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Local b-functions of prehomogeneous Lagrangians
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0. Introduction

0.1. Let X  b e  a connected non-singular algebraic variety of dimension n
over the complex number field C , G a connected linear algebraic group acting
on X, m( i )  E Hom (G, C  )  (1 < i < I), and I; (1 < i < I) non-constant regular func-
tions on X  such that

(a) .f (gx ) = )(q )  f ( , )  (g E G, x E X).

Put f  = .0 '  for ). = (2,,..., C i .
M. Kashiwara, T. K im ura and M . M uro [8] proved a  functional equation

of the form

P  f  "  •  f  =  b 4 [ ( ) . E  ,  p  E N')

on the conormal bundle A of a G-orbit under certain assumptions including the
G-prehomogeneity of A .  Here P4  i s  an invertible microdifferential operator and
b  a polynomial. Unfortunately, the m anuscript [8] is hardly available and
seems still unfinished.

0.2. Inspired by the w ork of S. Suga [12], the present author started to
study a relation between the h-functions of semi-invariants and the irreducibility
of certain highest weight modules over the complex semisimple Lie algebras
[4]. Thus it becom es necessary to study the functional equations of the above
form, w here f 's are semi-invariants corresponding to fundamental weights.

The purpose of this paper is, instead of completing [8], to prove essentially
the same assertion by a different argument and to furnish a necessary device for
our p resen t study . Our argument is elementary in the sense that it does not
use the quantized contact transformation. Several parts are close to  [11 ],
especially in §3  and §5.

0.3. In  o rd e r  to  s ta te  o u r  re su lt  more precisely, first let us state our
assum ptions. To keep the argument from non-essential complication, we assume
that

(h)
the characters of Lie (G) corresponding to re ) (i S )

are linearly independent.
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Let g o b e  a  po in t o f X, T * X  the cotangent bundle o f X , and  A  the conormal
bundle of the G-orbit G • y o ,  i.e ., the Zariski closure of

1(x, y) = x ,  y, y„)e T* X  HcEG • go , y T (G  q ,) ), ,

w here lx i l i s  a  lo c a l  coordinate o f  X  a n d  ly ,1  i s  th e  corresponding fibre
coord inate . W e fix  a n  element 6 = ( 6 , , . . . , ( 5 , ) e ( Z „ .  L e t W ' b e  the Zariski
closure of

{(x, s 6, grad log,f1(x)E T* X l.xe C, J(x) 0 01
i=1

and Wc; =  { (x, y) E f 6 (x )y  = 01. W e assume that

(c) A  has an open G-orbit, say A o ,  and

(d) A OE K.
W e fix an  element po  i n  A, n

0 .4 .  N e x t, l e t  u s  g iv e  d e fin itio n s  n e c e ssa ry  to  s ta te  o u r  re su lt. Let
=  (C ,,. . . ,)  b e  an /-tuple of independent complex variables, g = ' ,  the  sheaf

o f  differential operators o n  X , a n d  g =  0 ,  C E T  L e t X ,  b e  a  simply
connected open dense subset o f ni( C  "  ) ,

X , x 9(x, t',") f(x)`;

a  single-valued branch, J  =   [ ] f ,  f  =  ( f  mod 1 (c,, — ).10  ) fo r  2  =
C i , and =  =  L e t  e  =  e x  be  the sheaf of microdifferen-

tial operators. W e consider TA as a section of (5' D  g  J .  Let Go  be the isotropy
subgroup  o f  G  a t  g o . T h e n  Gq0 a c t s  o n  Ago = T q*. X n A  a n d  w e  have
Gq „ • po  =  Ago n A , .  Since Ago is  a  vector space, we can identify it with its tangent
space . T hen  g q. :=  Lie (Gq . )  ac ts  o n  Ago ,  and g q. • po  =  Ago . Especially there
exists an  element A G go  such  tha t Apo  =  p o . Let h = {A e gq (j Apo  = po } a n d  H
b e  the  corresponding connected subgroup o f  G . T hen  C p , g ives a  non-trivial
character of H .  Hence the action of a  maximal torus, say T , of H  on C p o is
non-trivial. Then we can find an  element A o e t:= Lie (T )  such that

AoPo = Po•

We fix such a  torus T  and  an  element A o E t.
Take a n  element A , of a  C artan subalgebra of Lie (G ) containing Lie (T)

such that I, (51t73( i ) (A ,) = I. ( H e r e  and below, we shall identify Horn (G. C") with
th e  corresponding subgroup o f  Horn (Lie (G), C ) . )  T h e  elem ent A , o f  Lie (G)
induces a  vector field  of X , which we consider a s  a  differential operator (cf.
(2.1)). D enote by a- i t s  principal sym bol. W e can  show  th a t for any

.f. "1frr =1"0-"' for some m e N  and a  regular function f "  in  a  neighbourhood of
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Po such that PIA  0  O. F in a lly , let d o b e  the set of = N ' such that
GCD , c(,) = I.

0 .5 .  N ow  let us state our result.

T h eo rem . (1 )  F o r any  g  = N ',  there  ex ist a microdifferential
operator 1 ) ,,( )E e[] of  order —  m  def ined i n  a  neighbourhood of  p o  a n d  a
polynom ial b,(C)ECN] such that

= b,())13 „ ( ; ) f ' for any  ),,c

and that the restriction to  A  o f  the principal sym bol of  PR ( )  i s  f
(2) The polynomial b,() is uniquely determined.
(3) There exist cm eC x  , a .f inite subset A  of  d o ,  n ( I )  N(Œc A ), and positive

rational numbers a„ ; (ac d, 1 < j < n(a)) such that

bA,G) = c f l ( a l + ••• + +
x ed

1 WOE)

(4) deg bj (') = pire(A 0).

Conventions. W e keep the notation introduced in the introduction.
W e denote the complex number field (resp. the rational integer ring) by C

(resp. Z), and put N = }0, 1, 2,...}.
F o r  a  complex manifold Z, = 6 -,  denotes the sheaf o f  holomorphic

functions. For a coherent sheaf o f id e a ls  ,f  o f 0 , ,  w e  d en o te  b y  V ( f )  the
analytic subset of Z  defined by J.

W e denote the local coordinate of X  by }x 1 ,..., x„} and the corresponding
fibre coord inate  o f  T * X  b y  { y , .....v ,} . T h e  sh e a f  o f  differential (resp.
microdifferential) operators is denoted by g = x  (resp. = e x ). For a coherent
g x -module d i ,  we denote its characteristic variety (resp. characteristic cycle) by
Ch dl (resp. Ch d i ) .  For an irreducible analytic subset C  o f T* X , we denote
the multiplicity of a coherent '-module  (or e-module) ,ff along C by mlt (C, .14

W e put Lie (G )= g  and Lie (T ) = t. For Â = C '  and d e g .  put
Â(A) = <2, A > =I/ l i tu( i ) (A). In other words, we identify ).EC' w ith L'Â i rie ) . We
identify Hom (G, C " ) with the corresponding subgroup of Hom (g, C) and we use
the additive notation for characters of G, e.g., (to +  tzr')(g) = to(g)vi(g) for g e G.

A  lowercase Greek letter without a suffix always denotes an /-tuple or the
character o f q  (or G ) identified with it. (Thus re ) d e n o te  the natural basis
elements of C ', and a lso  the characters identified with them .) There are two
exceptions for this convention. One is (5, which denotes the "(5-function" in (4.3)
and (4.4). (W e do n o t use the letter (5 for this meaning in other places.) The
other is a, which denotes the principal symbol of a (micro-)differential operator
or the principal symbol of a local section of a simple holonomic system  etc. The
i-th component of an /-tuple is denoted by the same letter with the suffix i. The
e lem en t e (Z ) .0 )1 is fixed throughout the paper (except in (4.3) and (4.4)).

W e shall mainly consider a small neighbourhood of po and often omit to
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say  " in  a  neighbourhood of p o ". In  such  a  case , w e  o f te n  w r ite  I  e tc . for
C ), _If etc.

I. I n  t h i s  section, w e  co llec t re su lts  w h ich  can  be  ob ta ined  w ithou t the
assumptions (a)-(d).

L e m m a  1 .1 . [9 ] , [5 ] . For any g E N t , there ex ist a dif f erential operator
p ',()61 - (X,..ci x k l)  an d  a non-zero polynom ial 13,()ECL 1 such that

1% ) . r + " = B

M oreover, w e can take I3,,() so that

f ) = 11 (a(
in + • • • + +

where ocY ) e N, GCD oc;n) = 1 and cl i e Q , 0 f or any  i.

1.2. Take B1 ( )  and  P , ( )  so  tha t B  has the  special form asserted in the
latter half of the above lem m a. Put 8(2, .5) = + sc-j), and PV ., s)= P 2  s c 5 )
for 2 e C I . T h e n

(1.2.1) s)f  = s)f .

P u t A ' =  .1 7" t )  = [+0 (f  ' + ' 5 mod s. ,r ( 2 ) ) ,  a n d  _ 1  =  J -
0 '(2) =

Here f is the restriction of .fc to )E X 0 x (2 + C6)1 (cf. (0.4)).

L em m a 1 .3 . I f  B ( 4  -  j )  0 f o r any j = 1, 2, 3,..., then ..9f ' + "  = (9 f  '+" )
H 6 ) - 1 .

The proof is the same as that of [7, Lem m a 2.3]. Read the proof replacing
u f r u  f , - >  0 and f  f

L em m a 1.4. For a sufficiently large integer in, -  m6) = .4 - ,;(5) [(f

P ro o f  We may assume that B (.1- ins, s) = s  -  m ) .  If m is sufficiently
large, then B (), - 1 1 1 j, - B(),,

 - i  -  m) 0 0 for j 1, 2,.... Hence

(2 - m6) =- -  n(6) [(f ) 1 ,  by (1.3)

= l'''(). - m (5) [(f 1 '"() . -  m S )[(f 'r

=  . - f " ) [( P ) - [ ( f t  1 ]
, /.1 .0(2)[(f ') - 1 ].

1.5. A coherent ...q-module II is said to be holonomic (resp. subholonomic)
if dim Ch (,#) < dim X  (resp. < dim X  + 1).

L em m a 1 .6 . For jt E C ', the r -module (resp. JO'(2)) is subholonomic
(re.sp. holonomic). Moreover, Ch (.1 - (2)) = W ' cmd the m ultiplicity  of  .1 -  ().) at
W ' is one.
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This lemma can be proved in the same way as in [6 ]  (cf. [1]).

Lemma 1.7. Let i.e CI . ( I )  The characteristic cycle Ch ,./V0
. '(),) is determined

solely by f 6 .
(2) The characteristic variety of S 'o'(:1) is K . (See (0.3) f o r K . )

P ro o f .  Since ./(' is subholonomic, we can apply [3, 2.8.5], and we can see
that

Ch ,47 ;(;t) = Ch ,/l/ " 1 s ."1/—  = Ch ,:t . '/(s + tn) r  =  Ch,t (). — m(5)

= Ch „If0'(.1)[(f') - 1 ]

for a sufficiently large integer ni. H ence w e get (1) by the same argument as in
[4 , 9 .3 ] . By (1), we have

Ch (;,) = Ch ,1, '(0) = Ch g [s] ( f sg [s]( f  6 )5 ,

whose support is know n to be Wo' [11, appendix].

Lem m a 1.8. If  ),EC and 13„(i,) 0 0 ,  then g ( f ' -`  f  = ,A, (i.)) and
( f + OS) = + 06 (

P ro o f .  These follow from the functional equation of (1.1).

1.9. Let {Fi 6 } i e 5  b e  the order filtration of the sheaf of microdifferential
operators, i p = limS p /F i 4 p fo r  pc T* X ,  and Co = C p y  the sheaf o f analytic
functions on  T * X . ( e p  e tc . d e n o te s  the stalk.) For P E Fi S ,  w e denote its
principal symbol by c(P) = o -

 i (P). Let p be a point of T* X , and let us consider
everything in a neighbourhood of p in (1.10) and (1.11). Let f  be a left coherent
ideal of 4'. We denote by  e ( f )  its symbol ideal, i.e., the ideal of COT ., generated
by lo- (P ) IP e ,f l, and put V =  V (o- (5)).

Lemma 1 . 1 0 .  L et P e Fke p . I f  a ( P ) e o - (f ) ,  then there exists Qe Fk& p n f p

such that cr(P)=

P ro o f .  T ake ai c O p  and R i e F ( g ' p n .fp  s o  t h a t  o-
k (P) =

(x  =(x 1 ,...,x „) is  a local coordinate of the base space X  and y  = (y , ,...,y „) is
the corresponding fibre coordinate of T * X .)  If p  lies in the zero section Tx*X
of T* X , then ai (x, y ) is  a finite or infinite sum of analytic functions which are
homogeneous polynomials in  y. H e n c e  w e  m a y  assume t h a t  ai (x , y ) i s  a
homogeneous in y of degree k — mi  in this case. Next, assume that p  lies outside
of Tx*  X .  Take a hypersurface Y of T* X \Tx* X  so that pc Y and the composition
o f Y-+ T* X \Tx* X —* P* X is  an open immersion, where P* X  is  the bundle of
projective spaces obtained from T* X .  Then a i l Y can be uniquely extended to
an analytic function, say ai',  in a neighbourhood of p  which is homogeneous in
y  o f degree k — mi . Since a(P )  =E a ; u(R i ), w e  m a y  assume th a t  ai (x , y ) is
homogeneous in y of degree k — mi  a ls o  in this case. Then in both  cases, we
can take S i c Fk_ m i e p  so  th a t  a (S )  =  ai . Put Q = Esi Ri .  T hen Q eFk e
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and o-
k (P ) =  A L

L em m a 1 .1 1 . A ssume that o- (f )=  o - ( f ) .  Then f o r any  PCS' p ,
(1) P e f p  o r
(2) there ex ists QES' p  such  that P  -  Q E jp  an d  6. (Q )#  0  on V =  V (a (f)).

P ro o f  Assume th a t Pk:=  PEFk& p . If a (P ) # 0 o n  V, there is nothing to
prove. A ssum e the  con tra ry . T hen  a(Pk )eo - ( f ) .  T ake  Q, e F,6' p  n ,fp  s o  th a t
o-k(Pk) = ak (Q,,), a n d  p u t Pk - ,  = P k Q k •  If  0- k_1(Pk_1) # 0  o n  V, then we get
th e  desired a sse rtio n . If  o-

k _ #  0  o n  V , then  w e  can  repea t th e  same
argum en t. If  th is  argum ent stops after several steps, then w e get the  desired
assertion . Thus w e m ay assume tha t th is  argument can be repeated infinitely.
Then Pk =  Ei ,k Qi  with some Qi eF i &p n Of ,  (Here the summation has a meaning
in  i p .) Let J O  b e  an involutive base [11, 2.9] of f ,  a n d  ord J 1 =
T h e n  b y  th e  sam e a rg u m e n t a s  in  th e  p roof o f  (1.10), w e  c a n  show  that
1 • o- (Q; ) = y)o-(J,) with some analytic functions r 1 w hich are homoge-
neous o f  degree j  -  mi . A p p ly in g  [11, 2.10] to  th e se  relations, w e can take
S e Fef p  a n d  Rj'iEF & p  s o  th a t  o- (S) =  1, o- (R; i ) = rj ,  a n d  SQ;  =
Then S - 1 R:i1 =:R i1 satisfy Q;  = E N

i _  Ri i J i and  RJ , Fi _m i e p . Put R1 =E i < k Ri i e
Then

Pk  =  Q =  R A e e p n ip f p .
i=1

It is know n that i p  i s  a  faithfully flat right ‘p -m o d u le  [10, chapter 2, Theorem
3.4]. H ence by [2 , chapter 1 , § 3 , Proposition 8, (2)], n  i p f p  J .  T h u s
P = Pk  e .fp  a n d  w e get the desired assertion.

2. The purpose of this section is to prove the smoothness and the simplicity of
characteristic varieties o f ce rta in  g -m odu les. F ro m  n o w  o n , w e  assume the
assumptions (a)-(d).

2.1. F or Aeg, define the vector field P(A ) o n  X  by

d
(P (A )F )(x )= F(e t A x)1,=o•

dt

We shall consider P(A ) a s  a  (micro-)differential operator o n  X.

L em m a  2.2. Fo r A e g , the principal sym bol u (P (A )) o f  P (A ) i s  <Ax, y>.
where <  , >  is  the natural pairing of  the tangent bundle T X  and the cotangent
bundle T* X .

P ro o f . If e" x = (a 1 (t, x )). then

d ea, OF
(P (A )F )(x )=  -F (a i (t, = 2_, ( 0, x)  (x),

dt ,.1  et



Local b-fUnctions 419

ea•
P(A )= (0, x)  , and

i =  at axi

" aa•
o- (P(A ))= E (0, x)y i =  < A ,  y>.

1 =1 a t

2.3. Let W be the Zariski closure of

{(x, s1 grad log f i (x))ET* X  x e X , si e f1(x)

in T * X . Note tha t A W' W (cf. the assumption (d)).

Lemma 2.4. W  is an irreducible variety of dimension n + 1.

P ro o f . It suffices to prove that {grad log f(x)}, < <, are linearly independent
for g e n e r ic  x . Assume the con trary . T hen  there  are (local) regular functions

f,
a 1 ..... a,, s u c h  th a t  I t

i =  a i (x)  = 0 (1 n). Then for any vector field V.
ax •

1 = a,V (f ,) = O. T a k in g  V  = P(A ) (A e g), we get a,(x)m(i)(A)f,(x)= O. B y
the assumption (b), w e ge t a,(x)f ,(x)= 0  and a, = 0. T h u s  w e  g e t  the linear
independence.

2.5. Let

go = {Be glnit i ) (B) = 0 (I < i < I)},

=  {Be gO(B) = 0},

{Bi } be a linear basis of go ,  and take C ;  E g (1 j  <  I) so  th a t ru") (Ci ) = 5  (c f.
the assumption (b)). Then {/3 1} u {CJ} gives a linear basis of g.

Lemma 2 .6 .  I f  Beg °  (resp. B E I O ,  th e n  c(P(B)) vanishes identically on
(resp. W').

Pro o f . Assume tha t B e g , .  Then

P(B )fO = P ( B ) f  
iv  r.p(B )(logl;) f ' .' f  

_
—1=i 1=1

If P(B)= I
n
i _ l ai (x)  in a local coordinate system {x i } • then

E E ciaj(x)  G  
(log f i ) = 0, i.e.,

i=1;=1

o- (P(B ))= E ox) y i  = 0  for (y,,..., y„) = grad log J;.
j=1 1=1

Thus we get the one half. The other half can be proved in the same way.

I
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2.7. Recall that

= -64 d  f ', = = G, — 9 f 2 .
= 1

= t '(/1) = = , 1,;(>1) = g

for E C ' .  Put

= AW(1.) = g / ( I g P ( B i) +  E .9(P(C i) —

F ro m  n o w  on, w e shall consider everything in  a  neighbourhood o f po  (cf.
(0.3)). Note that ,/11  =  g .f' etc.. since P(C i )P-' = r, i P .  Hence and a r e
coherent g-modules (do-modules), and we can consider their characteristic varieties
etc.

Lemma 2.8. T he e-modules J , S o
-  a n d  „tO" are  naturally  isommphic to

each other ( in  a neighbourhood of  po e A 0 ). They are sim ple holonomic systems
[1 1 , 2 .8 ] . Especially, their multiplicity along A  is one.

P ro o f . Since .1/0
—  i s  a simple holonomic system (cf. [11, 4.8]), it suffices to

prove the first assertion. The natural surjection

induces a surjection

s l f  I E  —
i =

— s6 i) s] f  

= f ( —  1)d [ ] f 6  [s] f  't + s 6 1s 6 [s]f 4 + s b =
=- 1

The natural surjection

d / 613 (B) = f

induces a surjection

ey(leP(13 ; ) + e(P(c i ) — ).))
j=1

=

By the assumption (d) and (1.7, (2)), . I 0  0 .  Since the multiplicity of .1 -,"  along
A  is one, the composition of the surjections —> — >  ,1  is an isomorphism.
Hence these morphisms are isomorphisms.

2.9. Let us fix linear forms oc( i ) () = x(»
1
• (1 < i <I)  which are linearly.1 

independent, and a ; E C (1 < i  <1 ) .  Along with the 9-modules given in (2.7), we
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also consider the 9-modules

= A "/ (OE( i ) () — ai and
i>k

= 9/( 9P(B ) + P(i)(C)) —  a i )),
Rego k

where oc( i ) (C) = a("CJ. I f  we need to make explicit the  dependence o n  1( i )

a n d /o r  (11,  we write Ar.,, = = A 'k (a) = A' - (oc; a) etc. T h u s  „f"o (),) in  (2.7) is
-TO Ite ,... ,P 7 (1 ) ; Â). O n  th e  o th e r  hand, if =  ), i s  the (unique) solution of
oc“) (0 — a, = 0 (1 < i < 1), then A", and „1„;" defined here coincide with ./1 W  and
A"(.1) given in  (2.7). N ote a ls o  th a t  t; coincides with ,1/" in  (2.7).

Let U k  (resp. 4 ) be  the section of ,1/„‘ (resp. Ak
. ") corresponding to f ‘  e,

(resp. 1 e ), and ..%„ (resp .9 " )  its annihilator in  e
L em m a 2.10. P u t  c ( i ) = o - (P(oP(C )))  and  S k. =  l i Co- (P(B )) + l i > k e o- ( i ) •

where = 0 ,„„. T h e n  „7,1„. ,X ( k  a n d  V ( ï )  i s  a  non-singular m anifold of
dimension n + k.

P ro o f  L et K k  =  IcIF(p o )IF eJf k l . Since A , is G-homogeneous and dim A ,
= n, dim K , = n  (cf. (2.2)). By (2.4) and (2.6), we have 2,i — dim K ,> dim W=
n + 1, i.e., dim K, < n —1. O n  t h e  other hand, dim K k > dim K k + , > dim Kk — I.
B y these relations w e get dim  K t, = n —  k . Since K k  i s  th e  C-linear span  of
{da(P(B))(13 0 )}U{do- u) (po )*  < j  1 } ,  we can rearrange IC  so  that K , is spanned
b y  ft dcr(P(B;))(p 0 )11 < i < n —  11. Put =  Ei,!= C o - (P(B i)) + Ej > k  e()- ( i ) .  Then
K k = {dF(p 0 )1F E fo r  a n y  k. H ence V (1q) i s  a  non-singular manifold of
dimension n  + k  a n d  .\ /,',Yrk' = Irk'. E sp e c ia lly , ,Y6' is t h e  sheaf o f  functions
vanishing identically o n  V(f6,').

Suppose th a t  V (S k. ') =  V (f (k )  for some k. Since a  function in  i rk vanishes
identically on =  V ( S ) ,  ..Y(k H e n c e  =  S k" a n d  w e  g e t  the
desired assertion . Thus it suffices to prove the coincidence of these two varieties.

First, let us consider the case where k  = 0. Then by (2.8),

V (.-70  D  V (J) D V (o ( 7 ))  = Ch „I'," = Ch .

B y  t h e  assum ption ( d )  a n d  (1.7, (2)), Ch = A  ( i n  a  neighbourhood of
po E A o ). Since V ( i )  is  a  non-singular manifold of dimension n  and  A  is also
of dimension n, we get

(2.10.1) V (S ) V (J6) = A.

Next, le t  u s  consider the  case  where k = I. B y  (2.6), V (,;') V(,17;) D W
Since W  W '  W o' = A n Po , W  is a  variety of dimension n +1 in  a  neighbourhood
of po (cf. (2.4)). On the other hand, V(,Y6') is a  non-singular manifold of the same
dimension n + 1. Hence

(2.10.2) V(..*;') =  V (.;) =
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L et us consider the  general case. A s s u m e  th a t V(Sk') = VW .  N ote that
V(1 6 -1 ) is  the subset o f  V (S ;) defined by u(k ) =  0  and that V ( V )  V(Y(0 ) = A
by (2.10.1). Hence

n + k —  1 = dim V (S _ i ) dim V (S k -

dim V(Y 6) — 1 = dim V(S;;) — 1 = n + k —  1.

Since V (S il i) is  a  non-singular manifold and 1/ (Yrk- i )  is  its  subvariety of the
same dimension, V (S -

ki  =  V (Ç _ 1 ). Thus we get the desired assertion by the
descending induction on k  starting from (2.10.2).

In  the  proof of the above lemma, we have also get the following assertion.

Lemma 2.11. V ( i )  =  W  and V (S _ 1 )  is  the hypersurface of  V (Ç) def ined
by  5( k ) =  O. More precisely, a holotnorphic function on V(,f(k ) vanishing identically
on V (Y _ 1 ) is divisible by , o - ( k ) .

Lemma 2.12. The characteristic variety o f  „V' = [] f  c o n t a i n s  W

P ro o f . Since 9 ,f (6' E(Z,,,,) 1) is a  quo tien t o f  S . , Ch „I' contains
Ch .9 f . Since

Ch f '  D  { (x , sliji grad log f i (x))1.x. e X , seC, f(x )

(cf. (1.6)), Ch ,y1/' contains the union of the right hand side for various 6' E (Z „ ) 1

and also contains its Zariski closure, which is W

Lemma 2 .1 3 . a (9; )  =  ( 9 -k" ) = Yrk

P ro o f . Since ,yrk i s  a  q u o t ie n t  o f  k",

„%k D  .9;" P(B) + 61P(Œ( i ) (C))— a 1).
Bello i >k

Hence o (3-
k ) D o (3-

k") D Ç .
 S in c e  N/Sk = Sk b y  (2.10), it  is  e n o u g h  to  show

th a t  V(o- (9;)) = V ( i ) ,  w hich w e shall prove by th e  descending induction on
k. By (2.11) and (2.12), we have

(2.13.1) Wc Ch =  V(o- (.5 -,)) OE V (Y ) = 14;

and we get the equality for k  = I.
Assume th a t  V(o- (;?),M V (l(k ). Since 610 f  = (5' f „ i rk = e'ti k . (See (2.9)

for uk .) Define the &-endomorphism Fk o f  -1 k by

Fk (uk ) = (P(Œ( k ) (C)) — ak)uk (0
( k

) ( ) — ak)uk.
T h e n  ./1"-k- • k/Fk(- 1a ( P ( c ( C ) ) —  aid= a ( k ) , suPP -1r ; =  V (S 0  a n d  th e
multiplicity of X , a lo n g  V(Yrk )  is  o n e .  Hence

V (a(9;_ ,))= supp , _ , = supp ik/F k (1/0

=  (x, y)Esupp . I (x, y) = 0} by  [11, Proposition A.4]
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=  }(x, y)E V(0- ( ) )  a ( k )  =

=  f,(x, y)E V („KOlo- ( k ) =  0} by the induction hypothesis

= VV(k- by (2.11).

From  (2.10), (2.11) and (2.13), we get the following assertion.

L em m a 2 .14 . P u t  A , = V(,Y(k ). T hen 4 ,  is a non-singular m anif old of
dim ension n  +  k , supp „f k =  ilk, a n d  t h e  m u ltip lic ity  o f  -1/j, alo n g  ilk i s
one. E spec ially  supp =  W  (in a neighbourhood o f  po ).

3. Order

The purpose o f this section is  the calculation o f o rd e rs . The m ain results
are (3.3) and (3.6). First, let us show the existence of a local coordinate system
suitable for our calculation.

Lem m a 3.1. L et X , be a smooth algebraic variety over an algebraically closed
.field K, T a  torus acting on X 0 , X , D X 1 D • • • D X , T-stable smooth subvarieties
of  X , (locally  closed in X 0 ), p a n i X i , and di =  dim X 1. T hen there ex ists a local
coordinate system lx 1 ,...,x , 0 1 in  a neighbourhood of p  such that all the x i 's are
relative T-invariants and x i ._.. 0  on X ; f o r j  >  di .

P ro o f . Here in this proof, we do not follow Conventions. By [13, Corollary
2 ], every po in t o f X , a d m its  a  (Zariski open) T-stable affine neighbourhood.
H ence w e m ay assume from  th e  beginning that X ,  is  an  affine variety. Let
a :  T x X 0 -> X ,  b e  th e  morphism defining th e  T-action o n  X , .  N o te  that
Hom ( T , K ") gives a  K-linear basis of the regular function ring  K [ T ] .  Hence
for any function fc  K [X 0 ] ,  there exist cti a Horn (T, K ' ) and fi e K [X 0 ] (1 < i < n)
su c h  th a t o- * f =1 :! = i ai ® f  a n d  7i )ti (i A .  Moreover, f i 's  a r e  uniquely
determined and relative T-invariants corresponding to the  characters I i . Note
also that f =  r ; =  i f .

A s is seen by this fact, K [X 0 ]  is generated by some relatively T-invariant
regular functions f i (1  <  i < N ) .  L e t J  b e  th e  idea l of the polynom ial ring
K [z,,...,z id  consisting o f  polynomials q ( Z )  su c h  th a t  cp (f,,...,f,,)=  0. Then
K [X 0 ]  =  K [z , , . . . ,z , ]/ J , i.e., A.-  - + ( f i (x ),...,f„ ,(x )) g iv e s  a  c lo se d  immersion
X 0 -- 4 ( 5  .

L et ly ,,...,y d o l  be a  local coordinate system of X ,  in  a  neighbourhood of
p. (In  other words, X , n A: —> (y,(x),...)E K d u is  étale in  a  neighbourhood of p.

We do not assume that y (p ) =  0 .)  S ince  rank   (p ))
ayi  i . t v , i< i< d o =  c 1

0 , we may(  

e
assum e th a t  det ' (p) 0  0  by rearranging ,-:,,...,z,,,I , i f  necessary.(  

 zi

a y i i < i.i<do  

Then {Z1 ..... Z 0} g ives a  loca l coordinate system of X ,  in  a  neighbourhood of
p. Since zi l X , = f i a re  re la tive  T-invariants, projecting to Kd °( = 1 0 ), we may
assume from the  beginning that X , =  K`!"  o n  which T  acts diagonally.
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Let çj,,...,(i d o c K [X ,]= K [z 1 , . .. ,z d o ]  be polynomials such that

(i

0  (i > d,),

ag•
rank ( (P)) (1 0 — d 1 ,  and

a z i )  d i  <i« 1 0 .1  <j<d o

eq•
det i(p) 0  O.

1•

Let a*g ; = aij g i p  7 1 ;E H o m  (T, K  )  and g i  i e K [X 0 ], where xiy( j  j').

Since X ,  is  T-stable, g 11  X 10  if I > d 1 . Hence Tp X ,L ( = { e Tp * X 1 ' i T p X ,} )

is equal to
kJ

E K (d g i)(p )=  E E K(dgii )(p).
j= 1

Choose (d o — d 1 )-elements h d , , , , . . . , h d „ from  {g 1 d 1 <  i do , 1 j  <k i }  so that
7p X ,1- = I d i < i < d o K(dh 1) ( p ) .  Then h d ,,,, . . . ,h d o l gives a local coord-
inate system of X , in a neighbourhood of p  such that all the coordinate functions
are relative T-invariants and hi 0  on  X ,  for d ,  <  i  < d , .  Repeating this
procedure, we get the desired coordinate system.

3.2. Let codim x  G • g o  =  c. Applying (3.1) t o  the to ru s  T  (cf. (0.4)) and
X  D  G • ti,D  {q0 } ,  w e  g e t  a local coordinate system  xr,} o f  X  in a
neighbourhood of y o  such that x i (ty) = 11") (t)x 1(v )(teT , V EX ) with some characters
f r ) e Hom (T, C 0 ) , th a t x, •  •  •  x e =  0  gives a system of defining equations of
G • q„, and tha t x i (q0 )  =  0  for any i.

B y  (2.10) and ( 2 . 1 3 ) „ 1  =  e p  is a simple h o lo n om ic  system whose
characteristic variety is A  (in a neighbourhood of p0 ), and hence we can consider
the principal sym bol o-

A (P )  and the order ord A (P ) .  (See [11 , §3 ] for their
definitions.) Let us calculate these invariants using the local coordinate system
introduced above.

Lemma 3.3. ord A f 2; . ( A 0 ) —  tr (74,3 1 A q „ )  +  dim / L .  ( S e e  (0.4) f o r  Ao.)

P r o o f  Using the local coordinate system given in (3.2), we have

d
(3.3.1) (P(A )F)(x ,,...,x „)= — F(13 ( 1 ) (e")x ,,...)1, = 0 = [3(')(A)x1 ) F

 i=i

for A E I .   L e t  {y i ,...,y „ }  be  the fibre coordinate o f T * X  correponding t o  the
coordinate {x 1 . . . . .  . 'J of the base space. Then

=  F(x, .1)dy, • • • dy r.dx r., , • • • dx„ / .\ /dx, • • dx„
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with some function F(x , y) on A .  Because of the relative G-invariance of o-
n (f  A),

F ' ( 0 )  is G -stab le . Hence F  does not vanish at the point p o  of the open G-orbit
Ao . The vector field on A  induced by the  Hamiltonian vector field defined by

the principal symbol of P(A )= (A).x ;   is
ax,

Ficop(A))l A  =  -
a

13( i ) (Aly,  + fl(i)(A)xi
ay i i=c +i ax ;

Put

L P ( A ) _ ( A )  =
1 n

cr(P(A))1 A) + ( -  iJA ) fi(i)(A )).

Since (P (A ) -  ) ,(A ) ) f  =  0  for any Ant,  we get

0  =  p (A )_  A (A )(0  A( f  I d X  •  •  dx„)
1C 1

( H , ( p ( A ) )  -  ) , ( A ) -  - fl(1) (A ))F +( -  - 13 ( `) (A )+ - I3(i)(A ))F}
2 2 2 i=c+i

x dy • • • dy,dx,+ • • dxn

by  the definition of the principal sym bol. Hence

a
(3.3.2) (

aY
-  E 13( ') (A ly i   + 13(i)(A),x, i.(A ) - f3(1) (A ))F(x ,y ) = O.

i= 1a x , i=1i i=c+1

By the choice of po , Ao a n d  our local coordinate system, p o;  . ) ) 1 ( P 0 ) .  •  •

.0 P 0 ) , 0 , . . . , 0 )  a n d  - ( 1 (
r (Ri) , - 0 4 0 0 ,  =  Y i\Poi fo r 1  <  i <  c. H ence the  value  of

(3.3.2) for A = A o and (x , y) = p o ,  which is zero, is also equal to  the value of

(i  Y i i-(A0) i3(1)(A0))F(P0) = (deg, F - 1.(A 0 )  - 13( ') (A 0 )) F(p o )
i=1 uyi i=1i = 1

by the Euler's identity for homogeneous functions. Since F (p 0 )  0  0, we get

o rd ,f  =  d eg ,, F  + 
1
-c = ),(A 0 ) + ri( A 0 ) + -

1  

c.
2

Thus we get the desired expression  for ord ,f.

R em ark  3 .4 . Let

= Ip o E A ,10 1 A p 0 = p o  f o r  some A E

and consider the condition that

( f ) is  a dense subset of A.

If f A is  k n o w n  to  b e  simple holonomic on a n  open dense subset o f  A , then
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(3.3) still holds under the weaker assumption (a) + (f).

3.5. By the assumption (b), ô  = E51ru(1) o O. Let A ,  be  an element of a
Cartan subalgebra of g containing t such that 6(A 1) =  1 .  (Note that [A , A i  =  0
for any A  e t.) Put a  =  a(P(A  i )) and define  q  as in (2.5). Taking y. ( i ) (0  in (2.9)
su itab ly , w e m ay assume t h a t  V (if ,)= W ' and a( 1 )  = a. H e n c e  a  =  0  is  a
defining equation of A  in W '.  Let i n  be the largest integer such that a"" divides

as elements of
 0 W , p 0

 P u t  I  =  f a - m'. Then j .  i s  a regular function on W'
in a neighbourhood of po .

L em m a 3 .6 . in ; = — tu( i ) (A o ).

P ro o f . The proof goes in a similar way as in (3.3). We keep the notation

there. B y  (3 .3 .1 ), w e  ge t ( E i =  f i ( A ) x 1, ( i ) (A o )x i
Oxi

ra" ) (A o )  f i = O. S in c e  [A ,. A d =

0, we have [P(A ,), P(A 0] = O. { a(P(A 0 )), o- (P(A ,)); = 0, where { , } denotes the
Poisson bracket, and H , (p(A . )) o- (P(A ,)) = O. S i n c e  H:= H,,p ( A o ) ) = _ , flu)(A 0 )
(  aa  

x ;y ; )  also satisfies Hf. = t (A 0 ) f ,  we have H I  = tu ( i ) (4 0 ) I  on A, i.e.,
aYi

c(— E 13( i ) (A o )y 1 - -  +  E  /3(i)(A0 )x• 
ay, i=e+ ' ( ' )c.

on A .  If we can show that

re (A 0 ))1 (x , y) = 0

(3.6.1) .ii(Po) 0 0,

then we get deg i , I  =  u ( A 0 ) in the same way as in (3.3). Since deg,,f; = 0  and
deg), a = 1, we get

raj = — deg ) , 1 =  —  fu(i)(A 0 ).

Thus it rem ains to prove (3.6.1). Note that f 6 corresponds to  the character 6,
w hich is non-trivial b y  the assum ption (b). Hence f  is not locally  constant,
i.e., grad log P ( x )  O. T h u s  the projection of W ' on X  is the whole space, and

is not identically zero on W ` . Let be the irreducible components of
w'n I - 1 (0) containing po . These are a ll G-stable hypersurfacs o f W '.  Since
a =  0  is the defining equation of A , we have W'n (0) u C

j * A  j •C •  and hence
A n ,t, - 1 (0) = Uc,,A(c i n A ), w hich can not contain the element po of the open
G-orbit A o . Hence p0 01 - 1 (0).

4. The purpose of this section is to prove (4.4) and (4.5).

4.1. F or g-modules and ,// 2 , w e  d e n o te  b y  H o m f,( , il i , =
Hom (W I , ,1/ 2 ) the sheaf of local hom om orphism s. Let R Hom (,.// i , _112 ) be its
derived functor and E xt'( .// ,, ./ / 2 )  its  i- th  cohom ology . For a  complex A'
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= (. • • A i (2* Ai + -4 • • •), let o-
 > i A • = (- • • -* 0 --÷ - 1 - *  A' Ai+ • ••). For

a  coherent Qv -module J, put

(4.1.1) Ti(-/#) = E,R dim Ch (su )  < n + i},

where n = dim X .  Then

(4.1.2) TA JO =  Ext&' (a> „_ i R Hom g (,,ff, 9), 9)

by [6, Theorem (2.10)]. F o r  a  coherent r module J, we also put

(4.1.3) TA JO =  Ext,7 (o-
> „_ ; R Hom g ,(d i,e ), 6 ).

Then

(4.1.4) Ti(J ) =  E  Adim  supp (gu) n  +

F o r a  coherent .9-modu1e ,1Y, we have

(4.1.5) Ti(6 ' =

Lemma 4.2. L et .ilf„ he  as in  (2.9). (1 ) E xt = 0 f o r  i n  -  k .  (2)

Tk(S;‘) = (3) Tk - V k )  =  O.

P ro o f .  Let {F i g }f r ,  be the order filtration of S, F = (F i e)u k , gr'  = (1) JE ,
F i /Fi _ and . 4 tk = (9 T .x  0  „ F e  grF Then

supp Ext.'s ( 1 e) c supp Ext i,

(cf. the proof o f  [6, Theorem (2.3)]). Since ,47, = Colo- 0 - j ,  we get Ext 1.
k ,

(9) = 0 fo r  i n  -  k  by (2.10) a n d  (2.13). Hence we get (1). T h e  remaining
assertions follow from (1).

4 .3 .  L et t,' ,...,t,', be new complex variables and

= e J(t E l  t " = (fch. x6 (t '1) • • • (5(1-0 4 .

(See (2.9) for and  /4,'.) By the change of variables ti = ti -  f i (x ), d i  can be
expressed as

= so . x(5 (ti - fi(x))• • • 6 (th - fh(x))4.

In the same way as (4.2), we can show that (1) Ext i,(.//, e) = 0 for i 0 h + n -  k ,

(2) Tk (d i) =  N , and (3) T,_,(../11) =  O.

Lemma 4.4. L et v( )  b e  a  local section of 61C] A ssume that the
image of  1,( ) in - =- e J .A  is z ero for any  /le C'.  T h e n  N O  =  0.
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P ro o f . Let

= =  1 1 G i — i i ) - I
i>k

and v k = u k (;t) = v(C,,..., be the image of v(C) in . 1/k. Assume that
vk = v„(;41) *  0  for some ), e C I , and L"uk- 1 (s,1 , • • •, 4 -  1 ,  j 'k' •  2 1 c+1 ,••• ,) ,I)  = 0 for any ).E
C . L e t u s  sh o w  tha t a contradiction arises.

Assume th a t w (A 0 ) = 0 (see (0.4) for A 0 ). By (3.6), ./;, 0  0  on A .  Until we
get (4.4.3) below, let u s  consider everything o n  th e  o p e n  se t X \fk

-  ( 0 ) .  Put
C = C ite )  a n d  f  =  n i , k f » . L e t  Fi „.1"; =  Fi (6 E 1 P ):=  (F  1 [C ] f  and
F 0 ,, be its im age in  A k. Define a sheaf homomorphism 0: e'Ld .f. —> f r  by
P(C)f (fk - ‘kP(C) .fk k)f fk(This homomorphism is well-defined o n  X  \ -  '(0).)
Put d/ = ( [ ] f c, „il k = d1,11 i , k (C — ;t i )d f  and define F./ . / / ,  in the same way
as above. Then 0 induces sheaf homomorphisms Fj,-"Vk F id ik  and gr"(”1
ge- VG/k ). Moreover, the la tter is  a gr F (S)[ ]-isomorphism. By (4.1.4), (4.2, (3))
a n d  by our assum ption, uk ()) 0  0 even as a  sec tion  on  A \ fk

- 1 (0). H e n c e  w e
can find an integer/ such that v k (i.)e F i . 1/k

. and v k (2)0 Let gr (L 2 (  0 )
b e  i t s  im a g e  in  F .; ,A/k/Fi _,,Ak = 1k). B y  o u r  a ssu m p tio n , rk (r,,,...,Ck ,

k + 1 • • , ) .1) E (r, k rk  for any ), rk e C . Hence

(4.4.1) 0(gr(vk(1,..., 4 , 1 k+ 1 , — , ;11))) 0 4 ;lc) grF  (di k)

for any ;t k' E C. N ote that

— ;ti/ 6 [1:1 r

where the filtration F  of [ ' ] f  e tc . are defined in the same way as above. B y
(4.4.1) and (4.4.2), we get 0(gr(t, k )) = 0. S in c e  0  i s  an isomorphism, gr ( r )  = 0.
Thus we get a  con trad ic tion . Hence

(4.4.3) tu(k)(A0) o.
Define endomorphisms t of .1; =  & R i f  b y  ti (P ( )  f )  =  P (  +

Then ti (1  <  i < j )  induce endomorphisms of By (2.14), (4.1.4) and (4.2),

n +k  =  dim supp „Vkdim supp &[(1,", t 1 ,...,t k _Ju k > dim supp (5'r, = n + k.

(Note that the & []-m odule  structure of ,1" .1'; induces that o f  1 k .)  Since the
multiplicity of „V k  along A k  = s u p p t ,  i s  one by (2.14),

dim supp (,1k/S'N, t,,..., tk _ uk ) < n + k.

Since v,_ 1 =  0 , the natural morphism induces a surjective morphism
,/ / :=  ,17.

k /S' t ,,...,t k _ jv kI , ' _ 1 .  N ote that these modules can be natu-
rally considered as 4 -  1 ,  t i , . . . , t k _  1 ] - m o d u l e s .  L et E = t , t 1 , - tk  -1 )E
c k - 1 ) B y th e  correspondence C4-+ — t1,•••,tk-1] can be
regarded a s  a  su b r in g  o f  6''x  „ E . L e t  /7  = x  E  0  d ,  . 17 =  g x x E O • =

= ( (11 , T u ( O

(4.4.2) grq ,,//,) =  C [k] O c  g r '( sEC1.r
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k — 1, k) and  ui b e  the section of „1 ; corresponding to l '` 'e , l .
Let us show that ..J7 is holonornic. Note that u = 1 C)u, (E JTO satisfies the

equations

(4.4.4) P ( B ) u  0  (BE go ), (P(C) — = 0 (k  <
and

(4.4.5) (P(C i) + t.)1( =  0 ,  (ti  l i )u = 0 (1 <  k).
Oti

By the change of variables t; = t — j , (4.4.5) becomes

(4.4.6) P(Ci)tt = 0, t u  = 0 (1 <  k).

Hence ,,47k = „ E (1 0 i l k )  is  a  quotient of

-
17

k
"
 : = eTE,5(6)••• N -  =  ex .E 071;:ei(ti

where E ' = kt, o e c k - i  }  a n d  tI.;"  i s  th e  s e c t io n  o f  x / ( 1 , e , „ &x P(B) +
E i k -  1

(TX P(Ci) e x ( P ( c i )  -  i i ) )  corresponding to 1 e (T x . B y  (2 .1 4 ) , the
support A ,  o f  ex  E  fik"6(t,)• • • 6(t k'_ 1 ) i s  a  non-singular variety of dimension
(n + 1) + (k —  1) = n +  k  and its multiplicity along A- ,  is  o n e .  Hence the natural
morphism k" /F. k  i s  a n  isomorphism o r  th e  s u p p o r t  o f  its  k e rn e l is  of
dimension n + k  (cf. (4.3)). In  the  fo rm er case , we have dim supp (e x  x ,(1 O t)„))
= n  + k  by (4.3), a n d  ,J7  becomes holonomic (as a non-trivial quotient of the
subholonomic module ,i 7

k ). In  th e  la tte r  c a se , dim supp <  n + k , i.e., .I i s
holonomic, and  its  quotient ) 7  is also holonomic.

Let us show that 0  in  a  neighbourhood of A o  x  T i* E ' for a  generic
2., where TE* E' denotes the zero section of T *  E '. (See (0.3) for A o .) A ssum e
the contrary. Since A , x  TE' E ' is identified with A , x  TE*E by the isomorphism
T *(X  x T *(X  x E ) induced by (x,, = (x,, ti  — /) , w e  have „.17.

k _ x
TE*E =  0 .  T ak e  a  p o in t  (p, A o x TE* E  so  tha t eve ry  coo rd ina te  o f  q  is
non-zero . A s is easily seen (5'  x  E . ( p 4 )  is fa ithfu lly  fla t over A := e x ,p ( 1 E 4

C [t", 0 1 ) , where t" = tk 1 )  and 0" = ,..., i ). By the corres-
pondence — 01 t i ,  we have Co" C [t", (2 1  =  CE . ,;C [ t " ,  C I  w h e r e

(N ote tha t t i (q) 0.) H e n c e

6' X  x E,(p,q) 6, y, p it".,7]• - 1,p — X  x E,(p.q) C® A  (6' Ea! ® C [ t ] ' -  1 .p )

and we also get r , „  C),,,„, - 1, 1 —  0  for any q e ( C  )k  - 1  because of the faithful
flatness. Thus we get  p [ t 1  1  =  i.e ., (t, • tk _ i )"trk _ ,  =  0  as an
element of „1',_ 1 „ , fo r  a  sufficiently large N .  P u t  6 ' =  I i < 077( ') • Then we get
f ' f '  =  0  a s  a n  element of ( i . ) p .  P u t  L o  =  \  ( 0 ) .  T hen  for 2 eL o ,
such an equality can not hold by (1.8). Hence . l , 0  0  for i.e L o . Henceforth
in  this proof, we assume tha t î,eL 0 .

L e t  u s  ca lcu la te  t h e  o r d e r  of 1 n<—  I l k- 1 E4 x .E 0 -  1  — 1. Since
u = 1 C)u k _ , satisfies (4.4.4), (4.4.5) and also (P(C„)— ). k )u = 0, 1 is a quotient
of
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„
k  —  1  = 

6 7(
174:— 1 eE, (5(ti)••• ó (t;, - 1) = S x x v iii:-1 6 (11 -  .1.1)••• 6 (tk -1 —  f k _

Since ..,17 k 1 , is  a  simple holonomic system in  a  neighbourhood of A, x  T * E ' by
(2.14), a n d  , 17

k _ 0  there, th e  morphism -47k - i s  an isomorphism.
Hence the order o f  1 0 uk _ (e J _ 1 ) o n  A ,:= supp —  1 is given by

ord, 2 I  0 11 k I ordA  2 ( r _  1(
5
 (t .fi) • • • (5 (t k - 1 f k  _  1 ))

ordA  2  (IV _  1 .5(t j).. • (t =  ordA  EV_ + ord,, _,),

where A, = Since e x =  6 x(.fi° • • • .fk° 1.0 • • • ,f ) ,  we have

1 1
(4.4.7) ordA , 1 0 uk _ = (A0) - tr (A ,1/1 4 0 )  + -2  dim Ag o +  (k  -  1 ),

(cf. (3.3)).
By (1.11), w e can show that, if tw o simple holonomic systems of the  same

support are isom orphic to each other, then the  difference o f the  orders of the
respective generators is a n  in teger. (The converse a lso  ho ld s [10, chapter 2,
Theorem 4.2.5]. But we d o  not need this deeper result.) Thus, by (4.4.3) and
(4.4.7), moving 2 k  continuously, we get infinitely many non-isomorphic quotients

1 k-1 -  k 1  (A) of . / . (N ote that i s  i n d e p e n d e n t  of i.k .) But as we have
seen, Y  i s  holonomic. Hence can  have only a  finite number of quotients
up to isom orphism . Thus we get a contradiction, and the proof is now complete.

Lemma 4.5. L et a((:) b e a  lin ea r  fo rm  in  C, ueC, and v( ) a  lo ca l section
o f  t  =  e [c ]f  c. A ssume tha t the im age of  v (:)  in  e l  ;'̀ is  z ero whenever  i .E  C1

sa tisfies a(2 )  -  a = 0. Then v((:)e -  a) .l

P r o o f .  W e may assume that /(0,..., 0, 1) 0 0. Let S k = ..(z kj r ,7 (1 ) r g a -

a; a )  f o r  ; e L :=I  Cv7" 1, a n d  vk = v,(;) = (LL 'Ics,1• •• iqc+ 1

a) be the im age of v ( )  in . I . F o r  any ; =  o,
 1 , • • • )

0 ) E  L. there is a-t-i,
unique i., s u c h  th a t  042, = a. T hen  „ =  „tk

. (v7(1 ) ,..., ra" ) • i , )  and
v„,(;) = 0 f o r  a n y  ; E L .  A ssum e t h a t  v,, = vk (; ) 0  0  f o r  s o m e  ; E L  and
uk-iG: 15 • • • • (,k— i'lc% /.'vk + 1

, • • • 5 
2 1— a) -  0  fo r  a n y  ".1k' E C . C onsidering  th e  sheaf

homomorphism

P O I»  • • • .i;1-11 f ) —> (fk - 'k f k ") .f i'i •  •  • I .11»+.11 • • • .f ; '' f )

m odulo {((,, - ;•,;)(k  < i I -  1 ) ,  a ( ) -  a}, w e can show that t (A 0 ) 0 0 as in
(4.4). W e can follow  also  th e  remaining argum ent of (4.4) (with a n  obvious
modification) and get a contradiction.

5. In  this section, we prove the theorem stated in the introduction.

5.1. Fix an element p  E N ' and put j ." = m i f,", and in = 1 = i tt i m i . Then
f P = P 4o-" ' o n  W ' and  ,u(A0 ) = in  by  (3.6). (See (0.4) for 240 , (3.5) for 1, 1111

and a = a(P(A ,)).)
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5.2. Put L o  = \ B -»  ( 0 ) .  (See (1.1) fo r 13,.) A s a  consequence of (1.8),
fR f Â 0  o n  A  for 2eL 0 .

5 .3 .  F o r ix E NI ,  put =  fl i '(;p and c<1 = F o r  T O  = I 7 T.„  let

ord T ( )  = max (ord T), and

ord T( ) = max (ord Ta +  0(1)•

Lemma 5 .4  [1 1 , L e m m a  5 .7 ]. L e t  G( ) = E i vG, b e  a  microdifferential
operator satisf y ing ord G( ) .  d , o rd  G( ) a n d  o-

d (G())1A —= O. T hen there

ex ists a  microdifferential operator T(C) su ch  th at ord < d ,  ord T ( ) <  e  and

=  G 4 f  f o r  any  ), E

Lemma 5.5 [11, L em m a 5.8]. For A EC ' and G e(f  such that G f ' 0  0, there
e x is ts  a n u m b e r r = r(i.)  s u c h  th a t  ord T >  r  f o r an y  o p e ra to r T  satisfying
T f o = G f '.

(For the first three lines of the proof of [11, Lemma 5.8], see (1.11).)

5.6. Let R m(C) be  a microdifferential operator such that
(1) R0 (.1).0:I e  C I) satisfies the saine equations as .f  '+", and
(2) R ,( i.) f ' 0  0  for any ). e L o .

For example, R ( )  =  f  satisfies these conditions (cf. (5.2)).

Lem m a 5.7. Let E  L o .  ( 1 )  T h e re  e x is ts  a n  o p e rato r Q  su c h  th at
Rm ( il) f  = Q f 't  a n d  0 - (01A  #  0. ( 2 )  o r d  Q = —  ni. ( S e e  (5.1) f o r  m .)  (3) If

= Q' f A  w ith a n  operator Q ', then ord Q' > —  ni. ( 4 )  o r d , f — in
+

P ro o f .  (1) follows from (1.11).
(2) W e have

ord Q  + o rd f  A = ord A =  ord A  R ( ) .) f  = ord A l ' "
1

= + — tr (/40 /1go ) + —dim A g o

2
by (3.3)

= — m + ordnf by (3.3) and (3.6).

We also get (4).

(3) If  o rd  Q' < —  in, t h e n  (Q — Q') f
A = 0  a n d  o- (Q — Q') = o- (Q) 0  o n

A .  This implies P I- = 0  o n  A , which contradicts (2.8).

Lemma 5 .8 .  Fo r R,, ( ) as  in  (5.6), there ex ists an  operator Q,,( )E S [C] such
that (1) IZ,(2)f ;1 = Q ,(2 )P f o r  any  )E C', (2) 0 - (Q ))1 #  0 , and (3 )  o rd  Q ,)

ord R X ).
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M oreov er, any  operator 121, ( )  satisf y ing  these  conditions ay °  satisf ies (4)
ord QR G.)= — i n ,  and (5) o- _„,(Q,,(;.))(p) 0 0 f o r an y  2.c L, and pe A , .

P r o o f  Fix an  element 2, in  L , .  By (5.6, (2)), Rp C;t)P  0  O. By (5.5), there
e x is ts  a  n u m b e r  r s u c h  th a t  o r d  T >  r  f o r  a n y  o p e r a to r  T  satisfying
T f =  R m().)f' . Put R(C,)= R o ( ). By (5.4), we get operators R' (:), R"( ),... such
that

= R '(;.')f ••• for any

ord R( ) > ord R'(0> • • • and

o rt R( ) >  ord R'()(:) > • • •

If a(R ( i ) ())1A 0 for any  i, the  sequence R, can  continue infinitely. But
a s  w e  have show n above, th e  o rde r o f  T = k i ) ().) is  a t  le a s t  r. Since ord
R(')() > ord R( ') (;), t h e  sequence [R" ) } c a n  n o t  con tinue  infinitely. H e n c e
o- (R ( ' ) (C))1A 0  for some i. Then 0,(0:-- = R" )(4-,) satisfies ( 1)—(3).

Let Q , (4' )  be any operator satisfying (1)—(3). By (5.7), ord Q,,(2')= — in  for
a  generic E C ', and  we get (4).

To prove (5), first assume that o-_„,(Q,)))1A 0 for the element L o fixed
above. Applying (5.4) for G = Q p (;t) (an operator independent o f ) ,  we find an
operator T (; )  such  tha t o rd  T ( ) < ord G  a n d  T(i.') .r - ' =  G f ' '  fo r  any EC'.

Applying (5.7, (3)) fo r  Q' = T(i.), w e get ord T(i.)> —  ni. O n  t h e  o ther hand,
ord T().) o r d  T ( ) < ord G  ord Qp (c:) = — in. T h u s  w e  g e t  a contradiction.
Hence 0- - m(Q),(M IA  0 0, and

= 0- A(R„(41'')= 0 - A(Q„(j).f A) = 0- (Q„(2))0- 4(.1').

Since o- A ( f  and o- A ( f ) are relatively G-invariant, o- (12,().))1/1 is also relatively
G -invariant. Then cr-„,(Qp (2)) can not vanish at any point of the open G-orbit
A ,.

Lemma 5.9. L e t R( ) = R m ( )  h e  a s  in  (5.6), an d  Q( ) =  Q , )  a n  operator
satisfy ing the conditions (1)—(3) o f  (5.8). T hen ( 1 )  _(12(C))1A ci ) : t  w ith a
polynom ial cm(C)E C [ç] and a function j "  on A  independent of  ‘`,". (2) deg cp ( ) <
+ ord  Q,a(c:) +  ord R X ), and (3) c,-, ' (0 ) c \ L , .  Especially ', if  R,G) = f",

w riting 1),1 b r  c ,„  w e hav e deg bvi n .

P ro o f .  (1) Let Q((,) = Let us show tha t the hypersurface

1-1(x, =  E =

is in d e p e n d e n t  o f  (x, y)eA o . A ssu m e  th e  c o n tra ry . T h e n  H. , ( x . y )E A o  I l k ,  .0
contains a  non-empty open subset, say 0, o f  C ' .  Since L o i s  a dense subset of
C ', w e  c a n  ta k e  a n  e le m e n t  ) .c  0  n 4 . T h e n  a_„,(Q().)) vanishses at some
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point p  of A 0 . T h i s  contradicts (5.8, (5)). Hence th e  hypersurface H(x, y )  is
independent of (x, y). Thus we get

(7 - .(Q ())(x , .);) = c„(C).1 jx, Y)

with a polynomial ci,()  e C [ ]  an d  a  function f jx , y )  on  A.
(2) P u t  ord Q( ) = in'. S in c e  ord Q( ) = —  m  by (5.8, (4)), only the  terms

with m + m ' ap p ea r in r  m (Q()) = o- _ ,„(Q,c). Hence deg c
+ in'. T h e  remaining inequality is nothing but (5.8, (3)).

(3) By (5.8, (5)), o- _ (Q,().))1 A 0 for ). e L o . Hence 0)1) 0  O.

5.10. Let s  be a single complex variab le . F or an  operator T'(s) e
[s] , put

ord T '(s) = max (ord 77), and

ord T' (s) = max (ord TJ + j).

Lemma 5.11. T h e re  e x is ts  a microdifferential operator Q'(s) = Q (s)e e[s]
and  a poly nom ial b'(s) = b (s)e C[s] o f  degree  in  such  that (1) .f  "  =  Q ' (a) f
f o r  any a e C, (2) ord Q'(s) = — m, (3) ord Q'(s) 0, and (4) o- „,(Q' (s))1 A  = bp' (s)I "

P ro o f .  L e t  Q  b e  a  microdifferential operator o f  o r d e r  — i n  such that
o- _„,(Q)1 W' = f  " a ' .  S i n c e  a, (P(A 1)) = a, w e have

-  QP(A i )" = T i  P(B i ) + K

with some B eç a n d  operators 7 K  such that ord K < —  1. (See (2.5) for
Applying both sides to .f " (a eC), we get

f  f  ab  am Qf ab K f ab.

By the same argum ent as in [11, 5.7-5.9], w e can find a n  operator G ( s ) e [s ]
such that

( f  — an1 Q)f " 6  =  G(a)f "6 f o r  any a e C,

ord G(s) — 1, ord G(s) < —  1, and

G(a) is invertible at a  generic point of A  fo r a  generic a.

If ord G(s) > — in, then

ord,(amQ + G(a)) f " 6  =  ord G(a) + o r d , f  = ord,f " f "  = —  in  + ord,f

for a generic a e C .  Cf. (5.7, (4)). (Note that I 3 ,(a6) 0 0 for generic a  C because
o f  o u r  sp e c ia l c h o ic e  o f  13,G).) H ence  ord G(s) = —  m , a n d  w e  g e t  a
contradiction. T h u s  ord G(s) —  m .  Since ord G(s) —  1 , (3 - „,(G(s))

si a;  w ith som e g • P ut Q'(s) = Q (s):= s"'Q + G(s). Then
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(5.11.1) o- ,(Q(s)) = sr" o-+  E si

and  Q'(s) satisfies (1)-(3). M o re o v e r , b y  the same argum ent as in the proof of
(5.9), we can show that

(5.11.2) _„,(Q(s))IA = h ti(s)F(x, y)

with a polynomial b (s)E C [s] and a function F(x, y) independent of s. Comparing
(5.11.1) and (5.11.2), and recalling that o- _„,(Q)1/1 = f we get (4).

Lem m a 5.12. I f  R p. ( 0 = f 4 , then the ,f unction 1 ' in  (5.9. (1)) is  c f " ,  and
hp (sS)= c - l b'f,(s) w ith  som e ceC  .

P ro o f . F or a E C, we get

= fPf"— Q1L(a6 ) f a 6 ,

(7 ,0 2 ( a 6 ))1A  = h (a5 )Î ', and

- m(Q'(a))IA = Wg (a)!

Since Q (a)  -  Q (a5 )  annihilates f " . _ „,(Q' (a) - Q(a6))1 A 0  for any ti e C, i.e.,
1),(s(5),t n;,(s)P .  Thus we get the desired assertion.

L em m a 5 .13 . T here  ex ists  a n  operator Q i,( ) e & [] an d  a p o ly n o m ial
bp ( O E C [ ]  such  that (1) Pi»  = Q 4 (2 ) f "  f o r an y  ). E C I , (2 ) ord  0 ) =  - m ,
ord Q4 ( 0  0, (3) deg bX) = in  =  - [tizu (A 0 ) , (4) a_ „  p ((,))1 =  h , ( 0
and (5) h; 1 (0)c 13; 1 (0).

M oreover, there ex ist c p e C ' ,  a  .f inite subset A  of  d o , n(oc)EN  (ae4), and
positive rational numbers a 4, 1 < j < n(oc)) such that

= c, H (al + +  7 1C1 + aOE,• •
aed

1 j  5 _ 1 0 )

P ro o f . The assertions (1)-(5) follow from (3.6), (5.8), (5.9), (5.11) and (5.12).
The last assertion follows from (5) and (1.1).

Lem m a 5.14. Suppose that ord Q  = -  In and Qf  A Satisf ies the same
equation as f " + ". If  o - _„,(Q)1A 0 , then  Q f ' = 0.

P ro o f . L et {A i }  be  a  basis of ,(1. Since o- ,(Q)1/1 0, w e have o- _„,(Q)=
Fo-(P(A )) fo r som e Fi e CT ., hom ogeneous o f d e g re e  -  m  -  1  in the fibre

coordinates (cf. the proof of (1.10)), and hence Q = Ei oj cp(Ai )— ; (A) )  + K  with
0 i ,  K  6 ' such that ord K  -  I n  -  1. T h u s  w e  have Qf

A

 = K f  A ,

 I f  Q f  A 0 .
th e n  th e re  is  a n  opera to r K ' s u c h  th a t  Q f ' =  K 'f ' and  o - (K')1/1 0 .  I f
ord K ' > ord K ,  t h e n  c(K  ' - K ) = o - (K ') 0 0  o n  A .  S in c e  (K ' - K )f  A  = 0,

0. This is  a  contrad ic tion . Hence
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ord, f  4 + 2  = o r d ,Q f  = ord A K 'f ord K ' + o r d ,  Â

< ord K  + o r d , f  <  -  in -  1  + o r d ,P .

But this inequality contradicts (5.7, (4)). Hence Qf  A = O.

5.15. E n d  o f  t h e  p roo f. F ir s t ,  le t  R„(C)= P .  B y  (5 .1 3 )  and (5.14),
pifA = Q „().) f

A = 0 whenever b „(À) = O. Let oc((;) - a  be a  linear factor of b ( )
and b(C) =  bm(C)/(OE(C) -  a). By (4.5), f "P  = -  a ) R ,( ) P  w ith  so m e  R ()e
e[c]. Then R ,( )  satisfies the conditions of (5.6). Applying (5.8) to we get
an  operator Q, ( )  satisfying (5.8, (1)-(3)). S in c e

Q . ) f  =  f = (1(;.)- 0)Q,(2)f  for any

we have o- _„,(Q4 ())  -  (oc(),) -  a)Q,(2)) = 0. Hence o- _„,(Q,(())= h ) Î "  by (5.13,
(4)). T h u s  w e  c a n  re p e a t th e  same argument, and finally w e get a n  operator
P  e  [ ]  such that

ord P„((:) = - In and o- _„,(P„()) = ".

These assertions together w ith (5.13) im ply the assertions (1), (3) and (4) of
Theorem in (0.5).

L e t u s  p ro v e  (2 ) . Assume th a t  b,, E C [ ]  a n d  Pijo e s [ ]  also satisfy the
c o n d it io n s  o f  (1 ) . T h e n  (bm wp„(Â)_rm13, i ()))fA  = 0  f o r  any Hence
0 = ,(b „(5t)P,(2) - p ( ) .15  „().)) = b .)1 4  -  b ,(2 ) f  , and by  =

6. In  this section, w e record some consequences which easily follow from our
Theorem (see (0.5)) and (4.4).

Corollary 6.1. The microdifferential operator Pi ( )  and the polynomial b0 G)
o f  Theorem satisfy

f 'f '=h „( 0 1 ) ,( 0 . f '

as sections of  ./If = [ ] f  o n  A 0 . ( S e e  (0.3) for A 0 .)

Corollary 6.2. The polynom ial N () o f  Theorem divides any B„( ) as in (1.1).

Pro o f . W e have

b„OP,'((:)Pp(0.f‘ =  B„(0./'

as sections of A  = on A 0 . L e t  d = d(0 be the greatest common divisor
of I), and B „. If 1), does not divide B m, then there exists 2 C' such that d - i b ,= 0
a n d  d - 1 13, c  0  for =  / 1 .  B u t  then , P = 0  on A ,, w hc ilt con trad ic ts  the
assumption (d) and (2.14).

Corollary 6.3. L e t  B , ( )  b e  a  poly nom ial a s  i n  (1.1). I f  deg B,G) =
7-5( i ) (A 0 ) ,  then B„ = b„.

This assertion follows from (4) of Theorem.
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C orollary 6.4. L et A  be  the ideal of  C [t] consisting of  B m's  as in (1.1).
bo G)EA , then A  is  the principal ideal generated by  b,(0.
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