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The semi-classical asymptotics of the total cross sections
for elastic scattering for N-body systems

By

Hiroshi T . ITo

I. Introduction

We consider a n  N (> 3)-body Schrödinger operator given by

(1.1) Fl(h) = —  E
h 2

+  E  Vi i (ri —  rd  in  O R ')  ,

Isis/sr hm; i < i < J < N

where m > o and r ;  E  123 are the mass and the position vector of the j-th particle,
respectively, h e (0, 1] is  a  small parameter corresponding to the P lanck con-
stant. Vi ; (1 < i < j  < N ) is  th e  p a ir  potential between th e  i-th  and j-th  parti-
cles. O ur m ain assumption o n  Vi ;  i s  the following:

(1.2) Vii(r) = 0(Irl - P) , as iri —■ co, r e11 3

for some p > 2.
We consider the following elastic scattering in the center of mass fra m e . In

both the initial and final states the N  particles are supposed to be divided into
two clusters C1 a n d  C 2 .  Since N  > 3, at least one cluster is  no t a  one  particle
cluster. W e assume tha t if C  is  n o t  a  one  particle cluster, the particles in the
cluster C  fo rm  a  bound state and  the  bound state energy 21 (h) belongs to the
discrete spectrum of the cluster Hamiltonian I i (c i ) (h ). Furthermore, we assume
that

(1.3) inf aess(H( c ' ) (h)) — A;(17) Eo >

for some h-independent constant E0 , where a e s s (A) denotes the essential spectrum
of a self-adjoint operator A.

W e denote by a the initial channel ( = the final channel in  this case). The
purpose of this paper is to study the semi-classical asymptotics of the total cross
section ac€,(A , co; h) for elastic scattering a —> a  with energy .1 and incident direc-
tion cu.

L et J  (0, c c )  b e  a n y  compact interval o n  which some semi-classical re-
solvent estimate is satisfied (see (3.2)). This condition is satisfied if J  is included
in the intersection of non-trapping energy ranges of the N-body classical system
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and  a ll the  subsystem s. The following is our m ain result: If the  to ta l energy
A is in  J, to; h) has the following asymptotics

(1.4) co; h) = (A, to; h) + o(h -  2 1 (P - 1 ) )

a s  h 0  uniformly in  (A, co) e J x  S 2 (S 2 i s  the unit sphere in  R3 ), where

oT (A, to; h) = 0(11 - 2 1 ( P - 1 ) ) (h 0)

and the  explicit form of oT(A, to; h) will be given later in  (3.3).
It is known that there exists a large class of potentials satisfying (1.2) such

tha t o-,?(A, co; h) 0 o(h - 2 I(P- 1 ) )(h —> 0) (see the  remark below Theorem 3.1).
In  [IT2] the  semi-classical asymptotics of the  to ta l scattering cross section

(1.5) co; h) := Grc,_1 (A, co; h)
fi

for the N-body systems are  studied, where the  summation is taken over all the
channels /3 and  o-„_,p (A, to; h) is  the total cross section for scattering a -+ fi w ith
energy A > 0  and incident direction co. I f  (1.2) a n d  (1.3) a re  satisfied, all the
cr,c_1 (A, co; h) a re  well-defined fo r a.e. (A, to) e (0, co) x S 2 f o r  each h e (0, 1] and
o-

Œ(A, to; h) has the semi-classical asymptotics ([IT2]):

(1.6) o-Œ(A, to; h) = co; h) + o(h - 2 1 ( P - 1 ) ) (h 0)

in the distribution sense a s  a  function of (A, to) e (0, co) x 5 2 . Thus we see that
the elastic pa rt ac, ( A ,  to; h) contributes most to GOE(A, to; h):

(1.7) ac,(A, to; h) = a co; h) + o(1) - 2 1 ( P - 1 ) ) (h 0)

in the distribution sense a s  a  function of (A, to) e  J x  S2 .
The semi-classical aysmptotics of the  to ta l scattering cross sections for the

2-body case were studied by [Y a], [RT2], [Y ], [ES] and for the 3-body case
by [IT!], and  fo r the  N-body case by  [IT 2 ]. O ur proof in  this paper is based
on  the  same ideas a s  [RT2] and [IT !].

T h e  outline o f  th is  p a p e r  is  th e  follow ing. In  S e c t. 2  w e prepare  the
notations and define the total scattering cross section for an N-body system . The
m ain result (1.4) is  sta ted  in Sect. 3. T he representation form ula of the total
scattering cross section is given in Sect. 4. The m ain result w ill be proved in
Sect. 5-8.

2. The total cross section for elastic scattering

We consider a n  N-body Shrbdinger operator given by

h2

Fl(h) = —  E +  E  Vi i (ri — ri )  in  O R ') ,
1 ..ç j< N  Lrnj j

where m;  > 0 and r;  e R3 are the mass and the position vector of the j-th particle,
respectively. The small parameter h e (0, 1] corresponds to  the Planck constant,
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and  the  p o ten tia l V  (1 < i <j < N ) is  a  real-valued function o n  It3  w ith  the
following decay condition:

5 V (r ) e C 2 (R 3 ), r e 113 , and
110,W,i (r)1 < COE<r>- (P+ d i"11, 0 < 2 for some d E (0, 1] ,

for some p > 2, where <r> --- (1 + ri 2 )112 . Let H(h) be the Hamiltonian with the
center o f m ass rem oved from  Fl(h). H ( h )  i s  a self-adjoint operator in  „r( =
L 2( R 3(N-1) ) . If  w e use the Jacobi coordinates (x 1 , xN _1 ) e R 3 (N  - ".

--1
x• = r • —  E  mkE  mk rk ,+1 1 < j < N — 1 ,

11(h) is w ritten  a s  follows

(2.1) ii(h)= H (h)0 Id + Id 0 ( — 2h
m

2 A R )  in  L 2 (R 3 N ) = C)L 2 (R 3 ) ,

2

(2.2) H(h) = —
hE „  +  E — ri ) in  If  ,

1. N - 1  Zvi 1<i<j5 N

where M  =  E  in;  a n d  R = M - 1 E  /iv ,  are the total mass and the position
1 5 j<N 1..çpçA ,

of the center of mass, respectively, and v the reduced mass defined by v.7 1 =
-1

mi+1 + E  m k )  •

A 2-cluster decomposition is the  pa rtition  o f the  se t {1, ..., N I in to  tw o
nonempty subse ts . In this paper we fix a 2-cluster decomposition a = {c 1 , c2 } :

c i  U C2 = 11, ..., NI , C I n C 2  =  , C I 0  , C 2 0 0  .

Let N  < j  < 2) b e  th e  num ber o f  th e  elements in  Ci  (N , + N2 = N ) .  We
assume N1 >  2  th roughout th is w ork . E ach  cluster C  corresponds t o  a  sub-
system of the N-body system and the Hamiltonian for the subsystem is given by

h2

Fli (h) = —  E A ,  +  E  Vik (ri — rk ) .
i rneC i  Z i i,k e C i

The cluster Hamiltonian Hi (h) is defined by removing its center of m ass. L et
= E mk , Ri  = E mk r, e 123 . Then we have, in the same way as (2.1),

kEc, kEci

2ñ(h) = Ili (h) 0 Id + I d  0 (  2
h

m i A  R )  in  L 2 (R 3 ( Ni -
1 ) ) L 2 (R 3 ) ,

where we set L 2 (R 3 ( N 2- 1 ) ) = C, H 2 (h) = 0 if N 2 = 1. Let z  = R2 — R , and ri;'
+ W . T h e n  w e  have

h2h 2 h2

15 2 2M 4
R  =  

2 M

A R

2 rta
A zi
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W e set

(2.3) Ta(h) =

2  

Az ,2na

i

which acts in  O R D , and  define the intercluster potential l a by

(2.4) =  E - E -  E  V
i i

1 5 i< j5 N jec2

w here V  =  Vi i (ri — ri ). Then we obtain the following relation:

(2.5) H (h )  —  = H i (h) Id ® Id + Id ® H 2 (h) Id + Id ® Id ® Ta (h)

i n  , y e  =  
L

2( R 3(N, -1) )  0  L 2( R 3(N2 -1) )  0  L 2( R 3)

When Ni  >  2 , let Ai (h) b e  in  ad i 5 (1-1; (h)), th e  discrete spectrum o f  I ii (h), and let
=  t/Ji (y i ; h), y i  E R3 ( N , - 1 )  be  the corresponding normalized eigenfunction for each

h e (0, 1], however, we set A 2 (h) = 0, =  I  if N2 = 1.
W e set a = (a, tl/ 1 , tk 2 , h), which stands for a 2-body channel associated with

the 2-cluster decomposition a  for each h , and  we define

(2.6)2 Œ ( h )  = 2 1 (h) + 2 2 (h) ,

(2.7) =  COI; h) = 0 ,

where Y = (Y1, Y2) 
e  R 3 0  R 3 ( N 2 - 1 ) .  

Then we have

(2.8) 11"(h)tka = 2„(h)tfra ,

where

(2.9) Ha(h) = H 1 (h) ® Id + Id H 2 (h)

i n  I
2 ( R 3(N -2) )  = L 2( R 3(N , -1) )  0  L 2 ( R 3012 -1)..) The operator

(2.10) HOE(h) = AOE(h) + TOE(h) in L 2 (12!)

is called the channel Hamiltonian and the channel identification operator JOE(h)e
B (12(11), i f )  is defined by

(2.11) .1OE(h)u u

where we have denoted by B(X, Y) the space of all bounded operators from X
t o  Y  Here we note that

(.1.(h)
*
f )(z ) = Œ(Y)f(Y, z)dY

for latter convenience. Under (V ),„ the  channel wave operators

(2.12) Wa±(h) = s —  lim  ex p(ih - l tH(h))JŒ(h) exp (— ih - l tH a (h))

exist in  B(L2 (R), Ye) (cf. [RS] III, Theorem XI.34). The scattering operator for
elastic scattering a -÷ a  is defined by
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S ,(h ) =  WOE
+ (h)* WOE

-  (h) E B(L 2 (R)) ,

where B(L 2 (R)) = B(L 2 (R), L 2 ( R ) ) .  F or each A.> Aœ(h) and  co e S 2 ,  we set

(2.13) cpOE = cpp(z; A, co, h) = exp (1h- 1 (2np(A - AOE(h))) 1 1 2 z • co)

and define FOE(h) e B(L 2 (R1); 1-2 ((AŒ(h), oo); L2 (S2 ))) by

(2.14) (Fp(h)f)(A, co) = cp(A, h) f cT(z; A, co, h)f(z)dz ,

where cŒ
 = c OE(A, h) = (27rh) - 3 1 2 n 2 (2n„(1 - AG,(h))) " .  F OE(h ) i s  a  unitary operator

and give the spectral representation of Hp(h) i.e. (FOE(h)Hp(h)f )(A, *) = A(F„(h)f)(A, *)
for a.e. A if f  E D(H2 (h)). Since the following property,

exp (itHoe (h)),S„(h ) =  S Œ..Œ(h) exp (itH,c(h)) , t e R

holds, we can see that Fa (h)S,„(h)Fp(h)* is decomposable by a  family {S,„(A, h)},
A. > Ap(h), of bounded operators on  L2 (S2 ). In  the  similar way as in the 2-body
case, w e can see that 5Œ . Œ (A., h) - I d  is  of Hilbert-Schmidt class fo r each A > 0
a n d  T . Œ(*, co; A, h) i s  a  L 2 (S2 )-valued strongly continuous function o f  (A, co) e
(0, co) x S 2 ,  w h e re  1„ (0 , co; A, h), O  E S2 , is the H ilbert-Schm idt ke rne l of
S„(A, h) - I d  (see Proposition 4.2). T h u s  the  to ta l c ro ss  sec tion  fo r elastic
scattering a -* a  a t  A. > 0  and  a t  incident direction co e S 2 defined by

(2.15) cr„ Œ(A., co; h) = Ifac- Œ(w O; A., h)12 d0
S2

is continuous in  (A, w) e (0, co) x S 2 ,  where

(2.16) L,(co  -19; A, h) = - 2nhi(2np(A - A cc(h))) - 1 1 2 771 ,(0, w; A, h)

is  the scattering amplitude for elastic scattering at energy A.

3. The main result

We write R(C; A) = (A -  () - 1 for a self-adjoint operator A  a n d  E C \R . By
(V)p , H(h) has no positive eigenvalue and no threshold ([FH1]), and the following
norm limits exist

(3.1) X-sOŒR(A + i0; H(h))X - s = lim X - sOaR(A + ig; H (h ))X '
E4.o

in  Bpti uniformly in  A in  a n y  com pact set in  (0, cc), w here X = (1 + y 2  +
1z12 ) 112 , s > 1/2, and  0 = (0y , ez ), I a I 2. This result was obtained in  [PSS] by
extending the results for 3-body systems in [M ] (see also [FH2], [ABG] and [T]).

We fix a com pact interval J c (0, oc) satisfying the  following condition:
(N )  F or any s >  1/2 there exists a constant C, > 0 such that

(3.2) IIX-sR(A + i0; H(h))X - sil Cs h- 1  ,A .  e  J , h e (0, 1] .
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If J  is included in the intersection of non-trapping energy ranges of the N-body
classical system and all the subsystems, the assumption (N) is satisfied ([W ]). The
semi-classical resolvent estimate (3.2) for non-trapping energies 2 was first proved
in  [R T 1] (see also [RT2], [G M ]) for the  2-body case . G érard  ([G ]) showed
(3.2) by Mourre's method for the 3-body case and W ang ([W ]) has extended
his results for the N-body case.

F or CO E S2 w e define a 2-dimensional plane Ho, = {LI e R3 ; u • co =  0} . Then
a n y  z e R3  c a n  b e  w r it te n  a s  z  = u + xo), u e 17m ,  x E R  uniquely. Since the
intercluster potential / a i s  a  function of (y, z) (see (2.4)), we set L(y, z) = We
also define for (A, CO) E (0, co) x S 2

(3.3) e(),, co; h) = 4 J s i n 2 { 21.41
w h u  +  x o d x }  du,

(3.4) 11.(2) 
\ /2 (2  -  4(h))

N ow  w e state our m ain result.

Theorem 3.1. Let the notations be  as above and assume (V)p , p  > 2. We
f ix  E0  > 0  and assume that the 2-body channel a = (a, ill 1 , 02, h) satisfies

(3.5) 2i(h) E ( h )  -  E ,

for j  = 1 , 2  i f  N 2  2  (for j = 1  i f  N 2 =  1), where E (h) = inf o -e s s  (11; (h)). Then,
as a function of (A, co) E J  x S2 , o- (À, a); h) behaves like

(3.6) a-,( A , a); h) = (OA , a); h) + o(11 - 2 1 ( P - 1 ) )

as h -) 0  uniformly in (A, co) E J  x S 2 .

Remark. (i) Our proof really shows that the remainder term o(h - 2 " - ") can
be replaced by 0(ii - ( 2 1 - " ) + E) for some e > 0.

(ii) W e can see that

(3.7) o  (A, a); h) = 0(h - 2 1 ( " ) ) (h 0)

uniformly in (2, co) e  J x S 2 . M o re o v e r , if /a(0, z ) behaves like

(3.8) ia(0, z) = 0(z/1 z I P + o z as 1z1.- co

for some 0  e C 2 (S2 )  w ith  0  < 0 , 4 (1 , a); h) has the  following asymptotics:

(3.9) cao(2, (.0; h) _ aØŒ(A) 2/(p —1)h— - "(1 + o(1)), a s  h -+ 0

with some a, > 0 ([ Y]).

4. Representation formula of the total cross section for elastic scattering

W e recall that çIi = h) i s  a  normalized eigenfunction o f  1-1; (h) with
eigenvalue Ai(h) E a d i s ( H j ( h ) ) .  T h e  following lemma can be obtained from [Ag],
Sect. 4.1.

na
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Lemma 4.1. For any  L  > 0, one has

(4.1) CL <  cc

uniformly in h E (0, 1 ] if  (3.5) is satisf ied f o r som e E, > O.

Throughout this paper, we fix the constants

1
(4.2) 1 

and fi = (1 + ,
p —  

where 45 > 0  will be taken sufficiently small in  Sect. 7. Following [RT2] (see
also [IT1]), we introduce a  partition  o f un ity  {xi}f=1,2,3, x  =  xi (z; h), over R3

with the following properties;

(x.0) E.=1xj=- 1

(X. 1) supp Xi c { z  e R3 ; 1z1 < 2h"} (supp = support) ,

Xi =  1  o n  {z E R 3 ; Iz  <  h "}

(x.2) suPP X2 Byp

X2  --= 1 o n  {z e R3 ; 2h" <  zI <  h - ( 3
}  , where

B yp = {z E R 3 ; h "  <  z  < 2 h }

(X.3) supp x 3 c  {z e R3 ; zI > PI

X3 = 1 o n  {z e R3 ; 1z1 > 2h },

(x.4) 10:20(z; h)1 Ca <z>Hal, 1 <j < 3

uniformly in  h e (0, 1] for any multi-index Œ.

We define the cluster decomposition Hamiltonian Fla (h) in  J i e  by

(4.3) Ha(h) = H  — l a = Ha(h) 0 Id + Id 0 Ta (h)

and its generalized eigenfunctions ea (y, z; a ) ,  h) by

(4.4) e(w ) = h ) g ia( z ; ) ,  c o , h)

(See (2.7), (2.13).) Then

(4.5) Ha (h)ea (w) = Aea (w) .

W e also set x = 1 — Xi = X2 + X3 and  define the  operators L  and  L* by

(4.6) L = H(h)x —

h2h 2
2 n . (4  zX) — —n a VzX • Vz + ,

(4.7) L* = xH(h) — Ila(h)x
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Since the support of 1 — x(z) is compact in W, the channel wave operators can
be represented as follows:

Wa± (h) = s —  lim exp (ih'tH(h))k la (h) exp (— ih- l tHz (h)) .
t-±co

From  this and almost the sam e argument as in the 2-body case, w e have the
following proposition, which gives the representation formula of T ( 0 ,  co; A, h)
(the Hilbert-Schmidt kernel of Sz , z (A, h) — Id). We denote by (•, •) 0 the L 2 -inner
product in Ye.

Proposition 4.2. Let the notations be as above and assume (V)p , p > 2. Then
1a ,(0, co; A, h), 0, Cc.) E S 2 ,  A > 0 is represented as

(4.8) T ( 0 ,  co; A, h) c0 a Ga (0, co; A, h) ,

where

(4.9) coŒ (270- 2 ina (2na (A — Aa (h))) 1 1 2 h- 3  ,

Ga = ((—XL + L* R(A + i0; H(h))L)e a (co), eŒ(0))0  .

Thus the scattering amplitude f c , a (co 0 ;  A, h) for scattering a a  is represented as

(4.10) fa_a(co 0; A, h) = (2rc)a li - 2 Gz (0, co; A, h) .

Since (—IL + L*R(A + i0; H(h))L)e a (co) is  an L
valued strongly continuous function of (A, co) e (0, cc)) x S 2 for some s > 1/2, the
R.H.S. of (4.8) is well-defined and continuous as an L 2 (S2 )-valued function of
(A, co) by  the trace theorem.

A similar representation formula for the tw o body case is given in [Y].
The proof of Theorem 3.1 is based on the following representation formula

of o-
a _a (A, co; h).

Proposition 4.3. For each (A, co) E  (0 , C O ) X  S2 , o-
a ,(A , co; h) is represented as

(4.11) ca,(A , co; h) = 2h - 1  11 .(A)- 1  (Q + Q2)

with

(4.12) Q1 = Qi(A, co; h)

= Im (R(A + i0; H(h))Le c,(0), X 2 EOELe.(co))o

(4.13) Q 2  =  Q2(A, co; h)

Tm (Ea xL*R(). + i0; H(h))Le a (co), R(A + i0; H(h))Le a (co))0

where Ea = JŒJ:E  B(Ye).

W e denote  by (•, •) z the L 2 -inner product in L 2 ( R )  and define the weighted
L 2 -space L(I21) by L (R )  =  L 2 (123 ; <z>2 sc/z) for s e R.

Pro o f . For the sa k e  o f sim lic ity , w e  w r ite  R(A + i0) = R(A + i0; H(h)),

s2 ( R 3 ( N - 1 ) )  :=  L 2 (R 3 (N -1 ) ; x2sdy dx )
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Ra (2 + i0) = R(1 + i0; Ha (h)), R a (A i0 )  =  R ( 2  i0 ;  I a (h)), J = J2 (h) a n d  K(2) =
— XL + L*R(2 + i0)L. By the trace theorem we can define the  operator F(2) e
B(LNRD, O V A  s > 1/2, 2  > 0  by

(F(2)u)(co) = (F„(h)u)(2, w).

Since (L ) * = and J:K(2)e„(co) e  L ( R )  for some s> 1/2, we have by (2.15),
(2.16) and Proposition 4.2

(4.14) o-,(2, o.); h) = 27(h- 1  YOE(A) l (F (A)* F(2).1: K(2)e„(co), POE' K(A)eOE(co)).

= — p.„(2)'Q ,

with Q = ((RŒ(2 + i0) — R(2 — (0)).J: K(2)e,,(co), J:K(2)e„(co)) z , where we have used
the relations

GŒ(0, co; 2, h) = cŒ(2, h) -
1 (F(2).1 K(2)eOE(co))(9)

in  the  first step and

F(2)*F(2) = (27r0-
1 (RŒ(1 + i0) — RŒ(2 — (0))

in  the  last step. Now note  the following relations:

Ja Ra G) = R a (C)Ja , R(C)LRa(C) = XRa() — R(t)X

ROE(C)J: = J:R a G) Ra(C)L* R(C) = Ra(C)X — XR(C)

for E C \ R . F ro m  th e se  relations it follows that

Ra (A i0).E„K (1) = —  Ea xR(.1 ( 0 ) L
Thus we have

Q = (Ra(). + (0).EOEK(2)ea (co), K(2 )e.(0 ))o — (Ea K(2)ea,(0)), Ra (A (0)K(2)e,(W))
0

= —(E 2 xR(2 + (0)Le a (co), K(2)e,,(co))o + (XE2
K(2)e„(co), R(2 + i0)Le(co)) 0

= 2i Im (R(2 + i0)Le2 ((.0), x2 EOELe.(co))o

+ 2i Tm (E„xL* R(2 + (0)LeOE(co), R(1 + (0)LeOE(co))o

which together with (4.14) implies the  desired result.

5. Remainder estimates I

F rom  th is  section t o  th e  la s t  section w e  assume a ll  th e  assumptions of
Theorem 3.1 and  devote ourselves to the proof of Theorem 3.1.

W e begin by dividing LeOE(co) into tw o parts:

(5.1) Lecc(co) =- + 0 2

01 =  [x l , Ho (h)]e c, + X21 e.
6 2 = X2(la I n e c t  X310e2

where eŒ = ex (co) and (z) = la (y, z)ly=0.
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The next lemma shows tha t 02 does not contribute to the  leading term of
the asymptotics of Q 1 (2, a); h) a s  h —> O.

Lemma 5.1.

(5.2) Q1(2, co; h) = Im (R(A + i0; H(h))0 1 , X2 E 0 1 )0  + o(h 1 2 )

as h -4 0 uniformly in  (A, co) e J x S 2 .

Pro o f . F or the  proof it suffices to show that

(5.3)D .  :=  ( R ( A  +  i 0 ;  H ( h ) ) 0 1, x 2  E 0 ) 0  = o(11 1
-

2 v) (h 0)

uniformly in  (A, (a) e J  x 5 2  fo r  1 j 2, (i,j) 0 (1, 1).
By (V)p  w e  have

(5.4) -  e(z)I c<Y>i+P+d<z> - P- a•

Thus, recalling X  = (1 + 131 12  + lz1 2 )1 1 2
 

and  taking s  w ith  1/2 < s  <p  — (3/2), we
get, by (V)p  a n d  Lemma 4.1,

(5.5) PCsX2(ia — e)e OEM(i, C (h-Y ±1z1)2s-2p-zadz

<  ChY(2P 
+ 2 d  — 2 s - 3 )

(5.6) PCX31aeœa C (h-P +lz1) 2 s- 2 Pdz

<  Chs3(2p — 2s- 3) 5

where M • Mo denotes the  L 2 -norm in  y e .  Therefore it follows that

(5.7) M-Xse2Mo =  0(h7 (P  +d —s— (3/2))) 0 (h 312)))

=  o(hY (P- s- ( 3 1 2 ) ) ) (h 0) ,

uniformly in  (A, (0 ) e J  x  S2 . Now we note th a t 0 , has the form

(5.8) 0, = f(z; h)e a

where f  satisfies i) supp f  B y fi ,  ii)

(5.9) le:f(z; h)I Ca (1z1 + h -  Y Y P hia lY d , ICC1 2 .

Thus we have

(5.10) MXsai C (h-Y lz1)2s-2pdz

= 0(h2y(p-s-(312»)

This together with (5.7) and (N ) yields
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D12 = 0(h - 1 ) (0 0 Y ( P + d - 5 — ( 3 / 2 ) ) ) 0(h13(P — s — ( 3 1 2 ) ) ))0 (h Y (P  — s — ( 3 1 2 ) ) )

= h 1 - 2 Y(0(h") + 0(V)) ,

where it = y(1 - 2s + d) > 0, = y(1 - 2s + (5(p - s - (3/2))) > 0 i f  w e  ta k e  s
such that 0 < 2s - 1 < d, >  (2s - 1)/(P s -  ( 3 /2 )) > O. H e n c e , D12 = 0(h 1 - 2 Y ).
In  th e  same way a s  above w e can get Du  =  o(h1 2 ) for (i, j) = (2, 1), (2.2) and
finish the proof.

Now we shall investigate

(5.11) Q2(A, (0; h) = 2i - 1 ((xEOEL *  -  LEOEx)R(A + i0; I-1(h))

x (01 + 0 2 ), 14,1 + i0; H(h))(01 +  0 2))o •
By direct calculations we have

(5.12) ZEŒL* - LEa x = B i (h) + B2 (h) + B3 (h) ,

h2h 2
Bi (h) = — (z1z x)xEG, + — EŒlFzX12

n a n a  

2h2

B2 (h) = EOEXV.X • 17.na

B3 (h) = X2 (Eaci a -  l a .Ea ) .

Lemma 5.2. For j =  1, 3,

(5.13) (Bi (h)R(A i0; H(h))(01 + 02), B(2 + i0; H(h))(0 1 + 02 )) 0  = o(121 - 2 v)

as h - 0 uniform ly  in (A, co) e  x S2 .

Pro o f . W e fix  s>  1 /2  sufficiently near 1/2. Since I Ax C<z> 2 , I FX1 -
C<Z>- 1  uniform ly in  h e (0, 1] and  since lz h- Y for z e supp x, we have

(5.14) <Y>s<z>sBi(h)<Y>s<z>sll Ch2(h- y ) 2 s - 2  ch2+

where we have used th e  fact II <Y>sEŒ<Y>s ll < +co, which follows from Lemma
4.1. Hence it follows from (5.7), (5.10) and (N) that the L.H.S. of (5.13) for j = 1
is  of order O(h)h 2Y with

(5.15) = 2y - 1 + 2 + y(2 - 2s) - 2 + 2y(p - s - (3/2))

= y(p - 4s + 2) >  0 .

This proves (5.13) for j =  1 .  Using (5.4), [Ea , l a
° ] = 0  a n d  Lemma 4.1 ([ ,

denotes the commutator), we have

y(2-2s)

(5.16) <Y>s<z>sB3(h)<Y>s<z C sup <Z>2 s — P — d ChY (P±d-2s) .

Therefore, by (5.7), (5.10) a n d  (N), th e  L.H.S. o f  (5.13) for j =  3  i s  o f  order
0(hP')/1 1 - 2 Y with
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(5.17) = 2y - 1 + y(p + d  -  2 s) -  2 + 2y(p - s  -  (3/2))

= y(d - 4s + 2) > 0 ,

since s > 1/2 is sufficiently near 1/2. This completes the  proof.

Lemma 5 .3 .  Let s >  1/2. Then

(5.18) IIX-sVzR(A + i0; H(h))X - 11 C h , h  E (0, ,

uniformly in A  c J.

P roo f. We set V  = E l < i < i ‹ , vu (r, — lid and Ho (h) = H (h )  -  V . For a n y  e
C\R we have

(Ho (h) + l)R ( ; H(h)) = Id + ( + 1 - V )R (; H (h)) .

This together with the  assumption (N ) yields

(5.19) II X  S( -  A y  -  Az  + l)R(A  + i0; H(h))X - 1  Ch - 3

uniformly in  A e J. Thus, by (N ) and interpolation, we have

11X - S ( -  A y  -  A z  + 1) 2 R(A + i0; H(h))X - 1  C h - 2

(5.18) follows from this and  X- S Vz( -  Ay - Az+ 1) - 2  Xs e B( r).

The following lemma together with Lemma 5.1 shows that 02 does not contribute
to  the leading term of the  asymptotics of o-, ( A ,  (a; h) (h 0).

Lemma 5.4.

1
Q2(' co; h) =  -

2 i
(B 2 (h)R(A i0; H(h))0 1 , R(A  + i0; H(h))0 1 )0 + o(h 1 2 )

as h -* 0  uniformly in  (A, co) E J x  S 2 .

P roo f. W e s e t  Qi ;  = (B 2 (h)R(A + i0; H(h))0 i , R(A  + i0; H(h))01), 1 j  2.
By Lemma 5.2 it suffices to show that

(5.20) Qii = o(h 1 2 ) (h -■ 0)

uniformly in co) e  J x 5 2 for (i, j) (1, 1). We first fix s > 1/2 sufficiently near
1/2. N oting that 117 xl C <z y i ,  h E (0, 1], w e have

(5.21) Ilrh2EOEX(V.X)Xs11 Ch 2 s u p <Z>2s

Ch 2 + Y ( 1 - 2 s )  .

Hence, by (5.7), (5.10) and  lemma 5.3, we get

Q12 = (0(e) + 0(V ))17' - 2 Y ( h  - >  0)

uniformly in  (A, co) e  J x S 2 ,  where
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1.1 = 2y - 1 + 2 + y(1 - 2s) - 3 + y(p - s  -  (3/2)) + y(p + d  -  s  -  (3/2))

= y(d + 2 - 4s) > O,

p' =- 1 1 + 2 + y(1 - 2s) - 3 + y(p  - s -  (3/2)) + f i(p  -  s  -  (3/2))

= y(2 - 4s + b (p  -  s  -  (3/2))) > 0

if s > 1/2 is sufficiently near 1/2. Q213 Q22 can be treated similarly. This proves
the lemma.

6. Remainder estimates II

Recall that 01 h a s  the form  01 =  f(z; h)eOE (see (5 .8 )),

Isupp f  By fi
11 a1 0 1 C C(11111Yd Z I h" 3 lot 2

and  th a t z e R3 is  w ritte n  a s  z  = u + tco, u e / I . ,  t E R  uniquely . W e set K =
(1 — S)y for the  same (5 > 0  a s  in  (4.2) and  define f ,(z; h) = x o (u/h - K)f(z; h) and
f (z ; h) = (1  -  

X 0 ( 0 - K ) ) f ( z ;  h) where xo i s  a  C'-function o n  Th  0  x o  1 ,
Xo = 0 for lui > 2 and xo =  1 for lul 1. f s  and f l have the following properties:

supp f s  { z  =  u  +  to); lul < 211 } n Bv p  ,

(6.1) supp  c  { z  =  u  +  tco; lul > h - K} n By p

PZ ; 11)15 I a:f.s(Z 1 )1 COEhlœi" Z I h")— P 2.

W e write 01 =  01 , + 0 11 ,  Bl s  = fs (z; h)e,„ 0 ,  = f i (z; h)e„ an d  p u t i t  in  th e  leading
term of Q1 a n d  Q 2  (see Lemmas 5.1, 5.4). The aim  of th is section is  to  show
that the terms containing 01,  are  negligible in  our analysis.

Lemma 6.1.

Q1 (2, co; h) = Im (R(A  + i0; H(h))0 11 , Ea x2 0100 + o(h 1 2 )

as h -> 0  uniformly in (A, (o) e J x  S 2 .

P roo f. According to Lemma 5.1, we have only to prove

(6.2) Im (R(2 + i0; H(h))W , E x
 20) 0 0 (h 1 - 2 y ) ( h

uniformly in  (A, (o) e J x S 2 f o r  (W, 0 ) = (Ois, 1 ( ,Ois, 011), A i, e i s )• We shall
prove (6.2) only  fo r  (W, 0 ) = (Ori, Ols) because th e  o ther cases can be treated
sim ilarly. Taking s>  1/2 sufficiently near 1/2, we have by Lemma 4.1

(6.3) C dx -Y )-2P+25du
_co j

(h + + lx1
.,<2h_"

.,r_
a)

ch  f-2K ( h - y  + i x i)-2p+2sdx

-co
=  OW ( 4 - 2 5 - 3 ) + 2 y - 2 K ) (h -* 0).
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By (5.10), the following estimates holds:

(6.4) Xsei II = 0(11 312)) ) (h 0)

for the same s  as above. Therefore we obtain by (N)

(R(2 + i0; H(h))0 11 , x 2 E„0„) 0  = 11 1 - 2 Y 0(P) (h —> 0)

where p = 2y — 1 — 1 + 2y(p — s — (3/2)) + y — y(S + 1 — 2s) > 0 if we take s
sufficiently near 1/2.

Lemma 6.2.

1
Q2(2 , w; h) = —

2 i
(B 2 (h)R (A + i0; H(h))0 11 , R(2 + i0; H(h))0 11 )0  + o(h 1 2 )

as h —> 0  uniformly in  (2, co) eJx

Pro o f . In the same way as the proof of Lemma 6.1 we shall only prove

(6.5) (B2(h)R(2 + i0; H(h))0 1 ,, R(2 + i0; H(h))0 = o(h 1 - 2 Y) .

From  (5.21), (6.3), (6.4) and Lemma 5.3 it follow s that the L.H.S. of (6.5) is  of
order 0(h")11 1 - 2 Y, where

/.2 = 2y —1 + 2 +y(1 — 2s) — 2 + 2y(p — s — (3/2)) — 1 + y  —

y(5 + 2 —  4s) > 0

if w e take s > 1/2 sufficiently near 1/2.

7. Approximation of R (A + i0; H(h))fe Œ

We define v(t) = v(t, z; 2, co, h) by

v(t) = f i (z — pŒwt; h) e x p  — ft 1,?(z — pa cos)ds)

where p„ = p c (2) (see (3.4)). It is easy to verify that v(t)e„ satisfies the following
equation (see (4.4) for ea, = e„(w))

(7.1) (ihe, — H(h) + 2)v(t)e 2 = r 1 (t) + r 2 (t)

where

h 2

r i (t) = r 1 (t, y, z; 1, co, h) =  (.61z y(t))ea ,2nc,

r2 (t) = r 2 (t, y, z; 2, co, h) = (1:;(z) — znv(t)e. •

Taking a large constant No >  0  independent of h > 0  and setting t = Noh - f l ,  we
define go = g o (z; 1, co, h) by
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g, u(t, z; A, co, h)dt .
0

Then the  following relation follows from (7.1):

(H(h) —  A )g,e = ih(v(r)e c, —  v(0)ea,) — (r ,(t) + r2 (t))dt

Since go ec,  a n d  a ll th e  te rm  in  th e  R.H.S. belong to  L ( R 3 1 )
 L 2 ( R 3 ( N - 1 ) ;

X 2sdydz) for some s > 1/2 (see (6.1)), we have

(7.2) R(A  + i0; H(h)ifi ea,  = ih 'g o e„ + R(A  + i0; H(h))v(r)e„

+ ih - i  R(A + i0; H(h)) (r i  (t) + r2 (t))dt ,

where f i =  f,(z; h).

Lemma 7.1. Let s > 0. Then

  

Xs 
J o

 ri( t)d t =  0  ( h 2 " ( P  
+d —1)+fl(— s —(312)])

o

   

as h-+ 0 uniformly in (A, co) e  J x S 2 .

Proof. The following estimates hold on the region 1z = u + xw e R3 ; u e Ho„
x e R, lui >

(p —(7.3) cc' o(z — co/.2„ s)lds < c h r c  + d 1 )  5

(7.4) f A z t ) (z — tia ws)1 ds < ChK (P 
+ 2 d  - 1 )

oe

and, moreover, we have by  (6.1)

(7.5) a;.fi(z —  pŒ (°t)I Ch111"(11 - v + lui +  Ix —  PŒt1)-
P ,

for 0 2, where z  = u  + tco . Therefore we see that

(7.6) 14v(t)1 < C(h 2 "  + h -  1+K(p+2d-1) h-2+2K(p+d-1))02-1' lui ±  Ix —  Pat') P

< c h -2+2K(p+d-0—,5lu +  lui +  Ix — tiatlY °

which yields

f lAv(t)Idt f iz1v(t)ldt Ch
Jo

2,c(p +d — 1)-1 o n  R3 .

Hence, taking account of the fact that supp {z e R3 , 1z1 (No +  2)h - 1 } for
0 < t < T ,  we obtain
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J o
r i (t)dt <  C h •  1 2

2
"

(
P < z > 2 s d z

o1 , 1 < 0 1 0 + 2 0 , - 0

<  C h 2 K ( P
+d —1)(h—/3)s+( 3/2)

This proves the lemma.

Lemma 7.2. Let 1/2 < s  <p  +  d — 1/2. Then

 

XS Ç r 2 (t)dt
Jo

=  0 ( 1 1 -
(13/2)+K(2p+d—s-2)-1)

0

   

as h --■ 0  uniformly in (A, co) E J  x S2.

P ro o f . By (5.4) and  Lemma 4.1, it suffices to estimate

2

<Z>sI v ( t ) I d t

where 11* i z denotes the L2-norm in L2 (12.1). Since the support of v(t) is contained
in  1z = u + x o); u E  Tlw , x E R, ui > h- K1 and the estimate

(7.7) v(t)i C(h- 7  + 1141 + lx — Act I Y °

holds, we have

<z>s- P ' Iv(t)Idt C(11- K + lui + lx 1) - P - d + s (h - Y  + P+1
0

which yields

<z>s- P- d Iv(01dt
0

< c  .  du (h-K + lui +  IX D -2P -
2 d + 2 s ( h — y 10 - 2 p + 2 d x

J flxi<(No +2)11- $

< C h -
p h o c ( 4 p  +  2 d  — 2 s - 4 )

This completes the  proof.

W e denote  by = 2(z) the characteristic function of the ball 1z e R3 ; 1z1 < 3h- P1.

Lemma 7.3. Let m  be a multi-index with 1m i < 1 and Dz = I f  s >  1/2
and 6  > 0  is sufficiently small, one has

(7.8) 112<z>7/YznR(.1 + i0; 1 1 „(h))v (T )
,

p Œ l l z  =  
oomp-3s)+7(p-(3/2))-Imi)

as h —> 0  uniformly in (A, 0 )  E  J  x S 2 .

Pro o f . W e introduce two functions 01, 0 2  6  C ( R 3
)  satisfying 0 1 +  0 2  =  1 ,

supp 0 1 G  R 3 ; nati.col < So l  a n d  0 , =  1  on G R 3 ; n a k i2 C 0 1  < 5 /2}
fo r  a  small constant 5 o >  O. W e  f ir s t  show that
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(7.9) 112<zYsR(A + io; HOE(h))DNI(hpz)v(t)(pŒllz = 0(h') (h —■ 0)

for any L > 0. To verify this, by the formula

R(2 + i0; 1-1,c(h)) = ih - 1 e x p t(A — yi.Œ(h)))exp (— ih 't 'Ta (h))dt ,

we have only to prove

(7.10) exP (— ih  i ( T A n g n0i(hpz)v(t) (P.11. C L h'(1 + t )_ ',  h  E (0, 1] , t > 0 ,

fo r any  L  0. B y the Fourier transform , exp (— ih l(Ta(h))/Y zn0i(hk)u(z), u
v(t)e,,, is expressed as

(24 - 3  f e x p • (z — z') — i : n
2 h t) (K)u(z')dz'ck .

Since 174(•  (z — z') — ht) + + ki -11 + t) for z  supp 5?, z' E
2na

supp v(r) a n d  K E supp ( b w e can obtain  (7.10) by integrating by parts in
Next we prove

(7.11) 112<zysR() + io; 1 1 .01)D=02(hpz)v(T)9.11. = 49(10(P- 3 s) " ° " 3 1 2 ) ) - Imi) (h —* 0) .

To see this w e set 0 3 () =  fl102()1 — n a fta w12 and observe th a t 03 is bounded
smooth function with bounded derivatives and  satisfies

(7.12) D 02(hp)qv (t) = — h2 -1 ' 1953 (hDz )(pa zIv(T),

(7.13) <z>3(hp)<z> = 0(1) (h 0) .

From  (7.13) and the  well known estimate

(7.14) <z> + i0; 1-10,(h))<z>- 1 = 0(h - 1 ) (h 0) ,

it follows that

(7.15) <z>-sR(). + 10; HOE(h))03(hpz)(zY s ll = 0 (h ')  .

Since supp Av( r) {z E R3 ; 1Z1 (No ± 2)h - fi}, we have by (7.6)

(7.16) <z>szi v(r)11z = 0  0
- 2+ 2K(p +d Ps + AP — (3 /2 ) ) ) (h 0) .

Thus by (7.12), (7.15) and (7.16) we obtain

the L.H.S. of (7.11) = 0(h - 1 + 2 "(P + d - 1 " 5 " " 3/2 ” - 1 "11)
= pomp -3s)+Y(P —(3/211- 1m1hti)

where it = y(2d — 1 + 2s — (5(3p + 2d — 2s — 2)). I f  (5 > 0 is  so  sm all, w e  have
/1> 0, a n d  hence prove (7.11). This together with (7.9) yields (7.8).

Lemma 7.4. I f  s — 1/2 > 0 and (5 > 0 are sufficiently small, one has
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II2X— TITR(A + i0; H(h))»(t)e„11 0 = 0(11fl (P- 3 4 ±Y(P- ( 3 /2 ) ) - 2 - iml)

as  h -) 0 uniformly in  (2, a)) e J x S 2 f o r 0 Im l 1.

Proo f. W e divide R(2 + i0; H(h)) into three parts:

R(2 + i0; 11„,(h)) - R(1+ i0; H ( h ) ) 2 - 1 0 R ( 1  + i0; Ha (h)) - R(1 + i0; H(h))

x  (1  - b la R(1 + i0; Ha(h)),

a n d  in s e r t  th e m  in to  t h e  le f t  side. S ince  R(2 + i0; 11,,(h))v(t)e„ = R(1 + i0;
11„(h))v(r)9OE, we have only to consider the contribution from the last two terms
by Lemmas 7.3 and 4.1. By Lemmas 5.3 and  7.3 we have

112X- s/YznR(2 + i0; H(h))2/a R(2 + i0; Ha(h))P(T)e110

< Ch - 1 - 1 "1111XsK<Y>'<z>s il 11<zYs2R(2 + i0; kla(h))v(r)9.111

= 0(h' - 3s)+Ap - (312))- ino-1 .) (h -) 0)

where we have used Lemma 4.1 in  the  first step and

sup 1, 0 21a<YY P - s <z>s l < oo
h,y,z

in  th e  la s t  step. T h e  estim ate I1X5(1 - 2) la<Z>s < Y> P  s  11 = 0(h1 3 (P  — 2 4 )  is easily
verified, and  the  fact that supp v(t) c {z e R 3 ; Izi < (No + 2)h - fi} yields

(7.17) II <z>sv(z)II z C(h - f l Y (f (h - Y + lz - itc,a)T1) - 2 "dz 
)1/2

=  0(h - 43 + r(p — (3/2)) ) (h - )0) .

Thus, using Lemmas 4.1, 5.3, (N) and (7.14), we obtain

112X- sDTR(2 + i0; H(h))(1 - DI0 R(1 + i0; Ila (h))v(r)e cji o

= 0(10 (" - 3 5 " " - ( 3 1 2 ) ) - 2 - imi) (h -■ 0) .

This completes the  proof.

Now we return to (7.2). From Lemmas 7.1, 7.2, 7.4 and (N) it follows that

II2X- s R(2  + i0; H(h))jjea, -  i h ' iX - s goe.11o

= h 0(hPi) + 0(h" 2 ) + 0 (e 3 ))

where

P i  = 16(P - 3s) + Y(P - (3 /2 )) - 2 - y(p -  s - (3/2)) + 1

=y(1 - 2s + O p  - 3s)) ,

I2  =  2K(p + d - 1 ) +  # (- s  - (3/2)) - 1 - 7(p - s - (3/2)) + 1

= y(p + 2d - 2 - 6(2p + 2d + s - (1/2))) ,
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p 3  = — (6/2) + K(2p + d —  s —  2) — 2 — y(p — s — (3/2)) + 1

= y(d —  6(2p + d — s — (3/2))) .

First taking (5 > 0 sm all and  then taking s  > 1/2 sufficiently near 1/2, we see
that p 2  > P3 > > O. T hus it fo llow s tha t

(7.18) 14X — s R(2 + i0; H(h))fi eŒ — ih - 1 5-CX - s goeŒllo = h Y ( P - s - ( 3 1 2 ) ) - 1 0(h 121 ) (h —> 0)

uniformly in  (A, (9) e J  x S 2 . Similarly, by Lemmas 5.3 and 7.4, we have

(7.19) 112X—s/YznR(2 i0; H(h))fi ec, — ih - 1 2X - s lYz
n g0eŒll0

= h 3 1 2 ) ) - 2 0(h"9 (h 0)

uniformly in (A, w )e J  x S 2 for m l  =  1.

Lemma 7.5. I f  6 > 0  is so small, one has

(Re, + i0; H(h))011, x 2 EŒ011 )0  = ih - 1 (90, X 2fi)z + o(h 1 - 2 1

as h —> 0  uniformly in (2, co) e J  x  S 2 .

Pro o f . W e fix s> 1/2 sufficiently near 1/2. By (6.1), (7.18) and

XsX2 E. 0 1/110 0(h )4 " - s- ( 3 1 2 ) ) ) (h —> 0)

which is obtained in the same way as (5.10), we have

(R(A i0; H(h))011 , x2 EOE011 )0  = ih 1 (g0, X2fi)z + h 1 -
2 '0 (h"),

where

=  2y — 1 + 2y(p — s — (3/2)) — 1 + =y(1 — 2 s)+ii 1 •

Since s > 1/2 is sufficiently near 1/2, we have p > 0.

Lemma 7.6. I f  6 > 0  is so small, one has

(B 2 (h)R(2 + i0; H(h))0 11 , R(2 + i0; H(h)) 1911)0 = (B2(h)ih l goe«, ih oea)o + o(hi -  2 " )

as h —> 0  uniformly in (2, (o) E J  x  S 2 .

Proo f . By (6.1), (7.3) w e have

(7.20) 1001 + 1141 + lx — 14.t1) - P

117 1401 C(h - Y + luI + lx — POEt1)-P(h.d ir(p+d-i)-1)

< C(11 - " + 1141 + lx — P

w h e re  w e  h a v e  u s e d  Kd > K(p + d — 1) — 1 = y(d — (5(p + d — 1)) > 0 ,  which
follows from 0 < 6 «  1 .  Thus it follows that

(7.21) D;n901 C(h - Y +  u I ) ' 1 , 0 1 .
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Let x4 (z)e C°(R 3 ) with )(4  =  1  o n  {z; IFY _._ IzI 2h- y} and supP X4 C fz, h /2
IzI 411- 7 1. Then by (7.21) we get

(7.22) II h- 'x 4 X - s rYz
ngo e„ II 0  =  O W

1 + 7 (p  + s - (5 1 2 ) ) - 1 m 1 )

as h —> 0 for 0 i ml 1 ,  s>  1 /2 .  On the other hand, by (6.4) and (N), we have

IIX  sR(A + i0; H(h))011 110  __ Ch-H 312» .

Therefore, by (7.18), (7.19). (7.22) and (5.21) we can see that

(B2 (h)R(A + i0; H ( h ) ) 0 1 1 ,  R(1 + i0; H(h))011)0

= (B 2 (h)ih - 1  go e„, ih - 1  go eo )0 + h 1 - 2 ' (O(hlL) + 0(11")) ,

where

= 2y — 1 + 2 + y(1 — 2s) + y(p — s — (3/2)) — 2 + P1 — 1 + Y(P — s — (3 / 2 ))

= y(2 — 4s) + pi, ,

i f  = 2y — 1 + 2 + y(1 — 2s) — 1 + y(p + s — (5/2)) — 1 + Y(P — s — (3 /2 )) — 1 + kti

= y(1 — 2s) + j .

We can take s>  1/2 sufficiently near 1/2 so that /2 > 0, /2' > O. This proves the
lemma.

8. The proof of the theorem

By Lemmas 6.1, 6.2, 7.5 and 7.6 we obtain

(8.1) Qi(A, w; h) = IC' Re (go, x2f)z  + 0(111 - 2 v) ,

(8.2) Q2 (2, w ; h) = 
1

—.(xFz x • Vz goe„, go e,)o + o(h 1 2 )
no t

lia 1
= —

h  
(X(0  P 17.X)90, go ) . + (X17.X • Fzgo , go ) . + o(h 1 2 )

no t

a s  h —■ 0  uniformly in  (A, w) e J x S 2 .

Lemma 8.1.

(xvzx • r7zg 0, g o )z  = 0(111 - 2 . )

un iform ly in (A, co) e J x  S 2 .

P r o o f .  S in c e  Ir7zXl -- C O ' + lz1) - 1  a n d  supp Vz x c {z = u + 'co); lx1 < 2h - Y},
we have by (7.21)

1(ezX •Fzgo, go/z1 C f(h - Y + It41) - 2 P+ 2 du = O(h22)
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Lemma 8.2.

h - 1 11.(X(0 ) • F.X)go, o)z = Re (go, (1 —

P roo f. Since v(t) satisfies

(8.3) i0,v(t) + iy a w • V,v(t) — ev (t) = O ,

we see that

(8.4) pc,co • Vz go  = ih - 1 (v(t) — v(0)) + 11 - 2 1,?g0  .

Thus, a n  integration by parts yields

1 1 - i tt.(X(co F.X)go, go). = ( 2 h)'tia((o) V 2 ( - 1  + X 2 ))g0, go).

=  Re ((1 — x2 )h - l i-1.(0 ) • F.go), go).

=  Re ((1 — x 2 )[11- 1  (v(0) — v(T)) — golz

= ((1 X2 )(.ii — v(T)), go).

= l e (go, (1 — x2 ifi). •

Here we have used the fact that supp (1 — x2 ) 1.1 supp v(r) = 0, which follows from
No »  1 , in  the  last s te p . T h is  completes the proof.

Consequently, we obtain by Lemmas 8.1 and  8.2

co; h) + co; h) = Re (go, fi)z + o(h 1 2 )

as h 0 uniformly in (A, E J  x S 2 . Since No is large enough and j 2,./E0/na
by (3.4) and (3.5), we observe tha t supp v(t)r) supp f , = 0  for t > T ,  and  that

(go , f d z  = (v(t), fdz dt .
Jo

Hence, by the following lemma the  proof of Theorem 3.1 is accomplished.

Lemma 8.3.

2/1-
2 /./;1R e  (v(t), f i )z  dt = oT(A, co; h) + o(h 2 )

a s  h 0  uniformly in  (A, co) e J  x s 2 .

For the  proof, see the proof o f Lemma 7.1 in [IT !].

Acknowledgment. This result was conjectured by Professor H. Tamura. The
author w ishes to thank him  for valuable advices.

DEPARTMENT OF MATHEMATICS
KYOTO UNIVERSITY



1164 Hiroshi T  Ito

References

[A] S. Agmon, Lectures on exponential decay of solutions of second order elliptic equations,
Princeton, Princeton University Press, 1982.

[A B G ] W. Amrein, M. Berthier and V. Georgescu, O n Mourre's approach to spectral theory, HeIv.
Phys. Acta, 62 (1989), 1-20.

[ES] V . Enss a n d  B . S im o n , F inite  to ta l cross sections in  nonrelativistic quantum  mechan-
ics, Comm. Math. Phys., 76 (1980), 177-209.

[FH I] R .  Froese and I. Herbst, Exponential bounds and absence of positive eigenvalues of N-body
Schr6dinger opera to rs, Comm. Math. Phys., 87 (1982), 429-447.

[F H 2 ]  R. Froese and I . H e rb s t, A new proof of the Mourre estim ates, D uke Math. J., 49 (1982),
1075-1084.

[G] C h. G érard, Semiclassical resolvent estimates for tw o a n d  three-body Schrödinger opera-
to r s ,  Comm. Partial Differ. Equ., 15-8 (1990), 1161-1178.

[ G M ]  C h .  Gérard a n d  A .  M artinez , P rin c ip e  d 'ab so rp tio n  lim ite  p o u r d es  opérateus de
Schr6dinger a  longue  po rt, C . R . Acad. Sci. Paris, 306 (1988), 121-123.

[IT1] H . T . Ito  and  H. Tamura, Semi-classical asymptotics for total scattering cross sections of
3-body system s, J . M ath. K yoto Univ., 32 (1992), 533-555.

[IT2] H . T . Ito  and  H. Tamura, Semi-classical asymptotics for total scattering cross sections of
N-body quantum system s, preprint (1992).

[M] E . M ourre, A bsence of singular continuous spectrum fo r  certain self-adjoint operators,
Comm. Math. Phys., 78 (1981), 391-408.

[PSS] P . Perry, I. M . Sigal a n d  B . Sim on, Spectral analysis o f N-body Schrödinger operators,
Ann. of M ath., 114 (1981), 519-567.

[RS] M . Reed a n d  B . S im o n , M ethods of m odern mathematical physics, I I I , IV , Academic
Press, 1979, 1978.

[RT1] D . Robert and H. Tamura, Semi-classical bounds for resolvents of Schr6dinger operators
and  asymptotics for scattering phase, Com m . Partial D iffer. Equ., 9 (1984), 1017-1058.

[RT2] D . Robert and H. Tamura, Semi-classical estimates for resolvents and asymptotics for total
scattering cross sections, Ann. Inst. H . Poincaré, 46 (1987), 415-442.

[T] H . Tam ura, Principle of limiting absorption for N-body Schr6dinger opera to rs, a  remark
on  the  commutator methods, Lett. Math. Phys., 17 (1989), 31-36.

[Y] D. R. Yafaev, The eikonal approximation and the asymptotics of the total cross-sections
for the  Schr6dinger equations, A nn. Inst. H . Poincaré, 44 (1986), 397-425.

[Ya] K . Y ajim a, The quasi-classical limit of scattering amplitude—L 2 -approach-for short-range
potentia ls— , Japan J. M ath., 13 (1987), 77-126.

[W] X. P . W a n g , Semiclassical resolvent estimates for N-body Schr6dinger operators, J. Funct.
Anal., 97 (1991), 466-483.


