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The semi-classical asymptotics of the total cross sections
for elastic scattering for N-body systems

By

Hiroshi T. Ito

1. Introduction

We consider an N(> 3)-body Schrédinger operator given by

2
(1.1) Am=- Y h—A, + Y Vyri—r) in L2R®M),
1<jsN 2mj 7 1<i<ien
where m; > 0 and r; € R? are the mass and the position vector of the j-th particle,
respectively. he (0, 1] is a small parameter corresponding to the Planck con-
stant. V(1 <i<j<N) is the pair potential between the i-th and j-th parti-
cles. Our main assumption on Vj; is the following:

(1.2) Vi(r) = 0(Ir|™*), as |r| = o0, reR3,

for some p > 2.

We consider the following elastic scattering in the center of mass frame. In
both the initial and final states the N particles are supposed to be divided into
two clusters C; and C,. Since N > 3, at least one cluster is not a one particle
cluster. We assume that if C; is not a one particle cluster, the particles in the
cluster C; form a bound state and the bound state energy 4;(h) belongs to the
discrete spectrum of the cluster Hamiltonian H2(h). Furthermore, we assume
that

(1.3) inf 0,4 (H(h)) — A(h) > Eq > 0

for some h-independent constant E,, where o,,(A4) denotes the essential spectrum
of a self-adjoint operator A.

We denote by a the initial channel (= the final channel in this case). The
purpose of this paper is to study the semi-classical asymptotics of the total cross
section o,.,(4, w; h) for elastic scattering o« — a with energy A and incident direc-
tion .

Let J = (0, ©) be any compact interval on which some semi-classical re-
solvent estimate is satisfied (see (3.2)). This condition is satisfied if J is included
in the intersection of non-trapping energy ranges of the N-body classical system
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and all the subsystems. The following is our main result: If the total energy
A is in J, 0,.,.(4, w; h) has the following asymptotics

(1.4) Ogmra(Ay 03 ) = 62(A, @3 h) + o(h~27D)
as h— 0 uniformly in (4, w)eJ x §2 (S? is the unit sphere in R?), where
%A wi h) = O(0)  (h>0)

and the explicit form of ¢2(4, w; h) will be given later in (3.3).

It is known that there exists a large class of potentials satisfying (1.2) such
that ¢°(4, w; h) # o(h"2®~V)(h - 0) (see the remark below Theorem 3.1).

In [IT2] the semi-classical asymptotics of the total scattering cross section

(1.5) 0,4, s h) =Y 6,.5(4, w; h)
B

for the N-body systems are studied, where the summation is taken over all the
channels f and o,.4(4, w; h) is the total cross section for scattering a — f with
energy A >0 and incident direction w. If (1.2) and (1.3) are satisfied, all the
0,-5(4, w; h) are well-defined for ae. (4, w)e€ (0, 00) x S? for each he(0,1] and
d,(4, w; h) has the semi-classical asymptotics ([IT2]):

(1.6) 6,(4, w; h) = a2(4, w; h) + o(h~2*~1) (h—>0)

in the distribution sense as a function of (4, w) € (0, ) x S2. Thus we see that
the elastic part o,.,(4, ®; h) contributes most to ¢,(4, w; h):

(1.7) 0,(A @5 h) = 0, 4(4 @3 h) + o(h™#*7V)  (h—>0)

in the distribution sense as a function of (4, w)eJ x S2.

The semi-classical aysmptotics of the total scattering cross sections for the
2-body case were studied by [Ya], [RT2], [Y], [ES] and for the 3-body case
by [IT1], and for the N-body case by [IT2]. Our proof in this paper is based
on the same ideas as [RT2] and [IT1].

The outline of this paper is the following. In Sect. 2 we prepare the
notations and define the total scattering cross section for an N-body system. The
main result (1.4) is stated in Sect. 3. The representation formula of the total
scattering cross section is given in Sect. 4. The main result will be proved in
Sect. 5-8.

2. The total cross section for elastic scattering
We consider an N-body Shrodinger operator given by

~ h?
Hh= - Y 54, + Y Vir—r

ij j
1<j<N 2"1,' 1<i<j<N

) in L2(R3"),

where m; > 0 and r; € R® are the mass and the position vector of the j-th particle,
respectively. The small parameter h e (0, 1] corresponds to the Planck constant,
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and the potential V; (1 <i<j< N) is a real-valued function on R*® with the

following decay condition:

) V,i(r) e C*(R®), re R? and
P l10RVii(r)| < CLry™®* 4% 0 < |a| < 2 for some d € (0, 1],

for some p > 2, where {r> = (1 + |r|?)"?. Let H(h) be the Hamiltonian with the
center of mass removed from Hi(h). H(h) is a self-adjoint operator in # =

L*R3™ =) If we use the Jacobi coordinates (x,, ..., xy_,) € R3¥D,
-1
x’=r1+1—<z mk> Z mkrk, ISjSN_l,
1<k<j 1<k<j

H(h) is written as follows

2

Q1) HAh=Hh®Id+1d® (- h AR) in L2(R*) = # ® L2(R?),

M
hz
(2.2) Hh=—- Y —4.+ Y Vjir—r)in #,
1<ish-12v; 7 1<iSien

where M= ) mjand R=M"" Y my; are the total mass and the position
1<j<N 1<j<N

of the center of mass, respectively, and v; is the reduced mass defined by vj‘l =
-1
m;} +< Y mk> .
1<k<j
A 2-cluster decomposition is the partition of the set {I,..., N} into two
nonempty subsets. In this paper we fix a 2-cluster decomposition a = {C,, C,}:

CIUC2={I,...,N}, ClnC2=¢, Cl¢¢’ C2¢¢.

Let N; (1 <j<2) be the number of the elements in C; (N, + N, =N). We
assume N, >2 throughout this work. Each cluster C; corresponds to a sub-
system of the N-body system and the Hamiltonian for the subsystem is given by

~ h?

Hj(h) = - Z 2_Ar.» + Z Var — ri) -

ieC; <m; i,keC;

The cluster Hamiltonian Hj(h) is defined by removing its center of mass. Let
M;=3% m,Ri=M" Y mr.eR> Then we have, in the same way as (2.1),

keC; keCjy

- h?
Hih)=Hh®Id+ 1d® <_WARJ> in L3(R3"™;~1) @ L*(R3),
j
where we set L*(R*™:7Y) = C, H,(h) =0 if N,=1. Let z=R, — R, and n]! =
M;' + M;'. Then we have
h? h? h?

L L
15?52 2M; R 2M R 2n,



1146 Hiroshi T. Ito

We set
2

h
(23) E(h) = —z_nadz ’

which acts in L%(R}), and define the intercluster potential I, by

(24) L= 3 V= ¥ V- 3 Vi,
1<i<j<N i,jeC, i,jeC,
where V,; = V,(r; —r;. Then we obtain the following relation:
(2.5) Hh —I,=H,(hh®I1d®Id+ 1d® H,(h® Id + 1d ® 1d ® T,(h)
in # = L2R3™:1 V)@ L2(R3"™:"V) ® L2(R3).

When N;> 2, let 4;(h) be in a,,(H;(h)), the discrete spectrum of Hj(h), and let
¥ =¥(y;; h), yje R*M~Y be the corresponding normalized eigenfunction for each
he (0, 1], however, we set A,(h)=0, Y, =1if N, =1.

We set o = (a, ¥;, ¥, h), which stands for a 2-body channel associated with
the 2-cluster decomposition a for each h, and we define

(2.6) Aqo(h) = A1(h) + 4,(h),

2.7 Vo=Va(y; ) =¥, @Y,
where y = (y,, y,) e R3¥ "D @ R3*™271) Then we have
(2.8) Ho (W), = Ay(h)Y,

where

(2.9) H%h)=H,(h)® Id + 1d ® H,(h)

in L2(R3*"W~2) = LZ(R3™:"D)® L>(R*™27Y),  The operator
(2.10) H,(h) = A,(h) + T,(h) in L*(R})

is called the channel Hamiltonian and the channel identification operator J,(h) e
B(L(R3), #) is defined by

@2.11) J(hu=y,®u,

where we have denoted by B(X, Y) the space of all bounded operators from X
to Y. Here we note that

(J(W*f)(2) = Jmf (v, 2)dy

for latter convenience. Under (V),, the channel wave operators

(2.12) WE(h) = s — lim exp(ih~*tH(h))J,(h) exp (—ih~'tH,(h))

t—=+o

exist in B(L?(R2), #) (cf. [RS] III, Theorem XI.34). The scattering operator for
elastic scattering a — o is defined by



Semi-classical asymptotics 1147
Siwa(h) = WS (*W,” (h) € B(L®(R})),
where B(L?(R2)) = B(L?(R2), L*(R?)). For each 1> ,(h) and w € S we set
(2.13) @ = 9u(2; 4, @, h) = exp (ih™' 2ny(A — A, ()2 )
and define F,(h) € B(L?(R}); L*((4,(h), 0); L*(S))) by

(2.14) (F.(f) (4, @) = c,(4, h) f@(Z; 4, 0, h)f(2)dz,

where ¢, = c,(4, h) = 2nh)"*n?(2n,(A — A,(h)))"*. F,(h) is a unitary operator
and give the spectral representation of H,(h) i.e. (F,(h)H,(h)f)(4, x) = A(F,(h)f)(4, %)
for a.e. A if fe D(H,(h)). Since the following property,

exp (itHy(h)S, (k) = S,o(h) exp (itH,(h)),  teR,

holds, we can see that F(h)S,.,(h)F,(h)* is decomposable by a family {S,-,(4, h)},
4> A (h), of bounded operators on L?(S?). In the similar way as in the 2-body
case, we can see that S,_,(4, h) — Id is of Hilbert-Schmidt class for each 4 >0
and T,_,(*, w; 4 h) is a L?(S%)-valued strongly continuous function of (4, w)e
(0, 0) x §2, where T,..(0, w; 4, h), 0€S? is the Hilbert-Schmidt kernel of
S,-z(4, h) — Id (see Proposition 4.2). Thus the total cross section for elastic
scattering o » a at 4> 0 and at incident direction w € S? defined by

(2.15) Opald, 03 h) = J | famal > 05 4, h)|?d6
s2

is continuous in (4, w) € (0, c0) x S?, where
(2.16) fumal = 05 4, h) = —2mhi(2n,(A — A,(h))) T, _,(6, w; 4, h)

is the scattering amplitude for elastic scattering at energy A.

3. The main result

We write R({; A) = (4 — {)™! for a self-adjoint operator A and { € C\R. By
(V),, H(h) has no positive eigenvalue and no threshold ([FH1]), and the following
norm limits exist

(3.1) X70°R(A +i0; H(h))X ~* = li},n X7°0°R(A t ig; Hh)X®
ev0

in B(s¢) uniformly in A in any compact set in (0, c0), where X = (1 + |y|* +

|z|*)"2, s> 1/2, and @ = (9, 0,), la| <2. This result was obtained in [PSS] by

extending the results for 3-body systems in [M] (see also [FH2], [ABG] and [T]).
We fix a compact interval J < (0, oc) satisfying the following condition:
(N) For any s > 1/2 there exists a constant C, > 0 such that

(3.2) | X SR(A + i0; H(h))X ~*|| < C;h™!, Aeld, he(,1].
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If J is included in the intersection of non-trapping energy ranges of the N-body
classical system and all the subsystems, the assumption (N) is satisfied ((W]). The
semi-classical resolvent estimate (3.2) for non-trapping energies A was first proved
in [RT1] (see also [RT2], [GM]) for the 2-body case. Geérard ([G]) showed
(3.2) by Mourre’s method for the 3-body case and Wang ([W]) has extended
his results for the N-body case.

For w e §? we define a 2-dimensional plane 71, = {ue R*;u-w =0}. Then
any zeR3 can be written as z=u+ xw, uell,, x€R uniquely. Since the
intercluster potential I, is a function of (y, z) (see (2.4)), we set I,(y,2z) =1,. We
also define for (4, w) € (0, ©) x S2

1 a0
33 c2(4, w; h) =4 J sin? { J L0, u + xw dx}du ,
. o =2 ], G )., O

2(A — A (h
(3.4) wiy = A0

Now we state our main result.

Theorem 3.1. Let the notations be as above and assume (V),, p>2. We
fix Eq >0 and assume that the 2-body channel a = (a, {,, Y5, h) satisfies

(3.5) A(h) < Z(h) — Eq

for j=1,2if N;>2 (for j=1if N,=1), where X(h) = inf g,,(H;(h)). Then,
as a function of (A, w)€J x S%, g,.,(4, w; h) behaves like

(3.6) Oyrg(A, 03 h) = 6O(4, w; h) + o(h~2C™D)
as h— 0 uniformly in (A, w)eJ x S2.

Remark. (i) Our proof really shows that the remainder term o(h~%%*~1) can
be replaced by O(h~@*»~10*%) for some & > 0.
(i) We can see that

3.7) 62(A, w; h) = O(h™2°~Y) (h—-0)

uniformly in (4, w)e J x S2. Moreover, if L,(0, z) behaves like

(3.8) 1,0, 2) = ®(z/|z])|z|* + o(|z] ) as |z| > o0

for some @ e C*(S?) with @ <0, ¢2(4, w; h) has the following asymptotics:
3.9 62(4, w; h) = Gouy(A)~HP VR~ A=D1 4 o(1)), as h— 0

with some a, >0 ([Y]).

4. Representation formula of the total cross section for elastic scattering

We recall that ; = y;(y;; h) is a normalized eigenfunction of Hj(h) with
eigenvalue A;(h) € o,,(H;(h)). The following lemma can be obtained from [Ag],
Sect. 4.1.
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Lemma 4.1. For any L >0, one has
4.1 ” <y;'>L'pj”L2(R3("F”) <C. <o
uniformly in he(0,1] if (3.5) is satisfied for some E, > 0.

Throughout this paper, we fix the constants

1
4.2 =
(4.2) Y P

— and f=(1+d)y,

where 6 > 0 will be taken sufficiently small in Sect. 7. Following [RT2] (see
also [IT1]), we introduce a partition of unity {x;};=1.2.3, % = x;(z; h), over R®
with the following properties;

(x0) Yisix=1,
(x-1) supp x; < {ze R3;|z| < 2h77} (supp = support),
x1=1on {zeR3|z| <h™"},
(x-2) supp x» < By,
x2=1on {zeR*2h"<|z| <h™?},  where
By ={zeR*h7<|z| <2h7*},
(x-3) supp 13 < {ze R*; |z| > h7P},
x3=1on {zeR3|z| >2h7F},
(x-4) 05 1i(z W)l < Cz)™™, 1<j <3,
uniformly in h e (0, 1] for any multi-index «.
We define the cluster decomposition Hamiltonian H,(h) in 5 by
(4.3) H(hy=H—1,=Hh)®Id + I1d ® T,(h)
and its generalized eigenfunctions e,(y, z; 4, w, h) by
(4.4) e,(@) = Yo (s ) @,(z; 4, 0, h) .
(See (2.7), (2.13).) Then
(4.5) H,(h)e,(w) = Ae,(w) .

We also set y =1 — x, = x, + x3 and define the operators L and L* by

(4.6) L = H(h)y — xH,(h)
h? h?
= —— () ——V, 0V, + 1,
2na( X) P 2+ 1o,

(4.7) L* = yH(h) — H,(h)y .
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Since the support of 1 — x(z) is compact in R}, the channel wave operators can
be represented as follows:
WE(h) =s — lim exp (ih 'tH(h))xJ,(h) exp (—ih~'tH,(h)) .
t=+o0

From this and almost the same argument as in the 2-body case, we have the
following proposition, which gives the representation formula of T,_,(0, w; 4, h)
(the Hilbert-Schmidt kernel of S,_,(4, h) — Id). We denote by (-, *), the L-inner
product in .

Proposition 4.2. Let the notations be as above and assume (V),, p > 2. Then
T,o(0,w; A, h), 6, weS? A>0 is represented as

4.8) T,.y(0, @; A, h) = ¢4,G,(0, w; A, h),
where
(4.9) Cop = (21)2ing(2n,(A — A,(h)))V?h73,

G, = ((—xL + L*R(1 + i0; H(R))L)e,(), e,(0))o -
Thus the scattering amplitude f,_,(w — 0; A, h) for scattering a — o is represented as
(4.10) Soaa@ = 0; 2, h) = (21) 'n,h™2G,(6, w; 4, h) .

Since (—yL + L*R(A + i0; H(h))L)e,(w) is an LZ(R3V7Y):= L2(R3¥=D; X2dydx)
valued strongly continuous function of (4, w) € (0, ) x S* for some s > 1/2, the
R.HS. of (4.8) is well-defined and continuous as an L?(S?)-valued function of
(A, w) by the trace theorem.
A similar representation formula for the two body case is given in [Y].
The proof of Theorem 3.1 is based on the following representation formula
of a,.,(4, w; h).

Proposition 4.3. For each (1, w) € (0, 00) x 8%, 6,.,(4, w; h) is represented as
(4.11) OalAs @3 B) = 207 1 (2)71(Q + Q2)
with
4.12) 0, =04 w; h)
= Im (R(A + i0; H(h))Le,(w), x*E,Le,(®))o
(4.13) 0, =0,(4 w; h)
= Im (E,xL*R(4 + i0; H(h)) Le,(w), R(4 + i0; H(h))Le,(w))o ,
where E, = J J¥ € B().

We denote by (-, :), the L*inner product in L?(R}) and define the weighted
L2-space L2(R3) by L2(R}) = L*(R?; {z)*dz) for seR.

Proof. For the sake of simlicity, we write R(A +i0) = R(4 + i0; H(h)),
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R,(2 £ i0) = R(A £ i0; H,(h)), R,(4 £ i0) = R(4 £ i0; H,(h)), J = J,(h) and K(4) =
—xL + L*R(A +i0)L. By the trace theorem we can define the operator F(J)e
B(L2(R2), L*(8%)), s> 1/2, A >0 by

(F(Au) (@) = (F(hu)(4, w) .

Since (L2)* = L2, and J*K(4)e,(w) € L2(R2) for some s> 1/2, we have by (2.15),
(2.16) and Proposition 4.2

414)  0,,(4 w; h) = 21h™ ()T (F(A*F(A)IFK (Dey(w), J¥K (De,(w)),
= —ih ()70,

with @ = ((R,(A + i0) — R (A — i0))J¥K(A)e,(w), J¥K (A)e, (w)),, where we have used
the relations

G (6, 3 A, h) = c (4, b7 (F(A)JFK (Ve (w))(0)
in the first step and
F(A)*F(4) = (2ni) (R, (4 + i0) — R, (A — i0))
in the last step. Now note the following relations:
JoR(O) = R,(0)J, . R(ELR,() = xR,() — R(O)x
R,(Q)JF = JXR,(L), R, (OL*R() = R,({)x — xR(©)
for {e C\R. From these relations it follows that
R, (A +i0)E,K(A) = —E,xR(A + iO)L .
Thus we have
0 = (Ry(A +i0)E, K (A)e,(w), K(De () — (E,K(A)e,(w), Ry(4 + i0)K (A)e,(w))o
= —(E,XR(4 + i0)Le,(w), K(Ae (@))o + (XE K (A)e,(w), R(A + i0)Le,(w))o
= 2i Im (R(4 + i0)Le,(w), x*E,Le,(w))o
+ 2i Im (E,xL*R(A + i0)Le,(w), R(A + i0)Le,(w)) ,
which together with (4.14) implies the desired result.

5. Remainder estimates I

From this section to the last section we assume all the assumptions of
Theorem 3.1 and devote ourselves to the proof of Theorem 3.1.
We begin by dividing Le,(w) into two parts:

(5.1) Le,(w)=6,+0,,
01 = [Xl’ HO(h)]ea + XZId?ea )
0, = x2(l, — IDe, + x3l.e, ,

where e, = e,(w) and I2(z) = I,(y, 2)|,=-
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The next lemma shows that 6, does not contribute to the leading term of
the asymptotics of Q,(4, w; h) as h— 0.

Lemma 5.1.
(5.2) 0.4, w; h) = Im (R(4 + i0; H(h))8,, x*E,0,)0 + o(h'~??)
as h— 0 uniformly in (A, w)eJ x §%.

Proof. For the proof it suffices to show that
(5.3 D;j:= (R(A + i0; H(h))6;, x*E,0;)o = o(h'~%") (h>0)

uniformly in (4, w)eJ x §% for 1 <i, j <2, (i,j) # (1, 1).
By (V), we have

(5.4) a(p, 2) = I2(2)] < C{yy*P*aczye 4.
Thus, recalling X = (1 + |y|?> + |z|*)"?> and taking s with 1/2 <s < p — (3/2), we
get, by (V), and Lemma 4.1,

~

(5.5) 1X*%2(l, — I)e,llf < € (77 + |z[)* 2P~ 2dz

Jlz{>h"r
2p+2d—-2s-3
< Ch?r s )’

»

(5.6) [ X*x31e.l2 < C (h™? + |z])%~2%dz

JlzI>hF

2_ _
sCh"“’ 2s 3)’

where |||, denotes the L2-norm in 3. Therefore it follows that
(5.7) 1X50,]lp = O(h"P+4=s=G0) 4 O(RPe—s~(3/2))

= o(h"P 5= (h - 0),
uniformly in (4, w)eJ x S2. Now we note that 6, has the form
(5.8) 0, = f(z; h)e, ,
where f satisfies i) supp f < B, ii)
(5.9) 102 (z; h)| < C,(|z| + h™Y)"Phl 0<|a|<2.

Thus we have

(5.10) 1X%6,]12 < cf (h™" + |z|)?~2Pdz

|z|>h~Y

- O(hzy(” —s-(3/2))) .

This together with (5.7) and (N) yields
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D12 = O(h—l)(O(hv(p+d—s—(3/2))) + O(hﬂ(p—s—(3/2))))0(hy(p-s—(3/2)))
= h'"?(0(h*) + O(h*)),

where pu=7y(1—-25+d)>0, ' =91 —2s+d(p —s—(3/2))) >0 if we take s
such that 0 <2s —1<d, 6 > (25— 1)/(p —s — (3/2)) > 0. Hence, D,, = o(h!~?").
In the same way as above we can get D; = o(h'~?") for (i,j) = (2, 1), (2.2) and
finish the proof.

Now we shall investigate
(5.11) Q,(4, w; h) = 2i *((xE,L* — LE,x)R(A + i0; H(h))

x (0, + 0,), R(A + i0; H(h))(6, + 6,)), -
By direct calculations we have

(5.12) XE,L* — LE,x = By(h) + By(h) + B;(h),

h? h?
Bl(h) = n_(AzX)XEa + n_EuIVzX|2 >

a

2

2h
Byh) =~

a

E Ve v, ,

By(h) = x*(E. I, — LE,).
Lemma 5.2. For j=1, 3,
(5.13)  (Bj(h)R(4 + i0; H(h))(0, + 0,), R(A + i0; H(h))(8, + 6,)), = o(h!™?")
as h— 0 uniformly in (A, w)eJ x S2.

Proof. We fix s> 1/2 sufficiently near 1/2. Since |dy| < C<{z)72%, |Fy| <
C{z)7! uniformly in he (0, 1] and since |z| > h™" for z e supp y, we have

(5.14) 1 CyY 2y By (<Y <yl < CHAN™) 2 = Ch2+12=29)

where we have used the fact ||[<yYE{(y)*| < +o0o, which follows from Lemma
4.1. Hence it follows from (5.7), (5.10) and (N) that the L.H.S. of (5.13) for j = 1
is of order O(h*)h!~2" with

(5.15) u=2y—14+2+92—-25)—2+2y(p —s—(3/2)
=y(p—4s+2)>0.

This proves (5.13) for j=1. Using (54), [E,, I9]=0 and Lemma 4.1 ([ , ]
denotes the commutator), we have

(5.16) 1<y <z)*B3(h)y)*<{z)*|| < C sup (z)*7°~¢ < Ch"¢*4-29

lz|>h=Y
Therefore, by (5.7), (5.10) and (N), the L.H.S. of (5.13) for j=3 is of order
O(h*)h'~2" with
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(5.17) wW=22y—1+yp+d—25)—2+2y(p—s—(3/2)
=yd—4s+2)>0,
since s > 1/2 is sufficiently near 1/2. This completes the proof.
Lemma 53. Let s> 1/2. Then
(5.18) [ X~*V,R(A + i0; H(h))X % < Ch™2, he(0,1],
uniformly in 1€ J.

Proof. Weset V=3 icj<y Vijlri —rj) and Ho(h) = H(h) — V. For any (e
C\R we have

(Ho(h) + DR H(W) =1d + ((+ 1 — V)R((; H(h)) .
This together with the assumption (N) yields
(5.19) |X*(—4, — 4, + YR(A + i0; H(h))X | < Ch~?
uniformly in Ae€J. Thus, by (N) and interpolation, we have
IX~S(—4, — 4, + )?R(A + i0; H(h))X | < Ch™2.
(5.18) follows from this and X ~*V,(—4, — 4, + 1)"/2X* € B(#).

The following lemma together with Lemma 5.1 shows that 6, does not contribute
to the leading term of the asymptotics of o,.,(4, w; h) (h — 0).

Lemma 54.
0:(4 w; h) = %(Bz(h)R(/l +i0; H(h))8,, R(A + i0; H(h)),), + o(h'~?7)

as h—0 uniformly in (A, w)eJ x S2.

Proof. We set Q;; = (By(h)R(4 +i0; H(h))6;, R(A +i0; H(h)6)), 1 <i, j<2.
By Lemma 5.2 it suffices to show that

(5.20) Q;j=o(h'™?) (h—-0)

uniformly in (4, w) e J x §? for (i,j) # (1, 1). We first fix s > 1/2 sufficiently near
1/2. Noting that [Fy| < C<{z)7!, he(0, 1], we have

(5.21) IXh*Ex(V,)X*| < Ch*  sup  (z)*7!

h™r<|z|<2h7Y

< Ch2+y(l—2s) .
Hence, by (5.7), (5.10) and lemma 5.3, we get
Q12 = (0(*) + O(W*)h'™?  (h—0)

uniformly in (4, w)e J x §2, where
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p=2y=1+2+4+y1-2)=3+y(p—5—(3/2)+y(p +d—s—(3/2)
=yd+2—-45)>0,
W=2y—1+2+9(1-29)=3+7(p—5-3/2)+ Blp—s—(3/2)
=y2—-4s+d(p—5—(3/2))>0

if s > 1/2 is sufficiently near 1/2. Q,,, Q,, can be treated similarly. This proves
the lemma.

6. Remainder estimates 11

Recall that 6; has the form 6, = f(z; h)e, (see (5.8)),

supp f < B,,,
102f(z; h)| < C,h™™(|z| + h™)™?,  0<|a|<2,

and that zeR? is written as z=u + tw, ueIl,, t€R uniquely. We set k =
(1 — 6)y for the same 6 > 0 as in (4.2) and define f,(z; h) = xo(u/h™*)f(z; h) and
Sz h) = (1 — xo(u/h™™))f(z; h) where x, is a C®-function on IT, with 0 <y, <1,
Xo=0for |u| >2and y, =1 for |u] < 1. f; and f; have the following properties:

supp fy < {z = u + tw;|u| <2h"*}NB,,,
(6.1) supp fic {z=u + tw; [u| >h™*}NB,,,
162£(z; h)l, 102f(z; W) < Ch™™ (12| + h™7)7?, O <|a| <2.

We write 0, = 0, + 0,,, 0,, = fi(z; h)e,, 6,, = fi(z; h)e, and put it in the leading
term of Q, and Q, (see Lemmas 5.1, 54). The aim of this section is to show
that the terms containing 6, are negligible in our analysis.

Lemma 6.1.
Q:(4 w; h) = Im (R(4 + i0; H(h))0,,, E,x?0,,)0 + o(h'™?")
as h— 0 uniformly in (1, w)eJ x S2.
Proof. According to Lemma 5.1, we have only to prove
(6.2) Im (R(A + i0; H(h)) ¥, E,x?®), = o(h*"%?)  (h—>0)

uniformly in (4, w)eJ x §? for (¥, D) = (0, 0,,), (045, 01,), (01, 0,,). We shall
prove (6.2) only for (¥, ®) = (6,,, 0,,) because the other cases can be treated
similarly. Taking s > 1/2 sufficiently near 1/2, we have by Lemma 4.1

(63) ”X-‘Ols“(z) < CJ dxj (h‘? + |u| + |x[)—2p+2sdu
— u|<2h™x

< Ch'z”J (R + |x|)"2°*2sdx

— o0

= O(hy(Zp—Zs—3)+27—-2x) (h _’0)
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By (5.10), the following estimates holds:
(6.4) [X°6y,llo = O ™72y (h—0)
for the same s as above. Therefore we obtain by (N)
(R(% + i0; H(h)),,, x*E,0;,) = h*~20(h*) (h—>0),

where p=2y —1—-1+2y(p—s—3/2)+y—k =906 +1—25)> 0 if we take s
sufficiently near 1/2.

Lemma 6.2.
Q0,4 w; h) = %(Bz(h)R(l + i0; H(h))0,,, R(A + i0; H(h))6,,) + o(h'™2)

as h— 0 uniformly in (A, w)eJ x S§2.
Proof. In the same way as the proof of Lemma 6.1 we shall only prove
(6.5) (By(W)R(A + i0; H(h))0,,, R(A + i0; H(h))8,,)o = o(h*~%").
From (5.21), (6.3), (6.4) and Lemma 5.3 it follows that the L.H.S. of (6.5) is of
order O(h*)h'~%", where
u=2y—14+2+91-25)—24+29(p—5s—-3/2) - 1+y—«
=90+2—45)>0

if we take s > 1/2 sufficiently near 1/2.

7. Approximation of R(4 + i0; H(h))fe,
We define o(t) = v(t, z; 4, w, h) by

t

o(t) = fi(z — p,wt; h) exp <—ih_l f I°(z — uaws)ds> ,

0

where p, = p,(4) (see (3.4)). It is easy to verify that v(t)e, satisfies the following
equation (see (4.4) for e, = e,(w))

7.1 (ihd, — H(h) + Av(t)e, = r (t) + r,(t),
where

h

2
ri®)y=rit, y, z;4 0, h) = 4,v(t))e, ,

2n,
r2(t) = r2(t’ Y, z, /1, , h) = (14?(2) - Ia(y’ Z))U(t)ea .

Taking a large constant N, > 0 independent of h > 0 and setting 1 = Noh™#, we
define go = go(z; 4, @, h) by
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9o = J. u(t, z; A, w, hydt .

o

Then the following relation follows from (7.1):

(H(h) — A)goe, = ih(v(t)e, — v(0)e,) — f[ (ri(e) + ra(1))dt
o

Since goe, and all the term in the R.H.S. belong to LZ(R3¥~V)= LZ(R3W~1);
X*dydz) for some s> 1/2 (see (6.1)), we have

(7.2) R(A + i0; H(h))fie, = ih"'gge, + R(A + i0; H(h))v(7)e,
+ ih™'R(A + i0; H(h)) Jt (ry(t) + ry(e)de,
0

where f, = fi(z; h).

Lemma 7.1. Let s> 0. Then

X f r(t)dt
0

as h— 0 uniformly in (4, w)eJ x S2.

h—l = 0(h2x(p+d—l)+ﬂ(—s—(3/2)])

0o

Proof. The following estimates hold on the region {z =u + xw e R*; ue I1,,
xeR,|ul >h™"};

(7.3) f |7, 10(z — pyws)|ds < Ch*e*d=1)
(7.4) f |4,12(z — p,ws)|ds < Chee*247D

and, moreover, we have by (6.1)
(7.5) 1021(z — pat)] < CHU™U(B™ + Jul + |x — p,t])7*,
for 0 <|a| <2, where z=u + tw. Therefore we see that
(7.6) |dv(t)] < C(h** 4 p~1¥xP+2471 4 p=2426lo*d=D) (™Y 4 Jy| 4 |x — p,t[)7°
< Ch™2P2Cr D™ + Ju| + [x — pt])™*,
which yields
J;IAv(t)Idt sjw |Av(t)|dt < Ch?*P+4-D-1 on R3,

Hence, taking account of the fact that supp r,(t) = {z € R?, |z| < (N, + 2)h"#} for
0 <t <1, we obtain
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1/2
< Ch,th(p+d—1)—l (J <Z>stz>
0 |z|<(No+2)h~#

< Cth(p+d—l)(h—ﬁ)S+(3/2) X

h—l

X° J " (0de

0

This proves the lemma.

Lemma 7.2. Let 1/2<s<p+d—1/2. Then

h1 — O(h—(ﬂ/2)+x(2p+d—s—2)—l)

0

X Jt r,(t)dt

0

as h— 0 uniformly in (A, w)eJ x §%

Proof. By (5.4) and Lemma 4.1, it suffices to estimate

h—l

)
z

{2y f o)t
0

where ||, denotes the L%-norm in L*(R2). Since the support of v(t) is contained
in {z=u+ xw;uell,, xeR,|ul>h"*} and the estimate

(7.7) o] < Ch™ + ul + |x — pt])~*

holds, we have
<Z>"”"’J lo(e)lde < C(h™™ + |ul + [x) P 7*(h™7 + |u) ™"+,
0

which yields

Gz f " o(0) de
0

2
z

<c Jdu f (W™ + ] + |x])"2°0 24+ 25(h=r 4 |y])"20* 2y
|x|<(Ng+2)h=F
< Ch™Bprdp+2d-25-4)
This completes the proof.

We denote by 7 = j(z) the characteristic function of the ball {z € R*;|z| < 3h7#}.

Lemma 7.3. Let m be a multi-index with \|m| <1 and D, = —iV,. If s > 12
and 6 > 0 is sufficiently small, one has

(7.8) [7<2>"*DI'R(A + i0; H,(h))v(2) @, I, = o(hPP =39+ 0=G20=Im)
as h— 0 uniformly in (A, w)eJ x S%

Proof. We introduce two functions ¢,, ¢, € C*(R?) satisfying ¢, + ¢, = 1,
supp ¢; = { € R*; | — nu,0| <o} and ¢, =1 on {£eR3 (& — nu,o| < 8o/2}
for a small constant , > 0. We first show that
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(7.9) 17<2>°R(4 + i0; H,())D]'$,(hD,)o(1)@, ], = O(h*)  (h—0)

for any L > 0. To verify this, by the formula

R(A + i0; H,(h)) = ih™! f exp (ih~*t(A — A,(h))) exp (—ih~ 't T,(h))dt,
0
we have only to prove

(7.10) (|7 exp (—ih™'tT,(h)) D¢, (hD,)o(D)@,|l. < CLh*(1 + ™", he(0,1], t>0,

for any L >0. By the Fourier transform, exp (—ih™'tT,(h))DI'¢(hD,)u(z), u =
v(t)e,, is expressed as

n)3 j f exp (ic-(z - iﬁhz) £y (hEyu(z')dz'de

2n,
2
Vs(é'(z—z’)— 2%;,:)

supp v(t) and h¢ € supp ¢,, we can obtain (7.10) by integrating by parts in &,
Next we prove

Since

>C(z|+t)=>C(z'|+h?+t)forzesupp f, z' €

(7.11)  [7<2)7°R(A + i0; H,(h)D7$(hD,)o(t) @, ||, = o(h?* 39770~ (7m) (h  0).

To see this we set ¢5(&) = EmP,(E)|E — np,w|* and observe that @5 is bounded
smooth function with bounded derivatives and satisfies

(7.12) D7'¢,(hD;)@,v(t) = —h*>"™¢3(hD,)@,4v(r),
(7.13) [<z>*¢3(hD,)<z>* = O(1)  (h—0).

From (7.13) and the well known estimate

(7.14) I<z>7R(A + i0; H,(h))<z)~* = O(h™")  (h—0),

it follows that

(7.15) I<z)™R(4 + i0; H,(h))$3(hD,)<z>"*| = O(h™").
Since supp 4v(t) = {z € R3; |z| < (N, + 2)h~#}, we have by (7.6)
(1.16) [<2Y Av(@)]l, = O(h™2+2Ke+4=D=Bs+ro=N) (b 0).

Thus by (7.12), (7.15) and (7.16) we obtain
the L.H.S. of (7.11) = O(h~1*2xp+d—D=bs*¥(p=(3/2))=Iml)

= O(h"(” —3s)+y(p —(3/2))—lm|hu) ,

where p=y2d —1+2s—06(3Bp +2d —2s—2)). If 6>0 is so small, we have
u >0, and hence prove (7.11). This together with (7.9) yields (7.8).

Lemma 74. If s—1/2>0 and 6 >0 are sufficiently small, one has
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17X ~*DFR(A + i0; H(W)v(t)e,llo = O(hFP =390~ Gmrm27im)
as h— 0 uniformly in (A, w)eJ x §? for 0<|m| < 1.
Proof. We divide R(4 + i0; H(h)) into three parts:
R(4 + i0; H,(h)) — R(A + i0; H(h))§I,R(A + i0; H,(h)) — R(4 + i0; H(h))
x (1 — D1,R(A + i0; H,(h)),

and insert them into the left side. Since R(A + i0; H,(h))v(z)e, = R(A + i0;
H,(h))v(t)p,, we have only to consider the contribution from the last two terms
by Lemmas 7.3 and 4.1. By Lemmas 5.3 and 7.3 we have

%X ~*D;'R(A + i0; H(h) 1, R(A + i0; Hy(R)v(t)e,lo
< Ch VM XL y> ™2 7z | 1K) T IR (A + i0; H,(h)o(1) @ .
= O(hﬂ(p—3s)+v(p—(3/2>)—Iml—1) (h—-0),
where we have used Lemma 4.1 in the first step and

sup | XgLLy> P "Kz)’| < ©

h,y,z

in the last step. The estimate [|X*(1 — H)I,(2)y> "% = O(h#*~29) is easily
verified, and the fact that supp v(t) = {z € R3; |z| < (N, + 2)h~#} yields

2
(7.17) I1<z>*v(D)l; < C(h‘”)‘(j(h‘? +lz - uawfl)‘z”dZ)l/

= O(h~sF*re-(20) (h—0).
Thus, using Lemmas 4.1, 5.3, (N) and (7.14), we obtain
17X *DF'R(4 + i0; H(h))(1 — D)LR(A + i0; H,(h))v(t)e,llo
= O(hPP=39+1p~(3/2)=2~m]) (h—0).
This completes the proof.
Now we return to (7.2). From Lemmas 7.1, 7.2, 7.4 and (N) it follows that
17X ~*R(A + i0; H(h)fie, — ih™' X *goe,llo
= hres=TY(Q(hH1) + O(h*2) + O(h*?)),
where
=B =39 +y(p—(3/2) —2—v(p—s—(3/2) + 1
=y(1 —2s + 8(p — 39)),
pr=2k(p+d—1)+Pp(—s—(3/2)—1—y(p—5—(3/2) + 1
=y9(p+2d—2-0(2p+2d+s—(1/2)),
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= —B/2)+xkR2p+d—s—2)—-2—-y(p—s—-(3/2)+1
=7(d—96(2p +d—5—(3/2).

First taking 6 > 0 small and then taking s> 1/2 sufficiently near 1/2, we see
that u, > uy > pu, > 0. Thus it follows that

(7.18) |[FX*R(A + i0; H(h))fie, — ih'7X ~*goe,lo = K@~ C2=10(h*)y  (h—>0)
uniformly in (4, w)€J x S2.  Similarly, by Lemmas 5.3 and 7.4, we have
(7.19) IZX°DIR(A + i0; H(h))fie, — ih™' 1X*D'goe,lo
= hYes=3RN=20(pi1) (h - 0)

uniformly in (4, w)eJ x §2 for |m| = 1.

Lemma 7.5. If 6 >0 is so small, one has

(R(A + i0; H(h))By,, X*E.B11)0 = ih™ (go, £*f)): + o(h*™2")

as h— 0 uniformly in (A, w)eJ x S2.

Proof. We fix s> 1/2 sufficiently near 1/2. By (6.1), (7.18) and

IX°x*Eoby1llo = Oh™~*"20)  (h > 0),
which is obtained in the same way as (5.10), we have
(R(A + i0; H(h))8,y, X*E,011)0 = ih™(go, £°f): + h' 20 (h"),
where
p=2y—1+2(p—s—0G/2) -1+ p =91 —28) + p; .

Since s > 1/2 is sufficiently near 1/2, we have u > 0.

Lemma 7.6. If 6 >0 is so small, one has
(By(h)R(A + i0; H(h))0,,, R(A + i0; H(h))8,,)o = (B,(h)ih~'gge,, ih 'goe,)o + o(h*~27)
as h— 0 uniformly in (1, w)eJ x S2.

Proof. By (6.1), (7.3) we have
(7.20) (@] < C(h™7 + [ul + [x — pet])™*,

(o)) < C(h™" + |ul + [x — pyt]) P (h*! + h¥CT47D71)
SC™7 + Jul + [x — patl)™*,

where we have used kd>k(p+d—1)—1=9d—3(p+d—1)>0, which
follows from 0 < é « 1. Thus it follows that

(7.21) IDFgol < C(h™Y + Ju)™**,  0<|m| <1.
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Let y,(z) € C°(R3) with y, =1 on {z; 7" <|z| <2h7"} and supp x, < {z; h"?/2 <
|z| <4h7"}. Then by (7.21) we get

(7.22) |h™ 2e X *DIgoesllo = O(h™H70 5= 7Im)
ash—-0for0<|m|<1,s>1/2. On the other hand, by (6.4) and (N), we have
[ X*R(A + i0; H(h))8,,llo < Ch™**¥e=s=G2)
Therefore, by (7.18), (7.19). (7.22) and (5.21) we can see that
(B,(h)R(A + i0; H(h))8,,, R(A + i0; H(h))0,,)o
= (B, (h)ih™'goe,, ih"'goe)o + h'~2(0(h*) + O(h")),

where

p=2y—1+2+y1—-2)+y(p—5s—032) =2+, — 1 +y(p —s5—-(3/2)
=72 —4s)+ py ,

W=2—14+2+y(1-2)—1+y(p+s—(5/2)—1+yp—5s—-03/2)— 1+
=y(1 —28) + py .

We can take s > 1/2 sufficiently near 1/2 so that u >0, ' > 0. This proves the
lemma.

8. The proof of the theorem
By Lemmas 6.1, 6.2, 7.5 and 7.6 we obtain

(81)  Qi(hw;h)=h"' Re(go, x*f): + o(h'™2),

1
82)  Q;(h wih)=——((V.x V:goex Goeado + o(h'~?")

Ha 1 -
=5, W@ V:0d0, 9o): + = (tV.x V.90, o). + o(h'72?)

as h— 0 uniformly in (4, w)eJ x S2
Lemma 8.1.
XVt Vegos go). = o(h'™?")
uniformly in (A, w)eJ x S2.
Proof. Since |V,y| < C(h™" + |z|)™! and supp V,x = {z = u + xw; |x| < 2h7"},
we have by (7.21)

(V22 ¥.9o» 90):l < C f(h_’ +|u)7? " 2du = O(h*™*").
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Lemma 8.2.

b (2@ V.00, 9o). = h™" Re (g0, (1 = xH)f). -

Proof. Since v(t) satisfies

(8.3) i0,v(t) + ip, V,o(t) — h ™ 1%() =0,
we see that
(8.4 ih™ p,w-V,go = —ih™(v(r) — v(0)) + h™210g, .

Thus, an integration by parts yields
W™ (@ V2090, o). = ) (@ V(=1 + ¥*))do. go):
=Re ((1 — )b uy(@" V. 40). go):
=Re ((1 — x*)[17'(©(0) — v(x)) — ih 217901, go):
=h™ Re ((1 — x*)(fi — v(1), go):
= h™" Re (go, (1 = 22}y -

Here we have used the fact that supp (1 — x?)Nsupp v(tr) = ¢, which follows from
No > 1, in the last step. This completes the proof.

Consequently, we obtain by Lemmas 8.1 and 8.2
Q:1(4, w; h) + Q,(4, w; h) = h™ Re (go, 1), + o(h*?")

as h— 0 uniformly in (4, w) € J x S%. Since N, is large enough and u, > 2./Ey/n,
by (3.4) and (3.5), we observe that supp v(t)Nsupp f; = ¢ for t > 7, and that

(go, ﬁ)z = J:o (U(t)’ f;)zdt .

Hence, by the following lemma the proof of Theorem 3.1 is accomplished.
Lemma 8.3.
2h~ 2t J Re (v(2), f,), dt = 6°(A, w; h) + o(h™??)
0

as h— 0 uniformly in (A, w)eJ x S2.

For the proof, see the proof of Lemma 7.1 in [IT1].
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