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The global existence of small amplitude solutions to
the nonlinear acoustic wave equation

By

Kiyoshi MIZOHATA and Seiji UKAI

1. Introduction

T he nonlinear acoustic wave equation i n  a  viscous conducting fluid in  n
space dimensions is given by (Kuznetsov [4]),

(1.1) 0(p — (1,49
1,

atflv(p1 2 + thp + (0,9)1,
Po

where 9  is  a  wave function, c ,  i s  a  sound velocity o f  th e  undisturbed fluid.
=  cp /c„, where cp  a n d  c,, a re  heat capacities o f the  flu id . b ,  =  +  (411)/3 +

1/c,.,), where a n d  ri are the coefficients of shear a n d  bulk viscosity
respectively, K  is the coefficient of thermal conductivity, and  Po i s  the density of
the undisturbed fluid.

In  this paper, we shall consider the following two problems, assuming that
b -= b i l po > 0 , a —  1)1c6> O.

P(1): (Initial Boundary Value Problem)

att9 — czlip = 0,{11791' + /349 + a(a r y))2 }  in  Q  x  [0 , op),

9(x, 0) = (p0 (x), (p,(x, 0) =  9 1 (x ) in  Q, p  = 0  o n  i', S2 x [0, co),

where Q  is  a  bounded domain in  R" with a  smooth boundary 052.

P(2): (Cauchy Problem)

att9 clid = { V 2  + b zhp + a(,9) 2 i n  R" x [0, oc ),

9(x, 0) = 9 0 (x), 9,(x, 0) = (x ) in  R".

In this paper, we shall show that there exists one and only one global solution
of P(1) a n d  P(2) when n = 1, 2  and  3  if 9 0  a n d  9 ,  are  sufficiently small. The
exponential decay is also shown fo r P ( I ) .  T he proofs a re  based o n  th e  usual
energy argum ents. T o  ge t the energy estimates, we proceed differently fo r P(I)
and P(2). For P(1), Poincare's inequality is applicable and the derivation of the
estim a te s  is  m u ch  ea s ie r . H o w ev e r, it  is  n o t f o r  P (2 )  a n d  a  m o r e  careful
com putation is required. F o r the  one  dimensional case, w e  use iteratively the
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equation  itse lf, w hile  f o r  t h e  higher dim ensional cases, w e  use Gagliardo-
Nirenberg's inequality.

There a re  severa l w orks re la ted  to  P (1). G . F . W ebb [7], P . A vile and
J. Sandefur [2], D. D. Ang and A. P. N. Dinh [1] studied the following problem
which arises from strongly damped Klein-Gordon equation.

P(3):

— A9 — 49, = f((p) in  Q  x  [0 , cc),

(p(x, 0) = 9 0 (x), 9 1(x, 0) = 9 1 (x ) in  Q , 9 = 0  o n  052 x [0, cc),

where 52 is a  bounded domain in  R " with a  sm ooth  boundary Q.

Under some restrctions on f ,  they have proved that there exists a unique
solution which decays exponentially. R. Racke and  Y . Shibata [6] have studied
a  similar problem in  th e  theory o f one  dimensional nonlinear thermoelasticity
w hich  is  m ore  com plica ted  than  P (3). I n  [ 6 ] ,  they  a lso  show , under some
conditions on  in itia l da ta , tha t the re  ex ists  a  un ique  so lu tion  which decays
polynomially.

2. Notation

In  this paper, In(52) and Hm(52) denote the usual Sobolev spaces. and
II • II. denote the L 2 -norm  and  Hm-norm respectively a n d  (  ,  )  denotes the L 2

inner p ro d u c t . F o r  a  given Banach space X  and  a  positive  constan t T . we
denote by L 2 (0, T; X ), th e  space of functions f  on (0, T )  with values in X  such
that

(111.f(t)112x dt) f . /.2(0.7 , ;x )  < 00,

and by C([0, T ); X ) the  space of continuous functions on [0 , T )  with values in
X. 1 1 / 1""(52) is also the  usual Sobolev space. We define 11 • as follows:

.f = 1 ) .1 ' P11LP
C k

where •  4 ,  is the LP-norm, and

= D 2 • • 1:) .;,", (a l ,  a 2 ,...,a „ ) ,

(7!
=  1  +  2  +  ••• +  a„, D  —  

Px,

Finally, we define

=
1
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3. Global existence for one dimensional case

In  this section, we shall study P(1) and P(2) for the one dimensional case.

P(1): (Initial Boundary Value Problem)

(3.1)P u — = P s2 +

(3.2) 9(x, 0) = p o (x ) , 9,(x, 0) = 9, (x) in Q, =  0  o n  052 x [0, oo),

where Q is a  finite interval in R 1 .

P(2): (Cauchy Problem)

(3.3) (Pti — c(2)49 .,,, = (9.2 + cuPA,

(3.4) 9(x. 0) = 90(x), 49 ,(x, 0 ) = (Pi (-x) xeR i .

First, we shall discuss the corresponding two linear problems.

LP(1):

(3.5) (Ptf (1)., Noxxt = f (x t),

(3.6) 9(x, 0) = 9 0 (x), 9,(x, 0) = 9 1 (x) in  Q , 9 = 0  o n  oQ x [0 , x ).

LP(2):

(3.7) P i t bp . f  (x, t),

(3.8) 9 (x , 0) = 9 0 (x), 9,(x, 0) = 9 1 (x) x E .

Then, we have the following theorem for LP(1).

T heo rem  3 .1 . Suppose f e C( [0, T ); H - 1 ) T; L 2 ). A n d  le t  9 0 e

nH2
,  (p, EH .  T h e n  fo r  each T>  0 , the initial boundary value problem (3.5) (3.6)

admits a  unique solution 9(x, t) in the following sense:

I. (peC([0, T); Hj,nH 2 ).

II. 9, E C([0, T); nL2 (0, T; H 2 ).

+  OP, + b <(Pt , tP> = (f, 0) fo r any  tpein,

49 (x, 0 ) = Po(x), 9,(x, 0 ) = 49 1(x)

where <9, 0> = 0 „).
Proof. A  similar fact was proved i n  [ 1 ] .  So we only give a sketch of the

p ro o f . T a k in g  th e  inner p roduc t of (3 .5) w ith  9 ,  and cp x x t  i n  L 2 (S2), and
integrating in  t  over (0, T )  give, after some rearrangements, th e  following two
inequalities.

d

at
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1 C2

11 t1121 1  (1° x1121 1b f v112 d t
(3.9)

—2 1T C
2

0  
( 4), 2 +  f 112 ) d t + (Pi 112 + 11 90x 2 -

C2 b f r

—

2
IlgovII 2 + + — II(P.,-xtd2 dt

2 " 2
2

Co

21)
11 

f
Pd t+  —

2
11 lx11 2

2
1190x.e.

Moreover, we note

(3.11) 11 112211 90 11 2 +  2 f

Combining (3.9), (3.10) and (3.11), and using Grownwall's inequality, we obtain

21' + Jf l I 2 d t
o

C(T)
/

) M +  119111i + 14112  d t)
o

Then, it is easily proved, using a  Galerkin approximation scheme, that for
each T > 0 a unique solution exists o n  [0, T ) .  For the  detail, see [1].

Exactly in  the  same way, we can prove the following theorem for LP(2).

Theorem 3.2. Suppose f e C ([0, T); H 1 ) n (0, T; L 2 ). A nd let toO E H2 ,
9, E H  T hen for each T > 0, the initial and boundary value problem (3.7) (3.8)
admits a  unique solution 9(x, t) in the following sense:

9 e C ([0, T); H 2 ).

9tEC([ 0 , T ); H i) n L2 (0, T; H 2 ).

d
(p) + c, <cp, >  +  b < 9 ,  0> = (f, 0) f o r any

dt

(P(x, 0) = 90(x), (Pf(x, 0 ) = 91(x)
where (9, = (9,, „).

Remark. W e can get the same results as Theorem 3.1 and Theorem 3.2 for
the two and  three dimensional ca se s . W e shall use these results in Section 4.

(3.10)

MAZ + M(Pt1
(3.12)

1.

Now, by using Theorem 3.1, we shall prove the local existence.

Theorem 3.3 (Local Existence for P (1 )). T here ex ists a  positive number E
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such that i f  9 , E  H j) n H 2 and  cp,e H„; and if  1( p <  E ,  there exists a constant

> 0 depending only on the norm II (Po 2  and a unique solution to (3.1) and (3.2)
satisfying:

(,9 e C ([0, r); H (')  n H 2 ),

e C([0, r); nL2 (0, r; H 2 ).

P ro o f .  We shall construct local solutions by successive approximations. We
first assume that kp i l <  1/4a and consider the equation

„(1) ,,(1) h ( 1 )
V'tt '0 'F'xx '-"V xx t(3.14)

(P 0 xx + b + 2 (Pox9 
=  2 9o,(1) +  2 a( P 1 —  2a9,

(3.15) (P(1)(x, 0) = 490 (x), ) (x, 0) = (P1 (x) in  0, 9" ) = 0 on Q .

Then fo r any T>  0, a unique solution (pw(x, t )  exists o n  [0, T )  by Theorem
3.1. Suppose by induction cp(" +  1 ) is a solution of

(3.16) 40(11; + — cô (10 1;1x+ —  b  ( P (xnx+t 1 )

2 (n)

=  2 t) go(ic 't ) ±  2a co
 C O 9XX b (PV + 2 cp(P  (Tcp

1 — 2a(p (
t o

9 ± 1 ) (x, 0) = (p0 (x), (e +  1)( =  (pi (x) in  Q,
(3.17)

'P("+1) = 0 on Q .

If we assume that k p n  <  1/4a, a  unique solution of (3.16) and (3.17) exists by
Theorem 3.1.

By (3.12),

Pe+ 1 )+  k O r 1 ) 11? + 11 " 112  d
0

<  2 a C  0J'

T
9 (11) 4 ( 1) ±  b (pV , +  2 ço,

( r i )

S0x
(n t )  2  

d t1— 2ayor

(3.18) + 2 C II (Pr (P(.Z) 2  d t + II (Po II + ill i)

f
T

0
(n) (nh

1
 ii 2 d  t1, (n), , ,2 (n) 1 b,r»„"x) 9x 9 x i  11<  4aC II (P 

,
t lc o  49 +  2.  - r  v x  t

+ C (Po + 1140 1 Ili).

The following Sobolev's inequality is well known :

(3.19) = sup If I C (n) IIif II1411.:
Let D(M , r ,  r )  be a  se t o f functions cp(x, t)  o n  [0, 1 such that

(3.13)
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1. C( [0, -r); H (13, n I-12 ) , C O . t); WO (1 L2  (0, t ;  H 2 ).

119, lq e.

MCP di + II 9,11f + II 9.11 2 dt M.

Choose e so small that e C(1)/32a 2 . Then, using (3.18) and (3.19), an easy
caluculation shows that there exists a positive constant r(E , 190 )2) such that if
d (Pi e, 49 ( n )  belongs to D(M, e, r(e, M)) for some positive constant M(e, Ii90112)
for all n = 1, 2, 3,..., and that (p( ") makes a Cauchy sequence in  C([0, t); H (

1, n H2 )
and  (e )  m akes a Cauchy sequence in  C([0, -r); H,) n L2 (0, -r; H 2 ).

Thus passing to the lim it in (3.16), there exists a  9  which satisfies (3.1), (3.2)
and (3.13). It is im m ediate to see that there is at m ost one solution of P(1).

Similarly, we also get the following theorem for P(2).

Theorem 3.4 (Local Existence for P(2)). There exists a positive number e such
th at  i f  9 0 e H 2  an d  (p i e 11 1 a n d  if II < H ere ex ists a constant z  > 0
depending only on the norm 11( P o and a unique solution to (3.3) and (3.4) satisynig:

cpeC([0, "C) ;  H 2 ),
(3.20)

91e C([0, t); H1 )nL 2 (0, r ; H 2 ).

Remark. In  Theorem 3.4, T  does not depend o n  II (Polk

Now we shall state the m ain theorem in  this section.

Theorem 3.5 (Global Existence and Asymptotic Behavior fo r  P(1)). There
exists a constant e > 0 such that if (po E W n H 2  and (pi e 11( an d  i f  (poM + 111
< e, then a  unique solution to (3.1) and (3.2) ex ists and satisfies

E C([0, co); nH2 ).
(3.21)

(p EC( [0, co); nL2 (0, co ; H 2 ).

M oreov er, there ex ist M ,> 0  a n d  >  0 such that

(3.22) II + II (p, IIM 0 e "

P ro o f . To prove (3.21), we must get global estimates. The following idea
is due to Prof. T. N ish ida. Here we must use the following Poincare's inequality:

(3.23) 1 1 1 ' 1 1  c II I7 .1. II if f =  0  o n  at-2.
Taking the inner product of (3.1) with (I), and p ,  in  L2 (52) and integrating over
(0, T ) give, after some rearrangements, the following two inequalities.

CO  a 
(p )

,  9 , 2  ±  c (
2
)

(t°. d b 19xt12 dxdt
3 2

2
 J o

 f  9 ,9 ,9 x , d x  +  1 ( 1 —  91) (p (pL dx .
2 3 2

(3.24)
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-1 9 x
2 , 9x2x dx + b I T TI9x,i12 dxdt.

2 2 0
2

(3.25) = 2 9(9).-i9xxi dx d t + —1 9ix + 
0 2 2

+  f  1.2a 9/9ti9xxt dx dt.
0

Then using (3.19) and (3.23), we have the  following inequalities from (3.24) and
(3.25).

f( 1 a e2

2 3 9( + 49 x2  dx + b (cp ( 2 dt

(3.26) < C sup 119,111 • f 119.,:t112 dt
0<t<T 0

2I a
+ 2 -"o(p1)91 + — (p d x .

I(
2

2
COf —  C sup 119t 11 1) 49Ldx+b i 11(1)=11 2 dxdt

0<r_T 2 0

(3.27) Cs u p 119,11i
T

f (11(Pxi 112 + 9xxt ( 2 ) d t
o

f
e2

+  C (pL + ±) (g x x  dx.
2

So from  (3.26) a n d  (3.27), there exist constants e > 0 a n d  C > 0 such  tha t if
119011Z + E ,  then

(3.28)
119(x, t) 113 + 9 t (x ,C O  ( PO 11 + 11 91 g),

for a l l  t > O.

From  th e  inequality (3.28) a n d  Theorem 3.2, w e obtain (3.21). To prove
(3.22), we first assume tha t 19t11 / 4 a  for all t O. Put /14 = + 11(P
Taking the  inner product o f  (3.1) w ith e' t 9, e' t yo„ e' t ço,x  a n d  e't 9„, in  L2 (Q),
and  integrating from 0 t o  T give, after some rearrangements, a n d  using (3.19)
and (3.23)

4
-11 x112 e f 9x112 e d t

(3.29) < f (PA 2 +  9 x t  2)e7  ̀d t + C  9.,ct 11 2
0

± ± 1) (P.T1 2e)1dt C M j .
0
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1 c2 T
—

3  
119t V e l +  ---9-(ro,,M 2 e l + h j.(F'xiM2 e  dt

/ o

(3.30) C Y ' (119A 2 + M9,•.11 2 )e'tdt
o

C M if 1 1 9 x t V e d t

0

c2 j' T

+ —9-1 1 9 ,x 1 1 2d t
4

- 119.11 2 e" 2

(3.31) < C (M , + f 9x,M2119xx112)eY td t + C (P M2

0

CJ(11çoxt112 + 2)e''dt + C11/1.
o

C

2

4

— k P x re e 119vv e t  + b
2 0

119 xxtM2 dt

(3.32) < Cy f (M(Pxt 11 2  ± (Px.a 2 )e  dt
o

C11/11 (M 112  ±  9xxt112 )e d t +  CM?.
o

Combining (3.29), (3.30), (3.31) and (3.32), we have

(119 11i + II q),I1 )ev

(3.33) +  fM ( P x V  + ç t ) t , , i ) e '`) dt

< O M  + ) J ( (PAi + 19tx.11i)e )q dt + C M .
o

If we choose M , > 0 and y > 0 s u c h  th a t  O M , + 7) < 1, and put a constant
M = C • M ?, we get (3.22) from (3.33).

F o r P(2), w e can't prove the global existence in the same w ay. The m ain
difficulty is that we can't use  Poincare's inequality. However, a  nice structure
of the equation (3.3) allows us to prove the global existence for P(2).

Theorem 3.6 (Global Existence for P(2)). There exists a constant e > 0 such
tha t if 9, E H 2 and (p i c H  and If—  11 (Po M 2 119111i there exists a  unique
solution to (3.3) and (3.4) satisfying:
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9 e C( [0, ) ; H 2
) ,

9,e C([0, oo); H 1) n L2 (0, 00 ; H 2 ).

P ro o f . Taking th e  inner product o f  (3.3) w ith 9 , a n d  9x .„, in  L2 (Q) and
integrating in  t  over (0, T ) give, just as in  the  proof of Theorem 3.5, after some
rearrangements, the following two inequalities.

1f  
2

a 2 C6 2
fT f 1 9„t j2 dx dt3  9 ) 9 ,  + --i •9, dx + b
J o .)

1 a r2

= 2 f 9,(p x 9 x t dx d t + — — 9 )9 2 +  -±3 92 dx.
2 3 2 ' "

Iil 9 x
2

t + cjcp x
2„dx + b IT  119,t1 2 dxdt

2 2 o
T

(3.36) --- 2 tpx9x,cp.,:x, dx dt + —1 9 L + c_6_9(2) x x dx
Jo 2 2

T
+  2 a  ff 9,9„9 x ,dxd t.

o

In  th e  proof o f Theorem 3.5, we used (3.19) (Poincare's inequality) to estimate
the nonlinear term çor cp,c (Px , dx dt in  (3.24). Here, w e m ust estimate it more
carefully. F irst, by  in teg ra tion  by  parts,

2 f  19 ,9 x 9x ,clxdt = f ( ( g ) x (px dx dt = — fcgyo x ,dxdt

(3.37) = f f (g {9u — — (9x2 + a (g),} dx dt
c o  o

CT f ( (pn

)  
(  a c e

+ 2b9,9L — 2cg 9,(P x ,dxdt.J o3  , 2 ),

The following inequality is easily proved.

(3.38) 2oo 2 1140 ,11 19r, M.

(3.34)

(3.35)

Using (3.38) to  (3.37) give, after some rearrangements,

f :1 9 ,9 x 9 x ,d x . < (f.(P' a(14. dx
co j  3 2

C (Pi
j 3

T
+  

4

S U P (11 ( Pr 11 4 9 .,, () • f M (I) xt M2 dt2C0 0_.5t.T 0
2h T

2
±  SUP (11 (P , 4 ) • f II 9xt112 dt.

Co 0.t.çT 0

2

(3.39)

4 )a9, 
dx

2
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So from (3.36) and (3.39), there exist constants e >  0  a n d  C* > 0  such  tha t if
To II + q r, then

(3.40) 119(x, t) +  4 9 ,(x, t) C*( o + 1191g),

for a ll t > 0. Now, (3.34) follows from the inequality (3.40) and  Theorem 3.4.

4. Global existence for two and three dimensional cases

In this section, we shall study P(1) and P(2) for the two and three dimensional
cases.

P(1): (Initial Boundary Value Problem)

(4.1) 49t( d A T 9( = (V9 2 +  c/(0)/,

(4.2) (P(x, 0) = 90(x), 9,(x, 0) = 91(x) in  Q . 9  = 0  on 13f2 x [0, co),

where Q is a  bounded domain in  R" (n = 2, 3) with a  smooth boundary 0.Q.

P(2): (Cauchy Problem)

(4.3) ("9 —  czlço —  b = 91 2  + ( 1 40i,

(4.4) T(x, 0 ) = 90(x) , 49,(x, 0) = 49 1 (x) x E R "  n = 2, 3.

A s  in  th e  previous section, w e sha ll sta rt from  th e  corresponding linear
problems.

LP(1):

(4.5) (P it  — cz1p — bzi 9, = f (x, t),

(4.6) 49(x, 0 ) = 90(x), (Pt(x, 0) = 9 1 (x ) in Q, q  =  0  o n  0Q  x [0,

LP(2):

(4.7) 9„ — c (
2
) 4 9 —  bd 9, = (x , t),

(4.8) 9(x , 0) = 9 0 (x ), 9,(x , 0) = 9 1 (x ) X E R " n = 2, 3.

Theorem 4.1. Suppose .f e C([0, T); L 2 ) n L2  (0, T; 11 1 ) and f r eC([0, T );
nr-2 (0, T; L 2 ). A n d  le t  9 0 e H ( n H 3 , q3, EH n  H 2 . Then for each  T>  0 ,  the
initial boundary value problem admits a  unique solution 9(x , t) to  (4.5) an d  (4.6)
satisfying:

9EC([0, T); .1-W  )H 3 ),

9 t e C([0, T); 11,;nH 2 )nL 2 (0, T; H 3 ).

P ro o f .  From  th e  remark after Theoem 3.1, there exists a unique solution
to (4.5) amd (4.6) satisfying
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9e C ([0, T ); Inn H 2 ),

9,e C([0, T ); 1-1)n L 2 (0, T; H 2 ).

If we differentiate (4.5) with respect to  t, we get

cZA(pt 13A (P i t f.
Let us consider the following linear problem.

(4.9) v„ — clidu — bdv, = 1(x, t),

(4.10) v(x, 0) e H  n H 2 , y t (x, 0)E L 2 , y  =  0 on Q .

Then there exists a unique solution to  (4.9) and (4.10) satisfying

v  C([°, T); 11,", n H 2 ),

y,E C( [0, T); L 2 ) n L2 (0, T;

The proof of the above fact is sim ilar to that of Theorem 3.1.
L e t  v(x, 0) = (pi , vt (x, 0) = 9,1(x, 0) = c4 + bz i(Pi + f (x , 0 )  a n d  w = ( Po

+ St, v(x, 7)d T. In te g ra tin g  (4.9) from 0 to  t, we get

wtt — c4w — b w (x, 0) = (P0, wi(x, 0) = CPi.

From (4.5) and (4.6). we can conclude that w  9 .  Then, it follows that

9,e C([0, T ); nH 2 ),

9„e C([°, T ); L2 ) n L2 (0, T;

Now we m ust obtain m ore x differentiability for (p. W e d o  this using the
theory of elliptic boundary value problems.

From (4.5),

(4.11) dd  9  + b = f —  9„.

From above arguments, the right side of (4.11) belongs to L2 (0, T; 11 1 ). If  we
put 49  = h  and f  —  9„ = H,

C2,
h, + — h = H.

Then,

c 1 0  „

(4.12) h = e -  b  h(0) + e  bH ( s ) d s .
Jo

Then a n  easy computation shows tha t h  belongs to . A s 0.Q is smooth,
belongs to H 3 . So 9 , belongs to L2 (0, T; H 3 ).

W e also have the following theorem for LP(2) in  the  same way.

Theorem 4.2. Suppose j e C( [0 , T); L 2 ) n L2 (0, T ; H ') a n d  E C( [0 ,  T ); H-1)
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n L 2 (0, T; L 2 ). A n d  le t  (Po E H 3 , (1),E H 2 . T h e n  f o r e ac h  T >  0 ,  th e  initial
boundary value problem admits a unique solution 9(x, t) to (4.7) and (4.8) satisfying:

9 e C([0, T); H 3 ),

9 ,e  C ([0, T ); H 2 ) n L2 (0, T; 11 3 ).

Now we shall state the local results for P(1) and P(2).

Theorem 4.3 (Local Existence for P(1). There exists a positive number e such
th a t  i f  N e i-1,10 W  and 9,e  H  n H2 a n d  i f  1191113 < e, there ex ists a  constant
T  >  0  depending only on the norm  (Po 113 and  a unique solution to (4.1) and (4.2)
satisfying:

9 e C([0, T ); H (
1
) n H 3 ),

cp, C ([0 , 7 ); H (
1
) n H 2

)  n L2 (0, ;  H 3 ).

Theorem 4.4 (local Existence for P(2)). There exists a positive number E such
th a t  i f  (po e H 3  a n d  9 1 e H 2  a n d  i f  1191113 < there ex ists a  constant T

depending only on the norm 11910 11 and a unique solution to (4.3) and (4.4) satisfying:

9 C ([0, -c ); H 3 ),

91 e C( [0, t); H 2
)  n L2 (0, ;  H 3 ).

Using Theorem 4.1 and Theorem 4.2, the proof of these theorems is almost
sim ilar to  that o f T heorem  3 .2 . B u t in  o rder to  ge t local estimates, we must
use Gagliardo-Nirenberg's inequality. The derivation of local estimates is almost
sim ilar to that of global estimates in  the  next theorem.

Now we shall state the m ain theorem in  this section.

Theorem 4.5 (Global Existence and Asymptotic Behavior fo r  P (1 ) ) . There
ex ists a  constant e > 0  s u c h  th a t  i f  9, EHj,n H 3 a n d  9,e in n  H 2  a n d  if

o 113 + ( ç  113 e, there ex ists a  unique solution to  (4.1) and (4.2) satisfying:

9 e 0[0, oo); H n H3 ),
(4.13)

9, e C( [0, oo); n H 2 ) n L 2 (0, oo; H 3 ).

Moreover, there exist 11/4 > 0 and y' > 0 such that the asymptotic behavior is given
by

(4.14) 119113 + 119,q.

P ro o f . In order to prove Theorem 4.3, we must use the following well-known
inequality.

Lemma 4.6 (Gagliardo-Nirenberg).

(4.15) u II w k., C11 ti 14, • 11 11 111»

p > q , p  > r, 0  < 0  <1 and
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k — -
f l

 0 ( m
n(1 — 0)

q,!

with stric t inequality  if  q or r = 1.

0,49 0 — b z191 +Set VoK = 9„(x, 0) — 
1 — 2atp,

T aking  the inne r p roduc t o f (4.1) w ith  9„ 49  and .61(p, in  L2 (Q) and
integrating over (0, T )  give, after som e rearrangem ents, the following three
inequalities.

(1 a c2

— —3 (  P )11 t 112 + - - 9
2 11v 9112 + b 1117  9,112 dt

0

( 1 a 2
= -3ÇOI 1k/9 1112- 2 C2 MV9011 2

+
CT

 19,17 • V 9,clx dt

-
2

1149112 ± C 26  f M A O 2 dt
0

CT
(4.17) f  9„4 +21 7 9,•V949dxdt

o

+  f  f  2 a 9 , 9 t t A  dx dt + 1 9o112

2

1 2
CO

-

2
11V9t112 +

2 J0
 11,4 911 2 + b 1049,112 dt

1 2
c.0= 

2
- 11V911 2

2
11,4 49 0112

+
Cr i '17 9, • 17 94 9, d t + 2a f9,9„z19, dx dt.
o

By differentiation of (4.1) with respect to  t,

(4.19) (Por — c 4 p, — 13 4 =  ( 61 (P + 9 2 )tt.

Taking the inner product of (4.19) with 9„ in L2 (0) and integrating from 0 to
T give, after some rearrangements,

(1 c 2

— (1 9)11 „ 11 2± )  V (p , ± b f 7  „  d t
2 2

(4.16)

(4.18)
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(1 2
CO

= — a49 1)11(P'0'112 + —

2
II (P1I12

(4.20)
+ 2 f 9, • V 9,9,dx dt + 2 f f V9 V 9„9„dx dt

+ aJJ dxdt.

Differentiation of (4.1) with respect to  x yields

(4.21) cOxz19 bpx ,4 9t = D,(1 17 (PI2 + o(-P11•Dx(Pti

Taking the inner product of (4.21) with Dzip  and Dx zlq), in L2 (Q), and integrating

from 0 t o  T give, after some rearrangements,

c
2  
IT

—

2
11Dx4 (P112 + 1Dxd9112dt

2  0

4 f
11Dx(Ptill2 C .{ ( 4 0 4 +1 179t14 ) d X d t

c0 0

fC
C f119ttl3dXdf+ C fIV9t16dXdt

0 0

19■Dx(Pti2 dX dt.
0

2 TCn
- 11.1)x .49112 — 0,49,Vdt
2 2 0

4  T

— ID,A01(112 dt C f(1•4914 1179t14)dXdt
b  0

C  f q9tt13 dxcit + C 1117 9,16 dxdt

+ fly0,9„12dxdt.
o

Using Lemma 4.6, we have

fl(Ptt13 dxdt Cf II(P0 119011dt

C ( sup 119till) . j . 11 9ft dt.
0

(4.22)

(4.23)

(4.24)



(4.25)

T

Nonlinear

G C (

acoustic

1Z1914dXdt G C  I

sup 104411090 . f
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109V114(PlIdt

1lAçogdt.
0

T

o
1V(Pt14 dXdt C 1117(Pt V11179thdt

0
(4.26)

G C ( sup 11f7 9,11111V9/ f V(Prg d t.
0

fo
7 '

Y'9,16 dxdt C f IT(Ptgdt
(4.27)

G C ( sup I v9,11.) • f II v(Ptlq cit.
O T 0

Applying (3.19), (3.23), (4.24), (4.25), (4.26) a n d  (4.27) t o  (4.16), (4.17), (4.18),
(4.20), (4.22) and (4.23) , a n d  then combining these inequalities, we obtain in the
same way as Theorem 3.3 that there exist constants o > 0 and  C > 0 such that
if  1149 0 +  O910 2Z then

(4.28) 1 1 4 9 (x ,  0 1 1 3  +  1 9 t (x , 1)11i C (  0  +  II illi) ,

for all t >  0 . From the inequality (4.28) and Theorem 4.2, we obtain (4.13). The
proof of (4.14) is of almost the same type as tha t of Theorem 3.3.

W ithout using (3.23) (Poincare's inequality), we can obtain local estimates
which are necessary for the proof of Theorem 4.3 and Theorem 4.4. But we can't
prove the global existence of the solution of (5.3) and (5.4) ju st in  the  same way
as in Section 3.

Theorem 4.7 (Global Existence for P (2 )). There exists a  constant e > 0 such
t h a t  i f  N e l l  and  91E 1 1 2  a n d  if II 90M*3'2 + 149 111Z e ,  there ex ists a  unique
solution to (4.3) and (4.4) satisfying:

e C( [0, x); 1-13 ),
(4.29) 

(pt e C( [0, ;  H2 ) n L2 (0, co ; H3 ).

P ro o f . Just as in Theorem 4.5, we must use (4.16), (4.17), (4.18), (4.20), (4.23)
and  (4.23). I n  Theorem 4.5, w e used (3.19) (Poincare's inequality) to estimate
the nonlinear term fo

T f17 9, • 17 99 1 dxdt in  (4.16). Here, w e m ust proceed more
carefully.

F irs t, w e  sha ll e stim a te  it fo r th e  two dim ensional c a s e . T h e  following
inequality can be proved easily.
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Lemma 4.8. For all ço el-1 1 (R 2 ), the f011owing inequality holds:

(4.30)
I R 2  4

dx 2 1 0 2 11 179112 .

An easy computation shows that

b T T
f 0 f  f7 •17 9(pt clxdt -4 101117491V  dt + 

b
1117(1)12497dxdt

1 1
1 2 2

07 9,112 dt + (11174914dx) (119,1 4 d.x) dt.
4 0

Using Lemma 4.8, we get

b IT 1 T 1 1

- 11179t112dt + 2 b  To (119,112 II VG9,112 )2  . (111717 9 112 11V9112 )
I dt.

4  0

Finally, after some rearrangements,
T f

V 9, • V 99, dxdt
f:o

1
12(4.31) < 1 ' .11179,112 dt + — sup 11 9,112 •  1 11r7 (pd 2 dt
4  04 b  0<t<T 0

( '

sup 11V9112 • j 11Z1 0 2 dt.
0•I<T 0

Now we shall estimate it for the  three dimensional case. I n  this case, we
m ust use the following well-known inequality.

Lemma 4.9 (Sobolev's inequality).

11 111., q)111 7 go 11 L a

(4.32)
with -

1  

=  -

1  

-  -

1  

and  1  <  < n.
p q  n

If we put p = 6, q = 2 and n = 3 in  (4.32),

(4.33) 114946 C II V911.

If we use (4.33), we get
j̀ T

V 9, • V 99, dxdt
o J

11V(P,11 • (1149,16 dx) (1117 913 d.x) dt
6 3
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3
Cf 11 V 9 t 112 • ( f IF4913 dx) dt.

0

1
f  1117 9r 112 (11F9 11i 1117(1011)3 dt. (by Lemma 4.6)

o

Finally,

521

TO
T

V ço, • V yr,q) i d x dt

(4.34)
C  sup G 1749 MillV49 11/3 f 11F(Predt.0<r<T 0

W e also used (3.19) (Poincare's inequality) to estimate PqRp t,d x  in
(4.17). Here, we use the integration by parts.

f cpcp„ dx = f (p f zItpdx — ftp i zItpo dx — jcpt zl(p,dxdt

= f (PtZl ( PdX f(P iA (PodX  f 1117 9, 2 dxdt.

Finally,

   

f
T f

9„49dxdt
4< 4 2 +  I- 1 11 9t 112

  

(4.35)

  

+J11179t112 dt
0 fçoi zttpo dx

 

We also used (3.19) (Poincare's Inequality) to estimate tp„ in  (4.17), (4.20),
(4.22) and (4.23). Here we use (4.3),

(4.36) (Ptt 112 < C (11 9 112  + 9 (112 + (sup V 2 ) • 11V 9,112 ).

Applying (4.31) (or (4.34)), (4.35) and (4.36) to (4.16), (4.17), (4.20), (4.22) and
(4.23), we obtain, just as Theorem 4.6, constants e > 0 and  C* > 0 such that if
çoo T2 + 1191113 then

(4.37) 110x, t)II + P,(x, t)  C*(11q)011432 ± 1191113) ,

for all t > 0. From the  inequality (4.37) and Theorem 4.4, we obtain (4.29).
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