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Local b-functions of prehomogeneous Lagrangians
By

Akihiko Gyoia

0. Introduction

0.1. Let X be a connected non-singular algebraic variety of dimension n
over the complex number field C. G a connected linear algebraic group acting
on X, @"eHom (G, C*)(1 <i <), and f; (I <i <) non-constant regular func-
tions on X such that

(a) Silgx) = ag) fi(x) (yeG, xe X).

Put f* =], f* for =(,....A)eC".
M. Kashiwara, T. Kimura and M. Muro [8] proved a functional equation
of the form

P.(f" fY=bAf* (LeC', ueN)

on the conormal bundle A of a G-orbit under certain assumptions including the
G-prehomogeneity of 4. Here P, is an invertible microdifferential operator and
b, is a polynomial. Unfortunately, the manuscript [8] is hardly available and
seems still unfinished.

0.2. Inspired by the work of S.Suga [12], the present author started to
study a relation between the b-functions of semi-invariants and the irreducibility
of certain highest weight modules over the complex semisimple Lie algebras
[4]. Thus it becomes necessary to study the functional equations of the above
form, where f;’s are semi-invariants corresponding to fundamental weights.

The purpose of this paper is, instead of completing [8], to prove essentially
the same assertion by a different argument and to furnish a necessary device for
our present study. Our argument is elementary in the sense that it does not
use the quantized contact transformation. Several parts are close to [11],
especially in §3 and §3.

0.3. In order to state our result more precisely, first let us state our
assumptions. To keep the argument from non-essential complication, we assume
that

b the characters of Lie (G) corresponding to @' (ieS)
(f

are linearly independent.
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Let g, be a point of X, T*X the cotangent bundle of X, and A the conormal
bundle of the G-orbit G - gq. i.c.. the Zariski closure of

() = (X1 X Yise s JET*X [x€G - qo. vy | T(G - qo)},

where {x;} is a local coordinate of X and {y;} is the corresponding fibre
coordinate. We fix an element & = (5,....,0)e(Z.,)". Let W' be the Zariski
closure of

1
{(x, s ) 9;grad log fi(x)e T*X|xeC, fi(x) # 0}
i=1

and Wy = {(x. y)e W'| f°(x)y =0}. We assume that
(¢) A has an open G-orbit, say A,, and
(d) AcW,.

We fix an element p, in AonT*X

qo ™"

0.4. Next, let us give definitions necessary to state our result. Let
C=e.ns ) be an [-tuple of independent complex variables, & = &, the sheaf
of differential operators on X, and Z[{] =2 Q¢C[{]. Let X, be a simply
connected open dense subset of (), f;”'(C”),

Xo x C'a(x, ) — f(x) = [[ fitx)™

a single-valued branch, .1 =Z[(]f*, f*=(f‘mod) ({;—4).1") for /=
(Arsoooni)eCliand Ay = Ho(A) = Zf*. Let & = & be the sheaf of microdifferen-
tial operators. We consider f* as a section of § ® 4 .1,. Let G,, be the isotropy
subgroup of G at ¢q,. Then G, acts on A, =T*XnA and we have
Gy Po = Ay, NAg. Since 4, is a vector space, we can identify it with its tangent
space. Then g, := Lie(G,) acts on A,, and g, -po = 4,,. Especially there
exists an element Aeg,, such that Ap, = p,. Let h ={A4egq,|Ap, = po} and H
be the corresponding connected subgroup of G. Then Cp, gives a non-trivial
character of H. Hence the action of a maximal torus, say T, of H on Cp, is
non-trivial. Then we can find an element A,et:= Lie (T) such that

Aopo = Po-

We fix such a torus T and an element A et.

Take an element A, of a Cartan subalgebra of Lie (G) containing Lie (T)
such that ) . 6,w"(4,) = 1. (Here and below, we shall identify Hom (G. C*) with
the corresponding subgroup of Hom (Lie (G), C).) The element 4, of Lie(G)
induces a vector field of X, which we consider as a differential operator (cf.
(2.1)). Denote by o its principal symbol. We can show that for any ueN',
fyw’ =_f“a’” for some meN and a regular function f* in a neighbourhood of
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po such that f#|4 # 0. Finally. let 4, be the set of o = (a,.....x)e N’ such that

0.5. Now let us state our result.

Theorem. (1) For any p=(u,...,u)eN', there exist a microdifferential
operator P,(Q)e &[] of order — m defined in a neighbourhood of p, and a
polynomial b,({)e C[{] such that

f*fr=bAPAf*  for any ieC',

and that the restriction to A of the principal symbol of P,(() is fe.

(2)  The polynomial b,(Q) is uniquely determined.

(3) There exist c,eC*. u finite subset A4 of 44, n(x)eN(xed), and positive
rational numbers a, j(x€d, 1 <j < n(a)) such that

b)) =c, T[] (& +-+ui+a,))
1< 50w

4) degb, ()= — Y, w@(A,).

Conventions. We keep the notation introduced in the introduction.

We denote the complex number field (resp. the rational integer ring) by C
(resp. Z), and put N = {0, 1,2,...}.

For a complex manifold Z, @ = (¢, denotes the sheal of holomorphic
functions. For a coherent sheaf of ideals .# of ¢,, we denote by V(Jf) the
analytic subset of Z defined by ..

We denote the local coordinate of X by {x,,....x,} and the corresponding
fibre coordinate of T*X by {y,.....,»y,}. The sheaf of differential (resp.
microdifferential) operators is denoted by 2 = Z (resp. & = &). For a coherent
2x-module .#, we denote its characteristic variety (resp. characteristic cycle) by
Ch ./ (resp. Ch.#). For an irreducible analytic subset C of T*X, we denote
the multiplicity of a coherent 2-module (or &-module) .# along C by mlt (C, .#).

We put Lie(G) =g and Lie(T) =1t For i=(4,.....4)eC' and Aegq. put
AA)= <A Ay =) 4@ (4). In other words, we identify 1e C' with T4, We
identify Hom (G, C*) with the corresponding subgroup of Hom (g. C) and we use
the additive notation for characters of G, e.g., (w + @) (y) = w(y)w'(g) for geG.

A lowercase Greek letter without a suffix always denotes an [-tuple or the
character of g (or G) identified with it. (Thus @ denote the natural basis
elements of C', and also the characters identified with them.) There are two
exceptions for this convention. One is J, which denotes the “J-function” in (4.3)
and (44). (We do not use the letter 6 for this meaning in other places.) The
other is o, which denotes the principal symbol of a (micro-)differential operator
or the principal symbol of a local section of a simple holonomic system etc. The
i-th component of an [-tuple is denoted by the same letter with the suffix i. The
element 6e(Z.,) is fixed throughout the paper (except in (4.3) and (4.4)).

We shall mainly consider a small neighbourhood of p, and often omit to
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say “in a neighbourhood of p,”. In such a case, we often write .4 etc. for
5§, 1" etc

1. In this section, we collect results which can be obtained without the
assumptions (a)—(d).

Lemma 1.1. [9],[5]. For any weN', there exist a differential operator
P(Qel(X, Z2x[{]) and a non-zero polynomial B,({)e C[(] such that

PO = B S

Moreover, we can take B, (Q) so that
B, () =106 + -+ a7 + a,
i

where of'eN, GCD (of"....,o0") = | and a;€ Qs for any i.

1.2. Take B,(¢) and P/(() so that B, has the special form asserted in the
latter half of the above lemma. Put B(A. s) = Bs(4 + s9), and P'(4, s) = Pi(4 + s9d)
for 1eC!. Then

(1.2.1) P/(A, s)f7HOF 100 = B(A, ) A9,

Put 17 = 47(A) = Z[s1f 2, 77 = (f* " mod 5.47(4). and Ay = A5(4) =
Zf**9. Here f*** is the restriction of f* to {(x. ()€ X, x (4 + C&)} (cf. (0.4)).

Lemma 1.3. If B(A, —j)#0 for any j=1,2,3,.... then @f*+9 = (gf**09)
G E

The proof is the same as that of [7, Lemma 2.3]. Read the proof replacing
lel—{f}'-"m, fs“_>fx+.\~6, 1_}0 and f_’f({

Lemma 1.4.  For a sufficienily large integer m, Ny (. — md) = A (A [(f%)'].

Proof. We may assume that B(4 — md, s) = B(4, s —m). If m is sufficiently
large, then B(A —md, —j)=B(4, —j—m)#0 for j=1,2,.... Hence

Ng (A —md) = A5 (A—md)[(f%)']. by (1.3)

= A =mOLSf) s A (A=mO[(f) 1]
ATALUST T s AT AL
A AL

1.5. A coherent Z-module ./ is said to be holonomic (resp. subholonomic)
if dim Ch (.#) < dim X (resp. <dim X + 1).

Il

Lemma 1.6. For ieC', the Zy-module .A"'(%) (resp. .ty () is subholonomic
(resp. holonomic).  Moreover, Ch (A" (A)) = W' and the multiplicity of A" () at
W’ is one.
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This lemma can be proved in the same way as in [6] (cf. [1]).

Lemma 1.7. Let 2eC'. (1) The characteristic cycle Ch Ay (1) is determined
solely by f°.
(2) The characteristic variety of Ny (A) is Wy. (See (0.3) for W)

Proof. Since A4 is subholonomic, we can apply [3, 2.8.5], and we can see
that

Ch Ag(2) = Ch A7 [s A" = ChA " [(s + m).t™" = Chut§ (2 — m)
= Ch 45(A[()"]

for a sufficiently large integer m. Hence we get (1) by the same argument as in
[4, 9.3]. By (1), we have

Ch .¥5(4) = Ch .15(0) = Ch Z[s1(f°)/s2[s]1(f°),

whose support is known to be W, [11, appendix].

Lemma 1.8. If ieC and B,(i)# 0. then D(f"-f*) = 2f*(= Ap(4) and
D(fH-f270) = 0 (= NG ().

Proof. These follow from the functional equation of (l.1).

1.9. Let {F;&},, be the order filtration of the sheaf & of microdifferential
operators, &, = limé,/F;é, for peT*X, and (" = (.x the sheaf of analytic
functions on T*X. (&, etc. denotes the stalk.) For PeF;&, we denote its
principal symbol by ¢(P) = g;(P). Let p be a point of T*X, and let us consider
everything in a neighbourhood of p in (1.10) and (1.11). Let .# be a left coherent
ideal of &. We denote by o(#) its symbol ideal, i.e., the ideal of (";.y generated
by {o(P)|Pe#}, and put V = V(a(F)).

Lemma 1.10. Let PeF,&,. If o(P)ea(¥#), then there exists QeF,é,n.5,
such that o(P) = a(Q).

Proof. Take a;eC, and R;eF, &,nF, so that ak(P)=Zjaj(x, V)0,,(R)).
(x =(xy,...,x,) is a local coordinate of the base space X and y = (y,.....y,) is
the corresponding fibre coordinate of T*X.) If p lies in the zero section TFX
of T*X, then a;(x, y) is a finite or infinite sum of analytic functions which are
homogeneous polynomials in y. Hence we may assume that a;(x,y) is a
homogeneous in y of degree k — m; in this case. Next, assume that p lies outside
of T¥X. Take a hypersurface Y of T* X \ T X so that pe Y and the composition
of Yo T*X\T¥X - P*X is an open immersion, where P*X is the bundle of
projective spaces obtained from T*X. Then a;|Y can be uniquely extended to
an analytic function, say aj, in a neighbourhood of p which is homogeneous in
y of degree k —m;. Since o(P)=) ajo(R;), we may assume that a;(x, ) is
homogeneous in y of degree k — m; also in this case. Then in both cases, we
can take S;eF,_, &, so that o(S;) =a;. Put Q =) S;R;. Then QeF,&,n7,

p
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and o, (P) = 0,(Q).

Lemma 1.11. Assume that \/c-r(—f) =0o(Sf). Then for any Peé&,.
(1) Pe.g, or
(2) there exists Qeé&, such that P — Qe 4, and a(Q)# 0 on V= V(a(F)).

Proof. Assume that P,:= PeF,&,. If o(P)#0 on V, there is nothing to
prove. Assume the contrary. Then o(P)eo(#). Take Q,eF,6,n.4, so that
o (P)=0(Q)). and put P,_, =P, —Q,. If 6,_,(P,_,)#0 on V, then we get
the desired assertion. If og,_,(P,_;)=0 on V, then we can repeat the same
argument. If this argument stops after several steps, then we get the desired
assertion. Thus we may assume that this argument can be repeated infinitely.
Thep P, = Z}.Sk Q; with some Q;e F;&,n.7,. (Here the summation has a meaning
in &,) Let {J,,....Jy} be an involutive base [11,2.9] of .#. and ord J; = m,.
Then by the same argument as in the proof of (1.10), we can show that
1-0(Q) = Z,N L Fiilx, y)a(J;) with some analytic functions r; which are homoge-
neous of degree j — m;. Applying [11, 2.10] to these relatlons, we can take
SeF,&, and R eFI m&, so that ¢(S)=1, a(Rj)=r; and SQ; =Y " R’J
Then S™'Rj; =:Rj; satisfy Q; =YY R;J;and R;eF;_, &, PutR =Y
(53,,. Then

P /<k

N ~
Pk - Z QJ = Z RiJiEgpng/pjp.

i<k i=1

It is known that (5’,, is a faithfully flat right & ,-module [10, chz}pter 2, Theorem
34]. Hence by [2, chapter 1, §3, Proposition 8, (2)]. £,né,%, =4, Thus
P = P4, and we get the desired assertion.

2. The purpose of this section is to prove the smoothness and the simplicity of
characteristic varieties of certain Z-modules. From now on, we assume the
assumptions (a)—(d).

2.1. For Aeg, define the vector field P(4) on X by
d 1A
(P(A)F)(x) = — F(e"X),=o-
d

We shall consider P(A4) as a (micro-)differential operator on X.

Lemma 2.2. For Aegqg, the principal symbol a(P(A)) of P(A) is {(Ax, y).
where { , ) is the natural pairing of the tangent bundle TX and the cotangent
bundle T*X.

Proof. 1f ¢x = (a,(t, x).....a,(t, x)). then

d LG oF
(P(A)F)(x) = - F(a,(t. ). ) o = 3. i’ (0, %) S (),
d( xi

i=1
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" da; &
P(A) = — (0, ., and
(4) Zlat( X)M a

" da;
o(P(A)) = Z -(77(0 x)y; = CAX, y).

i=1

2.3. Let W be the Zariski closure of

!
{(x, Y s;grad log fi(x))e T*X|xe X, 5;€C, fi(x) # 0}

i=1
in T*X. Note that 4 =« W' < W (cf. the assumption (d)).
Lemma 2.4. W is an irreducible variety of dimension n + I.

Proof. 1t suffices to prove that {grad log fi(x)}, <;<, are linearly independent
for generic x. Assume the contrary. Then there are (local) regular functions

a,,...,a, such that Z L ai(x )—f =0 (Il <j<n). Then for any vector field V.
0x;

i
S a;V(f)=0. Taking V= P(A4) (Aeg). we get Y |_, a;(x)m(4) fi(x) =0. By
the assumption (b), we get a;(x)fi(x) =0 and a; =0. Thus we get the linear
independence.

2.5. Let
3o = {Begla(B)=0 (1 <i<D}.
g0 = {Beg|d(B) = 0},
{B;} be a linear basis of gy, and take C;eqg (1 <j <) so that @"/(C)) = J;; (cf.

the assumption (b)). Then {B;}U{C;} gives a linear basis of g.

Lemma 2.6. If Beg, (resp. Begg). then a(P(B)) vanishes identically on W
(resp. W').

Proof. Assume that Beg,. Then

1 1
0= PBST = ¥, /f — Y LP(B)(log ) f*.
= ; i=1

0
If P(B) = Z, 1aj(wc)a— in a local coordinate system {x;}. then

Z Z Ciaj(x) —’uogf,->=o, ie.,

i=1j=1 j

n 1

(P(B)) = Z aj(x)y; =0 for (y,....y,) = Z (i grad log f;.

j=1 i=1

Thus we get the one half. The other half can be proved in the same way.
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2.7. Recall that
1
=2[0f5% A=A =AY (L= 2) N =D f%

A= AR = QSIS Ay = A (A) = A s N = G fir00

for AeC!. Put
1
Ny = Ay =2/(Y. ZP(B)+ Y. 2(P(C) — %)).
i ji=1

From now on, we shall consider everything in a neighbourhood of p, (cf.
(0.3)). Note that 4" = Z f* etc.. since P(C [ = gj)“ Hence .+" and "' are
coherent Z-modules (&-modules). and we can con51der their characteristic varieties
etc.

Lemma 2.8. The &-modules Vo, Ay and Ay are naturally isomorphic to
each other (in a neighbourhood of poe Ag). They are simple holonomic systems
[11.2.8]. Especially, their multiplicity along A is one.

”

Proof. Since . 13" is a simple holonomic system (cf. [11, 4.8]), it suffices to
prove the first assertion. The natural surjection

]
ELL SIS 2 (&= 2= s0) 6L SIS —> 8517

i=1

induces a surjection
o= 5[C]f‘/§l( — B[S —— SIS sE[s1f 7> = A7,
The natural surjection
8/3 6P(B) — & [ =611 S
j
induces a surjection

Wy =6/(SEP(B) + Z E(P(C) — 7))

j=
——>6f‘/zé ) — ) ft= t“[e]f‘/z L — A4S = s
By the assumption (d) and (1.7, (2)), .15 # 0. Since the multiplicity of .4," along
A is one, the composition of the surjections .1," = .¥5 — .1 is an isomorphism.
Hence these morphisms are isomorphisms.

2.9. Let us fix linear forms o"({) = Z] ,o¢; (1 < i < 1) which are linearly

independent, and ¢;€C (1 <i </). Along with the Z-modules given in (2.7), we



Local b-functions 421

also consider the Z-modules

Ne= A (@(E) — @)1 and

i>k

A =2/(Y 2PB)+ Y. 2P((C)) — a)),

Bego i>k

where «'(C) = Z;zl C;. If we need to make explicit the dependence on a'”
and/or a;, we write A, = A} (a) = A (a) = A7 (a; a) etc. Thus AH(4) in (2.7) is
No(@?....,m": 4). On the other hand, if { =1 is the (unique) solution of
a)—a; =0 (1 <i<l), then .ty and .1, defined here coincide with #5(4) and
A%'(4) given in (2.7). Note also that .¥; coincides with .+ in (2.7).

Let u, (resp. u;) be the section of ., (resp. .1,”) corresponding to fe.{"
(resp. 1€92), and .7, (resp 7,") its annihilator in &

Lemma 2.10. Pur ¢V =a(P(V(C))) and A, =) ,Ca(P(B)) + Zpk o\,

where O = Opy. Then JH, = Ay and V(Ay) is a non-singular manifold of
dimension n + k.

Proof. Let K, = {dF(p,)|FeX,}. Since A, is G-homogeneous and dim A,
=n, dim K, =n (cf. (2.2)). By (2.4) and (2.6), we have 2n — dim K, > dim W =
n+1 ie.,dim K,<n—1 On the other hand, dim K, > dim K, ,, > dim K, — 1.
By these relations we get dim K, =n — k. Since K, is the C-linear span of
{da(P(B)))(po)} U{da(po)|k < j <1}, we can rearrange {B;} so that K, is spanned
by {da(P(B))(po)l <i<n—1}. Put =YY" Ca(P(B))+ Y ;>x o, Then
K, = {dF(p,)|Fe.#,} for any k. Hence V(X)) is a non-singular manifold of
dimension n + k and \/Z = X, . Especially, £, is the sheaf of functions
vanishing identically on V(%})).

Suppose that V(%)) = V(X4,) for some k. Since a function in Jf, vanishes
identically on V(X)) = V(X,), X,< X#/. Hence X, =.¢/ and we get the
desired assertion. Thus it suffices to prove the coincidence of these two varieties.

First, let us consider the case where k =0. Then by (2.8),

V(A o V(Hy) D V(a(Ty)) = Ch {y = Ch.1y.

By the assumption (d) and (1.7,(2)), Ch.ty =4 (in a neighbourhood of
po€Ay). Since V(Ay) is a non-singular manifold of dimension n and A is also
of dimension n, we get

(2.10.1) V(XY = V() = A.

Next, let us consider the case where k=1 By (2.6), V(X))o V(X)) > W.
Since W> W' o Wy = A3p,, Wis a variety of dimension n + [ in a neighbourhood
of polcf. (2.4)). On the other hand, V(#)) is a non-singular manifold of the same
dimension n + [. Hence

(2.10.2) V(x'y=V(x) =W
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Let us consider the general case. Assume that V(X)) = V(X,). Note that
V(A,_,) is the subset of V(#,) defined by ¢ =0 and that V(X#;) > V(X)) = 4
by (2.10.1). Hence

n+k—1=dimV(#/_)=dim V(¥4 _,) =
dimV(#,) — 1 =dimV(X)—1=n+k— L

Since V(A#,_,) is a non-singular manifold and V(X;_,) is its subvariety of the
same dimension, V(#,/_,) = V(#,_,). Thus we get the desired assertion by the
descending induction on k starting from (2.10.2).

In the proof of the above lemma, we have also get the following assertion.

Lemma 2.11. V(X#) = W and V(X _,) is the hypersurface of V(X) defined
by ¢® =0. More precisely, a holomorphic function on V(A}) vanishing identically
on V(A _,) is divisible by o®.

Lemma 2.12. The characteristic variety of N = Z[{]f* contains W.

Proof. Since 2f***(8'e(Z.,)) is a quotient of .+°, Ch.¥" contains
Ch 2 f**s, Since

Ch 2 f**5 5 {(x, s).0; grad log fi(x))|xe X. seC, fi(x) # 0}

(cf. (1.6)), Ch 4" contains the union of the right hand side for various &' €(Z. )
and also contains its Zariski closure, which is W.

Lemma 2.13. o(7,) = d(7,") = 4;.
Proof. Since .+, is a quotient of (",

T, T/ > Y EPB)+ Y &P(V(C)) — ay.

Bego i>k

Hence o¢(7;) > o(7,’) @ A,. Since /A, = A, by (2.10), it is enough to show
that V(o(7,)) = V(4,). which we shall prove by the descending induction on
k. By (2.11) and (2.12), we have

(2.13.1) WcCh.i' = V(e(T) c V(X) =W,

and we get the equality for k =/

Assume that V(a(7,)) = V(#;). Since &[{]f¢= &5, N, = Eu,. (See (2.9)
for u,.) Define the &-endomorphism F, of .1} by

Filu,) = (P(™(C)) — a)uy, = (™) — ay) .
Then Ay_ | = A3/F(V), o(P@™(C)) — a)=c", supp.t;, = V(A,) and the
multiplicity of .4, along V(#,) is one. Hence
V(0(Fy-1)) = supp .y —y = supp A/ Fi(A})
= {(x, y)esupp .1;|6¥(x, y) = 0} by [11, Proposition A.4]
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{(x. y)eV(a(Z))| ¥ = 0} _
{(x, y) eV (A)|a® = 0} by the induction hypothesis
= V(Ai-y) by (2.11).

From (2.10), (2.11) and (2.13), we get the following assertion.

Lemma 2.14. Put A, = V(X,). Then A, is a non-singular manifold of
dimension n + k, supp A, = A,, and the nwltiplicity of .V, along A, is
one. Especially supp A" = W (in a neighbourhood of p,).

3. Order

The purpose of this section is the calculation of orders. The main results
are (3.3) and (3.6). First, let us show the existence of a local coordinate system
suitable for our calculation.

Lemma 3.1. Let X be a smooth algebraic variety over an algebraically closed
field K, T a torus acting on Xo, Xq 2 X, 2 -2 X, T-stable smooth subvarieties
of Xo (locally closed in X,), pe(\; X;. and d; = dim X,;. Then there exists a local
coordinate system {x,...,xy,} in a neighbourhood of p such that all the x;'s are
relative T-invariants and x; =0 on X, for j > d,.

Proof. Here in this proof, we do not follow Conventions. By [13, Corollary
2], every point of X, admits a (Zariski open) T-stable affine neighbourhood.
Hence we may assume from the beginning that X, is an affine variety. Let
0:Tx Xo— X, be the morphism defining the T-action on X,. Note that
Hom (T. K™) gives a K-linear basis of the regular function ring K[T]. Hence
for any function fe K[X,], there exist ;e Hom (T, K*) and f,e K[X,] (1 <i < n)
such that o*f=3"_ o ®f and « #a; (i #j). Moreover, f’s are uniquely
determined and relative T-invariants corresponding to the characters «;. Note
also that f=3"_ f.

As is seen by this fact, K[X,] is generated by some relatively T-invariant
regular functions f; (1 <i< N). Let J be the ideal of the polynomial ring
K[z,,....zy] consisting of polynomials ¢(z) such that ¢(f,.....fy) =0. Then
K[Xo]1=K][z,...,zxy1/J, e, x—-(fi(x),....fy(x)) gives a closed immersion
Xo— K",

Let {y;,...,¥q, be a local coordinate system of X, in a neighbourhood of
p. (In other words, Xy3x— (y,(x),...)e K% is étale in a neighbourhood of p.

az;
We do not assume that y;(p) = 0.) Since rank ( - (p)> =d,, we may
o ayj 1<igN.l<j<do
assume that det <i (p)> #0 by rearranging {z,....,zy}, if necessary.
"yj 1 <i.j<dg

Then {z,....,z,,} gives a local coordinate system of X, in a neighbourhood of
p. Since z;| X, = f; are relative T-invariants, projecting to K% (<= KV), we may

l

assume from the beginning that X, = K% on which T acts diagonally.
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Let g,.....q4,€ K[Xo] = K[2z;,...,24,] be polynomials such that

gi€{zy,..zqy (1< dy),

g1 X, =0 (i>d,),

g.
ank | =2
ran ( ,(p)

<« >d1<isd(..lsjsdo

det <6g,~(p)> # 0.
azj 1 <i.j<do

Let a*y, = Zj‘= 1% ® g, 2;€Hom (T, K™) and g;;e K[X,], where o;; # 2;;(j # ).
Since X, is T-stable, ¢;;|X, =0 if i >d,. Hence T,X{(={leT*X|¢ | T,X,})
is equal to

=dy,—d,, and

ki

Y. Kdg)ipy= 3 Y Kidg)(p).

i>dy i>dy j=1
Choose (dy — d,)-elements hy, . ,...,}h,, from {g;ld, <i<d,, 1 <j<k;} so that
T,,Xll:Zd1<is‘,oK(cllzi)(p). Then {g,,....94,- N4, +1..... g, gives a local coord-
inate system of X, in a neighbourhood of p such that all the coordinate functions
are relative T-invariants and h;=0 on X, for d, <i<d, Repeating this
procedure, we get the desired coordinate system.

3.2. Let codimyG-q,=c. Applying (3.1) to the torus T (cf. (0.4)) and

X>G-qo>{qo}. we get a local coordinate system {x,,....x,} of X in a
neighbourhood of ¢, such that x;(tv) = 9(t)x;(v) (te T, ve X ) with some characters
B?eHom (T, C*), that x;, =---=x, =0 gives a system of defining equations of

G - qo. and that x;(qo) =0 for any i.

By (2.10) and (2.13), .1o=&f%* is a simple holonomic system whose
characteristic variety is A4 (in a neighbourhood of p,), and hence we can consider
the principal symbol o,(f% and the order ord,(f*). (See [I1,§3] for their
definitions.) Let us calculate these invariants using the local coordinate system
introduced above.

; 1
Lemma 3.3. ord,f”" = A(4,) — tr(4,|4,) + idim A (See (0.4) for Ag.)
Proof. Using the local coordinate system given in (3.2), we have

B AR x) = & FE @, ln = ( $ oy, ;)F
di =1 Ox

i

for Aet. Let {y,,....v,} be the fibre coordinate of T*X correponding to the
coordinate {x,....,x,} of the base space. Then

A7) = Fle /dyy o dyedes s - dx, [ /dx, -dx,
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with some function F(x, y) on A. Because of the relative G-invariance of ¢ ,(f*),
F~'(0) is G-stable. Hence F does not vanish at the point p, of the open G-orbit
Ay. The vector field on A induced by the Hamiltonian vector field defined by

. a
the principal symbol of P(A4) = z:.’zlﬂ"’(A).xiF is

c

H,paplad = _Z YAy, 7 + Zrl pA %c-.

¢

Put

) 1 » )
Lpcay- i) = (Hypoayl A) + <— A(A) — 5 Y /3(')(/4))

i=1

Since (P(A) — A(A))f* =0 for any Aet, we get

0= Lpay- an(@alf \/;i’ﬁ

. ] n X
= {(Ha(P(An _ ;(A) _ 5 Z ﬁm(A)> < Z (:)(A E Z ﬁ“’(A))F}
i=1 i= i=c+1

X \/dyl"'dycdxc+l"'dxn

by the definition of the principal symbol. Hence

~

Il

(3.3.2) ( WA A)y.i+ > /f“’(A\i—»A) Z/ﬂ“’ ) »=0.

i=1 /,i i=c+1 \,

By the choice of p,. Ay, and our local coordinate system, p, = (0,...,0; y,(po)....,
Ye(Po)- 0,....0) and — B (Ay)yi(po) = yi(po) for 1 <i<c. Hence the value of
(3.3.2) for A = A, and (x, y) = py, which is zero, is also equal to the value of

<Z Vi~ . ~ Z‘ ﬁ‘”(/‘h))) F(py) = (deg\ (Ao) — 2 /3(“(/40))}7(}70)

by the Euler’s identity for homogeneous functions. Since F(p,) # 0, we get

] 1 < 1
ord, f* = deg, F + 5¢= A+ Y. B(Ag) + 5¢:

i=1

Thus we get the desired expression for ord, f*.

Remark 3.4. Let
P = {po€ Ay |Apy = po for some Aet]
and consider the condition that
(f) G2 is a dense subset of A.

If £f% is known to be simple holonomic on an open dense subset of A, then
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(3.3) still holds under the weaker assumption (a) + (f).

3.5. By the assumption (b), d =Y §,m"" #0. Let A, be an element of a
Cartan subalgebra of g containing t such that §(4,) = 1. (Note that [4, 4,1 =0
for any Aet) Put ¢ = g(P(A,)) and define g; as in (2.5). Taking «*({) in (2.9)
suitably, we may assume that V(#;)= W' and ¢V =06. Hence 0 =0 is a
defining equation of 4 in W’. Let m; be the largest integer such that ¢ divides
fi as elements of Oy. ,. Put f, = fie~™. Then f; is a regular function on W'
in a neighbourhood of p,.

Lemma 3.6. m;, = — @'"(4,).

Proof. The proof goes in a similar way as in (3.3). We keep the notation

-~

there. By (3.3.1), we get <Z;’= . ﬁ‘i’(AO)xi(,f% - m""(AO))f,- =0. Since [4q. 4,]=

0, we have [P(A4,), P(A,)] = 0. {a(P(A,)), 6(P(4,))} =0, where { , } denotes the
Poisson bracket, and Hp,)0(P(4,)) =0. Since H:= H,pu,)y = 2.i=, PP(Ao)

0 a . A . 5
<x,.,$C — y,-6—> also satisfies Hf; = @ (A,) f;, we have H f; = @'"(A,) f; on 4, i.e.,
Cx; 0y,

L 0 " ) i, ) .
<_ Z BP(Ao)y; ° + Z BV (Ag)x; P w"’(AO))f,-(x. »=0
i=1 X;

ay,‘ i=c+1 X
on A. If we can show that

(3.6.1) filpo) # 0,
then we get deg.‘.f,. = @"(A4,) in the same way as in (3.3). Since deg,f; =0 and
deg, o = 1, we get

m;, = — deg_,,fAi = —a'(A4,).

Thus it remains to prove (3.6.1). Note that f° corresponds to the character 9,
which is non-trivial by the assumption (b). Hence f° is not locally constant,
i.e.. grad log f°(x) # 0. Thus the projection of W’ on X is the whole space, and
f; is not identically zero on W'. Let C,....Cy be the irreducible components of
W’'n f;"*(0) containing p,. These are all G-stable hypersurfacs of W’. Since
o =0 is the defining equation of A, we have W'n f,7(0) = Uc;#4C;. and hence
An f,7H0) = Uc;#4(C;nA4), which can not contain the element p, of the open
G-orbit A,. Hence pyé¢f,~1(0).

4. The purpose of this section is to prove (4.4) and (4.5).

4.1. For Z2-modules .#, and ./,, we denote by Hom,(.#7,,./#,) =
Hom (./, ./ ) the sheaf of local homomorphisms. Let R Hom (.#,, ./,) be its

derived functor and Ext'(.#,,./,) its i-th cohomology. For a complex A’



Local b-functions 427

= (-'-—>A"ii»A"+1 ) let o, ;A =(>0-d7 AT 5 AT 47T 5. For

a coherent 2,-module .#, put
4.1.1) T(M) = {ue #|dim Ch(Qu) < n + i},

where n = dim X. Then
(4.1.2) T(AM) = ExtQ (o, ;RHomg(4. 2). 2)

by [6, Theorem (2.10)]. For a coherent §y-module .#, we also put

(4.1.3) Ty(M) = Ext2(c5,_; R Hom, (.4, &), &).
Then
4.1.4) T(M) = {ue.4|dim supp (u) < n + i}.

For a coherent 2-module .#, we have
4.1.5) T(E R, M) =E Ry T(A).

Lemma 4.2. Lei Ay be as in (29). (1) Exti(A}, &) =0 for i#n—k (2)
() = Nee (3) T (4)=0.

Proof. Let {F;6} . be the order filtration of &, F; A, = (F;&)uy. gr' = @ jez
F;/F;_;, and .V}, = Orx @ yrg grF A, Then

supp Ext§ (5. &) = supp Extf (45, €)

(cf. the proof of [6, Theorem (2.3)]). Since .4} = O/a(7,), we get Exti(.1,

©)y=0 for i #n—k by (2.10) and (2.13). Hence we get (1). The remaining
assertions follow from (1).

4.3. Let t;,....t;, be new complex variables and
M=y, DI N = EenxxO (1) Ot uy

(See (2.9) for .4,” and u;.) By the change of variables t; =t, — fi(x). .# can be
expressed as

M= Eenex0(ty — f1(x))--0(t, — fi(x)uy.

In the same way as (4.2), we can show that (1) Exti(.#, &) =0 for i # h+n —k,
(2) T,(.A#)= .4, and (3) T,_ ()= 0.

Lemma 4.4. Let v({) be a local section of A = E[L]fC. Assume that the
image of v(0) in /Y i_ (i — A) NV = Ef*is zero for any ieC'. Then v(() = 0.
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Proof. Let

M= MB) =AY G = At (= (@ )
i>k
and v, = v,(A) =0+, Ck» Aka1s....A) be the image of v({) in .#,. Assume that
v, = 0,(4) # 0 for some AeC', and v, _({1s...s (oo 1y Ake Ags15-..o4) = 0 for any i€
C. Let us show that a contradiction arises.

Assume that @®(4,) = 0 (see (0.4) for A,). By (3.6), f, #0 on A. Until we
get (4.4.3) below, let us consider everything on the open set X\ f, '(0). Put
{'=Y.,,00" and [¢ =], f5 Let F;0,=F{&[(1f%:=(F;6)[(1/° and
F;.4} be its image in .¥;. Define a sheaf homomorphlsm D: €[g]fC &[] fY by
PO = (fi7*PQ) ) f%. (This homomorphism is well-defined on X\ f,”'(0).)
Put ., = &[S, M= 4]y, — 4)./,, and define F;.4, in the same way
as above. Then @ induces sheal homomorphisms F;.{; - F;.#, and gr(.}) -
grf(#,). Moreover. the latter is a grf(&)[(]-isomorphism. By (4.1.4), (4.2, (3))
and by our assumption, v, (4) #0 even as a section on A\ f,”'(0). Hence we
can find an integer j such that v, (A)e F;. 1, and v, ()¢ F;_, ;. Let gr(y,(4) (% 0)
be its image in F; A, /F; .1, = grf(t,I,}). By our assumption, t.((y,...,¢,,
At tsener M)E(C — A AR for any 4, eC. Hence

(4.4.1) Dr(ve(lyseChn Akt 1o A EW — 4A0) (I"F(u//k)

for any 4,eC. Note that

£101/¢
(44.2) Fy) = C[gk]®cgr< L1/ )

Z,‘>k(ci - ;'l)g[g/]f;'

where the filtration F of &[{']f* etc. are defined in the same way as above. By
(4.4.1) and (4.4.2)., we get ®@(gr(v,))=0. Since @ is an isomorphism, gr(r,) =0
Thus we get a contradiction. Hence

(4.4.3) @ (A4g) # 0.

Define endomorphisms t; of ;= &[{]. f‘ by t(PO) Y = P + @) fer,
Then t; (1 <i<j) induce endomorphisms of . 1;. By (2.14),(4.1.4) and (4.2),

n + k = dim supp .4, = dimsupp 6 [(, t,,....t,— ] v, = dim supp v, = n + k.

(Note that the &[{]-module structure of .1" = .1, induces that of .t;.) Since the
multiplicity of .¥, along A, =supp.t, is one by (2.14),

dim supp (A, /&Lty te—Ju) < n + k.

Since v,_, =0, the natural morphism .4, — ., _; induces a surjective morphism
V. =N )Lttt oy = . V—;. Note that these modules can be natu-
rally considered as &y[{y....,Ck—1» t1s...o 0= ]-modules. Let E = {(ty,...,t,_ )€
C*~'}. By the correspondence (<> — O, t;y Ex[{ys...sCumys tysonnsly—] can be
regarded as a subring of &y.p. Let v =6y g ® M, p’r}:é“E@,t} (j=
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k — 1, k) and u; be the bection of .1} corresponding to f*e. ;.
Let us show that ./ is holonomlc Note that u =1 ® u, (€. 0 i) satisfies the
equations

(4.4.4) P(B)u=0 (Begy), (P(C)—rpu=0(k<j<l)
and
.
(4.4.5) (P(C)+ % t>u=0, (t; = flu=0 (1 <j<k).
(

By the change of variables t; = t; — f;, (4.4.5) becomes
(4.4.6) P(Chu=0, tju=0(1<j<k).
Hence .V, = &y, p(1 ® u,) is a quotient of
Vo= E iy B E (1)) 0t ) = Eyx p (010, — [1) Sty — foy))

where E' = {(ty.....t;-)€eC*"'} and 4} is the section of &/( ZBeq éyP(B) +
Yick—1 ExP(C) + Y., 8x(P(C ) ) correspondmg to leé&y. By (2.14), the
support A, of &y, pud(ty)---0(t,_,) is a non-singular variety of dimension
(n+ 1)+ (k—1)=n+ k and its multiplicity along A~1 is one. Hence the natural
morphism 47" — .47 is an isomorphism or the support of its kernel is of
dimension n + k (cf. (4.3)). In the former case. we have dim supp (§y . (1 ® vy))
=n+k by (43), and /7 becomes holonomic (as a non- tr1v1al quotient of the
subholonomic module . k) In the latter case, dim supp. 1A <n+k, ie., tk is
holonomic, and its quouent ./ is also holonomic.

Let us show that .1 _, # 0 in a neighbourhood of A4, x TFE’ for a generic
/, where TFE' denotes the zero section of T*E'. (See (0.3) for 4,.) Assume
the contrary. Since A, x TFE' is identified with 4, x T¥E by the isomorphism
T*(X x E')~ T*(X x E) induced by (x;, t}) = (x;, t; — f;). we have L,‘t/~",(_1|A0 X
TFE=0. Take a point (p, q)e A, x T¥E so that every coordinate of ¢ is
non-zero. As is easily seen &y, p ., i faithfully flat over A:= &y , R (g,
Qe CLt7, @"1), where " = (ty,...,t, ) and " =(d,,,...,¢,, ). By the corres-
pondence {; > — é,,t;, we have 'y , Q¢ CLt", "] = O,y @y CL17, ("], where

”

{"=({ys....¢—y). (Note that r,(q) #0.) Hence

0=t L(p.g) — éUXXE.(p.q) ®£,\'.,,[1”.;”] i1, = Ex E(p.q) & 4 (Cpq ®cu“1 A1)

and we also get Oy, Q¢ ti-1., =0 for any ge(C*)*~" because of the faithful
flatness. Thus we get .4, _, ,[ri',....,,,1=0, ie, (t;--t,_ ) u,_, =0 as an
element of 4,_, , for a sut’ﬁciently large N. Put 6'=) . ,@". Then we get
SN f*=0 as an element of .1,(4),. Put L,=C'\B;'(0). Then for ieL,,
such an equality can not hold by (1.8). Hence (/1'.‘,\._1 # 0 for AeL,. Henceforth
in this proof, we assume that ieL,.

Let us calculate the order of 1 ®u_ €8y, ® Hy_ L= tf',(_l Since
u =1 u,_, satisfies (4.4.4), (4.4.5) and also (P(C,) — A)u =0, . S «—1 1s a quotient
of
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A= iy RS S(]) 8ty 1) = Exupliy— 0ty — f1)+-0(tmy — fim)-

Since .4,", is a simple holonomic system in a neighbourhood of A, x T*E’ by
(2.14), and .+, _, # 0 there, the morphism .,”, > A7 _, is an isomorphism.
Hence the order of 1 ® u,_, (e.1,_;) on A,:=supp .4’ _, is given by

ord,, | @ u,— = ordy, (- 0ty — f1)-+0(ti—y — fi-1))
= ord,, (i;_,0(ty)---d(t, ) = ord 4 ty_, + ord,, 6(t]..... teo 1)

where A3 = THE'. Since &yiy_; = Ex(f2 L S /i), we have

]

(4.4.7) ord,, | @ u_y = ), 4w (Ag) — tr(AglA4,,) + %dim Ay + %(k — 1),
i=k

(cf. (3.3)).

By (1.11), we can show that, if two simple holonomic systems of the same
support are isomorphic to each other, then the difference of the orders of the
respective generators is an integer. (The converse also holds [10, chapter 2,
Theorem 4.2.5]. But we do not need this deeper result.) Thus, by (4.4.3) and
(4.4.7), moving 4, continuously, we get infinitely many non-isomorphic quotients
ANy = Ay_y(A) of .#. (Note that ./ is independent of 4,.) But as we have
seen, .# is holonomic. Hence ./ can have only a finite number of quotients
up to isomorphism. Thus we get a contradiction, and the proof is now complete.

Lemma 4.5. Let a(0) be a linear form in {, aeC, and v({) a local section
of N =&[L1f°. Assume that the image of v(() in & f* is zero whenever j.eC'
satisfies o(A) —a =0. Then v({)e(x(l) — a). 1.

Proof. We may assume that «(0,...,0, 1) # 0. Let .t} = .+, (o', ..., o,
% Apeesby_yya) for ZeLi=Y ! 1Ca", and v, = 0,(A) = 0(C1 s Cos Argionnnn
4i_1.a) be the image of v(() in .1,. For any A= (4,,....4_,, 0)eL. there is a
unique 4, such that «(4,,...,4) =a. Then .{, = 1 (@?,....o": i,.....2) and
vo(A) =0 for any /JeL. Assume that v, =0,(4)#0 for some ZeL and
Up— 1 (CyneiiChm s 2> A geeendog, ) =0 for any 4,eC. Considering the sheaf
homomorphism

PO S 7 = (BT PRS- SR S8 il 7

modulo {({; — A)(k <i<l—1),x() —a}, we can show that @¥(4,) # 0 as in
(4.4). We can follow also the remaining argument of (4.4) (with an obvious
modification) and get a contradiction.

5. In this section, we prove the theorem stated in the introduction.

5.1. Fix an element yeN'and put f* =[[\_, f* and m =Y !_ wm,. Then
f*=f"" on W and u(Ay) = —m by (3.6). (See (0.4) for Ao, (3.5) for f;, m;
and o = a(P(A4))).)
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5.2. Put L, :C'\B,,“(O). (See (1.1) for B,.) As a consequence of (1.8),
fif*#0 on A for ieL,.

5.3. For aeN', put *=[],¢ and || =) o, For T(() =) T, let
ord T({) = max (ord T,), and

ord T({) = max (ord T, + |«|).

Lemma 5.4 [Il, Lemma 57]. Ler G() =) ,(*G, be a microdifferential
operator satisfving ord G({) <d, ord G({) <e and o(G())|A=0. Then there

exists a microdifferential operator T({) such that ord T({) <d, ord T({) <e and
T(A)f*=G(A)f* for any eC".

Lemma 5.5 [11, Lemma 5.8]. For ieC' and Ge & such that Gf* # 0, there
exists a number r=r(A) such that ord T >r for any operator T satisfying
Tf*=Gf*

(For the first three lines of the proof of [11, Lemma 5.8], see (1.11).)

5.6. Let R,({) be a microdifferential operator such that
(1) R,(A)f*(4eC) satisfies the same equations as f***, and
(2) R,(A)f*#0 for any AeL,.
For example. R,({) = f* satisfies these conditions (cf. (5.2)).

Lemma 5.7. Let ieL,. (1) There exists an operator Q such that
R (Af*=0f* and 6(Q)A#0. (2) ordQ = —m. (See (5.1) for m) (3) If
R, (A f*= Q' f* with an operator Q', then ord Q' > —m. (4) ord,f*** = —m
+ ord, f*.

Proof. (1) follows from (1.11).

(2) We have
ord Q + ord,f* = ord,Qf* = ord,R,(4)f* = ord,f***
= A4 Agy — tr(Aogl4,) + %dim Ay, by (3.3)
= —m+ ord,f* by (3.3) and (3.6).

We also get (4).

(3) If ordQ < —m, then (Q —Q)f*=0 and o(Q —Q)=0(Q)#0 on
A. This implies f* =0 on A, which contradicts (2.8).

Lemma 5.8. For R,(() as in (5.6), there exists an operator Q,({)€ &[] such
that (1) R,(A) f* = Q,(A)f* for any ieC', (2) a(Q, ()4 # 0. and (3) ord Q,({) <
ord R, (0).
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Moreover, any operator Q,(C) satisfying these conditions also satisfies (4)
ord Q,(0) = — m, and (5) o_,(Q,(2)(p) #0 for any 7.e€L, and peA,.

Proof. Fix an element 4 in L,. By (5.6, (2)), R,(4)f*# 0. By (5.5). there
exists a number r such that ord T>r for any operator T satisfying
Tf*=R,(A)f* Put R()=R,((). By (54), we get operators R'(), R"({),... such
that

RN f* =R () f* - for any 4 eC!
ord R({) > ord R'({) > ---, and
ort R({) > ord R'({) = -

If 6(R?({))|4 =0 for any i, the sequence R, R',... can continue infinitely. But
as we have shown above, the order of T= R'(J) is at least r. Since ord
RY(¢) > ord R”(4), the sequence {R™} can not continue infinitely. Hence
o(R™())|A # 0 for some i. Then é,,(g"):: R(() satisfies (1)—(3).

Let Q,(¢) be any operator satisfying (1)~(3). By (5.7), ord Q, (%) = — m for
a generic 4'eC', and we get (4).

To prove (5), first assume that a_,,, (Q.(4)| A = 0 for the element /€L, fixed
above. Applying (5.4) for G = Q,(4) (an operator mdependent of {), we find an
operator T({) such that ord T({ )<ordG and T(X)f* = Gf* for any i eC'
Applying (5.7, (3)) for Q' = T(/), we get ord T(4) = — m. On the other hand,
ord T(A) <ord T({) <ord G <ord Q,(() = —m. Thus we get a contradiction.
Hence o_,,(Q,(4)I4 #0, and

(f;"'ﬂ) = GA(R“(/)f ) - J/\(Qu( ) Qu O-A(IA)

Since ,(f*) and o,(f**") are relatively G-invariant. o(Q,(4))|4 is also relatively
G-invariant. Then o_,(Q,(4)) can not vanish at any point of the open G-orbit
Ag.

Lemma 5.9. Let R(() = R,(0) be as in (5.6), and Q() = Q,() an operator
satisfving the conditions (1)—(3) of (5.8). Then (1) o_,(Q, ()4 = C“(Q)f’ with «a
polynomial ¢,({)e C[{] and a function j on A independent of {. (2) degc,({) <m
+ ord Q,({) <m + ord R, (), and (3) ¢;'(0) = C'\ L,. Especially, if R, (&)= f*,

writing b, for c,. we have degb, < m.

=
Proof. (1) Let Q() = Z(“Q,. Let us show that the hypersurface
H(.\', ,\’) = {CEC”Z(IZO'_",(Q,)(X, y) =
is independent of (x, y)eA,. Assume the contrary. Then . ea, H(x, ))

contains a non-empty open subset, say O, of C'. Since L, is a dense subset of
C', we can take an element eONL,. Then o_,(Q(%) vanishses at some
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point p of A,. This contradicts (5.8, (5)). Hence the hypersurface H(x, y) is
independent of (x, y). Thus we get

T_ @)X, ¥) =, (Of (x, )

with a polynomial ¢,({)e C[{] and a function f'(x, y) on A.
(2) Put ord Q({) =m'. Since ord Q {)=—m by (5 8. (4)), only the terms

with |a| <m +m appear in ¢_,(Q() =) ,%_,.(Q Hence degc,({) <m
+ m'. The remaining inequality is nothmg but (5.8, (3))
(3) By (5.8.(5)), 0_,(Q,(4)|4 #£0 for LeL,. Hence c,(4) #0.

5.10. Let s be a single complex variable. For an operator T'(s) =Y s/Tj €
&[s], put

ord T'(s) = max (ord T}), and
ord T'(s) = max (ord T} + j).
Lemma 5.11. There exists a microdifferential operator Q'(s) = Q,(s)e &[s]

and a polynomial b'(s) = b,"( eC[s] of degree m such that (1) f*f* = Q'(a)f*
for any aeC, (2) ord Q'(s) = — m, (3) ord Q'(s) < 0. and (4) 5 _,,(Q'(s))| A = b,(s). fe.

Proof. Let Q be a microdifferential operator of order — m such that
o_,(Q))W' = f*e"™. Since o,(P(A,)) =g, we have

f" = QP(A)" =Y T;P(B) + K
Jj
with some B;eg, and operators T; and K such that ord K < — 1. (See (2.5) for

a5.) Applying both sides to f*°(aeC), we get
f‘ufaé _ ameaé — Kfaé'

By the same argument as in [11, 5.7-59], we can find an operator G(s)e&[s]
such that

(f*—a"Q)f* = G(a)f*° for any aeC,
ord G(s) < — 1, ord G(s) < — 1, and
G(a) is invertible at a generic point of A for a generic a.
If ord G(s) > — m, then
ord,(a"Q + G(a)) f*® = ord G(a) + ord, f“’ = ord, f*f* = — m + ord . f“

for a generic aeC. Cf. (5.7, (4)). (Note that B,(ad) # O for generic ae C because
of our special choice of B,({).) Hence ord G(s)= —m, and we get a
contradiction. Thus ord G(s) < — m. Since ord G(s) < — 1, a_,(G(s)) = Zj§m

s'g; with some g;. Put Q'(s) = Q,(s):=s"Q + G(s). Then
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(5.11.1) o _w(Q(5)) =s"0_,(Q) + ¥ §'g;
jgm

and Q'(s) satisfies (1)-(3). Moreover, by the same argument as in the proof of
(5.9), we can show that

(5.11.2) 0_n(Q($)[ A = by(s)F(x. y)

with a polynomial b, (s)eC[s] and a function F(x, y) independent of s. Comparing
(5.11.1) and (5.11.2), and recalling that o_,(Q)|4 = f*, we get (4).

Lemma S5.12. If R,({) = f*, then the function f in (5.9.(1)) is cf* and
b,(s8) = ¢~ 'b,(s) with some ceC”.

Proof. For aeC, we get

Qula) [« = frfe =Q, a5)f
0 _,(Q(ad))|4 = b,( a())f
o Q@) A4 = bya) ",

Since 0, (c Q#(aé ) annihilates /. g_,(Q'(a) — Q(ad))|4 =0 for any aeC, i.e..
b”(sb)f = b,‘ (s)f*. Thus we get the desired assertion.

Lemma S5.13. There exists an operator Qu(C)eo‘[C] and a polynomial
b()eCLL] such that (1) f*f*=Q(Af* for any ieC', (2) ord Q,() = — m,

ord 0,(0) <0, (3) degh, () =m= =Y, uw?(4y), a_,,,(Qu(g))lA =b,(0)]",
and (5) b, '(0) <= B, (0).

Moreover, there exist ¢,eC”™, a finite subset 4 of 4d,, n(x)eN (xed), and
positive rational numbers a, ; (aed, 1 <j < n(x)) such that

b()=c, [ &+ +al+a,).

aed
1<j<na)

Proof. The assertions (1)—(5) follow from (3.6), (5.8), (5.9), (5.11) and (5.12).
The last assertion follows from (5) and (1.1).

Lemma 5.14.  Suppose that ieC', ord Q = — m and Qf* satisfies the same
equation as f***. If o_,(Q)|4 =0, then Qf* =0

Proof. Let {A;} be a basis of g. Since o_,(Q)|4 =0, we have o_,(Q) =
Zijo—(P(Aj)) for some F;e 1.y homogeneous of degree —m — 1 in the fibre
coordinates (cf. the proof of (1.10)), and hence Q = qujj(P(Aj) — A(4) + K with
®;, Keé& such that ord K < —m — 1. Thus we have Qf*=Kf* 1If Qf*#0.
then there is an operator K' such that Qf*=K'f* and o(K)|4#£0. If
ord K'>ord K, then o(K'—K)=0(K)#0 on A. Since (K'—K)f*=0
f*=0. This is a contradiction. Hence
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ord,f*** = ord,Qf* = ord,K'f* = ord K' + ord ,f *
<ordK +ord,f*< —m—1+ord,f*.
But this inequality contradicts (5.7. (4)). Hence Qf* = 0.

5.15. End of the proof. First, let R,({)=f* By (5.13) and (5.14),
f*f*=Q,(A)f* =0 whenever b,(4) =0. Let a(() —a be a linear factor of b,(()
and b,({) = b,(0)/(«() — a). By (4.5). f*f° = (a(l) — a)R,({) f¢ with some R,({)e
&[L]. Then R,({) satisfies the conditions of (5.6). Applying (5.8) to R,, we get
an operator Q,({) satisfying (5.8, (1)=(3)). Since

QA f* = frf* = (a(2) — a)Qu(A) f* for any ieC],

we have o_,(0,(4) — (x(4) — a)Q,(4) = 0. Hence a_,,(Q;(0) = b, ({)f* by (5.13,
(4)). Thus we can repeat the same argument, and finally we get an operator
Q)ed&[{] such that

S =b,(OP,Q)f*, ord P(() = —m and o_,(P,() = /"

These assertions together with (5.13) imply the assertions (1),(3) and (4) of
Theorem in (0.5).
Let us prove (2). Assume that b eC[g] and ﬁ (Q)e &[] also satisfy the
conditions of (1). Then (b,(4)P,(4) — b() A /))/A 0 for any Z. Hence
0=0_,(b AP, A) — b, (AP, (2)=b,(A)f*—b,(A)f* and b, =b,.

6. In this section, we record some consequences which easily follow from our
Theorem (see (0.5)) and (4.4).

Corollary 6.1.  The microdifferential operator P,({) and the polynomial b,({)
of Theorem satisfy

[ =b,(OPOf*
as sections of N = E[L]f* on Ay. (See (0.3) for Ay.)
Corollary 6.2. The polynomial b, () of Theorem divides any B,(() as in (1.1).
Proof. We have
b QPP S = B,(O)f°

as sections of 4" = &[{]f° on A,. Let d = d({) be the greatest common divisor
of b, and B,. 1If b, does not divide B,, then there exists e C' such that d ~'b, =0
and d™'B, #0 for { =4 But then, f*=0 on A, whcih contradicts the
assumption (d) and (2.14).

Corollary 6.3. Let B,(() be a polynomial as in (1.1). If degB,() =
o Z,{:;ﬂi @'"(A,), then B,=b,.

This assertion follows from (4) of Theorem.
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Corollary 6.4. Let # be the ideal of C[(] consisting of B,’s as in (1.1). If

b,()e A, then A is the principal ideal generated by b,().
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