.10.2}
\end{align*}
$$

then $L \cong \cong L^{(1)} . \oplus L^{(2)}$. with minimal complexes $L^{(j)}, \in \mathscr{C} m(R)(j=1,2)$ fulfiling

$$
\begin{equation*}
T_{i}\left(L^{(j)} .\right)=T_{i}^{(j)} \quad(j=1,2,0 \leq i \leq a) \tag{2.10.3}
\end{equation*}
$$

Moreover

$$
\begin{equation*}
L_{i^{\prime}}^{(j)} \cong \bigoplus_{i=0}^{a} \bigoplus_{t \in T_{i}^{\prime \prime}} R\left(-t-i^{\prime}+i\right)^{l^{(i, i)}, \quad(j=1,2)} \tag{2.10.4}
\end{equation*}
$$

for all $i^{\prime} \geq a$, where $l_{i, i^{\prime}, t}^{(j)}$ are suitable nonnegative integers.
Proof. In the case $a=0$, one has $L \cong G$. with suitable $p_{n}(n \in \mathbf{Z})$, which is nothing but our assertion. Suppose $a>0$ and that our assertion is true for smaller values of a. Let $\mu_{\text {: }} \sigma_{a}(L),. \rightarrow G[-a-1]$. be the chain map satisfying $L . \cong \min \left(\operatorname{con} \mu_{\text {. }}\right)$.). (see (1.5), (1.7)). Observe first that $G . \cong G^{(1)} \oplus G^{(2)}$. with

$$
\begin{equation*}
G^{(j)} \cdot=\bigoplus_{-n \in T_{a}^{U}} K .(n)^{p_{n}} \tag{2.10.5}
\end{equation*}
$$

since $H_{0}\left(G_{.}\right) \cong H_{a}\left(L_{\text {. }}\right)$ by (1.4) and $T_{a}^{(1)} \cup T_{a}^{(2)}=T_{a}\left(L_{.}\right), T_{a}^{(1)} \cap T_{a}^{(2)}=\varnothing$ by (2.10.1). Besides, since $\alpha\left(\sigma_{a}\left(L_{.}\right).\right)<a, T_{i}\left(\sigma_{a}\left(L_{.}\right).\right)=T_{i}\left(L_{.}\right)$for $0 \leq i<a$ by (1.4), there are $P^{(j)}, \in \mathscr{C} m(R)(j=1,2)$ with

$$
\begin{equation*}
T_{i}\left(P^{(j)} .\right)=T_{i}^{(j)} \quad(j=1,2,0 \leq i<a) \tag{2.10.6}
\end{equation*}
$$

such that $\sigma_{a}(L.) \cong P^{(1)} \oplus P^{(2)}$. by the induction hypothesis. Here we may assume

$$
\begin{equation*}
P_{i^{\prime}}^{(j)} \cong \bigoplus_{i=0}^{a-1} \bigoplus_{t \in T_{i}^{(j)}} R\left(-t-i^{\prime}+i\right)^{i^{(i)}, i, i} \quad\left(j=1,2, i^{\prime} \geq a-1\right) \tag{2.10.7}
\end{equation*}
$$

for suitable $\tilde{l}_{i, i, t}^{(j)} \geq 0$. Denote the projection from $G[-a-1]$. to $G^{(j)}[-a-1]$. by $\bar{\omega}^{(j)}$. for each $j=1,2$. The conditions (2.10.2), (2.10.5), (2.10.7) imply that $\left.\bar{\omega}_{a+1}^{(j)} \mu_{a+1}\right|_{P_{a+1}^{(\prime)}} \equiv 0(\bmod \mathfrak{m})$ for $j \neq j^{\prime}$, therefore $L . \cong L^{(1)} . \oplus L^{(2)}$. with

$$
\begin{equation*}
L^{(j)} .=\min \left(\operatorname{con}\left(\bar{\omega}^{(j)} \cdot \mu .\left.\right|_{p(j)}\right) .\right) . \quad(j=1,2) \tag{2.10.8}
\end{equation*}
$$

by (1) of (2.1), (2) of (1.8). The properties (2.10.3) and (2.10.4) follow from (2.10.5)-(2.10.8) immediately.
(2.11) Lemma. Suppose R is graded and let $\mu_{:}: F_{.} \rightarrow G[-c]$. be a chain map such that μ_{i} is a matrix with entries in k for every $i \in \mathbf{Z}$, where $F_{\text {., }} G$. are the minimal complexes defined before and c an integer. Given nonsingular matrices $f \in \operatorname{Aut}_{R}\left(F_{0}\right), g \in \operatorname{Aut}_{R}\left(G_{0}\right)$ with entries in k and a homomorphism $v_{.} \in$ $\operatorname{hom}_{R}\left(F_{.}, G[-c+1].\right)$, the map $\theta\left(\psi[-c] ., \varphi_{.}, v_{.}\right)$, with $\varphi .=i d_{K .} \otimes f, \psi .=i d_{K .} \otimes g$ is a chain automorphism of $L_{.}:=\operatorname{con}\left(\mu_{0}\right)$. if and only if $\mu_{c} \varphi_{c}=\psi_{0} \mu_{c}$ and ${ }^{-} \nu_{\cdot} \in$ $\operatorname{Hom}_{R}(F ., G[-c+1]$. $)$.

Proof. Note first that the four conditions $\theta(\psi[-c] ., \varphi ., 0) . \in \operatorname{Aut}_{\boldsymbol{R}}(L),. \mu . \varphi .=$ $\psi[-c] . \mu_{.}, \mu_{.} \varphi_{.} \simeq \psi[-c] . \mu_{.}$and $\mu_{c} \varphi_{c}=\psi_{0} \mu_{c}$ are equivalent by hypothesis and (1) of (2.1). Moreover, $\mu_{.} \varphi_{.} \simeq \psi[-c] . \mu_{\text {. }}$ if $\theta\left(\psi[-c] ., \varphi_{.}, v_{.}\right), \in \operatorname{Aut}_{R}\left(L_{.}\right)$. Our assertion therefore follows from (2) of (1.10).
(2.12) Example. Assume $R=k\left[x_{1}, \ldots, x_{r}\right]$ with $r \geq 4, \operatorname{deg}\left(x_{j}\right)=1(1 \leq j \leq r)$. Let $h \in \operatorname{Hom}_{R}\left(K_{2}, K_{0}(-2)\right)_{0}$ be an R-linear map and $\zeta^{\prime}:: K . \rightarrow K[-2] .(-2)$ the chain map defined by the formula in (2.6) with $c=2, \zeta_{2}^{\prime}=h$. Let further d be a positive integer, $F .=\oplus_{m=1}^{d} K .(m), \zeta_{0}=\underbrace{\zeta^{\prime} . \oplus \cdots \oplus \zeta^{\prime}}_{d \text { times }}: F . \rightarrow F[-2] .(-2), L^{\prime} .=$
$\operatorname{con}\left(\zeta^{\prime}.\right), L_{.}=\operatorname{con}(\zeta.) . \cong \bigoplus_{m=1}^{d} L^{\prime} .(m) . \quad$ Take another chain map $\mu .: L . \rightarrow G[-3]$. with $G .=\bigoplus_{m=1}^{d+1} K .(m-4)$ which satisfies, for reasons of degree,

$$
\left.\mu_{3}\right|_{L_{3}^{\prime}(m)}=\left[\begin{array}{cc}
0 & 0 \\
\vdots & \vdots \\
0 & 0 \\
w^{(m)} & 0 \\
0 & w^{\prime(m)} \\
0 & 0 \\
\vdots & \vdots \\
0 & 0
\end{array}\right] \quad \text { for each } m(1 \leq m \leq d)
$$

where the upper $m-1$ and the lower $d-m$ rows are zero, $w^{(m)} \in$ $\operatorname{Hom}_{R}\left(K[-1]_{3}(m-2), K_{0}(m-4)\right), w^{(m)} \zeta_{4}^{\prime} \equiv 0(\bmod m)($ see (2) of $(2.1)), w^{\prime(m)} \in$ $\operatorname{Hom}_{R}\left(K_{3}(m), K_{0}(m-3)\right)$ and

$$
L_{3}^{\prime}(m)=K[-1]_{3}(m-2) \oplus K_{3}(m) \cong R(m-4)^{\binom{r}{2}} \oplus R(m-3)^{\binom{r}{3}} .
$$

Put $P .=\min \left(\operatorname{con}\left(\mu_{\text {. }}\right).\right)$. . We have

$$
\begin{aligned}
& T_{0}(P .)=\{t \mid-d \leq t \leq-1\}, \quad T_{1}(P .)=\{t \mid 2-d \leq t \leq 1\} \\
& T_{2}(P .)=\{t \mid 3-d \leq t \leq 3\} \quad \text { and } \quad H_{i}(P .)=0 \quad \text { for } i \neq 0,1,2 .
\end{aligned}
$$

(1) If $h=\left(u_{1} \wedge u_{2}\right)^{*} \otimes 1$ and $w^{(m)}=\left(u_{1} \wedge u_{2}\right)^{*} \otimes 1, w^{\prime(m)}=\left(u_{1} \wedge u_{3} \wedge u_{4}\right)^{*} \otimes 1$ for all $m(1 \leq m \leq d)$, then P. is indecomposable.
(2) If $r=4$ and h is generic, then

$$
P . \cong\left(\oplus_{m=1}^{d} P^{(m)} \cdot\right) \oplus K[-2] .(d-3), \quad 0 \neq P^{(m)} . \in C_{-m,-m+2,-m+4}^{0,1,2}
$$

Proof. Let us prove (2) first. Write $h=\sum_{1 \leq i<j \leq 4}\left(u_{i} \wedge u_{j}\right)^{*} \otimes h_{i j}$ with $h_{i j} \in k$. Then, with respect to the bases $u_{2} \wedge u_{3} \wedge u_{4},-u_{1} \wedge u_{3} \wedge u_{4}, u_{1} \wedge u_{2} \wedge u_{4},-u_{1} \wedge$ $u_{2} \wedge u_{3}$ of K_{3} and $u_{1}, u_{2}, u_{3}, u_{4}$ of $K[-2]_{3}(-2)$, the expression of ζ_{3}^{\prime} is the alternating matrix

$$
\left[\begin{array}{cccc}
0 & -h_{34} & h_{24} & -h_{23} \\
h_{34} & 0 & -h_{14} & h_{13} \\
-h_{24} & h_{14} & 0 & -h_{12} \\
h_{23} & -h_{13} & h_{12} & 0
\end{array}\right]
$$

by (2.6). For a generic h, the map ζ_{3}^{\prime} is therefore an isomorphism, so $\min \left(L^{\prime}\right)_{3}$ must be the direct sum of some copies of $R(-4)$. Our assertion follows from this and (2.3).

Next we prove (1). Suppose P. is decomposable, say

$$
P . \cong Q^{(1)} . \oplus Q^{(2)} ., \quad 0 \neq Q^{(j)} . \in \mathscr{C} m(R) \quad(j=1,2)
$$

Since $\min \left(L_{.}\right) \cong \sigma_{2}\left(P_{.}\right) \cong \sigma_{2}\left(Q^{(1)}\right) . \oplus \sigma_{2}\left(Q^{(2)}\right)$. by (1) of (1.8), it is not hard to verify using (1.9) that

$$
\sigma_{2}\left(Q^{(j)} .\right)=\bigoplus_{-m \in T_{0}\left(Q^{(j)} \cdot\right)} \min \left(L^{\prime}\right) \cdot(m) \quad(j=1,2)
$$

Here we may assume without any loss of generality that $d^{\prime}:=-\inf \left(T_{0}\left(Q^{(1)}\right)\right)$ satisfies $1 \leq d^{\prime}<d$, on account of the conditions $Q^{(j)} . \neq 0(j=1,2)$ and $\operatorname{dim}_{k}\left(H_{0}\left(L_{\text {. }}\right)_{t}\right) \leq 1$ for all $t \in \mathbf{Z}$. Put

$$
G^{(j)} \cdot=\bigoplus_{-(m-4) \in T_{2}\left(Q^{(j)} .\right)} K .(m-4)
$$

and let

$$
\mu^{(j)}:: \underset{-m \in T_{0}\left(Q^{(j)} .\right)}{ } L^{\prime} .(m) \rightarrow G^{(j)}[-3] .
$$

be a chain map satisfying $\min \left(\operatorname{con}\left(\mu^{(j)}.\right).\right) \cong Q^{(j)} .(j=1,2)$. Further, let $\pi^{(m-4)}$.: $G[-3] . \rightarrow K .(m-4)$ be the projection. By the construction of $P_{.}, \operatorname{dim}_{k}\left(H_{2}\left(P_{.}\right)_{t}\right) \leq 1$ for all $t \in \mathbf{Z}$, so $T_{2}\left(Q^{(1)}\right) \cap T_{2}\left(Q^{(2)}.\right)=\varnothing, T_{2}\left(Q^{(1)}.\right) \cup T_{2}\left(Q^{(2)}.\right)=T_{2}(P$.$) and$ $G^{(1)}[-3] . \oplus G^{(2)}[-3] . \cong G[-3]$. . In addition, $\quad-\left(d^{\prime}-3\right) \in T_{2}(P$.$) . It follows$ therefore that

$$
\begin{cases}\left.\pi_{3}^{\left(d^{\prime}-3\right)}\left(\mu_{3}^{(1)} \oplus \mu_{3}^{(2)}\right)\right|_{L_{3}^{\prime}\left(d^{\prime}+1\right)}=0 & \text { if }-\left(d^{\prime}-3\right) \in T_{2}\left(Q^{(1)}\right) \tag{2.12.1}\\ \left.\pi_{3}^{\left(d^{\prime}-3\right)}\left(\mu_{3}^{(1)} \oplus \mu_{3}^{(2)}\right)\right|_{L_{3}^{\prime}\left(d^{\prime}\right)}=0 & \text { if }-\left(d^{\prime}-3\right) \notin T_{2}\left(Q^{(1)} .\right)\end{cases}
$$

To apply (1.9) to the present case, we have to know the structures of $\operatorname{Aut}_{R}\left(L_{.}\right)$, $\mathrm{Aut}_{\mathrm{R}}\left(\mathrm{G}_{\mathrm{o}}\right)$.

Claim 1. For each $\lambda_{.} \in \operatorname{Aut}_{R}(L$.$) , there are f_{m} \in k(1 \leq m \leq d)$ different from zero, chain maps $v^{(l)}: K .(l-1) \rightarrow K[-1] .(l-2) \quad(2 \leq l \leq d)$ and $v . \in$ $\operatorname{hom}_{R}(F ., F[-1] .(-2))$ such that $\lambda_{.} \simeq \theta\left(\varphi[-2] ., \varphi ., v_{.}\right)$, with

$$
\begin{gather*}
\varphi_{.}=i d_{K} . \otimes\left[\begin{array}{ccc}
f_{1} & & 0 \\
& \ddots & \\
0 & & f_{d}
\end{array}\right] \in \operatorname{Aut}_{R}(F .), \\
-_{v}=\left[\begin{array}{ccccc}
0 & 0 & 0 & \cdots & 0 \\
v^{(2)} . & 0 & 0 & \cdots & 0 \\
0 & v^{(3)} & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \cdots & \vdots \\
0 & \cdots & 0 & v^{(d)} & 0
\end{array}\right] . \tag{2.12.2}
\end{gather*}
$$

Proof of Claim 1. By (1.10), (1.11), (2.1) and (2.11) there are maps $\varphi^{(1)} .=i d_{K} . \otimes f^{(1)} \in \operatorname{Aut}_{R}\left(F_{.}\right), \varphi^{(2)} .=i d_{K} . \otimes f^{(2)} \in \operatorname{Aut}_{R}\left(F_{.}(-2)\right)=\operatorname{Aut}_{R}\left(F_{.}\right), v^{\prime} . \in$ $\operatorname{hom}_{R}\left(F_{.}, F[-1] .(-2)\right)$ satisfying $\lambda . \simeq \theta\left(\varphi^{(2)}[-2] ., \quad \varphi^{(1)} ., \quad v^{\prime}.\right) ., \quad \zeta_{2} \varphi_{2}^{(1)}=\varphi_{0}^{(2)} \zeta_{2}$, ${ }^{-} \nu^{\prime}, \in \operatorname{Hom}_{R}(F ., F[-1] .(-2))$, where

$$
f^{(j)}=\left[\begin{array}{ccc}
f_{1}^{(j)} & & 0 \\
& \ddots & \\
0 & & f_{d}^{(j)}
\end{array}\right] \in \operatorname{Aut}_{R}\left(F_{0}\right)
$$

with $\quad 0 \neq f_{m}^{(j)} \in k \quad(j=1,2,1 \leq m \leq d)$. One sees $\zeta_{2}^{\prime} f_{m}^{(1)}=f_{m}^{(2)} \zeta_{2}^{\prime}$ for all m $(1 \leq m \leq d)$, therefore $f_{m}^{(1)}=f_{m}^{(2)}(1 \leq m \leq d)$, namely, $\varphi^{(1)}$. and $\varphi^{(2)}$. coincide with one and the same chain map, which we will denote by φ.. On the other hand, for reasons of degree, there are chain maps $v^{(1)} .(2 \leq l \leq d)$ and $v_{.} \in$ $\operatorname{hom}_{R}(F ., F[-1] .(-2))$ defined by (2.12.2) such that ${ }^{-} v^{\prime} . \simeq{ }^{-} v$. by (1) of (2.1). It follows from (2) of (1.10) that $\theta\left(\varphi[-2] ., \varphi_{.}, v_{.}\right)$, is a chain automorphism which is chain homotopic to λ.

Claim 2. For each $\lambda^{\prime} . \in \operatorname{Aut}_{R}(G$.$) , there are g_{l} \in k(1 \leq l \leq d+1)$ different from zero satisfying

$$
\lambda^{\prime} . \simeq \varphi^{\prime} .=i d_{K} . \otimes\left[\begin{array}{ccc}
g_{1} & & 0 \\
& \ddots & \\
0 & & g_{d+1}
\end{array}\right]
$$

Now let us return to the proof of (1) of (2.12). Let $\varphi_{.}, v_{.}$be as in Claim 1 and φ^{\prime}. be as in Claim 2. Then

$$
\begin{equation*}
\left.\pi_{3}^{\left(d^{\prime}-3\right)} \varphi^{\prime}[-3]_{3} \mu_{3} \theta\left(\varphi[-2] ., \varphi ., v_{.}\right)_{3}\right|_{L_{3}^{\prime}\left(d^{\prime}+1\right)}=\left(g_{d^{\prime}+1} f_{d^{\prime}+1} w^{\left(d^{\prime}+1\right)}, 0\right) \tag{2.12.3}
\end{equation*}
$$

$$
\begin{equation*}
\left.\pi_{3}^{\left(d^{\prime}-3\right)} \varphi^{\prime}[-3]_{3} \mu_{3} \theta\left(\varphi[-2] ., \varphi_{0}, v_{.}\right)_{3}\right|_{L_{3}^{\prime}\left(d^{\prime}\right)}=\left(0, g_{d^{\prime}+1}\left(f_{d^{\prime}} w^{\prime\left(d^{\prime}\right)}-w^{\left(d^{\prime}+1\right)} v_{3}^{\left(d^{\prime}+1\right)}\right)\right) . \tag{2.12.4}
\end{equation*}
$$

When $h=\left(u_{1} \wedge u_{2}\right)^{*} \otimes 1, w^{(m)}=\left(u_{1} \wedge u_{2}\right)^{*} \otimes 1, w^{\prime(m)}=\left(u_{1} \wedge u_{3} \wedge u_{4}\right)^{*} \otimes 1(1 \leq m \leq d)$, we find

$$
\begin{aligned}
E^{\prime} & :=\left(\zeta_{3}^{\prime}\right)^{-1}\left(\mathfrak{m} K[-2]_{3}(-2)\right) \\
& =\left(\bigoplus_{I \in \Gamma} \mathfrak{m} \cdot u_{I}\right) \oplus\left(\bigoplus_{I \in \Gamma_{3} \backslash \Gamma} R \cdot u_{I}\right) \subset K_{3}
\end{aligned}
$$

with $\Gamma=\{(1,2, j) \mid 3 \leq j \leq r\}$ by (2.6), so that $\left.w^{\left(d^{\prime}+1\right)} v_{3}^{\left(d^{\left.\prime^{\prime}+1\right)}\right.}\right|_{E^{\prime}\left(d^{\prime}\right)} \equiv 0(\bmod \mathfrak{m})$ again by (2.6) applied to $v^{\left(d^{\prime}+1\right)}$. Therefore

$$
\begin{equation*}
\left.g_{d^{\prime}+1}\left(f_{d^{\prime}} w^{\prime\left(d^{\prime}\right)}-w^{\left(d^{\prime}+1\right)} v_{3}^{\left(d^{\prime}+1\right)}\right)\right|_{E^{\prime}\left(d^{\prime}\right)} \neq 0 \quad(\bmod \mathfrak{m}) . \tag{2.12.5}
\end{equation*}
$$

Moreover

$$
\begin{equation*}
\left.g_{d^{\prime}+1} f_{d^{\prime}+1} w^{\left(d^{\prime}+1\right)}\right|_{K[-1]_{3}\left(d^{\prime}-1\right)} \not \equiv 0 \quad(\bmod \mathfrak{m}) . \tag{2.12.6}
\end{equation*}
$$

Since $\left(\partial_{3}^{L}\right)^{-1}\left(\mathfrak{m} L_{2}\right)=\oplus_{m=1}^{d}\left(\partial_{3}^{L^{\prime}}\right)^{-1}\left(\mathfrak{m} L_{2}^{\prime}\right)(m),\left(\partial_{3}^{L^{\prime}}\right)^{-1}\left(\mathfrak{m} L_{2}^{\prime}\right)(m)=K[-1]_{3}(m-2) \oplus$ $E^{\prime}(m) \subset L_{3}^{\prime}(m)$, the relations (2.12.1), (2.12.3)-(2.12.6) lead to a contradiction by (1) of (2.1), if $\varphi^{\prime}[-3] . \mu . \theta\left(\varphi[-2] ., \varphi_{.}, v_{.}\right) . \simeq \mu^{(1)} . \oplus \mu^{(2)}$. Thus P. cannot be decomposable by (1.9).

§ 3. Classification of matrices

In order to characterize indecomposable minimal complexes $L . \in \mathscr{C} m(R)$ having the property $L_{i}=0(i<0), H_{i}(L)=.0(i \neq 0, a), \mathfrak{m} H_{i}(L)=.0(i=0, a)$, it is important to analyze the condition stated in (3) of (2.5). In his paper [R], C. M. Ringel dealt with this problem many years ago in a more general setting (see [Ka, pp. 82, 83] also). Here, for the convenience of the reader, we will explain a part of his results necessary for our study.

Let k be a field of arbitrary characteristic, \mathbf{Z}_{0} the set of nonnegative integers and s a positive integer. For each pair $(p, q) \in \mathbf{Z}_{0}^{2}$, let $\operatorname{mat}(p, q)$ denote the set of $p \times q$-matrices with entries in k and $\operatorname{mat}(p, q, s)$ the product of s copies of $\operatorname{mat}(p, q)$ equipped with the natural Zariski topology, where we understand that $\operatorname{mat}(p, q)$ consists of the single element representing the unique k-linear map from 0 to k^{q} or k^{p} to 0 in the case $p=0$ or $q=0$. Two elements $h=\left(h_{l}\right)_{1 \leq l \leq s}$, $h^{\prime}=\left(h_{l}^{\prime}\right)_{1 \leq l \leq s}$ of mat (p, q, s) are, by definition, equivalent if there are nonsingular matrices $g \in G L(p, k), f \in G L(q, k)$ such that $g h_{l} f=h_{l}^{\prime}$ for all l, in which case we denote $h \sim h$ '. It is clear that " \sim " is an equivalence relation. Put $\operatorname{Mat}(p, q, s)=$ $\operatorname{mat}(p, q, s) / \sim$ and for each $h \in \operatorname{mat}(p, q, s)$, let $\langle h\rangle \in \operatorname{Mat}(p, q, s)$ denote the
equivalence class represented by h. We say that $\langle h\rangle$ is decomposable and denote $\langle h\rangle=\left\langle h^{\prime}\right\rangle \oplus\left\langle h^{\prime \prime}\right\rangle$ if there are $h^{\prime}=\left(h_{l}^{\prime}\right)_{1 \leq l \leq s} \in \operatorname{mat}\left(p^{\prime}, q^{\prime}, s\right), \quad h^{\prime \prime}=\left(h_{l}^{\prime \prime}\right)_{1 \leq l \leq s} \in$ $\operatorname{mat}\left(p-p^{\prime}, q-q^{\prime}, s\right)$ for some $\left(p^{\prime}, q^{\prime}\right) \in \mathbf{Z}_{0}^{2}$ with $0 \leq p^{\prime} \leq p, 0 \leq q^{\prime} \leq q,\left(p^{\prime}, q^{\prime}\right) \neq$ $(0,0),(p, q)$ satisfying $h \sim\left(\left[\begin{array}{cc}h_{l}^{\prime} & 0 \\ 0 & h_{l}^{\prime \prime}\end{array}\right)_{1 \leq l \leq s} . \quad\right.$ When $\langle h\rangle$ is not decomposable, we call it indecomposable. Let $\left\{\gamma_{t}\right\}_{t \geq 0}$ denote the sequence of integers defined by the condition $\gamma_{0}=0, \gamma_{1}=1, \gamma_{t+2}=s \gamma_{t+1}-\gamma_{t}(t \geq 0)$ and put

$$
\Lambda_{t}=\left\{\left(y \gamma_{t+2}+z \gamma_{t+1}, y \gamma_{t+1}+z \gamma_{t}\right) \mid y, z \in \mathbf{Z}_{0}, z>0, y+z \geq 2\right\}
$$

for $t \geq 0$ and $\Lambda=\bigcup_{t \geq 0} \Lambda_{t}$. Observe that $\left(\gamma_{t+2}, \gamma_{t+1}\right)=\left(\gamma_{t+1}, \gamma_{t}\right) \chi, \Lambda_{t+1}=\Lambda_{t} \chi$ for all $t \geq 0$, where

$$
\chi=\left[\begin{array}{cc}
s & 1 \\
-1 & 0
\end{array}\right], \quad \chi^{-1}=\left[\begin{array}{cc}
0 & -1 \\
1 & s
\end{array}\right] .
$$

(3.1) Remark (cf. [R], [Ka, p. 82]). Put $\rho(p, q)=p^{2}+q^{2}-s p q$. We have $\left\{(p, q) \in \mathbf{Z}_{0}^{2} \mid \rho(p, q)=0\right\}=\{(0,0)\}$ for $s \geq 3$ and $=\left\{(p, p) \mid p \in \mathbf{Z}_{0}\right\}$ for $s=2$. Using the fact that $\rho((p, q) \chi)=\rho(p, q)$ for all $(p, q) \in \mathbf{Z}^{2}$, one can prove

$$
\begin{aligned}
\left\{(p, q) \in \mathbf{Z}_{0}^{2} \mid \rho(p, q)>0\right\}= & \{(p, q) \mid(p, q) \text { or }(q, p) \in \Lambda\} \\
& \cup\left\{\left(\gamma_{t+1}, \gamma_{t}\right) \mid t \geq 0\right\} \cup\left\{\left(\gamma_{t}, \gamma_{t+1}\right) \mid t \geq 0\right\}
\end{aligned}
$$

for $s \geq 2$.
With each $h=\left(h_{1}, \ldots, h_{s}\right) \in \operatorname{mat}(p, q, s)$, regarding h as a $p \times s q$-matrix, we can associate an element of $\operatorname{mat}(s q-\operatorname{rank}(h), q, s)$, say $\tilde{h}=\left(\tilde{h}_{1}, \ldots, \tilde{h}_{s}\right)$, such that the columns of the transposed matrix of \tilde{h} form a free basis of $\operatorname{Ker}(h)$. If $h^{\prime}=\left(h_{1}^{\prime}, \ldots, h_{s}^{\prime}\right) \sim h$ and $\tilde{h}^{\prime}=\left(\tilde{h}_{1}^{\prime}, \ldots, \tilde{h}_{s}^{\prime}\right)$ is an element of mat $\left(s q-\operatorname{rank}\left(h^{\prime}\right), q, s\right)$ associated with h^{\prime} in the same way as above, then $\operatorname{rank}\left(h^{\prime}\right)=\operatorname{rank}(h)$ and $\tilde{h}^{\prime} \sim \tilde{h}$. This assignment therefore gives rise to a mapping $\Psi: \bigcup_{(p, q) \in \mathbf{Z}_{0}^{2}} \operatorname{Mat}(p, q, s) \rightarrow$ $\bigcup_{(p, q) \in \mathbf{Z}_{0}^{2}} \operatorname{Mat}(p, q, s)$ (cf. [DIR, pp. 15, 16], [Ka, p. 82]). In general, $\Psi^{2}(\langle h\rangle)=$ $\langle h\rangle$ for all $h \in \operatorname{mat}(p, q, s)$ satisfying $\operatorname{rank}(h)=p$. Note that $\langle h\rangle \in \operatorname{Mat}(p, q, s)$ is decomposable if $\operatorname{rank}(h)<p,(p, q) \neq(1,0)$ and moreover that, in the case $\operatorname{rank}(h)=p,\langle h\rangle$ is decomposable if and only if so is $\Psi(\langle h\rangle)$. We define $\Theta_{1}\left(\left\langle\left(h_{1}, \ldots, h_{s}\right)\right\rangle\right)=\left\langle\left({ }^{t} h_{1}, \ldots,{ }^{t} h_{s}\right)\right\rangle, \Theta_{2}\left(\left\langle\left(h_{1}, \ldots, h_{s}\right)\right\rangle\right)=\left\langle\left(h_{2}, \ldots, h_{s},-h_{1}\right)\right\rangle$.
(3.2) Lemma. Assume $s \geq 2$. For each $t \geq 0$, let $\omega_{t}=\left(\omega_{t, 1}, \ldots, \omega_{t, s}\right)$ be an element of $\operatorname{mat}\left(\gamma_{t+1}, \gamma_{t}, s\right)$ such that

$$
\omega_{t, l}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1_{\gamma_{t}} \\
0 \\
\vdots \\
0
\end{array}\right](1 \leq l \leq s-1), \quad \omega_{t, s}=\left[\begin{array}{cc}
\omega_{t-1,2} & \\
\omega_{t-1,3} & \\
\vdots & 0 \\
\omega_{t-1, s-1} & \\
\omega_{t-1, s} & \\
0 & 1_{\gamma_{t}-\gamma_{t-1}}
\end{array}\right]
$$

where $\omega_{0, l}=0 \in \operatorname{mat}(1,0)$ for all $l(1 \leq l \leq s)$, the first $(l-1) \gamma_{t}$ rows of $\omega_{t, l}$ are zero for $1 \leq l \leq s-1$ and the matrices $\omega_{t, s}(t \geq 0)$ are defined inductively on t. Put $\Omega_{t}=\left\langle\omega_{t}\right\rangle \in \operatorname{Mat}\left(\gamma_{t+1}, \gamma_{t}, s\right)$. Then Ω_{t} is indecomposable for every $t \geq 0$.

Proof. Put $\omega_{t}^{\prime}=\left(-\omega_{t, s}, \omega_{t, 1}, \omega_{t, 2}, \ldots, \omega_{t, s-1}\right)$ for $t \geq 1$. Since $\operatorname{rank}\left(\omega_{t}^{\prime}\right)=$ $\gamma_{t+1}, \Psi\left(\left\langle\omega_{t}^{\prime}\right\rangle\right)=\Theta_{1}\left(\Omega_{t-1}\right)$ and $\Theta_{2}\left(\left\langle\omega_{t}^{\prime}\right\rangle\right)=\Omega_{t}$, the indecomposability of Ω_{t-1} implies that of Ω_{t} for $t \geq 1$. Besides, it is clear that Ω_{0} and Ω_{1} are indecomposable. Hence our assertion.
(3.3) Theorem (cf. [R, Theorem 3], [Ka, Theorem 4], [Kr], [Di]). Let s, p, q be integers with $s \geq 2, p \geq q \geq 0$ and $\Omega_{t}(t \geq 0)$ be as in the above lemma.
(1) For each $t \geq 0$, the set $\operatorname{Mat}\left(\gamma_{t+1}, \gamma_{t}, s\right)$ contains exactly one indecomposable element, namely, Ω_{t}.
(2) If $(p, q) \in \Lambda$, then $\langle h\rangle$ is decomposable for all $h \in \operatorname{mat}(p, q, s)$.
(3) For each pair $(p, q)=\left(y \gamma_{t+2}+z \gamma_{t+1}, y \gamma_{t+1}+z \gamma_{t}\right)$ with $y \geq 0, z>0, s \geq 2$, $t \geq 0$, the set $\left\{h \in \operatorname{mat}(p, q, s) \mid\langle h\rangle=\Omega_{t+1}{ }^{\oplus y} \oplus \Omega_{t}{ }^{\oplus z}\right\}$ is a nonempty Zariski open subset of $\operatorname{mat}(p, q, s)$.
(4) Suppose $s=2$. We have $\gamma_{t}=t$ for $t \geq 0$. If $\langle h\rangle$ is indecomposable for some $h \in \operatorname{mat}(p, q, 2)$, then $(p, q) \notin \Lambda$, that is, $p=q, q+1$.
Case 1. Whe $p=q$, the pair

$$
\left.\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 1
\end{array}\right],\left[\begin{array}{ccccc}
w & 1 & 0 & \cdots & 0 \\
0 & w & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
\vdots & & \ddots & \ddots & 1 \\
0 & \cdots & \cdots & 0 & w
\end{array}\right]\right) \in \operatorname{mat}(p, p, 2)
$$

represents an indecomposable class for every $w \in k$. If k is algebraically closed, each indecomposable element of $\operatorname{Mat}(p, p, 2)$ have a representative of this form.
Case 2. When $p=q+1$, the Ω_{p-1} is the only indecomposable element of the set $\operatorname{Mat}(p, p-1,2)$.
(5) For each positive integer p, the set $\left\{h \in \operatorname{mat}(p, p, 2) \mid\langle h\rangle=\langle(1,1)\rangle^{\oplus p}\right\}$ is a nonempty Zariski open subset of $\operatorname{mat}(p, p, 2)$ if k is algebraically closed.
(6) Suppose $s \geq 3$. If $\langle h\rangle$ is indecomposable for some $h \in \operatorname{mat}(p, q, s)$, then $(p, q) \notin \Lambda$. Conversely, if $(p, q) \notin \Lambda$ and $\# k=\infty$, there exists a nonempty Zariski open subset $U_{p, q} \subset \operatorname{mat}(p, q, s)$ such that $\langle h\rangle$ is indecomposable for all $h \in U_{p, q}$. Moreover, $\#\left\{\langle h\rangle \mid h \in U_{p, q}\right\}=\infty$ when $\rho(p, q)<0$ (see (3.1)).

§4. Maximal quasi-Buchsbaum graded modules

Throughout this section r denotes $\operatorname{dim}(R)$.
(4.1) Definition. For a complex $L . \in \mathscr{C} x(R)$ and an integer b with $\alpha\left(L_{.}\right)<$ $b \leq \beta(L$.$) , we denote the R$-module $\operatorname{Coker}\left(\left(\partial_{b}^{L}\right)^{*}: L^{* b-1} \rightarrow L^{* b}\right)$ by $\operatorname{md}\left(L_{.}, b\right)$.
(4.2) Lemma. (1) Let L. be a minimal complex in $\mathscr{C} x m(R)$ and b an integer satisfying $\alpha\left(L_{.}\right)<b \leq \beta\left(L_{.}\right)$. Then, the R-module $\operatorname{md}\left(L_{.}, b\right)$ has no free direct sum-
mand, and besides, it has a minimal free resolution

$$
\cdots \rightarrow L^{* i-1} \xrightarrow{\left(\partial_{i}^{L}\right)^{*}} L^{* i} \rightarrow \cdots \rightarrow L^{* b-1} \xrightarrow{\left(\partial_{b}^{L}\right)^{*}} L^{* b} \rightarrow \operatorname{md}(L ., b) \rightarrow 0 .
$$

(2) For each R-module M without any free direct summand, there is a minimal complex $L . \in \mathscr{C} x m(R)$ and an integer b as in (1) such that $M \cong \operatorname{md}(L ., b)$. Moreover, we may choose b to be $r-\operatorname{depth}_{m}(M)$.
(3) Suppose R is Gorenstein and let L. be a minimal complex in $\mathscr{C x m}(R)$ which satisfies $H_{i}\left(L_{.}\right)=0$ for all $i<0$ and $H_{0}\left(L_{.}\right) \neq 0$. Then $\beta\left(L_{.}\right) \leq r$ and $\operatorname{depth}_{\mathrm{m}}\left(\mathrm{md}\left(L_{.}, b\right)\right)=r-b$ for each $b\left(\alpha\left(L_{.}\right)<b \leq \beta\left(L_{\text {. }}\right)\right)$. Moreover, the Krull dimension of $\operatorname{md}\left(L_{.}, b\right)$ is r if $l_{R}\left(H_{i}\left(L_{.}\right)\right)<\infty$ for all $i(0 \leq i<b)$, except in the case $b=r, H_{i}\left(L_{.}\right)=0$ for $i \neq 0, l_{R}\left(\operatorname{md}\left(L_{.}, r\right)\right)<\infty$.

Proof. (1) For each $\tilde{L}_{.} \in \mathscr{C} x(R)$ and $b>\alpha\left(\tilde{L}_{.}\right)$, the R-module $\operatorname{md}\left(\tilde{L}_{.}, b\right)$ have a free direct summand if and only if there is an automorphism $\eta \in \operatorname{Aut}_{R}\left(\tilde{L}^{* b}\right)$ such that the matrix representing $\eta\left(\partial_{b}^{\tilde{L}}\right)^{*}$ contains a row whose components are all zero. This being true if and only if $\operatorname{Im}\left(\partial_{b+1}^{\tilde{L}}\right) \notin m \tilde{L}_{b}$ since $\operatorname{Ker}\left(\partial_{b}^{\tilde{L}}\right)=\operatorname{Im}\left(\partial_{b+1}^{\tilde{L}}\right)$, the minimality of L. implies that $\operatorname{md}\left(L_{.}, b\right)$ has no free direct summand. The last assertion is obvious.
(2) Put $b=r-\operatorname{depth}_{\mathrm{m}}(M), L^{\prime} .=\operatorname{res}(M)$., $L^{\prime \prime} .=\operatorname{res}\left(\operatorname{Ker}\left(\left(\partial_{1}^{L^{\prime}}\right)^{*}\right)\right)$. and let ε denote the composite map $L_{0}^{\prime \prime} \rightarrow \operatorname{Coker}\left(\partial_{1}^{L^{\prime \prime}}\right) \cong \operatorname{Ker}\left(\left(\partial_{1}^{L^{\prime}}\right)^{*}\right) \subsetneq L^{\prime * 0}$. We define a complex L. by

$$
L_{i}=\left\{\begin{array}{ll}
L^{\prime * b-i} & (i \leq b) \\
L_{i-b-1}^{\prime \prime} & (i>b)
\end{array}, \quad \partial_{i}^{L}=\left\{\begin{array}{l}
\left(\partial_{b-i+1}^{L^{\prime}}\right)^{*} \quad(i \leq b) \\
\varepsilon \quad(i=b+1) \\
\partial_{i-b-1}^{L^{\prime \prime}} \quad(i>b+1)
\end{array} .\right.\right.
$$

Then it is clear by definition that $\operatorname{Im}\left(\partial_{i}^{L}\right) \subset \mathfrak{m} L_{i-1}$ for $i \neq b+1, \alpha\left(L_{\text {. }}\right)<b \leq \beta\left(L_{\text {. }}\right)$, $M \cong \operatorname{md}\left(L_{.}, b\right)$. On the other hand, as remarked in the proof of $(1), \operatorname{Im}\left(\partial_{b+1}^{L}\right) \subset$ $\mathfrak{m} L_{b}$ since M has no free direct summand. Hence $L . \in \mathscr{C} \times m(R)$.
(3) Since $\operatorname{Ext}_{R}^{b-i}\left(\operatorname{md}\left(L_{\text {. }}, b\right), R\right) \cong H_{i}\left(L_{\text {. }}\right)$ for $i<b \leq \beta\left(L_{\text {. }}\right)$ and since the injective dimension of R is r, the first assertion follows immediately by local duality. The proof of the second half is left to the readers.

We need the following easy but fundamental lemma.
(4.3) Lemma. (1) For minimal complexes $L_{.,} L^{\prime} . \in \mathscr{C} x m(R)$ and integers b, b^{\prime} with $\alpha\left(L_{.}\right)<b \leq \beta\left(L_{.}\right), \alpha\left(L^{\prime}.\right)<b^{\prime} \leq \beta\left(L^{\prime}.\right)$, we have $\operatorname{md}\left(L_{.}, b\right) \cong \operatorname{md}\left(L^{\prime} ., b^{\prime}\right)$ if and only if $L[b] . \cong L^{\prime}\left[b^{\prime}\right]$.
(2) Let $L ., b$ be as above. Then $\operatorname{md}\left(L_{.}, b\right)$ is decomposable if and only if so is L.
(4.4) Remark. The correspondence between modules and complexes as above can further be developed. Restricting the consideration to modules of finite projective dimension, Y. Yoshino established an equivalence theorem for a stable category of R-modules and a subcategory of the derived category of complexes of R-modules (see $[\mathrm{Y}, \S 1]$).

In the argument below, we assume that R is Gorenstein or is a polynomial ring exclusively so that we can make use of the local duality in its simplest form. Given a maximal quasi-Buchsbaum R-module M of finite projective dimension having no free direct summand and a minimal complex $L . \in \mathscr{C} x m(R)$ such that $M=\operatorname{md}(L ., b)$ with $b=r-\operatorname{depth}_{\mathrm{m}}(M)$, we have $L_{i}=0$ for $i<0$, $H_{\mathrm{m}}^{i}(M) \cong \operatorname{Hom}_{R}\left(H_{b-r+i}(L),. H_{\mathrm{m}}^{r}(R)\right)$ for $0 \leq i<r$ and $\mathfrak{m} H_{i}\left(L_{.}\right)=0$ for $i<b$. The results concerning L. obtained in section two yield a number of consequences on the module M. When R is graded, for integers $i_{1}, \ldots, i_{l}, t_{1}, \ldots, t_{l}$ with $0 \leq i_{1}<\cdots<i_{l}<r, l \geq 1$, let $D_{t_{1}, \ldots, t_{l}}^{i_{1}, \ldots, i_{l}}$ denote the set of graded R-modules M satisfying the condition

$$
\begin{cases}H_{\mathrm{m}}^{i}(M)=0 & \text { for } i \neq i_{1}, \ldots, i_{l}, r \\ \mathrm{~m} H_{\mathrm{m}}^{i}(M)=0 & \text { for } i=i_{1}, \ldots, i_{l} \\ T_{\mathrm{m}}^{i_{j}}(M) \subset\left\{t_{j}\right\} & \text { for all } j(1 \leq j \leq l)\end{cases}
$$

where $T_{\mathrm{m}}^{i}(M)=\left\{t \mid H_{\mathrm{m}}^{i}(M)_{t} \neq 0\right\}$ for each $i \geq 0$. Note that $\operatorname{dim}(M)=r$ or 0 for all $M \in D_{t_{1}, \ldots, t_{2}}^{i_{1}, \ldots, i_{l}}$. We first state three results corresponding to (2.10), (2.7) and (2.9) in this order, omitting their proofs. For convenience sake, the residue field k will also be called maximal quasi-Buchsbaum from now on.
(4.5) Theorem. Assume that R is a Gorenstein graded ring and that K_{i} is the direct sum of a finite number of copies of $R(-i)$ for all $i \geq 0$. Let M be a maximal quasi-Buchsbaum graded R-module of finite projective dimension which has no free direct summand. If there are subsets $T^{(j) i} \subset T_{\mathrm{m}}^{i}(M)(j=1,2,0 \leq i<r)$ such that

$$
\left\{\begin{array}{l}
T^{(1) i} \cup T^{(2) i}=T_{m}^{i}(M), \quad T^{(1) i} \cap T^{(2) i}=\varnothing \quad \text { for all } i(0 \leq i<r), \\
\left(T^{(2) i^{\prime}}+\left(i^{\prime}-i+1\right)\right) \cap T^{(1) i}=\varnothing, \quad\left(T^{(1) i^{\prime}}+\left(i^{\prime}-i+1\right)\right) \cap T^{(2) i}=\varnothing \\
\text { for all pairs } i, i^{\prime} \text { with } 0 \leq i<i^{\prime}<r,
\end{array}\right.
$$

then $M \cong M^{(1)} \oplus M^{(2)}$ with maximal quasi-Buchsbaum graded R-modules $M^{(j)}$ $(j=1,2)$ of finite projective dimension satisfying $T_{\mathrm{m}}^{i}\left(M^{(j)}\right)=T^{(j) i}$ for all i, j ($j=1,2,0 \leq i<r$).

Put $l(M)=\#\left\{i \mid H_{\mathrm{m}}^{i}(M) \neq 0, i<r\right\}$ for each R-module M.
(4.6) Corollary. Let M be as in (4.5) and assume that $R=k\left[x_{1}, \ldots, x_{r}\right]$ with $\operatorname{deg}\left(x_{j}\right)=1(1 \leq j \leq r, r \geq 1)$. If M is indecomposable and $l(M) \leq 2$, then $M \cong$ $\operatorname{Coker}\left(\partial_{d+1}^{K}\right)(-m) \in D_{m}^{d}$ for some $m \in \mathbf{Z}$ (see [G2]) or $M \in D_{m, m-a-1}^{d, d+a}$ for some a, $m \in \mathbf{Z}$ with $0<a<r-d$, where $d=\operatorname{depth}_{m}(M)$.
(4.7) Proposition. Let R be as in (4.6) with $r \geq 3$ and M be as in (4.5). If M is indecomposable and $\left\{i \mid H_{\mathrm{m}}^{i}(M) \neq 0, i<r\right\}=\{0, a, r-1\}$ with $0<a<r-1$, then $M \in D_{m, m-a-1, m-r-1}^{0, a, r-1}$ for some $m \in \mathbf{Z}$.
(4.8) Remark. The above results (4.6) and (4.7) imply that, if $R=$ $k\left[x_{1}, \ldots, x_{r}\right]$ with $r=1,2,3$, an indecomposable maximal quasi-Buchsbaum graded R-module having no free direct summand is contained in one of D_{m}^{0}, $D_{m, m-2}^{0,1}, D_{m, m-3}^{0,2}, D_{m, m-2}^{1,2}, D_{m, m-2, m-4}^{0,1,2}(m \in \mathbf{Z})$. As is seen by (2.12), however, the sets $D_{t_{1}, \ldots, t_{l}}^{i_{1}, \ldots, i_{l}}\left(1 \leq l \leq r-1,0 \leq i_{1}<\cdots<i_{l}<r, t_{1}, \ldots, t_{l} \in \mathbf{Z}\right)$ do not cover all indecomposable maximal quasi-Buchsbaum graded R-modules with no free direct summand, in the case $r \geq 4$.

More results can be deduced by the use of (2.5) and (3.3) when M is a maximal quasi-Buchsbaum R-module of finite projective dimension and $t(M) \leq 2$. Given such an M, one sees easily that M is free if $l(M)=0$ and that M is isomorphic to the direct sum of some copies of $\operatorname{Coker}\left(\left(\partial_{b}^{K}\right)^{*}\right)\left(\operatorname{Coker}\left(\left(\partial_{b}^{K}\right)^{*}\right)(m)\right.$ ($m \in \mathbf{Z}$) in the graded case) and of a free R-module if $l(M)=1$, so we confine ourselves to the case $l(M)=2$. Also, we only deal with the case R is a polynomial ring for the sake of simplicity, leaving a general formulation to the interested readers (cf. [Y, §6]).
(4.9) Lemma. Let R be as in (4.7), i_{1}, i_{2}, a, t be integers with $0 \leq i_{1}<$ $i_{2}<r, a=i_{2}-i_{1}<r-1, t \geq 0$ and $F_{.}=K .(a+1+r)^{\gamma_{t}}, G .=K .(r)^{\gamma_{+1}}\left(r e s p . F_{.}=\right.$ $\left.K .(a+1+r)^{\gamma_{1+1}}, \quad G .=K .(r)^{\gamma_{t}}\right)$ be complexes, where $\left\{\gamma_{t}\right\}_{t \geq 0}$ denotes the sequence defined in the previous section with respect to $s=\binom{r}{a+1}$. Attaching subscripts to the elements of Γ_{a+1} so that $\left\{I_{l} \mid 1 \leq l \leq s\right\}=\Gamma_{a+1}$, we define a chain map $\mu_{\mathrm{l}}: F_{.} \rightarrow$ $G[-a-1]$. by $\mu_{a+1}=\sum_{l=1}^{s} u_{I_{l}}^{*} \otimes \omega_{t, l}$ (resp. $\left.\mu_{a+1}=\sum_{l=1}^{s} u_{I_{l}}^{*} \otimes^{t} \omega_{t, l}\right)$ (see (2.2), (3.2)). Denote the R-module $\operatorname{md}\left(\min \left(\operatorname{con}\left(\mu_{\mathrm{o}}\right)\right) ., r-i_{1}\right)$ by $A_{\left(i_{1}, i_{2}, t\right)}\left(r e s p . B_{\left(i_{1}, i_{2}, t\right)}\right)$. Then $A_{\left(i_{1}, i_{2}, t\right)}\left(\right.$ resp. $\left.B_{\left(i_{1}, i_{2}, t\right)}\right)$ is the only indecomposable maximal quasi-Buchsbaum graded R-module in $D_{a+1,0}^{i_{1}, i_{2}, 0}$ satisfying $l_{R}\left(H_{\mathrm{m}}^{i_{1}}\left(A_{\left(i_{1}, i_{2}, t\right)}\right)\right)=\gamma_{t}, \quad l_{R}\left(H_{\mathrm{m}}^{i_{2}}\left(A_{\left(i_{1}, i_{2}, t\right)}\right)\right)=\gamma_{t+1} \quad$ (resp. $\left.l_{R}\left(H_{m}^{i_{1}}\left(B_{\left(i_{1}, i_{2}, t\right)}\right)\right)=\gamma_{t+1}, l_{R}\left(H_{m}^{i_{2}}\left(B_{\left(i_{1}, i_{2}, t\right)}\right)\right)=\gamma_{t}\right)$.

Proof. Notice that $s \geq 3$. Use (2.5), (3.2) and (4.3).
(4.10) Theorem. Assume $R=k\left[x_{1}, \ldots, x_{r}\right]$ with $\operatorname{deg}\left(x_{j}\right)=1(1 \leq j \leq r), r \geq 2$. Let M be a maximal quasi-Buchsbaum graded R-module which has no free direct summand such that $M \in D_{a+1,0}^{i_{1}, i_{2}}, \quad q:=l_{R}\left(H_{m}^{i_{1}}(M)\right)>0, \quad p:=l_{R}\left(H_{m}^{i_{2}}(M)\right)>0$ with $0 \leq i_{1}<i_{2}<r, \quad a=i_{2}-i_{1} . \quad$ Put $s=\binom{r}{a+1}, \quad F .=K .(a+1+r)^{q}, \quad G .=K .(r)^{p}$. Let further $\left\{\gamma_{t}\right\}_{t \geq 0}, \Lambda_{t}(t \geq 0)$ and Λ be as in the preceding section if $a<r-1$.
(1) There is a chain map $\mu_{\text {. }} F . \rightarrow G[-a-1]$. determined by the condition $\mu_{a+1}=\sum_{I \in \Gamma_{a+1}} u_{I}^{*} \otimes h_{I}$ for some $h=\left(h_{I}\right)_{I \in \Gamma_{a+1}} \in \operatorname{mat}(p, q, s), h_{I} \in \operatorname{mat}(p, q)$ such that $M=\operatorname{md}\left(\min \left(\operatorname{con}\left(\mu_{\mathrm{o}}\right).\right), r-i_{1}\right)$.
(2) Suppose $a<r-1,(p, q)=\left(\gamma_{t+1}, \gamma_{t}\right)\left(r e s p .(q, p)=\left(\gamma_{t+1}, \gamma_{t}\right)\right)$ for some $t \geq 1$. Then either M is decomposable or $M \cong A_{\left(i_{1}, i_{2}, t\right)}\left(r e s p . M \cong B_{\left(i_{1}, i_{2}, t\right)}\right)$. Moreover the latter case occurs as long as h is generic.
(3) Suppose that $a<r-1$ and that $(p, q)(r e s p .(q, p))$ coincides with $\left(y \gamma_{t+2}+\right.$ $\left.z \gamma_{t+1}, y \gamma_{t+1}+z \gamma_{t}\right) \in \Lambda_{t}$ for some $t \geq 0$. Then M is decomposable. Moreover $M \cong$ $A_{\left(i_{1}, i_{2}, t+1\right)}{ }^{\oplus y} \oplus A_{\left(i_{1}, i_{2}, t\right)}{ }^{\oplus z}\left(\right.$ resp. $\left.M \cong B_{\left(i_{1}, i_{2}, t+1\right)} \oplus{ }^{\oplus y} \oplus B_{\left(i_{1}, i_{2}, t\right)}{ }^{\oplus z}\right)$ as long as h is generic.
(4) Suppose that $a<r-1$ and that neither (p, q) nor (q, p) lies in Λ. If $\# k=\infty$ and h is generic, then M is indecomposable.
(5) Suppose $a=r-1$, i.e. $i_{1}=0, i_{2}=r-1$. Then M is indecomposable if and only if $p=q=1$ and $h \sim(1) \in \operatorname{mat}(1,1,1)$.

Proof. (1) Note that $\operatorname{depth}_{\mathrm{m}}(M)=i_{1}, \operatorname{Ext}_{R}^{r-i}(M, R)_{t} \cong H_{\mathrm{m}}^{i}(M)_{-t-r}$ for $t \in \mathbf{Z}$, $i=i_{1}, i_{2}$ and $\operatorname{Ext}_{R}^{r-i}(M, R)=0$ for $i \neq i_{1}, i_{2}, r$. Use (2) of (4.2), (1.6) and (2.1).
(2) Use (4.3), (4.9) and (3) of (3.3).
(3) Use (4.3), (4.9), (2.5), (2) of (3.3) and (3) of (3.3).
(4) Use (4.3), (2.5) and (6) of (3.3).
(5) Observe that $s=1$, namely, $\operatorname{mat}(p, q, s)=\operatorname{mat}(p, q)$. In this case the classification is trivial.
(4.11) Proposition. Let R, i_{1}, i_{2}, a be as in the above theorem and assume $a<r-1, \# k=\infty$. For each pair of positive integers p, q satisfying $\rho(p, q)<0$, there exist an infinite set $X_{p, q}$ and indecomposable maximal quasi-Buchsbaum graded R-modules $M^{(j)}\left(j \in X_{p, q}\right)$ having no free direct summand such that $M^{(j)} \in D_{a+1,0}^{i_{1}, i_{2}}$, $l_{R}\left(H_{\mathrm{m}}^{i_{1}}\left(M^{(j)}\right)\right)=q, l_{R}\left(H_{\mathrm{m}}^{i_{2}}\left(M^{(j)}\right)\right)=p$ for all $j \in X_{p, q}$ and $M^{(j)} \not \equiv M^{\left(j^{\prime}\right)}$ for $j \neq j^{\prime}$.

Proof. Use (2.2), (2.5), (4.3) and (6) of (3.3).
(4.12) Remark. (1) The elements of $D_{m, m-a-1}^{i_{1}, i_{2}}$ are obtained from those of $D_{a+1,0}^{i_{1}, i_{2}}$ by shift of grading, so that (4.6), (4.10) and (4.11), together with (2.6), describe fairly well the structure of a maximal quasi-Buchsbaum graded R-module M with $\imath(M) \leq 2$, when R is a polynomial ring.
(2) M. Cipu, J. Herzog and D. Popescu dealt with the same problem by an approach different from ours in [CHP, §2].

Finally, we state some partial results on the multiplicities and the numbers of minimal generators of the modules treated in the above theorem.
(4.13) Lemma. Let the notation be as in (4.10). Then

$$
\begin{aligned}
\mathrm{e}_{\mathrm{m}}(M) & =\binom{r-1}{i_{1}-1} q+\binom{r-1}{i_{2}-1} p-\operatorname{rank}_{k}\left(\mu_{r-i_{1}+1} \otimes k\right), \\
l_{R}(M / \mathrm{m} M) & =\binom{r}{i_{1}} q+\binom{r}{i_{2}} p-\operatorname{rank}_{k}\left(\mu_{r-i_{1}+1} \otimes k\right)-\operatorname{rank}_{k}\left(\mu_{r-i_{1}} \otimes k\right),
\end{aligned}
$$

where we understand $\binom{n}{-1}=0$ for $n \in \mathbf{Z}_{0}$.
Proof. Put $L .=\operatorname{con}\left(\mu_{\mathrm{c}}\right), \quad P .=\min \left(L_{\mathrm{c}}\right) ., Q .=\operatorname{se}\left(L_{.}\right), \quad b=r-i_{1}$. One sees easily $N:=\operatorname{md}(L ., b)=\operatorname{md}(P ., b) \oplus \operatorname{md}(Q ., b), M=\operatorname{md}(P ., b), e_{m}(N)=\binom{r-1}{i_{1}-1} q+$ $\binom{r-1}{i_{2}-1} p, l_{R}(N / \mathfrak{m} N)=\binom{r}{i_{1}} q+\binom{r}{i_{2}} p-\operatorname{rank}_{k}\left(\partial_{b}^{L} \otimes k\right) . \quad$ Besides, $N^{\prime}:=\operatorname{md}(Q ., b)$ is a free R-module with $l_{R}\left(N^{\prime} / \mathfrak{m} N^{\prime}\right)=\operatorname{rank}_{k}\left(\partial_{b+1}^{L} \otimes k\right)$ and $\operatorname{rank}_{k}\left(\partial_{i}^{L} \otimes k\right)=\operatorname{rank}_{k}\left(\mu_{i} \otimes k\right)$ for all $i \in \mathbf{Z}$. Hence follow the desired formulae.
(4.14) Lemma. Let $c, p, q, r(1 \leq c \leq r)$ be positive integers, $R=k\left[x_{1}, \ldots, x_{r}\right]$ a polynomial ring and $F_{.}=K .(c+r)^{q}, G .=K .(r)^{p}$. Given $h=\left(h_{I}\right)_{I \in I_{c}} \in \operatorname{mat}(p, q, s)$ with $s=\binom{r}{c}$, let $\mu_{.:} F . \rightarrow G[-c]$. be the chain map as in (2.6), where $\operatorname{Hom}_{R}\left(F_{c}, G_{0}\right)$ and $\operatorname{mat}(p, q, s)$ are identified. Assume h is generic. Then
(1) $\operatorname{rank}_{k}\left(\mu_{c} \otimes k\right)=\inf \left(p,\binom{r}{c} q\right)$,
(2) $\operatorname{rank}_{k}\left(\mu_{r} \otimes k\right)=\inf \left(\binom{r}{c} p, q\right)$,
(3) $\operatorname{rank}_{k}\left(\mu_{c+l} \otimes k\right)=\binom{r}{c+l} q$ and μ_{c+l} is injective if $1 \leq l \leq r-c-1$ and $p \geq\binom{ r-l}{c} q$,
(4) $\operatorname{rank}_{k}\left(\mu_{c+l} \otimes k\right)=\binom{r}{l} p$ and μ_{c+l} is surjective if $1 \leq l \leq r-c-1$ and $q \geq\binom{ c+l}{c} p$.

Proof. The assertions (1) and (2) are trivial.
(3) Suppose $r \geq 2$. Let $R^{\prime}=k\left[x_{1}, \ldots, x_{r-1}\right], \Gamma_{l}^{\prime}=\left\{\left(j_{1}, \ldots, j_{l}\right) \mid 1 \leq j_{1}<\cdots<\right.$ $\left.j_{l} \leq r-1\right\}(0 \leq l \leq r-1), h^{\prime}=\left(h_{I}\right)_{I \in \Gamma_{c}^{\prime}}, K^{\prime}$. the Koszul complex of R^{\prime} with respect to $x_{1}, \ldots, x_{r-1}, F^{\prime} .=K^{\prime} .(c+r)^{q}, G^{\prime} .=K^{\prime} .(r)^{p}$ and $\mu^{\prime} .: F^{\prime} . \rightarrow G^{\prime}[-c]$. the chain map defined as in (2.6) such that $\mu_{c}^{\prime}=h^{\prime}$. By definition,

$$
\begin{aligned}
& \mu_{c+l}=\mu_{c+l}^{(1)}+\mu_{c+l}^{(2)}+\mu_{c+l}^{(3)} \quad \text { with } \\
& \mu_{c+l}^{(1)}=\sum_{I \in \Gamma_{c+1}^{\prime}+} \sum_{\substack{J \in \Gamma_{i}^{\prime} \\
J \in I}} \operatorname{sgn}\binom{I}{J, I \backslash J} u_{I}^{*} \otimes u_{J} \otimes h_{I \backslash J}, \\
& \mu_{c+l}^{(2)}=\sum_{I \in \Gamma_{c+1-1}^{\prime}} \sum_{\substack{J \in \Gamma_{i-1}^{\prime} \\
J \subset I}} \operatorname{sgn}\binom{(I, r)}{(J, r), I \backslash J} u_{(I, r)}^{*} \otimes u_{(J, r)} \otimes h_{I \backslash J}, \\
& \mu_{c+l}^{(3)}=\sum_{I \in \Gamma_{c+1-1}^{\prime}} \sum_{\substack{J_{\in \in \Gamma_{i}^{\prime}}^{J \subset I}}} \operatorname{sgn}\binom{(I, r)}{J,(I \backslash J, r)} u_{(I, r)}^{*} \otimes u_{J} \otimes h_{(I \backslash J, r)} .
\end{aligned}
$$

When regarded as matrices, the above linear maps satisfy $\mu_{c+l}^{(1)}=\mu_{c+l}^{\prime}, \mu_{c+l}^{(2)}=$ $(-1)^{c} \mu_{c+l-1}^{\prime}$. In addition, $\quad p \geq\binom{ r-l}{c} q=\binom{(r-1)-(l-1)}{c} q>\binom{(r-1)-l}{c} q$, therefore, with the help of (1) and (2), we find by induction on r that μ_{c+l} is injective and $\operatorname{rank}_{k}\left(\mu_{c+l} \otimes k\right)=\binom{r}{c+l} q$.
(4) Similar to (3).

For positive integers c, r with $1 \leq c \leq r$, we define

$$
S_{c, l, r}=\left\{\begin{array}{l}
\mathbf{Z}_{0}^{2} \quad \text { for } l \leq 0 \text { or } l \geq r-c \\
\left\{(p, q) \in \mathbf{Z}_{0}^{2} \left\lvert\, p \geq\binom{ r-l}{c} q\right. \text { or } q \geq\binom{ c+l}{c} p\right\} \quad \text { for } 1 \leq l \leq r-c-1
\end{array}\right.
$$

One sees
$\left\{(p, q) \in \mathbf{Z}_{0}^{2} \mid \rho(p, q)>0\right\} \subset\left\{(p, q) \in \mathbf{Z}_{0}^{2} \mid p \geq(s-1) q\right.$ or $\left.q \geq(s-1) p\right\} \subset S_{c, l, r}$ for every l, where $\rho(p, q)$ is the polynomial as in (3.1) with $s=\binom{r}{c}$.
(4.15) Proposition. Let R, M and i_{1}, i_{2}, p, q be as in (4.10). Then

$$
\begin{aligned}
& -\inf \left(\binom{r}{i_{2}} p,\binom{r}{i_{1}-1} q\right) \leq \mathrm{e}_{\mathrm{m}}(M)-\binom{r-1}{i_{1}-1} q-\binom{r-1}{i_{2}-1} p \leq 0 \\
& -\inf \left(\binom{r}{i_{2}} p,\binom{r}{i_{1}-1} q\right)-\inf \left(\binom{r}{i_{2}+1} p,\binom{r}{i_{1}} q\right) \\
& \leq l_{R}(M / \mathrm{m} M)-\binom{r}{i_{1}} q-\binom{r}{i_{2}} p \leq 0
\end{aligned}
$$

In the first inequality, the equality on the left can actually be attained if $(p, q) \in$ $S_{i_{2}-i_{1}+1, r-i_{2}, r}$, and in the second, if $(p, q) \in S_{i_{2}-i_{1}+1, r-i_{2}, r} \cap S_{i_{2}-i_{1}+1, r-i_{2}-1, r}$. The equality on the right can always be attained in both inequalities.

Proof. Put $c=i_{2}-i_{1}+1$ and let h, μ. be as in (4.10). Since $\operatorname{rank}_{k}\left(\mu_{c+l} \otimes k\right) \leq$ $\inf \left(\binom{r}{l} p,\binom{r}{c+l} q\right)$, with equality if $(p, q) \in S_{c, l, r}, 0 \leq l \leq r-c$ by (4.14) as long as h is generic, the formulae in (4.13) imply our assertion.
(4.16) Remark. (1) By (2) of (4.10), (4.13) and (4.14), one can deduce formulas for the multiplicies and the numbers of minimal generators of the modules defined in (4.9), since $\left(\gamma_{t}, \gamma_{t+1}\right),\left(\gamma_{t+1}, \gamma_{t}\right) \in S_{i_{2}-i_{1}+1, r-i_{2}, r} \cap S_{i_{2}-i_{1}+1, r-i_{2}-1, r}$ for $t \geq 0$ by (3.1).
(2) The Betti numbers of the modules treated in (4.10) can also be expressed by a formula similar to the second one described in (4.13) (see (1) of (4.1)).
(3) Examples show that the inequalities in (4.15) are not sharp in general, if (p, q) lies in the outside of the ranges mentioned there. Consider, for instance, the case $r=5, i_{1}=2, i_{2}=4, p=q=1$.
(4) The formulae in (4.13)-(4.15) also hold when R is a regular local ring of dimension r and M is a maximal quasi-Buchsbaum R-module with $\imath(M)=2$.

§ 5. Remark on the case where three local cohomology modules are nonzero vector spaces

We end by giving a formulation of the classification problem of maximal quasi-Buchsbaum modules M with $l(M)=3$ over a regular local ring R of dimension $r \geq 3$ which contains its residue field k, in terms of the linear algebra over k.

Let R, r be as above, $p_{1}, p_{2}, p_{3}, a, a^{\prime}$ be positive integers with $a<a^{\prime}<r$, $G .=K .^{p_{1}}, G^{\prime} .=K .^{p_{2}}, G^{\prime \prime} .=K .^{p_{3}}$ be complexes and $\mu^{(j)}: G . \rightarrow G^{\prime}[-a-1] ., \mu^{\prime(j)}$: $\operatorname{con}\left(\mu^{(j)}.\right) . \rightarrow G^{\prime \prime}\left[-a^{\prime}-1\right] .(j=1,2)$ be chain maps. Put $F^{(j)} .=\operatorname{con}\left(\mu^{(j)}.\right), L^{(j)}$. $=$ $\operatorname{con}\left(\mu^{(j)}.\right) .(j=1,2)$. Suppose $L^{(1)} \cong L^{(2)}$. Then, there is a chain isomorphism $\lambda^{\prime}:: F^{(2)} \rightarrow F^{(1)}$. by (1.8), so $\operatorname{con}\left(\mu^{\prime(1)}, \lambda^{\prime}\right) . \cong L^{(1)} \cong L^{(2)}$. It follows therefore from (1.9) that

$$
\begin{equation*}
\mu^{\prime(1)} \cdot \lambda^{\prime} \cdot \lambda^{\prime \prime} \cong \cong \psi^{\prime \prime}\left[-a^{\prime}-1\right] \cdot \mu^{\prime(2)} \tag{5.1}
\end{equation*}
$$

for some chain automorphisms $\lambda^{\prime \prime} . \in \operatorname{Aut}_{R}\left(F^{(2)}\right), \psi^{\prime \prime} . \in \operatorname{Aut}_{R}\left(G^{\prime \prime}.\right)$, where

$$
\lambda^{\prime} \cdot \lambda^{\prime \prime} . \simeq \lambda_{.}:=\left[\begin{array}{cc}
\psi^{\prime}[-a] . & v_{.} \tag{5.2}\\
0 & \psi .
\end{array}\right]
$$

with suitable $\psi^{\prime} . \in \operatorname{Aut}_{R}\left(G^{\prime}\right), \psi_{.} \in \operatorname{Aut}_{R}\left(G_{.}\right), v_{.} \in \operatorname{hom}_{R}\left(G_{.}, G^{\prime}[-a].\right)$ by (1.11) or by the proof of (1.9). Besides, the formula in (2.6), together with (2.1) and (1) of (1.10), allows us to assume that $\psi_{i}, \psi_{i}^{\prime}, \psi_{i}^{\prime \prime}(i \in \mathbf{Z}), \mu_{i}^{(j)}(j=1,2, i \in \mathbf{Z}), \mu_{a^{\prime}+1}^{\prime(j)}(j=1$, 2) are all matrices with entries in k. In particular, as in (2.11), the fact that λ. is a chain map implies

$$
\begin{equation*}
\mu^{(1)} \cdot \psi \cdot=\psi^{\prime}[-a-1] \cdot \mu^{(2)}, \tag{5.3}
\end{equation*}
$$

in other words $\left[\begin{array}{cc}\psi^{\prime}[-a] . & 0 \\ 0 & \psi .\end{array}\right]$ is also a chain map, and hence so is $-v$. by (2) of (1.10). Again, we may assume that $v_{i}(i \in \mathbf{Z})$ are matrices with components in k by (2.6). Put $f=\psi_{0}, f^{\prime}=\psi_{0}^{\prime}, f^{\prime \prime}=\psi_{0}^{\prime \prime}, g=v_{a^{\prime}+1}, g_{i}^{(j)}=\mu_{a^{\prime}+i}^{(j)}(i, j=1,2)$, $h^{(j)}=\mu_{a+1}^{(j)}, h_{1}^{\prime(j)}=\left.\mu_{a^{\prime}+1}^{(j)}\right|_{G_{a^{\prime}-a+1}^{\prime}}, h_{2}^{\prime(j)}=\left.\mu_{a^{\prime}+1}^{\prime(j)}\right|_{G_{a^{\prime}+1}}$. The conditions (5.1), (5.2) and (5.3) imply by (1) of (2.1) that

$$
\begin{gather*}
h^{(1)}\left(i d_{K_{a+1}} \otimes f\right)=f^{\prime} h^{(2)}, \tag{5.4.1}\\
h_{1}^{\prime(1)}\left(i d_{K_{a^{\prime}-a+1}} \otimes f^{\prime}\right)=f^{\prime \prime} h_{1}^{\prime(2)}, \tag{5.4.2}\\
\left.\left(h_{1}^{\prime(1)} g+h_{2}^{\prime(1)}\left(i d_{K_{a^{\prime}+1}} \otimes f\right)\right)\right|_{\operatorname{Ker}\left(g_{1}^{(2)}\right)}=\left.f^{\prime \prime} h_{2}^{\prime(2)}\right|_{\operatorname{Ker}\left(g_{1}^{(2)}\right)} . \tag{5.4.3}
\end{gather*}
$$

Moreover

$$
\begin{equation*}
h_{1}^{\prime(j)} g_{2}^{(j)}=0 \quad \text { for } j=1,2 \tag{5.5}
\end{equation*}
$$

by (2) of (2.1). Conversely, the existence of $f \in G L(p, k), f^{\prime} \in G L\left(p^{\prime}, k\right), f^{\prime \prime} \in G L\left(p^{\prime \prime}, k\right)$ and $g=v_{a^{\prime}+1}$ with ${ }^{-} \nu . \in \operatorname{Hom}_{R}\left(G_{.}, G^{\prime}[-a]\right.$.) satisfying (5.4.1)-(5.4.3) implies $L^{(1)} \cong L^{(2)}$.

Thus the classification of maximal quasi-Buchsbaum R-modules M with the property $l_{R}\left(H_{\mathrm{m}}^{i_{1}}(M)\right)=p_{1}>0, l_{R}\left(H_{\mathrm{m}}^{i_{2}}(M)\right)=p_{2}>0, l_{R}\left(H_{\mathrm{m}}^{i_{3}}(M)\right)=p_{3}>0, H_{\mathrm{m}}^{i}(M)=$ $0\left(i \neq i_{1}, i_{2}, i_{3}, r\right)$ for some i_{1}, i_{2}, i_{3} with $0 \leq i_{1}<i_{2}<i_{3}<r$ has been reduced to the classification of the elements ($h, h_{1}^{\prime}, h_{2}^{\prime}$) of

$$
\operatorname{mat}\left(p_{2}, p_{1}, s_{21}\right) \times \operatorname{mat}\left(p_{3}, p_{2}, s_{32}\right) \times \operatorname{mat}\left(p_{3}, p_{1}, s_{31}\right),
$$

which satisfy the condition corresponding to (5.5), under the equivalence relation $\left(h^{(1)}, h_{1}^{\prime(1)}, h_{2}^{\prime(1)}\right) \sim\left(h^{(2)}, h_{1}^{\prime(2)}, h_{2}^{\prime(2)}\right)$ indicated by (5.4.1)-(5.4.3), where $s_{21}=\binom{r}{i_{2}-i_{1}+1}$, $s_{32}=\binom{r}{i_{3}-i_{2}+1}, s_{31}=\binom{r}{i_{3}-i_{1}+1}, a=i_{2}-i_{1}, a^{\prime}=i_{3}-i_{1}$.

Department of Mathematics Faculty of School Education Hiroshima University

References

[A1] M. Amasaki, Application of the generalized Weierstrass preparation theorem to the study of homogeneous ideals, Trans. AMS, 317 (1990), 1-43.
[A2] M. Amasaki, Maximal quasi-Buchsbaum graded modules over polynomial rings with $\#\left\{i \mid H_{\mathrm{m}}^{i}(M) \neq 0, i<\operatorname{dim}(R)\right\} \leq 2$, in Japanese, Proc. 12th Sympos. Commutative Algebra, Kyoto, October 30-November 2, 1990, pp. 110-125.
[CHP] M. Cipu, J. Herzog and D. Popescu, Indecomposable generalized Cohen-Macaulay modules, preprint (December, 1990).
[Di] J. Dieudonné, Sur la réduction canonique des couples de matrices, Bull. Soc. Math. Fr., 74 (1946), 130-146.
[DIR] V. Dlab and C. M. Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc., 173 (1976), 1-57.
[EG] D. Eisenbud and S. Goto, Linear free resolutions and minimal multiplicity, J. Algebra, 88 (1984), 89-133.
[G1] S. Goto, A note on quasi-Buchsbaum rings, Proc. AMS, 90 (1984), 511-516.
[G2] S. Goto, Maximal Buchsbaum modules over regular local rings and a structure theorem for generalized Cohen-Macaulay modules, Commutative Algebra and Combinatorics, Advanced Studies in Pure Mathematics, Kinokuniya, Tokyo; North-Holland, Amsterdam, 1987, pp. 39-64.
[Ka] V. G. Kac, Infinite root systems, representations of graphs and invariant theory, Invent. Math., 56 (1980), 57-92.
[Kr] L. Kronecker, Algebraische Reduktion der Schaaren bilinearer Formen, S.-B. Akad. Berlin (1890), 763-776.
[R] C. M. Ringel, Representations of K-species and bimodules, J. Algebra, 41 (1976), 269-302.
[SV] J. Stückrad and W. Vogel, Buchsbaum rings and applications, Springer-Verlag, Berlin-Heidelberg-New York, 1986.
[Y] Y. Yoshino, Maximal Buchsbaum modules of finite projective dimension, preprint (February, 1991).

