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The global existence of small amplitude solutions to
the nonlinear acoustic wave equation
By

Kiyoshi Mi1zoHATA and Seiji UkAI

1. Introduction

The nonlinear acoustic wave equation in a viscous conducting fluid in n
space dimensions is given by (Kuznetsov [4]),

(1.1) 6,,w—(‘3d<p=3.{ll7<plz+[£dw+‘ 21(5107)2},
Po Co

where ¢ is a wave function, ¢, is a sound velocity of the undisturbed fluid,
v=c,/c,, where ¢, and ¢, are heat capacities of the fluid. b, =& + (4n)/3 +
k(l/c,—1/c,), where & and 5 are the coefficients of shear and bulk viscosity
respectively, r is the coefficient of thermal conductivity, and p, is the density of
the undisturbed fluid.

In this paper, we shall consider the following two problems, assuming that
b=b,/po>0.a=(—1)/ci>0.

P(1): (Initial Boundary Value Problem)
Sy — c3A4p =0,{|IVel*> + bAdg + a(@,e)?) in Q x [0. ),
@(x, 0) = @o(x), @,(x,0)=¢,(x) in 2, ¢ =0 on Q2 x [0, o),
where @ is a bounded domain in R" with a smooth boundary Q.
P(2): (Cauchy Problem)
Oy — 34 =2, IVol> + bdp + a(@,9)*} in R" x [0, ),
@(x, 0) = @o(x), @,(x,0)=¢,(x) in R".

In this paper, we shall show that there exists one and only one global solution
of P(1) and P(2) when n=1,2 and 3 if ¢, and ¢, are sufficiently small. The
exponential decay is also shown for P(1). The proofs are based on the usual
energy arguments. To get the energy estimates, we proceed differently for P(1)
and P(2). For P(1), Poincare’s inequality is applicable and the derivation of the
estimates is much easier. However, it is not for P(2) and a more careful
computation is required. For the one dimensional case, we use iteratively the
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equation itself, while for the higher dimensional cases, we use Gagliardo-
Nirenberg’s inequality.

There are several works related to P(1). G. F. Webb [7], P. Avile and
J. Sandefur [2], D. D. Ang and A. P. N. Dinh [1] studied the following problem
which arises from strongly damped Klein-Gordon equation.

P3):
8y — Ao — Ado, = f(p) in Q x [0, o0),
@(x, 0) = @o(x), @,(x,0)=¢@,(x) in 2, ¢ =0 on Q2 x [0, oo),
where Q is a bounded domain in R" with a smooth boundary Q.

Under some restrctions on f, they have proved that there exists a unique
solution which decays exponentially. R. Racke and Y. Shibata [6] have studied
a similar problem in the theory of one dimensional nonlinear thermoelasticity
which is more complicated than P(3). In [6], they also show, under some
conditions on initial data, that there exists a unique solution which decays
polynomially.

2. Notation

In this paper, H§(2) and H™(Q) denote the usual Sobolev spaces. | - || and
| -, denote the L?>-norm and H™-norm respectively and ( . ) denotes the L2
inner product. For a given Banach space X and a positive constant T, we
denote by L2(0, T; X), the space of functions f on (0, T) with values in X such

that
<J|lf(f) ||§'df> =1 lL20.7:x) < o,

and by C([0, T); X) the space of continuous functions on [0, T) with values in
X. W*H5P(Q) is also the usual Sobolev space. We define | - || y«., as follows:

[

If =2 IDXf s,

0<|x<k
where || - ||.» 1s the L”-norm, and

D% = D1'D3---Dj, o = (oy, %5,...,%,),

¢
|a| =% t+ 2+t Di= P
ex;

Finally, we define

IfF= IDLfI.

1<|x|<n



Nonlinear acoustic wave equation 507

3. Global existence for one dimensional case
In this section, we shall study P(1) and P(2) for the one dimensional case.
P(1): (Initial Boundary Value Problem)
3.1 Py = C§Pax = bOo = (@3 + ag)),
(3.2) @(x, 0) = @o(x), @,(x,0)=¢,(x) in 2, ¢ =0 on Q2 x [0. ),
where Q is a finite interval in R'.
P(2): (Cauchy Problem)
(3.3) Pu = 6Py — bPu = (03 + a@?),
(3.4) @(x. 0) = @o(x), @,(x,0) =@, (x) xeR".

First, we shall discuss the corresponding two linear problems.

LP(1):

(3.5) Py = G0 — b =[x, 1),

(3.6) o(x, 0) = @o(x), ¢,(x,0) = ¢(x) in Q, p =0 on Q2 x [0, ).
LPQ):

(3.7 P = C0Pux — PO =[x, 1),

(3.8) o(x, 0) = @o(x), @,(x,0) = ¢,(x) xeR'.

Then, we have the following theorem for LP(1).

Theorem 3.1. Suppose feC([0, T); H ')nL*(0, T: L?). And let @,eH}
NH? @,eH). Then for each T > 0, the initiul boundary value problem (3.5) (3.6)
admits a unique solution @(x, t) in the following sense:

. ¢eC([0.T); HinH?).
I @,eC([0. T): H)NL*O, T; H?).

d
1L A Y) + e <o, ¥> + b<lo ¥> = (f.y) for any Y eH,,

o(x, 0) = @4(x), @,(x,0) =, (x)
where <@, ) = (¢, ¥y).

Proof. A similar fact was proved in [1]. So we only give a sketch of the
proof. Taking the inner product of (3.5) with ¢, and ¢., in L*(2), and
integrating in t over (0, T) give, after some rearrangements, the following two
inequalities.
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1 2, o 2 ! 2
5”%” +E||§0x|| +b| lo.l*dt

(3.9) °
LT 2 2 ! 2 cs 2
<=1 e 2+ 1£1Hdt+ =l 1> + =l @o >
2Jo 2 2
1 ct b (T
_||¢xt||2+—0||¢x,v||2+_J ”(pxxr'lzdt
2 2 2Jo
(3.10)
<lrllf||2dr+'n 12+ ol
_2b o . 2 (plx 2 (pOxx .
Moreover, we note
T
(3.11) ||¢||2$2||(Po|lz+2f o, lI*dt.
0

Combining (3.9), (3.10) and (3.11), and using Grownwall’s inequality, we obtain

T
lol3 + It + J I ll®dt

0

(3.12) .
< C(ﬂ(ll(ﬂoll% + o3 +j ||f||2df>-
0

Then, it is easily proved, using a Galerkin approximation scheme, that for
each T> 0 a unique solution exists on [0, T). For the detail, see [1].

Exactly in the same way, we can prove the following theorem for LP(2).

Theorem 3.2. Suppose feC([0, T);: H ')nL*0, T; L?). And let ¢, eH?,
@,eH'. Then for each T >0, the initial and boundary value problem (3.7) (3.8)
admits a unique solution @(x, t) in the following sense:

I.  ¢eC([0, T); H?).
1. ¢,eC([0, T); H)nL*©, T: H?).

d

ML E((P,, @)+ o< Yy + blo, ) =(f,¥) for any YyeH',

e(x, 0) = @o(x), @,(x, 0) = ¢, (x)
where (@, ) = (o, ¥,).

Remark. We can get the same results as Theorem 3.1 and Theorem 3.2 for
the two and three dimensional cases. We shall use these results in Section 4.

Now, by using Theorem 3.1. we shall prove the local existence.

Theorem 3.3 (Local Existence for P(1)). There exists a positive number ¢
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such that if @oe HSNH? and ¢, eH) and if ||, ||? <e. there exists a constant
© > 0 depending only on the norm ||, and a unique solution to (3.1) and (3.2)
satisfving :

peC([0,1); HynH?),

(3.13)
@, C([0. 1): H)NL(0. t; H?).

Proof. We shall construct local solutions by successive approximations. We
first assume that |¢,| < 1/4a and consider the equation

W - cdoll — bl
(3'14) t 0 2 xt ,
_ CO(POxx+b(plxx+ 2(p0x(plx
- 2(p0xq)lx + 2(1(/)1 9
1 —2ap,
(3.15) e M(x, 0) = @o(x), !"(x,0)=¢,(x) in Q, ') =0 on Q.

Then for any T >0, a unique solution ¢'"(x, t) exists on [0, T) by Theorem
3.1. Suppose by induction ¢"*! is a solution of

(3.16) WY — ol — bl
. ), (n) ( C(z)(/)fv"; + b(pf\ff‘)., + 2(/71{”(/).(\{;’
=20\ 0% + 2ap” ;
1 —2ap™
(3.17) " V(x, 0) = @o(x), @ V(x,0) = ¢,(x) in Q,

e"*Y =0 on 0Q.

If we assume that [@{"| < 1/4a. a unique solution of (3.16) and (3.17) exists by
Theorem 3.1.

By (3.12).
T
le"* 13 + o V1T + J ol 2 de
0
T 2, (n) b (n) (n) ,(n) || 2
< ZGCJ (P}") CoPxx + Pxxt + 2(/),\- Pt dr
o 1 —2ap™
T
(3.18) + ZCJ Tl 12 dt + Clllool3 + I 13)
0

T
<0 [ Nolciota + bott + 200 0m 2 as

0
+ C(looll3 + lley 113
The following Sobolev’s inequality is well known:
(3.19) [/l =suplfl<Cn)lf II[%]+1
Let D(M, ¢. 1) be a set of functions ¢(x, t) on [0, t] such that
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I.  @eC([0, 1); HAnH?). ¢,eC([0.1); H)NL*0. t; H?).
L el <e
HL (el + o7 + 5@ l*dt < M.

Choose ¢ so small that ¢ < C(1)/32a>. Then, using (3.18) and (3.19), an easy
caluculation shows that there exists a positive constant t(e, [|@oll,) such that if
o, 1% <e @™ belongs to D(M, &, t(¢, M)) for some positive constant M(e, || @, | ,)
for all n =1, 2, 3...., and that @™ makes a Cauchy sequence in C([0, t); H{nH?)
and ¢ makes a Cauchy sequence in C([0, 7); HS)nL*(0, t; H?).

Thus passing to the limit in (3.16), there exists a ¢ which satisfies (3.1), (3.2)
and (3.13). It is immediate to see that there is at most one solution of P(1).

Similarly, we also get the following theorem for P(2).

Theorem 3.4 (Local Existence for P(2)). There exists a positive number ¢ such
that if @oeH? and @, eH' and if | ¢, ||} <e. there exists a constant t >0

depending only on the norm || @, |3 and a unique solution to (3.3) and (3.4) satisying:
@eC([0,7);: H?),

(3.20)
@, €C([0, 1); H)YNL*(0, T; H?).

Remark. In Theorem 3.4, t does not depend on [ ¢,|.
Now we shall state the main theorem in this section.

Theorem 3.5 (Global Existence and Asymptotic Behavior for P(1)). There
exists a constant € > 0 such that if poe HinH? and ¢, e H} and if | @ol3 + @, |1

<, then a unique solution to (3.1) and (3.2) exists and satisfies
@eC([0, ©); HynH?),

(3.21)
¢,€C([0, o0); H)NL*(0, o : H?).

Moreover, there exist My >0 and y > 0 such that
(3.22) lols + ol < Mge ™.

Proof. To prove (3.21), we must get global estimates. The following idea
is due to Prof. T. Nishida. Here we must use the following Poincare’s inequality:

(3.23) IfIl<CIVfIif f=0 on 0Q.

Taking the inner product of (3.1) with ¢, and ¢,,, in L?(2) and integrating over
(0, T) give, after some rearrangements, the following two inequalities.

J(l g > 2, €6 2dx+bjrjl 2dxdr
~ 4 I X X
5 3(/)r 2 290' . P
T 1 a c?
= 2L f(p.w.‘-(px,dxdt + J(z - 3<m><of + '29<p5xdx-

(3.24)
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1 ((2) T 2
(pxl + (pxxdx-'-b |(px‘\‘l| dxdr'
I
(325) (pr(p,u(pxud)‘ dt + E(plx + é_ (pOxxdx'
J J(p,w,,qoxx,dxdt
Then using (3.19) and (3.23), we have the following inequalities from (3.24) and
(3.25).
I a 2, € JT 2
- ——@, )eF+ “pidx+b L l*dt
J(z 3«))«) 5@ 01<P,l|
T
(3.26) <C sup lo.l - f @ ll*dr
0<t<T 0
1 a c?
+ J(z - 3(/)1)(/)? + 729 Poxdx.

1 ct T

= —C sup [l )i+ eidx+b| Joul*dxdr

2 0<i<T 2 o

T
(3.27) <C ,Sup oIl J (ol + o 1P dt
<t< 0

2
.
+ wafx + fwéxxdx-

So from (3.26) and (3.27), there exist constants ¢ >0 and C >0 such that if

looll3 + @ I} <. then

o 07 + o (x 0l < Cllloolls + Il 117)

for all 1> 0.

(3.28)

From the inequality (3.28) and Theorem 3.2, we obtain (3.21). To prove
(3.22). we first assume that |¢,| < 1/4a for all t >0. Put MZ = | ¢o|% + |lo, 3.
Taking the inner product of (3.1) with e”¢, e"¢,, "¢, and e" ¢, in L*(Q),
and integrating from 0 to T give, after some rearrangements, and using (3.19)
and (3.23)

b T
—||<le|2€"‘+€5[ lp.ll?erdt
4 0
T
(3.29) < C“/J (Fo:ll? + oy ledt + Clloy|?
0

T
+CM, + I)J lowl?e"dt + CMT.

0
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l 2 .yt Cé 2 W T
gllco.ll e+ ol e +b | oyl e"de
= 0
T
(3.30) < Cvf (loell® + [l lI*)e™ dt
0

T
+CM1J loull2e"dt + CM2.

0

b g [T
N l?e + = P e de
4 1P 5 ol

0
;
(3.31) <CM, + y)j (o ll® + o lIPedt + C [l oyll?

0

T
+ CJ (lewll® + 1 @ex e dt + CME.
0

! 2,7 C(z) 2,5 ! 2 oy
leull”e™ + lol e + b | el e dt
4 2 0
T
(3.32) < C}'J loull® + l@el?)e dt
0

,
+ CM, J Noull® + @ 1Pe” dt + CM3.
0

Combining (3.29), (3.30), (3.31) and (3.32), we have

(o l3 + e lDe

T
(3.33) + J (loullF + llou e dt
0
T
< Ci(M, +3‘)j (Il + lpnlierdt + CM?,
0

If we choose M, >0 and 7 > 0 such that C,(M, + y) < 1, and put a constant
M =C-M?, we get (3.22) from (3.33).

For P(2), we can’t prove the global existence in the same way. The main
difficulty is that we can’t use Poincare’s inequality. However, a nice structure
of the equation (3.3) allows us to prove the global existence for P(2).

Theorem 3.6 (Global Existence for P(2)). There exists a constant ¢ > 0 such
that if oo H? and @, e H' and if |@ol%* + | @, |13 <& there exists a unique
solution to (3.3) and (3.4) satisfying:
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@eC([0, c0); H?),
(3.34)
¢, €C([0, ©); HYYnL*(0, oo ; H?).

Proof. Taking the inner product of (3.3) with ¢, and ¢, in L?(Q) and
integrating in ¢ over (0, T) give, just as in the proof of Theorem 3.5, after some
rearrangements, the following two inequalities.

j(l a >2+c‘2’ 2dx+bJTj| 2dxdt
> 3(/’: (08 wa . P

(3.35)
T 1 a , ¢,
=2 Qo dxdt+ || =~ — -0, Joi + — 5. dx.
o 2 3 2
1, s 2 ! 2
_(pxl+_‘(pxxdx+b |(p.\'xl| dXd[
2 2 0
T 1 (,2
(3.36) = 2f J(pﬂpx,w.\-x,dxdt + ficpfx + —29<Péxxdx
0

T
24 Jqo,wncoxx,dxdt.
0

In the proof of Theorem 3.5, we used (3.19) (Poincare’s inequality) to estimate
the nonlinear term j(')j(p,(px(px,dxdr in (3.24). Here, we must estimate it more
carefully. First, by integration by parts,

T T T
2J Jcp.wxwmdxdt=J J(<pf)x<ﬂxdxdt= —f Jcpfwn-dxdt
0 0 0

1 T
- C_ZJv J'(P,Z {(pﬂ - b(pxxr - ((Pi + G(P,Z),} dxdr
0

I
- —ZJ J(‘Pz ) <a<p. > +2b9, 0% — 207 9. 9, dxdt.
Co .

The following inequality is easily proved.

(3.38) los < 20e 1l @xl-

Using (3.38) to (3.37) give, after some rearrangements,

( o) awl ﬁ_md>
ct 3 2 3 2

(3.39) +— sup_ (el Tl H(/)xt” dt

0 <t<

(3.37)

Q00 dxdr| <

+— sup (llo,ll) - f @2 dt.

0 0<1<T
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So from (3.36) and (3.39), there exist constants ¢ >0 and C* >0 such that if
l@oll3? + i@, [} <, then

(3.40) lo(x, D112 + o (x, )T < C*(llool3* + Nl I17).

for all t > 0. Now, (3.34) follows from the inequality (3.40) and Theorem 3.4.

4. Global existence for two and three dimensional cases

In this section, we shall study P(1) and P(2) for the two and three dimensional
cases.

P(1): (Initial Boundary Value Problem)
(@.1) @u—ctd@ —bdp, = (IVol* + ap),
4.2) o(x, 0) = @o(x), @,(x,0)=¢,(x) in Q. ¢ =0 on 02 x [0, o).

where Q is a bounded domain in R" (n = 2, 3) with a smooth boundary 0Q.
P(2): (Cauchy Problem)

(43) @y —cido —bdo, = (Vo> + ag}),

4.4) @(x, 0) = @o(x), @,(x,0)=¢,(x) xeR" n=2,3.

As in the previous section, we shall start from the corresponding linear
problems.

LP(1):

(4.5) @y —c3do —bde, = f(x.1),

(4.6) @(x, 0) = @q(x), @,(x,0)=¢@,(x) in 2, ¢ =0 on 02 x [0, ).
LP(2):

(4.7) 0, —cido —bAop, = [(x, 1),

(4.8) @(x. 0) = @o(x), @,(x,0)=¢@,(x) xeR" n=2,3.

Theorem 4.1. Suppose fe C([0, T); L2)nL*(0, T; H') and f,e C([0, T); H™')
NL2O, T: L?). And let poe HAnH?, @, e HynH?. Then for each T>0, the
initial boundary value problem admits a unique solution ¢(x, t) to (4.5) and (4.6)
satisfving :

peC([0. T); HynH?),
@,€C([0, T); HinH?*)nL*(0, T; H?).

Proof. From the remark after Theoem 3.1, there exists a unique solution
to (4.5) amd (4.6) satisfying
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@eC([0. T): HynH?),
0, eC([0, T); HY)NL*, T; H?).
If we differentiate (4.5) with respect to t, we get
@ — €340, — bdo, = f,.
Let us consider the following linear problem.
(4.9) v, — c&dv — bdv, = fi(x, 1),
(4.10) v(x, 0)e HAnH?, v,(x. 0)eL?, v =0 on 3Q.
Then there exists a unique solution to (4.9) and (4.10) satisfying
veC([0, T);: HinH?),
v, e C([0, T); L*)n L*(0, T; HY).

The proof of the above fact is similar to that of Theorem 3.1.
Let v(x,0) = @,.v,(x,0) = @,(x,0)=cidp,+ bde, + f(x,0) and w= ¢,
+ ou(x, 1)dt.  Integrating (4.9) from 0 to 1. we get

w, — cadw — bdw, = [, w(x. 0) = ¢o, w,(x,0)=@,.
From (4.5) and (4.6), we can conclude that w = ¢. Then, it follows that
@, €C([0, T); HynH?),
@,€C([0, T); LYHnL*(0, T; H)).

Now we must obtain more x differentiability for ¢. We do this using the
theory of elliptic boundary value problems.
From (4.5),

4.11) iAo +hAdp, =f — ¢,.
From above arguments, the right side of (4.11) belongs to L*(0, T; H'). 1If we
put 4o =h and f— ¢, = H,
2
h, + “p=H.
b

Then,

c} t _c_(z) s
(4.12) h=e P h0)+ f e """V H(s)ds.

0

Then an easy computation shows that h belongs to H'. As dQ is smooth, ¢
belongs to H3. So ¢, belongs to L2(0, T; H3).

We also have the following theorem for LP(2) in the same way.

Theorem 4.2. Suppose fe C([0. T); LY)nL*0, T; H') and f,e C([0, T); H™ )
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NL20, T; L?). And let @oeH>, ¢,eH?. Then for cach T>0, the initial
boundary value problem admits a unique solution ¢(x, t) to (4.7) and (4.8) satisfying :

@eC([0, T); H?),
@, €C([0, T); H)nL*(0, T: H?).
Now we shall state the local results for P(1) and P(2).

Theorem 4.3 (Local Existence for P(1). There exists a positive number ¢ such
that if @oe HANH? and ¢, e HSnNH? and if |, |3 < e, there exists a constant
© > 0 depending only on the norm | @, and a unique solution to (4.1) and (4.2)
satisfying :

0eC([0,1); HinH?),
0, €C([0, 7): HinH?)nL*0, t; H?).

Theorem 4.4 (local Existence for P(2)). There exists a positive number & such
that if @oeH?® and @,eH? and if |¢,|3 <e. there exists a constant t©>0
depending only on the norm || ¢, ||% and a unique solution to (4.3) and (4.4) satisfving :

e C([0.7); H),
¢,eC([0,1); H)nL*(0, t; H?).

Using Theorem 4.1 and Theorem 4.2, the proof of these theorems is almost
similar to that of Theorem 3.2. But in order to get local estimates, we must
use Gagliardo-Nirenberg’s inequality. The derivation of local estimates is almost
similar to that of global estimates in the next theorem.

Now we shall state the main theorem in this section.

Theorem 4.5 (Global Existence and Asymptotic Behavior for P(l)). There
exists a constant €>0 such that if @oe HANH® and ¢, e H NH? and if

l@oll3 + @113 < & there exists a unique solution to (4.1) and (4.2) satisfying:
@13 @eC([0. ©); HynH?),
' ©,€C([0. 0); H'n HA)NL*(0, o0 ; H?).

Moreover, there exist My > 0 and y' > O such that the asymptotic behavior is given
by

(4.14) lol3+ loll3 < Moe ™.

Proof. In order to prove Theorem 4.3, we must use the following well-known
inequality.

Lemma 4.6 (Gagliardo-Nirenberg).
(4.15) lllwrr < Cllullyma - lullp"

if p=2q, p=r, 0<0<I1 and
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k — ! S()(m— n> — n(1 )
p q r

with strict inequality if q or r = 1.

cgdpo —bdp, + 20,0,
1 —2agp, .

Set (P?)‘ = @,(x, 0) =

Taking the inner product of (4.1) with ¢,, 49 and 4¢, in L*(2) and
integrating over (0, T') give, after some rearrangements, the following three
inequalities.

(‘—“ )u 12+ 9yp ||2+bfr||l7 12 de
3 3(/), ¥, > [ . P,
1 a

)n 12+ 1 pg,)?
2 3(P1 @, 2 Po

(4.16) = <

T
+ ZJ J(p,V(p-V(p,dxdt.

0

b r
EIIAQDII2 +C3J I4¢*dt

0

T
4.17) =f f—q),,d(p+2l7(p,~l7(pd(pdxdt
0
T b
+J J2a<p,<p.,d<pdxdt+2-|IA<po||2-
0

2

1 ¢ r
Ve 2+ 2ldel?>+b | [de,)*dt
2 2 .

cZ
(4.18) 7o, 12+ 5°||Aq>onz

1
2

T T
+2f JV(p,-quA(p,dxdt+2aj f(p,(p,,d(p,dxdt.

0 0

By differentiation of (4.1) with respect to .

(4.19) Py — C(%A(pr - bA(pu = (a(p’Z + |V(P|2)1r

Taking the inner product of (4.19) with ¢, in L*(©2) and integrating from 0 to
T give, after some rearrangements,

1 ct T
<2_a(pr>“(pu”2+'22||V¢r||2+bj “qurr“zdt
0
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=<1 —ap >||<p*n2 NETPE
2 1 0 2 1

(4.20) . .
+ 2J JV(O, -Vo,p,dxdt + ZJ JV(/) -Vo,p,dxdt

0 0

T
+ aj J(pf,dxdt.
0

Differentiation of (4.1) with respect to x yields
(4.21) D,¢, — 3D A¢ — bD, ¢, = D(IVo|* + ag?),.

Taking the inner product of (4.21) with D 4¢ and D 4¢, in L?(Q), and integrating
from O to T give, after some rearrangements,

b 2 [T
—||DxAm||2+£j D A¢|?dt
2 2 Jo

4 ! 2 ' 4 4
<2 D+ €| {140l + 1Pt dxdr

CoJo 0

T T
+CJ jl(p,,Pdth-i—Cj JlV(p,dedf
0 0

T
+ Cj le,qu),,lzdxdt.

0

(4.22)

D, ||2+I’JT||DA 12 dt
) 4Q 2 ), AP,

4 ! 2 ! 4 4
SB ”D.\-(pn” dr+ C (|A(P| +|V(pr| )dth
0 0

T T
+Cj J‘l(pnl;;dXdI'*'CJ‘ leV(P,lf)d’Cdf
0 0

T
+ CJ j|¢rD_\»¢,,|2d.xdt.

0

(4.23)

Using Lemma 4.6, we have

T T
J J|¢,,I3dxdt < CJ Il ool dt
0

(4.24) 0

T
< C( sup_ ||<P,,||)'J o, 1T dr.

0<t< 0
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T
f |A¢|4d¥dI<Cj I4elil4elldt

(4.25)
<C(sup ldel,l4del) f [4ell%dt.
<IS
T T
j IV<P.|4dXd1SCf Ve, 3 1Ve,lldt
(4.26) ¢ 0 .
<C(OSUP Vol IVell)- J Ve, l3dt.
<t1<T 0
T
J Vo, |6dvcdt<Cf IV, l0dt
4.27)

< C(OSUP 17, lI7) j 17 ll3de.

Applying (3.19), (3.23), (4.24), (4.25), (4.26) and (4.27) to (4.16), (4.17), (4.18),
(4.20), (4.22) and (4.23), and then combining these inequalities, we obtain in the
same way as Theorem 3.3 that there exist constants ¢ > 0 and C > 0 such that
if ool + 9,13 < e then

(4.28) To(x, 013 + o 0113 < Clloolz + o, 113)

for all t > 0. From the inequality (4.28) and Theorem 4.2, we obtain (4.13). The
proof of (4.14) is of almost the same type as that of Theorem 3.3.

Without using (3.23) (Poincare’s inequality), we can obtain local estimates
which are necessary for the proof of Theorem 4.3 and Theorem 4.4. But we can’t
prove the global existence of the solution of (5.3) and (5.4) just in the same way
as in Section 3.

Theorem 4.7 (Global Existence for P(2)). There exists a constant ¢ > 0 such
that if @oeH® and @,e H* and if |@ol%* + | @, |3 <e. there exists a unique
solution to (4.3) and (4.4) satisfving:

peC([0, o0); H?),

4.29)
©,€C([0, o; H)nL*0, oo ; H3).

Proof. Just as in Theorem 4.5, we must use (4.16), (4.17), (4.18), (4.20), (4.23)
and (4.23). In Theorem 4.5, we used (3.19) (Poincare’s inequality) to estimate
the nonlinear term [; [V, Voo, dxdt in (4.16). Here, we must proceed more
carefully.

First, we shall estimate it for the two dimensional case. The following
inequality can be proved easily.
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Lemma 4.8. For all ¢ H'(R?), the following inequality holds:
(4.30) J p*dx <2llel*- Vel
R2

An easy computation shows that

T b T I T
J JV(P,'VWP,dXdT SZJ I|V<p,l|2dt+5‘[ j|V<p|2<p,2dxdt
0

0 0

1 1
b T 5 ] T . 2 . 2
<-| Vel dt+ - Vel dx lo,[*dx | dt.
4Jo bJo

Using Lemma 4.8, we get

b (T 1 (7 1 1
S—J ||V<Pr||2dt+j (@ 1217 o 122 - (PP @ 2 [V @ 1) dt.

Finally, after some rearrangements,

T
j jV(p, -Veop,dxdt

0

b (" 1 T
(4.31) S*j Ve I?dt + — sup |\<P.|IZ'J [V, l*dt
4 4b T

0 0<t< 0

T
+ C sup IIlelz‘j I4el*dt.

0<t<T 0

Now we shall estimate it for the three dimensional case. In this case, we
must use the following well-known inequality.

Lemma 4.9 (Sobolev’s inequality).

ol <C, @) IVelLa

| I
with — = - — —and 1 < g <n.

p q n

(4.32)

If we put p=6,¢9=2 and n=3 in (4.32),
(4.33) lols < ClVell.

If we use (4.33), we get

T
J jV(p,-V(p(p,dxdt
° 1 L
T 6 3
SJ Vel '<JI<P,I6dX> '(leq)de) dt
0
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. s
SCJ 1|V¢,||2'<J|V¢|3dx> dr.
0

T 1
< CJ Ve ll* (I7eliiVel)*dt.  (by Lemma 4.6)

0

Finally,

T
J jV(ppV(p(p,dth

0

(4.34) .
1
<C sup (IIchllfIIV(PIIPJ 171> dt.
0

0<1<T

We also used (3.19) (Poincare’s inequality) to estimate jA(p(p,,dx in
(4.17). Here, we use the integration by parts.

T
JA(p(p,,dx=J¢,A¢d.¥—j¢ldwodx—J J(p,dq},dXdI
0
T
=J(p,A<pdx—J(p1A(pOd.x+J J|l7(p,|2dxdt.
0

T
J j(p,,d(pdxdt
0

T
+J Ve l*dt + Uq)ld%dx
0

Finally,

b 4
<-ldol*+ -lol?
Jlel™+ el

(4.35)

We also used (3.19) (Poincare’s Inequality) to estimate ¢, in (4.17). (4.20).
(4.22) and (4.23). Here we use (4.3),

(4.36) loul? < CUA@l? + [40,0? + (sup [Fol*) - IV, [1%).

Applying (4.31) (or (4.34)), (4.35) and (4.36) to (4.16), (4.17), (4.20), (4.22) and
(4.23), we obtain, just as Theorem 4.6, constants ¢ >0 and C* > 0 such that if
oo ll%2 + @, |I2 < e, then

(4.37) lo(x, D% + lolx, D3 < C*(lloo 3 + o, 13).
for all t > 0. From the inequality (4.37) and Theorem 4.4, we obtain (4.29).
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