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On the structure of the solutions of the first initial boundary
value problem for the Sobolev's equation

By

A . A . LYASHENKO

O. Introduction

I n  this paper we investigate th e  first mixed problem fo r  th e  so-called
Sobolev's equation

,02 (a 2 u  a 2 u  a 214\  02u
(0.1)

Ot2 0.x? ax3)
=

in the model case of two spatial variables.
Investigations of the equation (0.1) were initiated by S. L . Sobolev [1], [2],

although this equation arose in  the work [3] (pp. 355-356) by  H . Poincare in
1885. Equation (0.1) is closely connected with the system of equations describing
small oscillations of a rotating fluid

(0.2) at =  x — V p , div i3 = 0

where fi is a relative velocity, p  is a relative pressure.
System (0.2) is a linearization of the Euler equations in the uniformly rotating

coordinate system near an equilibrium solution describing the motion of the ideal
fluid rotating with a  fixed angular velocity about axis x3 . This system was
considered by S. L. Sobolev in [2] in connection with the studying of the stability
to  the first approximation of the top with symmetric cavity filled with an ideal
fluid. H e  showed that if p  satisfy (0.2), initial conditions

(0.3) 61t=0 = 60(x) X = (X 1 , X2, X3) e Q

and one of the following boundary conditions

(0.4) Plao = 0

(0.5) (61701.90 = 0

then p  satisfies (0.1), initial conditions

(0.6) Pli=0 = Po , PrIt=o = Pi

and the boundary condition (0.4) or
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(0.7) 32 ( °P) °  °P  cos(ri, x 1 )
°P

  cos(ii, x2 )) +   3/3  cos(ii, x 3 )15 0  -= 0Ot2 a i l e t  Ox2O x , ex3

respectively.
Problems (0.1), (0.4), (0.6) and (0.1), (0.6), (0.7) are called the first and the

second initial boundary value problems for the Sobolev's equation and can be
written in the form of abstract Cauchy problem

(0.8) Ptt = AP, Pli=o= Po, Pilt=o=

(0.9)u  = = fio

where A  i s  a  bounded selfadjoint operator in  A1(.52) with spectrum  c(A) =
[—I, 0]; B is a bounded selfadjoint operator in H = {-a e L 2 (Q)1cliv i =  0 . r i  •  len
= 0} with spectrum a(B) [— I, 1].

One of the basic questions in theory of sm all oscillations of the rotating
flu id  is  tha t of the behavior of the relative pressure p  for the large tim e. A
complete solution of this question is closely connected with a  detailed study of
the spectral properties of the operators A , B  which represents one of the most
interesting and complex problems in th is  theo ry . This is connected with the fact
tha t the qualitative properties of the solutions of (0.8), (0.9) a s  t —> co differ in
a number of cases from the properties of the solutions of the majority of problems
of mathematical physics. In  connection with this S. L. Sobolev posed the prob-
lem of studying of the asymptotic properties of the solutions of mixed problems
for the equation (0.1) in  various domains.

A  num ber o f  p a p e r s  b y  R . A . Aleksandryan, T .  I. Z e le n y a k , V . N .
Maslennikova, M . V . Fokin, B. V. Kapitonov, V. V . Skazka and others have
been devoted to this theme; the history and bibliography can be found in [4], [5].

The present paper deals with the model case of two space variables. T. I.
Zelenyak show ed that in  two-dimensional case solutions of the first and the
second initial boundary value problems had the same qualitative properties when
t cc. S o  w e  c o n sid e r  the first mixed problem

02 (02 u 0 2 u )  32u
(0.10) =  0 ,x  e  Q ,  t > 0

Ot2  O x ?  a x i Oxl

(0.11) Plan = t > 0

(0.12) Plt=o = Po Prlt=o = PI S2

which can be rewritten in the operator form (0.8). In the paper the following
results are obtained: a class of bounded domains Q  R2 w ith  corner points is
selected such that the operator A has no eigenfunctions in W (Q ) but for every
;, e [ 1 ,  0 ]  there exists a class of generalized eigenfunctions (G.E.) from 1,2 (Q)
corresponding to ;t: the structure of the G .E . is completely described; the
completeness of the G.E. in * 1 (0 )  is proved; general integral representation of
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the solutions of the problem (0.8) is obtained; inversion formula and Parseval's
equality for the integral representation are derived.

1. Choice of the domains
n

L et Q  b e  a  bounded convex domain; °(2  =  r = U ri, Fi  e C4 , ri is either
J=1

piece of line or has positive curvature at any point including endpoints (curvature
a t  the endpoints is regarded a s  the  lim it of curvature at the  interior points).

L e t the  se t {a i , ... , oc.} c[ 0, —7r consist of angles between axis x 1 a n d  all
2

one-sided tangents to  I -  a t  the  endpoints of Ti, j = 1 , ..., n . W e suppose 0
it

oci < • • • < am

Problem (0.10)—(0.12) can be rew ritten a s  a n  abstract Cauchy problem in

=  AP Plt=o = Po PtIt=o = Pi

where A = A c closure in  *1(Q) of an  operator Ao , D(A 0 ) = All(s2) n Wi (Q) and
for any u e D(A0 ) image u = A o u is a solution of the following Dirichlet problem

o zu
(1.2) AV =   V r O.=OXi '

From (1.2) it follows that for any  u, y  e *1(Q) n W3(0)

(Au, u), = — (dAu, 01,2 ( =  (u x 2 x 2 , y) L 2 ( 0 )  = v„2)L2(f2)

where

(1.3) (u, y) 1 = (u, 4,1 ( 0 )  = ux , • f)  + u x , • F)„, &Q.
J o

So A  is  a  bounded selfadjoint operator in  *1(0) and

(1.4) (Au, y)
1 =  —(u 2 , v. 2 )L2 , u, y  e  *1(Q).

Hence for any u E *1(0)
(1.5)0 >  (Au, u)1 = —

and the spectrum a(A) [ —  1, 0]. It is  easy  to  show [6 ] that a(A) = [ —1, 0].
W e shall say that a  function u e L 2 (0 ) is a  generalized eigenfunction of the

operator A  corresponding to A e [ — 1, 0] if

(1.6) u • (AØ ( 1  +  A)th„2 „2 )d(2 = 0 ,e * 1 ( 5 2 )  n W RQ).
f2

It is easy to  see that if u e *1 (Q ) and (1.6) holds then u is  a n  eigenfunction of
A  corresponding to A. Denote
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a = a(A) = arccos (.\/ —  e [0, ,2  =  —cos' Œ,

= a) = x i  sin a + x 2 cos a , = n(x, =  x i  sin a — x 2 cos a .

Then (1.6) can be rewritten in  the  following form

(1.7) u • 0c/S2 = 0 , e VVI(Q)C1W1(Q) .

I t  is  k n o w n  [7 ]  th a t  i f  Q  is strictly convex relative t o  th e  lines = const,
= const and (1.7) holds for some u e L 2 (S2) then

u(x ) = P((x , a)) + Q(n(x, c ) ) , x e Q ,

P((x , a)) + Q(n(x, a)) = O,a . e .  x  e  F

where P (0  e  L2,p 1 ( 05 Q (q )  G 1,2,p2
( /0,

 ( h); =  0 (C t) =  min Gt), =
xe F

Oc) = max rio = ?MW = min n(x, cc), =  (cx) = max n(x, a); Pi (0, P2(17)
x e r x e F x e F

a re  some weight functions; p i  e CN0 , M , P2 G CNO ,p i ( ) > 0, G (G,

P2(1) >°'e  (70, ni); p 1 (0 )  = = p2(no) = p2(ni) o.
T h u s  i f  w e denote  2 i  = —cos 2j  = 1, m  th e n  fo r  a l l  A e (— 1, 0)\

{Ai ,  • • • Am} each G.E. u(x, a )  corresponding to A = —cos2 a  can  be  w ritten  in
the form

(1.8) u(x, a) = P((x , a), a) + Q(17(x, a), ci),x  e  Q ,

(1.9) P((x , a), a) + Q(n(x, a), a) = 0 ,a . e .  x  E r .

Following [8], we define for any a e ( o  ;  {a l , ..., a m } homeomorphisms T +  (a),

T -  (a) of the  boundary F: T +  (a), T -  (a) assign to a  po in t x  e  F other boundary
points T +  (a)x, T -  (a)x such that the following equations hold

(1.10) ri(x, a) = n(T +  (a)x, ci),( x ,  a) = ( T -  (a)x, ci).

In other words, T +  (a)(T -  (a)) assigns to a point of the boundary another boundary
point w ith the  same r i  ( )  coordinate (see F igu re  1 ). W e set

F(ci) = T -  (a) 0 T +  (a) .

The homeomorphism F(a) preserves the orientation of F  (see Figure 1).
The spectral properties of the operator A  depends essentially on the prop-

erties of the homeomorphism F(a). T h e  p o in t is that from (1.9), (1.10) it follows

(1 .11) { /)((x , a), a) = PW F"(a)x, a), a) = PW T±(a) o F(ci)x, a), ,
Q(n(x, a), a) = Q(n(F"(a)x, a), a) = Q(n(T±(a) o  F(ci)x, a), ci),

n e Z
n e Z

for a.e. x E F.
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Figure 1

Theorem 1.1 ( [9 ] ) . I f  f o r some Œ E [0, —71 { c c i  . . . , am }  the  homeomorphism2
F(a) possesses a  f ixed point then A = — cos 2  cc is not an  eigenvalue o f  A.

nThere exist domains with c o rn e r  p o in ts  su c h  th a t  for every a e ( 0, —
2

{ai , ... , am } the  homeomorphism F(a) has a  fixed point.

Theorem 1.2 ([9]). T he homeomorphism F(a) possesses a f ixed point for any

E (cc 0, 7 { oci , ... , cc }  if  and only if  there exist cc* e {al , ... , am } , x ', x 2 e F such2
that (see Figure 2)

cc*) = (x 2 , cc*) o r  ri(x l , a*) = q(x 2 , a*)
(1.12) {x e R 2 1(x, a*) = (xj, a*)} n C2 = 0 ,j =  1 , 2 ,

{x e R 2il q(x, a*) = r/(xi, a l}  fl ø,j  = 1, 2.

x l ,  x 2 e  ag-2.

From Theorem 1.1, Theorem 1.2 it follows that if  Q  has Property 1 then
any A E ( - 1, O)\{ 21 ,A m }  is not a n  eigenvalue o f  A .  It is easy to show that
values —1, Al , ,  Am , 0  are  not eigenvalues of the operator A  a s  w e ll. So for
any dom ain 0 w hich has Property 1 th e  operator A  has purely continuous
spectrum. Henceforth we shall consider only domains which have Property 1.

2. The structure of the G.E.

L et 0  have P roperty  1 . T hen  th e  operator A  has n o  eigenfunctions in

(*1(,(2). At the same time for any a E  0 , -i t  {a l , ..., a m } there exists a  system of2

Domain Q will be said to have Property 1 if (1.12) holds for some a* e (o, 7
2
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x2 A

0 XI

Figure 2

G.E. u(x, a) e L2 (Q) corresponding to A = — cos2  a  which can be written in the
form (1.8), (1.9). In the present section we shall describe the structure of the G.E..

Since (1.12) holds for some a* e foci , ... , oc„,}, x l, x 2 e  T ,  x l o x2 then one of
the following two cases holds:

(1) x 1 i s  the fixed point for F(1) for any a e (0, ot*)\loci , ..., am l, x 2 i s  the

fixed point for F(a) for any a e (
'

a* —11)\ {a 1, ... , am ) ;  or
 2

(2) x2  i s  the fixed point for F(a) for any a e (0, a*)\{a l , ... , am }, x l  i s  the
7r

fixed point for F(a) for any a e ( a*
'  
—
2

la 1 , ... , am l.

It may be assumed with no loss of generality that the case (1) h o ld s . For each
case a 5 a* we choose the natural parametrization of F

F = {x(s) = (x i (s), x2 (s))10 s < ll

such that

x(0) = x  ,

x(0) = X2 ,

Œ < a* ,

Œ> Œ*,

and the  domain Q  remains on  the  left when traversing the  boundary in the
positive direction.

7r
It is easy to  see that for any a e ( o  —

2  
{a l , ..., oc }  the  homeomorphism

F(a) can possess one or two fixed points (each fixed point of Roc) is a corner point).

Lemma 2.1 ( [9]). I f  Q  has Property 1 then there exist numbers a l , E

[

0, —7ra l < oc2 such that F(a) has exactly one fixed point f or any ot e  ( 0 0 ,  0 ( 2) \

2 '

loci , ..., a m l ;  F(a) has exactly two fixed poin ts f or any a e ((O, Œ')U (a2 —Ir
) )\' 2
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{al , • ••, an.}. B es id e s  a '  a 2  {
tr

, e  0 ,  a 1 , ..., an ,
'  

—
2

and

7r
(2.1) 0 < <  a* < a 2 < —

2  •

The structure of G.E. u(x, a ) corresponding to 2 = —cos2  a  depends essen-
tially on the number of fixed points of the homeomorphism F(a). Following [10],

0  
It

we define for any a E ( , —
2

la, , ... , am } functions fi (s, ± Œ): (0, 1) (4  (0, 1) by the

following equations

(2.2) (s, a) =  S(T + (a)x(s)) L (s, —a) =  S(T -  (0e)x(s)), S E (0, I)

where by S(x) e [0, 1) we denote the coordinate s of x e F . The functions f i (s, ±Œ)
can be defined also a s  continuous strictly decreasing solutions of the following
implicit equations

(2.3) ri(x(s), = ti(x (fi  (s, a)), a), (x(s), a) =  (x (f i (s, — a)), a) .

In  other words f i (s, ± x )  are "representations" of the homeomorphisms T±(a) in
the variable s.

Define for any a e (0
'  
—
2
) \{a 1 , , a„,}, k E Z functions f k (s, ±Œ): (0, I) '>1 (0, I)

(2.4) fo(s, ± s, ±  =  f i(s, T- a)

fkls, ±  =  fi(fk-i(s , ± 0 ), ( — 1)k + 1 (± a)) •

T hen  f o r  a n y  k e  Z  t h e  functions f2k( 5 , +  a )  a r e  "representations" o f the
homeomorphisms F± k (a) in the variable s. It means that

(2.5) f 2 k ( s ,
 ±Œ) = S(F±k (a)x(s)) (  

it
s E (0, 0 , a E 0, -

2
{al, •••, an,} •

Because of the  properties o f F  and  choice of the  parametrization the  functions
f k (s, ±Œ) satisfy the  following properties [9]:

(1) F or any k e Z  the  functions f 2 k (s, a ), —f 2 k + i (s, a) are strictly increasing

functions in s e (0, 1) and  strictly decreasing functions in  a  E n  n )
2' 2

{0, +a„,};
(TC  7C )

(2) For any k e Z, a e  - -
V  2

{0, ±a i , •••,

fk (fk (s, ( —  
1 )" 1 a) s;

(3) For any k E Z, f k (s, Œ) e  C  (0 , I) x - -(
I I  TC
2 ; i

{ 1 3 ;  ± œ 1 ; . . . ;  ± a m ) ;

(4) fu (s , a) 0 s  for any III e (a l , Œ2 )\{Œ1 , . . . ,  am }, 5 E (0, 1), Ikl e N ; f  ( 1,2k,s, a, o
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s, fk(s 1 , a) = si f o r  any e (0, a') U a 2, ; {a1, am }, s e (0, si )L1

(.91 , 1), k I E N  where

(2.6) e (0, 1) , F(IŒ)x(s i ) = x(s i ) .

Such num ber s l  e  (0, 1) exists and is uniquely determined since F(Œ )

has exactly two fixed points for any e ((0, a l ) U (a2 -rc) )\ {a l , a1
2

and x(0) is fixed point for F ( I )  fo r  any I e  (0 , -
2

) •• •,
G cx2) \  {0415 _ , a m },(5) For any s e (0, 1)

(2 .7 ) {f2k(s, )}% {f2k-Fi(s, a)}%a ,

are strictly monotone sequences having the sets of the limit points {0, /};

F o r a n y  10(1 e (0, a i ) U  a 2 , {al, ..., am } , s e (0, s l )U(s l , 1) the
2

sequences (2.7) are strictly monotone and the sets of the lim it points
coincide with {0, s', 1};

(6) For any lal e (0, ;) , a„,1, k e Z

f2k(s, (x) - - - ->s_,+ 0  + 0  , f2k(5, a) / 0

f2 k +1 (3 , CC)
10 , f2k+i (s, a) + 0 .s-l-o

For any 111 E ((0, oci)U(a 2  7 ) )\ {a i , am }, k e Z
2

f2k(5 , a) si + 0 , f2k+i (s, a) si 21: 0 .s--•s■ ±() s-•si±o

(7) For any k E Z, a
°
 e ( - 7  -1C)  { 0 , ±Œ j , , ±a,„ }, 5 0 E (0, 1)\Ek (a° )  there

2' 2
exists e > 0 such that f k (s, a)eC4 ((s° - E, S0 e )  x (oc° - e, OE

°
 + e)) where

(2.8) Ek(a) = { fi (sp , a)lj = - k, k, p = 1, , n}

lx(s 1 ), , x(s„)}  is  the set of endpoints of {Fi }q .

If j ,  j = 0, ..., 4, i +j4  th e n  th e r e  e x is t
a i+ific

asiaoci ( s * a l p )
for any

n  n
s* e Ek(e ) ,  a °  E  ( -

)
 1 0 , ± Œ , , . ,  + 0(.1.

Let u(x, a) e L2 (Q) be a G.E. of A corresponding to ,I. = -c o s 2 a, a e ( 0, 7
2

{a l , ..., Œm }. T h e n  u(x, a) can be written in the form (1.8), (1.9)

(1.8) u(x, a) = P((x , a), a) + Q(n(x, a), a) , x  e 52 ,
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(1.9) P((x , oc), a) + Q(n(x, a), cc) = 0 ,a . e .  x  e

W e set

(2.9) p(s, cc) = P((x (s), cc), a) , q(s, a) = Q(n(x(s), cc), cc),s  e  [0, 1) .

Then from (1.9) it follows

(2.10) q(s, cc) = — p(s, cc),a . e .  s e [0, 1) .

Because of (2.3), (2.9) we obtain

(2.11) p(s, cc) = P(A(s, —cc), cc),q ( s ,  cc) = q(f i (s, a), cc),s  e [0, 1) .

From  (2.10), (2.11) it follows

(2.12) p(s, a) = p( f„(s, ± cc), cc),a . e .  S E (0, 1), Vk e Z.

Thus any G.E. u(x, a) corresponding to A = — cos 2 cc, cc e (0, 7
i
r)\{cc i , am } gen-

erates some function p(s, a) satisfying (2.12).

Let ŒE— 7c)\ {1 1 , am }. Then for any e e (o(c (), (a)), 11° G (nO(Œ), ql (a))
2

each of the lines a) = ri(x, a) ri°  has exactly  tw o d ifferen t points of
intersection with the boundary F .  So there exist S'±(e, a), §±(ri ° , cc) e (0, I) such
that

{x(§+(e, cc)), x(§- (e ,  cc))} = {x e R 2 1 (x, cc) =  ° }  n F ,

tx(g+ (n°, cc)), x(r(n ° , 00)1 Ix e R2I(x, 11) = fl r,
(1 1 3 ) rl(gle , (x) < q(§" , cc) (,10, oe), < , 01), (x)

In other words the functions g±(, cc), S'±(ri, a) are solutions of the following implicit
equations

(2.14)
{

x 1 (g±( , a)) • sin a + x2 (g±(c, a))• cos oc
x 1 (§±(q, a)). sin a — x2 (g±(q, a)) • cos cc

E Uo(a), (a)]
E [1/0100, P/1100]

satisfying (2.13). Obviously, S±g, oc) e CNo (a), §±(ri, a) e C[q 0 (a), Il i (a)] for

any cc e (0, ;E)  {  , a„,}.

Let cc e (0 
7)
2 {Yi, • • • , (x„,} and p(s, cc) satisfies (2.12). W e set

(2.15) Pg, = PO—  g, 00, , Q ( , cc) =  — P (r ( 11, (x), ot) •

Then from (2.12), (2.14), (2.15) it follows that (1.9) holds. H ence, the following
function

u(x, cc) = P((x, a), a) + Q(n(x, a), a)

is  G.E. from L 2 (Q) if



Let s°  e (0, s') be an arbitrary point. We set

(s° , f2(s° , , s o < f2(so, oc)
s o >  f2 ( s o(2.20) M0(0) =

(f2(s ° , scl
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JP (,=  PO-  ( , c(), G L2,p 1 gO (Œ ), 1(c( ) )(2.16)
[Q(n, tx) = — P(r (n, a), ot) L 2 , 2 0 0 ( Œ ) ,

 /1100) •

Thus any measurable function p(s, a ) satisfying (2.12), (2.16) generates in L 2 (0)
the following G.E.

(2.17) u(x, oc) =-- p(r(c(x, oc), a) — p(r (n(x, a), a), oz)

corresponding to A =  —cos' a, oc e (  0 ,  )  {a l , ...,

Consider the system o f functional equations (2.12). Because o f (2.4) the
system (2.12) is equivalent to the system

(2.18) jP(s, a) = P(fi(s, 0 ), oc), a.e. s e (0, /)
tP(s, 0) =  P(f2(s, 0), oc),a . e .  s  E (0, 1) .

Such functional equations are studied in [11], [12].
Consider the following two cases.

I. Let oc e ((0, a l ) U (a 2 , ;) ) \{ c t i , a . }. T h e n  the homomorphism F(a)

possesses exactly two fixed points x(0) and x(s l )  where s l  e (0, 1) is uniquely
determined by (2.6). From (2.3), (2.4) and the properties of f k (s, a) it follows

(2.19) f k (s i , ±oz) = , fk(s, -±- 0 )s ,1 1 c 1  EN, s e (0, s l ) U (s i , .

Following [10] we shall call Mo (a) the generating set for f 2 (s, a). We denote

(2.21) Mk(oc) =  Ifk(s, a)ls e Mo l , k E Z.

The following lemma follows from the properties of the functions f k (s, a).

Lemma 2.1 ([9]).
(1) Mk(a) n M i (a) = 0, k j ,  k ,  j  e  Z;
(2) U  M2k(0 ) = (0, U  M2k+i = (s l , /).

ke Z k e Z

Corollary 1. L et pl(s, cc), 10 2(s, oc) satisfy  (2.12). Then

Pi(s, = oc)a . e .  s  e  (0, 1)

i f a n d  only  i f
pi (s, a) = p 2 (s, oc) , a.e. s E WOO

Corollary 2. Let p(s, oz), s e Mo (a) be an arbitrary measurable function defined
in  Mo (a). Because o f  Lemma 2.1 f o r  any  s e (0, 1) there ex ists a unique number
k(s, a) e Z  such that
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(2.22) fko,o(s, 01) G  M 0 (
1 ) •

Then the function

(2.23) P(s, = i3 (fkom(s, s G (0 , 1)

is a solution of (2.12).

In other words, any measurable solution p(s, a) of (2.12) is uniquely deter-
mined by the values p(s, cc), s e Mo (a) and any measurable function ii(s, a), s E
MO(CC) generates by (2.23) a measurable solution of (2.12).

Now we can completely describe the structure of G .E . in the case a e

((O, a l )U (a 2  7 ) )  l a i ,
2

Theorem 2.1 ([9]). A ny  G.E. u(x, a) e L 2 (Q) corresponding to 2 =  —cos' a
generates a function p(s, a) e  L2 (M0 (a)) by  the formulas (1.8), (2.9).

Any function P(s, a) e L 2 (M0 (a)) uniquely determines some G.E. u(x, a) e L 2 (Q)
by  the formulas (2.17), (2.23).

II. Let a e (a', a 2 )\ la i , am l. T h e n  F(a) has exactly one fixed point x(0)
and f 2 (s, + a) s  for any s e (0, I). As far as f,(s, +  cc): (0, 1) 1 I., (0, 1) are strictly
decreasing functions then there exist points s±(a) e (0, 1) such that

(2.24) f,(s+ (a), a) = s + (a) , f i (s -  (a), —cc) = (a) .

I f  s+ (a) = s -  (a) then  f 2 (s + (a), cc) = s + (a) contradicts to f2(s, + a) s, s  E (0, 1).
Hence s + (a) s ( a ) .

We set

(2.25) Mo(a) — f ( s +( œ )  s + ( œ ) )
(s (a) s  (a))

s -  (a) < s +  (a)
s -  (a) > s + (a)

the generating set in the case a e (a', a 2 )\{a,, a„,}. D efine  M k (a) by (2.21).

Lemma 2.2 ([9]).
(1) W O E ) n Mi (a) = 0, k  j ,  k ,  j  e Z;
(2) U  M k (a) = (0, 1).

k e Z

Therefore in the case oc E (a l , a2 )Va i , a,„} Corollaries 1, 2 hold and the
structure of G.E. u(x, a) e L 2 (0) is compltely described by Theorem 2.1.

3. Reformulation of Theorem 2.1

Using the intervals M k (a) and the functions f k (s, + cc) w e have described
completely the structure of the G.E. of the operator A .  However the system of
the intervals Mk (a) is not convenient because the length of Mk (a) tends to  zero
as 11c1 —> a )  but, a t  the same time, for any k, JE Z

{p(s, a)Is E Mk (oc)\01 = {p(s, oc)Is e Mi(a)\01
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fo r some se t 0  c  [0, 1), mes(0) = 0 due to  (2 .12). T . I. Zelenyak suggested to
apply a change of variables r = G(s, a): (0, 1) cl■ R  such  tha t the condition

p(s, a) = p(fk (s, ± a), Œ),a . e .  s e (0, I)

could be written in  th e  form

(3.1) p(r, a) = p(r + 2n, Œ),a . e ,  r e R

where f)(r, a) = p(G - 1 (r, a), a). We shall use this idea to reformulate Theorem 2.1
in  a  m ore  convenient form.

W e need the following statement.

Lemma
conditions:

(1) v(s, a) e C4 ([0, 1] x [0, 1]);
(2) v(0, a) 0, 0 < v(s, a) < s, s e (0, 1), a e [0, 1];
(3) vs ( + 0, a) = q(a), 0 < q i q ( a ) q2 < 1 , a e [0, 1].

We set

(3.2) vo(s, a) s , vk (s, a) = v(vk _i (s, a), a) , k e N

(s, a)
(3.3) hk(s, a) -

vk

qk(co  , k e N

There then exists a function H(s, a) e C 2 ([0, 1] x [0, 1]) such that f or any E e (0, 1)

C2 ([0, c] X  [0, 1])
)  Hh,,

k co

3 .1  P l . L e t v(s, cc): [0, 1] x [0, 1] -> [0, 1 ] satisf y  the following

(3.4)
a hk (s, a) a H(s, a)

asi aoci astaoci
< const • ki qk (a) , s e [0, E l a e [0, 1]

   

where i, j = 0 , 1 , 2 , i +1 2 .  Besides, i f  vs (s, a) > 0 , 5E [0, 1], a  e [0, 1] then
Hs (s, a) > 0, s e [0, 1), a e [0, 1].

Such functions H(s, a )  a re  considered in  [1 1 ] , [1 2 ] . T h e  function H(s, a)
satisfies the functional equation of Schriider [11], [12]

(3.5) H(v(s, cc), a) = q(a). H(s, Œ), SE [0, 1), a e [0, 1] .

Consider

(3.6) G(s, a) = 27r • logq (Œ ) H(s, a) , s e (0, 1), a e [0, 1] .

The function G(s, a) satisfies the functional equation of Abel [11], [12]

(3.7) G(v(s, a), a) = G(s, a) + 2ir, s e (0, 1), a e [0, 1] .

Assume v(s, a) is strictly increasing function in s for any a e [0, 1] and v(1, a) 1,
a  e  [0 , 1 ]. Then G(s, a) is strictly decreasing function, G(s, a): (0, 1) x [0, 1] R
and G(s, a) e C 2 ((0, 1) x [0, 1]).
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If some function p(s, a) satisfies

(3.8) p(v(s, a), a) = p(s, a) , a.e. s e (0, 1), a e [0, 1]

then the following function

(3.9) p(r, a) = p(G - 1 (r, a), a) , r e R

satisfies (3.1).

Let [a, b] c (0, —7E)
2

lowing two cases.

•••, at„,} be an  arbitrary interval. Consider the fol-

I. Let [a, b] ((0, a l  )U , ; am l. Then for any a e [a, b] there

exists s' e (0, 1) defined by (2.6). It is easy to check that s ' does not depend on
a E  [a, b]. Then f k (s1 , a) s1 ,
any a e [a, b], s e (0, s i )

f k (s, a) s, a E  [a, b], s e (0, s l ) U (s l , 1). Define for

.51
S I

/2 (S , f 2  ( -
2  

a 
)

< —

2
(3.10) v(s, a) =

s i s i
f2(5 , , f2 , a2

)
> —2

(3.11) v(0, a)0 , v(s l , a) .

Then v(s, a): [0 , s ]  x  [a, b] [0, s ' ]  is a  strictly increasing function in  s;
0 < v(s, < s, s e (0, s'), a e [a, b]. It is easy to verify that for any S E  (0, 1)\E2 (a)
the following equality holds [9]:

ff2 f sin( ± a — y(s)) sin( ± a + y (fi(s ,  ±Œ)))
as ‘s '  .1" OE) — sin( + a — (s, ±Œ))) sin( ± a + T(f2(s, ±Œ)))

where E2 (a) is defined by (2.8) and y(s) e [0, 2n) is uniquely defined for every
s e (0, 1)\E0 (a) by the following equation

(cos y(s), sin y(s)) = 
d x ( s )

ds

Equation (3.13) means that y(s) is equal to the angle between (1, 0) and (xi (s), x(s)).
From the property (6) of the functions f k a n d  (3.12) it follows that

sin(+ a —  y(+ 0)) sin(±cx + y(( — 0)) _ 1
(3.14) f 2 ( +0  ± a) —

sin( + a- y(/ — 0)) • sin( + a + y(+ 0 ))f 2 ( + 0 ,  + 1 )

As far as [a, b] fl {oci , ..., am } = 0 then

(3.15)f 2 ( + 0 ,  ± a) {0, 1 , , a E  [a, b] .

Because of (3.14), (3.15) we obtain

(3.12)

(3.13)



(3.20) v _ k ( s ,  a )  =  v k ( s ,  -  a )  =  
f2 k ( s ,  - a) , v(s, a) =  f2 (s, a),

v(s, a) = f 2 (s, - a ) .f2k(S ,  OE)
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{

f2s ( +0, a) e (0, 1), a e [a, h] if f 2 (s, a) < s, s e (0, s1 ) ,
f2( + 0, - )  e  (0, 1), a e [a, b] .f2(s, > s, s e (0, s 1 )

Hence v s ( + 0, a) e (0, 1), a e [a, b] and there exist q1 , q 2  E (0, 1) that

(3.16) 0 < q 1q ( a )  =  v(+ 0, a) q2  < 1 , a e [a, b] .

From  the property (7) of the functions f k and (2.8) it follows that there exists
e E (0, s 1 )  such that f 2 (s, +a) e C 4 ([0, x [a, b]). Using Lemma 3.1 we obtain
tha t the function

vk(s, a)
(3.17) (s, a) = 27r • log (a) (hm  k

q k - . c o  q  (a ) )
s e (0, c], e [a, b]

satisfies (3.7) for any s e (0, e], a e [a, b] and

(3.18) d1(s, a) G C 2 40, x bl)

Let Mo (a) = (v(e, a), e] be the generating set for v(s, a). Hence for every s e (0, s 1 ),
a e [a, b] there exists k(s, a) e Z  such that

(3.19) vk(s,,,)(s, a) e Mo (a)

where we set

Define

(3.21) GI (s, a) =  Ô1 (vk ( s ) (s, a), a) - 27r • k(s, a) , s e (0, s 1 ), a e [a, b].

Because of (2.4), (3.17), (3.21) and continuity of f k (s, + a ) the following equality
holds

(3.22) G i ( s ,  a )  =  2 7 r  •  l o g , ( Œ )  l i m  
14 (

k

S, a))
s e (0, s l ), a e [a, b]

q  (a)

and Gi (s, a): (0, s1 ) R  is strictly decreasing function satisfying (3.7) for any s e
(0, s 1 ), a e [a, b]. Using (3.18), (3.21) and the property (7) of the functions f k  we
obtain

GI(s, a) e C((0, s 1 ) x [a, b])n c2(((0, s 1 )\E(a)) x [a, b])

and for any i, j = 0, 1, 2, i + j 2, a e [a, b], s* e E(a) there exists

± 0, a) =  l i m  . .(s, a)
OszOa' s,s•±0 Os'ea'

where

(3.23) E(1) = U Ek(a) = fk (s), ±a)lk  E Z, j = 1, ..., .
k e  N
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Hence the function

(3.24) (r, a) = p(G i (r, a), a) , r e R, a e [a, b]

satisfies (3.1).
Consider the interval (s', 1). Denote

f2 (5  + 5 1 , cc) — 5'

for a E [a, b], s e [0, 1 -

(s i  +  / s ' + l
J 2

, cc <
2 ) 2

(3.25) w(s, a) =
(s i  +  /,

f2, or) + /
f 2 (s + s i , -a )  -

2 2

(3.26) w(0, a)0 , w ( /  - , a) 1 - s
,a  e [a, b] .

Then w(s, a): [0, 1 - x [a, b] n [0, 1 - .0 ] is  a  strictly increasing function
in  s; 0 < w(s, <  s, s e (0, 1 - a e [a, b]. Using (3.12) and the same argu-
ments as for the function v(s, a) we obtain that there exist d1 , d2  e (0, 1) such that

(3.27) 0 < d, d(a) = w s ( + 0, a) d2  < 1 , a e [a, b]

and the following function 

. wk(s, a)(3.28) 6 2 (s, a) = 27r • logd ( a ) ( lim ,5 E (0, 1 - s i ), a e [a, b]
k - . 0 0 dk(a) 

)

satisfies

(3.29) .62(w(s, a), = 62(s, a) + 2m,s  e  ( 0 ,  1 - a  E [a, b] .

Define

(3.30) G2(s, a) = 6 2 (s - s i , a) + , s e , 1), a e ]a, b] .

Then G2 (s, a): (s i , 1) (1■ R  is strictly decreasing function satisfying

(3.31) G2 (w(s - s , a) +  ,  a) = G2 (s, a) + 2m,s  e  (si , 1), a e [a, b] .

Besides

G2(s, a) e C((s i , 1) x  [a, 6]) n c 2 (((st, 1)\E(a)) x [a, b])

and for any i, j = 0, 1, 2, i + j  2 ,  a e [a, b], s* e E(a) there exist

i - f iG2. .(s* + 0, a) -  l i m  
O f t i G 2

.(s, a) .3s 3a s-s*±0 as i ea'

Let p(s, a) satisfy (2.12). From  (3.25) it follows

(3.32) p(w(s - a) +  ,  a) = p(s, a) , a.e. s E , 1) .

Then the following function

(3.33) P2(r, a) = P(GV (r, a), , r e R
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satisfies

(3.34) P2(r, = P 2(r + 2n, a) , a.e. r E R , a e [a, b] .

Because of (2.11), (3.24), (3.33) and f i (s, -Œ): (0, s') 24 (s', 1) we obtain

(3.35) fiz(Nr, ot), = Pl(r, r E R, a E [a, b]

where

(3.36) Mr, = G21.A(Gi i (r, a), - x), , r E R , a e [a, b]

is  a  continuous strictly decreasing function, fi(r, a): R R  and

(3.37) I3(r + 2n, a) = fi(r, a) - 2n , r e R , a e [a, b] .

Thus Theorem 3.1 in the case a e ((0, Œ1)U(Œ2, --7C))\ {a ,, am }  can be written
2

in  the  following form.

Theorem 3.1. Let a  e  (0 , Œ
1 ) U ( c

2 ,{ a 1 , Œm }. There then ex ist con-
2

tinuous piecewise smooth strictly decreasing functions Gl (s, a): (0, sl ) LI R , G2 (s, a):
(s l , 1) (4  R, fi(r, cc): R  R  satisfying (3.7), (3.31), (3.37) which are uniquely determined
by  the shape of the boundary T  and such that:

(1) If u(x, a) E L2(0) is G.E. corresponding to 2 = - cos 2  a  then there exist
fi 1 (r, a), p 2 (r, a), r e R  satisfying (3.35),

(3.38) Pi(r, a) = (r +  2n, a), a.e. r e R, j =  1, 2,

(3.39) fii(r, a) e L 2 (0, 2n), j =  1, 2

and such that u(x, a) satisfies (2.17) where

(3.40) p ( s ,  a )  =

Çj31 (G,(s, ce), a)
P2 (G2 (s, a), a) ,

E (0,
s e (s', 1) .

(2) A ny functions fi 11r, 2(r, 0), r e R  satisfying (3.35), (3.38), (3.39) deter-
mine uniquely some G.E. u(x, a) E L2 (0) corresponding to 2 = - cos 2  a by
the formulas (2.17), (3.40).

Let [a, b] (a', Œ2 )\{ 1 ,
W e set for any s e (0, 1), a e [a, b]

f2(s, a) ,

Then f 2 (s, a)

f2 ( 2/ , <  2/

s, s e (0, 1), a E [a, b].

,

(3.41) v(s, a) =

f2(s5 ot) f2 ( , Œ ) , 5

(3.42) v(0, a) a 0, v(/, a)I .
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Then v(s, a): [0, 1] x [a, b] [0, 1] is strictly increasing function in s; 0 < v(s, a) <
s, s E (0, 1), a e [a, b]. Applying the same arguments as in the case I we obtain

0 < q, q(a) = v s (+ 0, a) q2  < 1 , a e [a, b] ,

the following function

(s a)
(3.43) G(s, a) = 2n • logq (Œ ) l i M  

v 
k

ks  e  (0, 1), a e [a, b]
k—.co q  (C)

satisfies (3.7), G(s, a): (0, 1) x  [a, b] R is strictly decreasing in  s,

G(s, a) e C((0, 1) x  [a, b]) n c2((o, 1)\E(Œ)) x  [a, b])

and for any i, j = 0, 1 , 2 , i + j 2, a e [a, b], s* e E(a) there exists

a i ± iG ai+i G
. .(s* + 0, a) =  l im  .(s, a)as`aa , s - s . ± 0  asiaa ,

Since

p(s, a) = p(f2 (s, ± a), a) , a.e. S E (0, 1)

the following function

(3.45) p(r, a) = p(G - 1 (r, a), a) , r e R

satisfies

(3.46) p(r + 2n, a) = p(r, z ),a . e .  r e R .

Because of (2.11)

p(s, oc) = p( f,(s, —z), Œ),s  e (0, 1) .

Hence

(3.47) p(kt(r, a), a) = fi(r, 4 , r  e  R

where

(3.48) i(r, a) = G(f 1 (G- 1 (r, oc), — a), a) , r e R

is continuous strictly decreasing function which maps R  onto R  and

(3.49) kt(r + 2n, a) = p(r, a) — 2n , r e R ,

(3.50) ti(12(r, a), a)r , re  R .

Thus in the case e  (co , a 2)\ 10t1, ocm ,,11 Theorem 2.1 can be w ritten in the
following form.

Theorem 3.2. Let a e (a 1 , a 2 )\{a 1 , am }. Then there exist continuous piece-
wise smooth strictly decreasing functions G(s, a): (0, 1) -

°4 R, tc(r, a): R  R  satisfying
(3.7), (3.49), (3.50) which are uniquely determined by the shape of  the boundary r
and such that:
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(1) I f  u(x, a) e L 2 (0) is  G.E. corresponding to 2 = — cos 2  a then there exists
fi(r, a), r E R satisfying (3.46), (3.47),

(3.51) P(r, cre) e L 2 (0, 2n)

and such that u(x, a) satisfies (2.17) where

(3.52) p(s, a) = p(G(s, a), Œ),s  e (0, 1) .

(2) A ny  f unction P(r, a) ,  r E 11 satisfy ing (3.46), (3.47), (3.51) determines
uniquely some G.E. u(x, OZ) E  L 2 (Q )  corresponding to 2 = — cos 2  a  by  the
formulas (2.17), (3.52).

4. Integral representation of solutions

Consider the operator equation in  * 1 (Q)

(4.1)u 1 1  = Au,u  E *RD) .

S. L . Sobolev suggested to look for solutions of (4.1) in  the form

(4.2) u(t) = fx„ • exp(i — A • t)dp(A)
-1

where x ,  i s  a  family of G.E. of the  operator A , p(2) is  som e  nondecreasing
function. Consider the following function

n/2

(4.3) v(t, x) = Ie x p (i •  cos a • t)• u(x, Œ)dŒ
Jo

where u(x, a) is some family of G.E. in L2 (52) corresponding to 2  = — cos 2  a. If
v(t, x) e *1(S2) for any t > 0 then v(t, x) satisfies (4.1). So we shall discuss under
what conditions on the family u(x, a) the following function

n/2

(4.4) u(x) = Iu ( x ,  a)da
Jo

belongs to * 1 ( 2). In section 6 we derive the Parseval's equality for the integral
representation (4.4) which gives complete answer to this question. In the present

section we construct a  class of smooth G.E. u(x, a) e C2 (S2  x  [0 , 1 ) such that
2

U (X ) E  * 1 (Q ) n C(.(2) n c 2 (Q ) .

W e consider again two cases.

I. L e t  [a, b] ((0, a 1 ) U a 2 , {ai, , an,} b e  a n  arb itra ry  interval.

Then for any a e [a, 6 ] each G.E. u(x, a) e L2 (2 ) corresponding to A = — cos2 a
is uniquely determined by some functions Pi (r, a), j  = 1, 2 satisfying (3.35), (3.38),
(3.39). From  (3.38), (3.39) it follows that fii (r, a) can be regarded as  a  function
defined on the
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(4.5) x [a, b] = {exp(ir)Ir e R}  x [a, b] = { t e C  t  = 1 }  x  [a, b]

the lateral surface of the unit cylinder 17: = {(x, ) I x  5  1 , a e [a, b ]} .  So instead
of pi (r, a) we can consider the functions

(4.6)
f Œ)= pi (arg t, a), ti = 1, a e [a, b] ,
113;(t, oc) G L 2 (S1 ) , a e [a, b].

The function I3(r, a) defined by (3.36) generates

(4.7) /1(t, a) = exp(i • fi(arg t, a)) ,t  =  1, a e [a, h]

an orientation-reversing homeomorphism of S1.
Consider the set E(a) defined by (3.23). From (2.4), (3.23) it follows that

(4.8) E(a) = {i2k(s, a)lk e Z, SE E,(Œ)}

where from (2.8)

(4.9) E i (a) = { fi (sp , a)1 j  = —1, 0, 1; p = 1, , n} ,

{x(s 1 ), , x (s)}  is the set of the endpoints of {r i }q .

So E 1 (a) is a finite set. Denote

0,(a) = {exp(iG,(s, aflis E E l (a) ("1 (0, .0)1 c Si ,
(4.10)

t 0200 = {exP(iG2(s, c))Is E E,(Œ) n (s', c .

Since O s, a) satisfy (3.7), (3.31) then using (3.10), (3.25), (4.8), (4.10) we obtain

4.11) 01(a) = {exp(iG i (s, a))I s E E(a) n (0, s1 )}( 
t02(a) = {exp(iG2 (s, «))i s e E(a) n (sl, l)}.

Because of (4.9), (4.10) and continuity of f k (s, ± z)

(4.12) 01(a) = {T1 =  1, kl } , 0200 =  {TIM  = 1, ..• k2}

w h e r e  ( a ) ,  (a): [a, b] —+ S1 are some continuous functions uniquely determined
by the shape of the boundary.

Since

{A(S, — Os E (0, S I ) n E(Œ)} = n E(a)

— a)ls e (sl, /) n E(col = (o, n E(Œ)

then from  (4.7), (4.11), (4.12)

(4.13) 02(a) = fi(Oi (a), 01) = { fift, cOlt e 0 1001

Hence

(4.14) pci = k2
(ci(a) = (a), cc) , j  = 1, k1.
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For any e > 0 we denote by  k a [a ,  b ])  such a  se t tha t p(t, a) e
if p(t, a) e C 2 (5 1 x  [a, b]) and the following condition holds

( 0  Pt(t, cc) =  O  i f  t T.1(0  G  8  for some j e {1, ..., k i  }.
Let j5(t, cc) e hram  b e  an  arbitrary function. Then using the properties of G1 , G2,

/3 and formulas (4.11)-(4.14) we obtain that

(4.15) p(s, cc) =  
re x p ( iG i (s, cc)), a) , s e (0, s 1 )

/5(exp(ifi- 
,

satisfies (2.12),

(4.16) p(s, a) e C 2 ((0, s1 ) x [a, b]) fl C 2  ((s1 , 1) x [a, b])

and for any cc* e [a, b], e E(a*) there exists 6 > 0 such that

(4.17) p,(s, cc) = 0 , 5 E (s* - 6, s* - 6), cc e (a* - 6, a* + ô ) .

From the properties of the boundary F and formulas (2.14), (4.15)-(4.17) it follows
that G.E. u(x, cc) defined by (2.17), (4.15) satisfies

u(x, cc) e C2 ( 2  x  [a, b]) ; u(x, a) e L 2 (Q), a E [a, b] .

We denote by B ram  C 2 (Q  x  [a, b]) such set of G.E. u(x, a) e L 2 (Q) that u(x, a) E
B[a , bi if there exist e >  o, E  k a ,b] that (2.17), (4.15) hold.

II. L e t  [a, b]( c c ',  0 ( 2) \{0 ( 1 , , } be an  arbitrary in te rva l. Then for any
a e [a, b] each G.E. u(x, cc) e L 2 (Q ) corresponding to 2 = - cos 2 oc is uniquely
determined by some function p(t, a) e L 2 (S1 ) satisfying

(4.18) fj(fi(t, cc), oc) = P(t, a)

where

(4.19) ft(t, a) = exp(i • u(arg t, a))

is  a n  orientation-reversing homeomorphism o f th e  u n it circle S ' satisfying the
Carleman's condition

(4.20) fi(tl(t, oc), a) t , t eS 1 .

Denote

(4.21) 0(a) = lexp(iG(s, a))ls e E,(a)} S1 .

Then there exist lc, E N  a n d  continuous functions T i (a), Tko(cc): [a, b] SI
such that

(4.22) =  {T; (0)1/ = • • k o }  •

From (4.8) it follows that

(4.23) 0(a) {exp(iG(s, a))1S E E ( C ) }  •

Since

l(G2(s, a), cc)), oc) , s e (s 1 , 1)
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{Ms ,  —Os G E(Œ)} =  E(a)

then

(4.24){ . ù ( s ,  a)Is e OW} = 0(a) .

F o r any v > 0  we denote by 4 ,„1 C 2 (S 1 x  [a, b]) such se t that
if p E C 2 (S 1 x [a, b]) and  the  following condition holds:

(ii) = 0 if  It — r(c) I < e  for some J e {1, •  ko}.
Let fi(t, a) e ilra ,„1 b e  a n  arbitrary function satisfying (4.18). Then
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P(t,cx) G bra,b]

(4.25) p(s, a) = p(exp(iG(s, a)), Œ),s  e (0, 1)

satisfies (2.12),

(4.26) p(s, a) E C2 ((0, 1) x [a, b])

and for any a* e [a, b], s* E E(a*) there exists (5 > 0  such that (4.17) holds.
So from the properties of the boundary T  and formulas (2.14), (4.17), (4.25),

(4.26) it follows that G.E. u(x, a) defined by (2.17), (4.25) satisfies

u(x, a) e C2 (0  x [a, b]) ; u(x, a) e L 2 (0), e [a, b] .

We denote by B[a b] C 2 (S2 x [a, b]) such set of G.E. u(x, a) e L 2 (Q) that u(x, a) e
Bl a b ]  i f  there exist E > 0, Mt, a) e that (2.17), (4.25) hold.

Thus for any [a, b] c  (o  ;  fa l , ..., am } we have defined the set of functions

u(x, a) E B l a b ]  su c h  th a t u(x, a) e C 2 (S2 x [a, b]) a n d  fo r  any a e [a, b], u(x, a) e
L 2 (Q) is G.E. of the operator A  corresponding to 2 = — cos 2  a.

nWe denote by D  set of the  functions u(x, a), x e Q, a e [o  —
2  

satisfying the

following conditions:
(1) u(x, a) e L 2 (Q) is  G.E. o f A  corresponding to A = —cos '  a  fo r  any a E

(0, ; ) ;

(2) u(x, a) G c 2 (Q X [0, 7d ) ;

(3) there exists .5 > 0 such that u(x, a) --- 0, a e [0, (5] U ——71 ( 5 ,  —7C 0  [a. — .5,[
2 2  J . 1 '

ai  + (5];

(4) u(x, a) e Bra ,„3 f o r  any [a, b] c  0 ,  ; {al , ..., am }.

Theorem 4.1 ([9]). I f  u(x, a) e D  then
n/2

(4.27) u(x) = f u ( x ,  OC)da E *142) n n  c 2 ( \{ P 1 , P })
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(4.28) (x)1, I ux,(x)I
1

const • E 
1P;  —

where Pi , , Pk e F, k 4  are corner points of  F  such that each

point of  F(a) f o r some a e (0, —11)  fa,,
2

II is f ixed

Corollary. If  u(x, a) E D  then the function v(x, t) defined by (4.3) is a  continu-
ous solution of  the equation (4.1).

5. Piecewise constant G.E.

Piecewise constant G.E. (P.C.G.E.) of the  operator A  were first studied by
R. A. Aleksandryan [13]. W e consider again two cases.

I. Let a e ((0, Œ1 ) U (a 2\ { a ,  , ,  a } .  Let 0 e  [0, 2n) b e  a n  arbitrary
2

p o in t .  W e set

[t 1 , =  ,

Following (2.17), (4.15) we define

(5.2) p(s, a, 0) = 
{p i  (Gi  (s, a), a, 0) , S E (0, S 1 ,

fi l (fl - 1 (G2 (s, a), a, 0) , s e (s1 , 1)

(5.3) u(x, a, 0) = p(Ss-  ( (x, a), a), a, 0) — p(r(q(x, a), a), a, 0) .

We shall call u(x, a, 0) the  P.C.G.E. generated by 0 e [0, 2n). From (5.1)—(5.3) it
follows that u(x, a, 0) e {-1, 0, 1} for any x e Q.

The structure of u(x, a, 0) is rather simple: values 0, 0 e [0, 27r) generate points

(5.4) s(0, a) = GT1 (0, 4 ,s ( 0 ,  a) = GT1 (0, a)

which belong to (0, s 1 ); the points s(0, a), s(0, a) generate two infinite polygonal
lines with the segments parallel to  the  lines a) = const, n(x, a) = const (see
Figure 3); these polygonal lines form infinite set of parallelograms Ilk Q ,  k E Z

such that (see Figure 3)
_ o k 5

(5.5) u(x, a, 0) = f o

x e /7k ,

xeQ \IJ //k .
k e Z

II. Let a e ,  2 )\{a1 , am }. Let 0 e [0, 2n) be a n  arbitrary p o in t .  We

(5.1) Pi (r, a, 0) =
1 exp(ir) e [1, exp(i0)] 5 i
0,ex p (ir)  [1 , ex p (i0 )] s ■

where for any t1 , t 2 e S 1 we denote

I
lexp(ir)larg r arg t2} arg t, arg t 2

Iexp(ir)larg t, r arg t 2 + 2 } , a r g  t, > arg t 2 .

set
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4 110
Figure 3

(5.6) 13(r, oc, 0) = {
1 ,

0 ,
exp(ir) e [exp(i0), exp(ip(0, O h .
exp(ir) [exp(i0), exp(440, cO) ] s , •

Then /3(r, a, 0) satisfies (3.47). Following (2.17), (4.25) we define

(5.7) p(s, a, 0) = p(G(s, a), cc, O),s  e  (0, 1) ,
(5.8) u(x, a, 0) = pCS- ( (x , a), a), a, 0) - p(S-  (n(x, a), a), oc, O).

Using (5.6)- (5.8) w e obtain that u(x, a, 0) e { - 1, 0, 1} for any x e Q .  The struc-
ture of u(x, a, 0) is rather simple: the point 0 E [0, 2n) generates

(5.9) s(0, a) = cc)

which belongs to (0, 1); the point s(0, a) generates infinite polygonal line with the
segments parallel to the  lines a) = const, ti(x, a) = const (see Figure 4); this
polygonal line forms a n  infinite se t o f parallelograms ilk Q ,  k e N  such that
(see Figure 4)

(5.10) u(x, Œ,  0) =
(-1)k • sgn(0 - arg(exp(ip(0,  cc)))),x  G

0,x eQ \U  l lk  •
k e  N

  

Figure 4
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Theorem 5.1 ([9]). Let u(x, a) e D. Then
satisfies:

j2 i t
(5.11) (Au(x), u(x, a, 0)) L " ) =  -

2

P7(r, a)

the function u(x)

—r 0
cot cot

defined by (4.4)

22

— 15

,

1 ( r ,  a )  [  c o t
r — a)

—co t-
2

1dr2

G (0, C( 1 ) U (0(2 , 11)\{OEI, aml;2

—r 0 r — tt(0, a)f2R
(5.12) (Au(x), u(x, 69)1,2(a ) =  --

2 0

P u (r  , a)

if e 012) v oci, cem l .

cot drcot 22

The functions p7 f i" correspond to  the fam ily  o f  G.E. u(x, a) and are
determined by (1.8), (2.9), (3.24), (3.33), (3.45).

Remark 1. Since u(x, a) e D  then u(x) E  *1 (0 ) n  C 2
( ) fi C2 4 \ I P i , _ _ P k »

So regard

(zIu(x), u(x, a, 0)) L 2 ( Q )  =  lim  (Au(x), u(x, a, 0)) L 2 ( 0 0

(5.13)
12, = {x Qldist(Pi , x) > E, =  1 , . . . , k } .

Remark 2 . The integrals on  the  right-hand side of (5.11), (5.12) are  under-
stood in  the  sense of the Cauchy principal values.

6. The Parseval's equality

I n  th e  present section w e derive th e  Parseval's equality fo r  th e  integral
representation (4.4).

1. Let a e ((0, a l ) U (a 2 , -2))\ioti, • • • We denote
,

(6.1) L2 =  {p(r), r E Rp E L2 (0, 2n); p(r + 2n) = p(r), a.e. r

Let P(r) E  j2  be a n  arbitrary function. W e define

(6.2) A(a)p(r) = u(x, a) = p(S-  ( (x, a), a), a) — p(r(r/(x, a), a), a)

where

(6.3) p(s, = ffi(G1 (s, a))
[P(fl - 1 (G2(s, a), a))

From Theorem 3.1 it follows that A(a) is linear operator which maps L 2 on to
the  space o f G.E. u(x, a) e L2 (Q) corresponding to 2  = — cos 2 a. T h e  following
statement can be derived from the results obtained in  [9].

S E (0, s 1 )
SE (s 1 , 1) .
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Lemma 6.1. For any  interval [a, b] ((0, a l ) U (cc2

'

 7
.±.) )  { a 1 , , af f,} the op-
2

erator A(a) is bounded uniformly in a e [a, b]. It m eans that there ex ists a constant
C > 0 such that

(6.4) A(Œ)) L
2(D) C • L2(O, 2 n) p e a e [a, b] .

Let v e [0, 2n) be  a n  arbitrary p o in t .  From (5.1)—(5.3) it follows that

(6.5) A(a)0(v — r) = u(x, a, v)

where

19(9) = { 1 'o ,

is  the Heaviside's function. It is easy to see that (6.2), (6.3) imply

(6.6) A(a)C = 0

for any constant C.
Let p(r, a) E C 1 [O, 27c]. Then

27r
(6.7) u(x, a) = A(a)P(r, a )  =  A ( a ) ( f  pv (9, a)• (9(r — 9 )4 + a))

af
 P , (9 ,  a) • A(a)0(r — 9)d9

 f—= 
f 7c P2

( 9 ,  a) • A(a)(1 —  0(9 — r))
o

dcp

2 it
( p a)• u(x, a, (p)dcp

o

II. Let a e (a 1 , a2 )\ foc,, am l. C o n s id e r  th e  function p(r, a ) defined by
(3.48). Since p(r, a): R R  is  a  strictly decreasing function then there exists a
unique number r*(a) e R such that

(6.8) p(r*(a), a) = r*(a) .

Define

(6.9) ilo(r, a) = 2ir — r*(a) + p(r + 1'00, cc), r E R .

Then from (3.49), (3.50), (6.8), (6.9) we obtain

(6.10) tio(r + 2n, (x) = (x) — 2n , r e R,

(6.11) /10(110(r, cx)r ,r E R ,

(6.12) /10(0, oc) =  27r, /10(27r, = 0.
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Hence 12(r, a): [0, 2m] ( >1 [0, 2m] is  a  strictly decreasing function satisfying (6.11). If
fi(r, a) satisfies (3.46), (3.47) then the  following function

(6.13)

satisfies (3.46) and

(6.14)

We denote

(6.15)

Po(r, a) = fi(r + r*(a))

Po(tio(r, oc), ct) = Po(r, cx) a.e. r e R .

Go (s, a) = G(s, — r*(a) , s e (0, 1) .

Thus Theorem 3.2 can be written in  the  following form.

Theorem 6.1. Let a e (a l , a2 )\{a 1 , . . . ,  am l. Then there exist continuous piece-
wise smooth strictly decreasing functions Go (s, a): (0, 1) cl■ R, p o (r, ce): R  R  satisfying
(3.7), (6.10)—(6.12) which are uniquely determined by the shape of the boundary r
and such that:

(1) I f  u(x, a) L2 (Q ) is  a G.E. corresponding to Â = cos 2 a  then there exists
Po (r, a), r n R satisfying (3.46), (6.14),

(6.16) Po(r, a) e L 2 (0, 2m)

and such that u(x, a) satisfies (2.17) where

(6.17) p(s, a) = Po (Go (s, a), a), s e (0, 1)

(2) Any function po (r, a), r e R satisfying (3.46), (6.14), (6.16) determines some
G.E. u(x, a) e L 2 (Q) corresponding to Â  =- — cos2 a by  the formulas (2.17),
(6.17).

It is a lso  easy  to  check that (5.12) can be written in  the  form
2n

[ 1 0 0 9 ,  a l
d r(6.18) (Au(x), u(x, a, 0)),,, (Q ) = a)[cot

r — 6

2c o t
r —

2 

As far as 1.40 (r, a): [0, 2m] ) 1 *I [0, 2m] is strictly decreasing function then there exists
unique 9*(0) e (0, 2m) such that

110(9 * ( ) , =  9 * (a) •

Denote

(6 .19) L2, , 0  =  tp(r, a), r e R, a e (0, 1
2
E) p(r, a) e L2, a e (0, 71);

2

p(pp (r, a), a) = p(r, a), a.e. r e (0, 2m), e ( 1,  

Œ 2 ) \ { c 1 ,
a m }

F or any p(r, n L2 we define u(x, =  A (a )P  e  L 2 (g2) by (6.2) where

(6.20) P(s, oc) = P(Go(s, oc), ot)
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From Theorem 6.1 it follows that A(a) is  a  linear operator which map f.,2 0

onto the space of G.E. u(x, a) e L 2 (52) corresponding to 2 = —cos' Œ. The follow-
ing statement can be derived from the results obtained in [9].

Lemma 6.2. For any  interval [a, b ]  c  0, —n  { a , ,  ,  a „ , }  th e operator A(a)
2

is bounded uniformly in a e [a, b ] .  It m eans that there ex ists a con stan t C > 0
such that

(6.21) II A OOP L2 (Q) 15- C . IIPII L2 (0,27) , p e if.,2 ,120 , e [a, b] .

Let v e [0, 9*(a)] be an arbitrary point. Because of (5.6)—(5.8)

(6.22) A(a)(e(fio(v, cx) — r) — 0(v — r)) = u(x, a, v)

Let p(r, a) E C1 [0, 2n] fl L2 , 120 . Then

(6.23) u(x, a) = A(a)(r, a) = A (Œ )( 'P 2 ( 1 ( r '  cx)'

= A(a) 1 (I : 7' P9 (9, cc)[0 (r — 9) + O(io(r, c() 4 9 )]d9  + 2p(o, co)

= A (a ) (f 2 7 ' P9(9 , CO [ 1 — 0(9 — r) + 0 1I1o19, —  rndcp + 2p(0, a))
2 0

1
2 n

=  f o  P,(9, ot)A(0 )[ 0 (14o(49, cc) — — 0(9 — r)]clq)

1
= 0  a)• u(x, a, (p)4  .

Let
2n 2n

(6.24) v(x) = Iu v (x , a)d a , w(x) = f  uw(x, a)da
Jo o

where uv(x, a), uw(x, a) e D . Then using (4.27), (5.13) we obtain

f(v, w) 1( Q )  = vx ,- w 1 + v x 2 . wx 2 dx = lim vx i  • wx i  + vx , . wx ,dx
o E-00 f2

J

k aW j

s=  — liM  . V • zlwdx + E  iim v . — u
e - , 0  1"-4 j=1 E - . 0  Si(e) u n

where

S (8 )=  {X  G Q IIX = j 1, , k .

From (4.27), (4.28) it follows that

aWE l i r n f  v  •  ds = 0
j=1 Si(e) On
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Using (5.11), (6.7), (6.18), (6.23) we obtain

(y, w)4,1(Q)

2n
= —urnu u ( x ,  a)- Awdadx

e - 0 J Q, 0

I
C2

=  —urn f  [ ,(cp, cx)• u(x, 9)d9dot
o 0 0

1 OE2 2n n/2 2n

+ 2 j a i  j. ,(9, a)• u(x, 9)d9doz - fi,p(9, a)• u(x, 9)d9dot
,c2

• tl w(x)dx

1  C a l f2n 1
0 2

n

Jo  Jo

v -  9
fiv (9, co[p(r, a)(cot

r

 cot —
2
)

2 2

r - 13(9, a)
- Nv(r, a)(cot  

2 cot —
2
)1 drd9da

+

a 2

4 0  
P:;(9,  c()[13Nr,

0 
a)(cot

r
 -;  —  c o t  

r — 1(9,11
 d r d 9 d a2

9

n/21 2n 2n

2 OE2 j o

f

n 9 1  (X) [fio
r 9(cot 1—. )cot 22

a ) ( c o t  
r — a)

cot -
2
)12 drd9da

where

(6.25) uv(x, a) = A(a)pr, ci), , ) = A(a)r(r, a)

(6.26) filv(r, a) = Pw(r, a), pn r , a) = Pw(r ( r ,  a), a), a e ((0, a')U (a 2 , ) )

(6.27) Vr, =  r(r, ix), Œ e  ( a l , a z)

and 13v, fi'v e C2 (R x [0, i
7E] )  n Bi„, b1 fo r  a n y  [a, b.] c (0, 7i1)\{11, • • • a s  uv,

uw eD .
Denote

in(r, a) = fiv(r, a), MO', = P u (r i (r, OE), OE) a e ((0, a l )U (a 2 , ) )

M(r, a) = fiv(r, a) , Œ e  ( a l , a z)

Using the properties of fl(r, a), po (r, a), V(r, a) we obtain
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2n

r  —  # ( 9 ,  a) —  y
— . {

(9, a). cot 2  d9 = — ow' (y, a), a)), • cot  2   d y
0 J2i

= 1.

2x 

(M(y, a))y • c o t 
r — y 

d y
o 2

2n 2n/1 0(9, a)—  y— P;(9, a)• cot
r  —

d9 = (0,Vy, a)),• cot dy.
Jo 2 2

Hence

(6.28)
(y, w)4 ( D )

1 f i l  C2n J 
0

. 2n v —
= 1 1 UP 1(49 , a)),,A v (r, a) + (Pi(49 , a))9P

r 9
itr, a)] cot drd9da4

. 0  JO 2
± 1 f c(2 f 

0 
2n f

0 2

n v —
(P0(9, a))

r 9
4,g(r, ) cot drd9da2 „, 2

1 f t/2 r2n+ 
1  j  

f 2n v — 9
[01(9, capPitr, +  (Pi (9, c()),PNr, a)] cot

r

d r d 9 d a2 ,2 o o 2
We write px, Pjw e L2, j  = 0, 1, 2 in the form of Fourier series

1PJF(r, a) = a ( a )  +  E (al. v(a) cos k r + b (a)  sin kr)
k=1

co

(6.29)

-
cos k r = —

2 n  0  

sin ky • cot
1 f 2n

'
— r
2 d y

sin k r  =  - -  f

:

7' 

COS ky • cot 2 dy. .y — r

Using (6.28)—(6.30) we obtain

c°[(6.31) (y, w)4,1( Ø ) = It2
k  • E (aki•v(a)a,i,•"'(a) + be(a)13"'(a))da
k=1 j=1,2

f  2 2±  Œ i (4 v (a)kw (a) + bv(a)14•w (a))da

n/2

E (alla)al•w(a) + bki•v(a)1V•w(a))da
2 2  j=1,2

r e R ,

00

pr(r, a) = a4'w(a) + E (a•w(a) cos kr + bi•w(a) sin k r , r e R.
k=1

From  the Hilbert's formulas [14] it follows that

(6.30)

We denote
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(6.32) W1/2 = {p(r) G L2 n w 112 0, 270 fo
2 n  

p(r)dr = 0} ,

(6.33) 11/3112*1/2 = rc2 . k(cd + bZ) ,
k=1

where
2n 1

(6.34) ak = -

1 1 2 f f

p(r) cos krdr, , bk  =  - p(r) sin krdr. .
g o g o

Thus if u(x, a) e D then the function u(x) defined by (4.4) satisfies

a'
(6.35) liull 241(Q) = (11fiie, 01 2iiv1/2 + 0)112*1/2)da

Jo

n/2
+ cx)112tvpda + (I1P7(•, 0011 2:v1/2 + C01121-41/2)d1

a 2

where 13, i5  e L2 n vvy2, e VVY2 satisfy

u(x, a) =  A (a )(r , a) = A(a)M(I3(r, a), Œ),a  e ((0, Œ')U (1 2 , ) )\ { ...,

u(x, a) = A M M (r, a) ,

We denote

e a 2)\a m }

(6.36)L 2 , 0 =  {p(r, e f0

2 / E  

p(r, ec)dr = .

 

Then u(x, a) = A(a)p(r, a) is a family of G.E. for every p(r, a) e L2 4 4 0 . From  the
equality (6.35) it follows that the following statement is valid.

Theorem 6.2. For any  p(r, a) e L2 , ,,i 0  th e  function

rz/2
(6.37) u(x) = A(a)p(r, oc)da

Jo

belongs to *1 (Q ) if  and  only  if

(6.38) p(r, a) , p(y(r, a), a) E L2 (w112 x 1 )
5 2

a l

where

(6.39) y(r, a) =

I f  (6.38) holds then
{

13- 1 (r, Œ),a  e ((0, Œ1)U (Œ2  Tic
) )  \

(r, Œ), 110 e (a l , a w a i ,

(6.40) Ilu(x)112W1(u) = 1111L2( — IIP(Y(r, 00 0011, 2t.,(4-vp2x(co,allU(a2,n/2)))2 i v /2 x(0,7/2))1 1 
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7. Inversion formula

In the present section we derive an inversion formula for the integral repre-
sentation (4.4). It m eans that w e construct a n  operator H(a): VV1(52) L 242),

Œ e (0, —Ir )  {a1 , , a,„} such that if u(x, a) e D  and
2

n/2
(7.1) U (X ) = u(x, a)da

Jo

then

(7.2) u(x, a) = H(a)u(x) .

L  L e t a  e ((0, oc1 )U (a 2 , 1.; ) ) L e t  u(x) b e  d e f in e d  b y  (7.1)

where u(x, oc)E D . W e define

(7.3) h(0, a) = (61u(x), u(x, 0 ))1,2(a) ,O  e [0, 2n).

As far as u(x, a) e D  then there exist 2n-periodic functions p l (r, a), p 2 (r, a) E  C 2 (R )

satisfying (3.35) and  such that

(7.4) u(x, a) = A(a) 1 (r, a).

From  (5.11) it follows that

(7.5) 1 f 2n r —0 r r — #(0, a)
h(0, a) = 0  p 1 (r, a) [cot  2  cot 2 ] — p 2 (r, a) [cot 2  cot —

r

]dr .2

We denote for j  = 1, 2
2 n

(7.6) R
1  f

i (t, a) = —

2 n ,
fii (r, a)

r  —  a r g  t

cot
r

cot —
2
1 dr , t e S i  ,

2

(7.7) lp , a) = Pi (arg t, a), t E SI

where S' = {z e C 11z1 = 1 }. F ro m  th e  Hilbert's formulas [14] it follow s that
there  ex ist som e functions A; (z, a), j  = 1 , 2  analytic  i n  t h e  dom ain  D+ =
{z e Cilz1 < 1}, continuous in  D±  US' a n d  such that

(7.8) (t, a) = R i (t, a) + i • li (t, a) , t e S '

where

(7.9) (t, a) = lim  Ai (z, a) ,t  I =  1 .
izi < 1

From (3.35), (7.5)—(7.8) it follows that A i (z, a), A 2 (z, a) satisfy the following equa-
tion

(7.10) A (t, a) —  A (/(t, a), a) = H(t, a) , t E  S1
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where

(7.11) H(t, a) = 
1
-h(arg t, a) , t e S 1

n

and P(t, a) defined by (4.7) is  the orientation-reversing homeomorphism of S'.
We define a  piecewise analytic function

(7.12) A(z, a) =
A i (z, Œ),1 z 1  <  1

( 1  a )A2 1 z 1  >  1 .z

Then A(z, a) satisfies

(7.13) A+ (t, a) -  A - (ic(t, a), a) = H(t, a) , t e V

(7.14) 1A(co, a)1 < co

where

(7.15) K(t, a) = fi(t, a) = exp( - i • /3(arg t, a)), t E Si

is  a n  orientation-preserving homeomorphism of S'. Following [14] we denote

A (t, a) = lim  A (z , a) .
z-t
izi> 1

Thus in the case a e ((o s a l  ) U a 2 , ; {a l , ... , a } we reduced the problem of

constructing of the inversion formula to  the Riem ann boundary value problem
(7.13), (7.14) with the shift K(t, a) [14].

II. Let a E (a l , a2 )\ {a, , ... , a }. Let u(x) be defined by (7.1) where u(x, a) e
D .  We consider the function h(0, a) defined by (7.3). From (6.18) it follows that

h(0, a) =  - o (r1 2 n  p r O c o t  r  g ° ( °
'  

a ) d r(7.17) 2  0 '  
a) cot 

 2 2

where p0 (r, a) e OR) is  a  2n-periodic function satisfying (6.14) and such that

(7.18) u(x, a) = A(a) 0 (r, a) .

We denote
i 2ir

-  arg t
(7.19) R o ( t ,  a )  =  

—

2 ir

f
d r t e S i  ,

0
p 0 ( r ,  a ) .  c o t

r
,2

(7.20) 10(t, a) = po (arg  t, a) , t e S' .

From  the  Hilbert's formulas [14] it follows that there exists a  function A o (z, a)
analytic in  the  domain D ,  continuous in  D+ U S' a n d  such that

(7.21) 4, (t, a) = R o (t, a) + i • 10 (t, a) , t e S1

(7.16)
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where

(7.22) A ( t , ce) = lirn  A o (z, cc), t .
Izi<1

Because of (6.14), (7.17), (7.19)-(7.21) the function Ao (z, a) satisfies

(7.23) Acf, (Ko (t, a), a) — A (t, a) = H(t, cc),t

where H(t, a) is defined by (7.11) and

(7.24) Ko(t, a) = exP(i • Yo(arg t, cc)) , t E S l

i s  a n  orientation-reversing homeomorphism o f  S 1 sa tis fy in g  t h e  Carleman's
condition

(7.25) K  (K  ( t , C), CC) t , t E S 1 .

Thus in the case a e c ie(c x 2 ) \ {0/1,..., am }  we reduced the problem of constructing
of the inversion formula to  the Carleman boundary value problem (7.23) with the
shift Ko (t, a) satisfying the  Carleman's condition (7.25) [15].

From  (3.36), (3.48), (6.9), (7.15), (7.24) a n d  properties o f  Gi (s, a), j  = 0, 1, 2
it follows that

K(t, e C(5 1 ) n osi \forl (a), . . . , r l(a ) l)

Ko (t, cc) e qv) n osi \{-cl (a), -r,o (a)l)

and for any J E {1, , k, }, k  E {1, , /co } there exist

K,(1,' (cc) ± 0, a) = lim Kt(exp(i(p), cc),
(p-■ argti ±0

K  0,(T  k (a ) ± 0, = lim K0 ,(exp(i9), cc)
arg k  ±0

where TI (a), rk(a) e 5 1 a r e  defined by (4.12), (4.22). So the general theory of the
equations o f the  type  (7.13), (7.23) detailed in  [14 ], [15 ] can not be applied.
Therefore we shall use the results of the work [16] which deals with the solvability
of the Riemann boundary value problems with nondifferentiable shift.

Consider the following problem. It is required to find a  function 0 (z) ana-
lytic in  C \ 51 ,  the  limiting values of which on  the  un it circle satisfy

(7.26) 0+(t) — 0 - 0 (0  =  G(t) , t ,

(7.27) c(co)= C, C e C

where 13(0 is  a n  orientation-preserving homeomorphism of 5 1 •

Theorem 7 .1  ( [1 6 ]) . L et G (t), t e S 1 be extendable to a  function G(z)E
W; (D- )  f o r  some p > 2  where D-  = 1z  E  C  z  > 11. L e t  M t), t e 5 1 can be
extended to a K-quasiconformal mapping f l(z) [17] which maps D+ =  {Z E C  z  G  1}
onto itself.
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Then f o r any C e C  there ex ists a unique solution 0(z , C) o f  th e  problem
(7.26), (7.27). This solution can be written in the following form

1
0(z, C) = ff 9 4 )   dt

G(t)
dt + C , 1z1 > 1,

7.28)
TC III <1 t  -  Z 2ni j iti =i t  —  z

( 
(z), C) =

1 G(t)
dt + C , < 10 0 C dt —r 94)

2 n ij  j t — z I,1=, t — z

where

(7.29) yo(z) = (I — /1(z)T) 1

2 n i

1 ( 11(z ) f —
(t )  dt) , < 1

t z

Typ(z) = urni —  —

1 JJ yo(t)
(t — z)2 " t f  '

< 1 ,
£ -0 + 0 TC

Iti <1

(7.31) / 2 ( z )  =  
fii(z)

 , 1z1 < 1 .
iqz(z)

Theorem 7.2 ([1 7 ]) . L et h(r): R 4  R be a strictly increasing continuous func-
tion. Then there exists K-quasiconformal function H(z) which maps the half-plane
{z E CIm Z > 0 }  o n  itself  and

lirn  H(z) = h(r) , r e R
l m  z> 0

if  and  only i f  h(r) satisfies the following M-condition

h(r + s) — h(r)
(7.32) A r. < r, s e R

h(r) — h(r — s)
<  M

where M depends only on K .
I f  (7.32) holds then H(z) can be taken in the following form

(7.33) H(z) = H(x + i • y) = 2* , f  (h(x + s) + h(x —  s))ds

+ i • 273,
1 f (h(x + s) —  h(x —  s))ds , y  > 0, x  e R .

L et fl(t) be  a n  orientation-preserving homeomorphism of S ' satisfying

(7.34) N1) = 1

We define

(7.35) = 46(NO- 1 (0)) r e R

where
z + 1

(7.36) (A(z) = i z — 1
z E C .
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Then [3(r) is  a n  orientation-preserving homeomorphism of R .  A s far as .0(z) is
conformal mapping which transforms D+ = {z e CI Iz < 1} o n to  th e  half-plane

= {w e CIm w > 0 }  then  13(z), z E D+ i s  K-quasiconformal extension of fl(t)
if and only if P(w) = 00(0' (w))), w E C+  is  K-quasiconformal extension of P(r).

S o if  Mt) satisfies (7.34) then there exists K-quasiconformal extension fl(z),
z E D+ if  a n d  only if the function fi(r), r e R  defined by (7.35) satisfies (7.32) for
some M > O.

Lemma 7.1 ( [9 ] ) . L et fl(t) be an orientation-preserving homeomorphism of  S1

satisfying (7.34) and such that f or some points t1 , t k  e S I- the following conditions
hold:

(1) fl(t) e C(S 1 ) C i (S1,  0 ) ;
(2) f o r any  j e {1, , k} there exist

13,(t;  ±  0) = lim A(exp i(p);
(p-Parg ti ±0

(3 ) inf fit(t)1 > O.
tes , \{ti,.••,tk}

Then [3(r) defined by (7.35) satisfies (7.32) f o r some constant M  > O.

W e denote for a e ((0, a ') (..1(a 2 -1r)) \ {a 1 , , am }
2

(7.37) Ko(t, a) =  K(t, a) + 1 - K(1, a)

(7.38) Ao(z, a) =  {
A ( z  +  i c ( 1 ,  a )  -  1 ,  a )  , I z i  >  1  .

Then A(z, a) satisfies (7.13), (7.14) if and  only if Ao (z, a) satisfies (7.14) and

(7.39) 4 (t ,  a) - 24.(ic 0 (t, a), a) = H(t, a), t e S i  .

From  (7.37) it fo llow s tha t th e  orientation-preserving homeomorphism Ko (t, a)
satisfies (7.34).

Using (3.36), (3.48), (6.9), (7.15), (7.24), Lem m a 3.1 a n d  properties of the
functions f k (s, + a) , Gi (s, a) , k e Z , j  =  0 , 1 , 2  w e  o b ta in  th a t th e  homeomor-

(phism Ko (t, a) satisfies the conditions (1)-(3) o f Lemma 7.1 fo r any  a e  0 , -7r

2
loti ,c x m l .

Let a e ((0, a l ) (a 2 —7E))\{a 1 , a„,}. From  Theorem  7.2, Lemma 7.1 it
2

follows that there exists Ko (z, a), z e D+ a n  K-quasiconformal extension of ;0 ,  a).
A s  f a r  a s  p1 (r,oc), fi 2 (r, a) E C2 (R ) th en  because  o f  (7.5), (7.11) w e obtain
th a t  H(t, a) e (S i q r . ', (a), , ( a ) }  )  a n d  for any  j e { 1, ,  1(1 } there exist
1-1,(Ti1 (a) + 0, a). Hence H(t, a ) can be extended to  a  function H(z, a) E W (D - )
for any p >  2. So from Theorem 7.1 a n d  Sokhotski's formulas it follows that
there exists a  constant C(a) e C  such that

< 1 ,
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TC z _ a) 2
(7.40) 4,4, a) =

( p ( z „ a )

d z

1  

HK, 1 (t, a), a)
1

1 H( r, a)
tit + C(a) , t ef2 n i  it h -i T  —  K0- 1 (t, CC)

where

(7.41) 9(z, = -  p(z, a)T) - 1 ( 1-1

 2

( z ' a )
a )

d r) , I <  1  ,
n i  

f i r 1 = 1 Z

(7.42) u(z, a) = (Ko(z,
< 1

,
(Ko (z, 00)z 1z1 

and  the  operator T  is defined by (7.30).
Using (6.6), (7.2), (7.4), (7.7), (7.8), (7.12), (7.38), (7.40) we obtain that for any

Œ e ((o, a ' )  (a2 , i ) )\{a1, am }  the  following inversion formula holds:

(7.43) u(x, a) = 11(a)u(x) = A(a)P,(r, a) = A(a) Im(4(exp(ir), a))

= A(a)(Im [ -

cp(z, a) 1
H(- KV(exp(ir), a) a),-

7r1i
dz -

zi <1 z - K o
l (exp(ir), a) 2

1 Ç  H ( r, a)
. d r i )  .2ni 1,1=1 T — (exp(tr), a)

Consider the  following Carleman boundary value problem . It is required
to find a  function F(z) analytic in  D+ t h e  limiting values of which on the unit
circle satisfy

(7.44) F+(t) -  F+ (f30 (0) = G(t) , t e S1

where flo (t) is an orientation-reversing homeomorphism of S 1 satisfying (7.34) and

(7.45) fio(flo(t)) =_t, t eS 1 .

Necessary condition for the solvability of (7.44) is

(7.46) G(t) = -  G(flo (t)), t e S1 .

Let (7.46) hold. We denote

(7.47) 0(z) =  { F

)
I > 1 .

Then 0(z) satisfies (7.26) and

F(z), < 1 ,

(7.48)
{ 0(z) = 0 ,

10(001 <  00
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where the homeomorphism

(7.49) fl(t) = flo (t) , t e S1

preserves the orientation and satisfies (7.34),

(7.50) M P ) )  t , t  e  S 1 .

Let 13(0, G(t) satisfy the conditions of Theorem 7.1. Then for any C E C  there
exists a unique solution 0(z , C) o f th e  equations (7.26), (7.27) which can be
written in the form (7.28). Consider

(7.51) 0, (z) =  ( -1 , o ) .

From (7.26), (7.51) it follows that

ONT) - ( R )  =  G ( t )  .

Hence

cP1 (fl(t)) - (i3 (#10)) = G66 10)

Using (7.46), (7.49), (7.50) we obtain

ONO (6(t)) = G(t) .

From Theorem 7.1 it follows that there exists a constant C e  C  such that

0 ) =  0 1 (z) = 0(z, C) = 0(z, 0) + C .

Therefore

0 - (1, 0) 0 + (1, 0) + C .

Because of (7.26), (7.34), (7.46) we obtain that C =  0 .  Hence

(7.51) 0(z, C )  = 0 (
1

, c ) .

So 0(z, C), z e D+ i s  the general solution of the equation (7.44).
L et a  E (Cd, x 2 )\{Œ1,a m }. T hen th e  analytic i n  D+ fu n c tio n  Ao (z, a)

satisfies (7.23). Hence there exists a constant C(a) e  C  such that

(7.52)

Ao(Ko(z, oc) = - -1 11 (Per, co dT +  1  f Her, 00 d t  +  COO ,
J  J1 t1 < 1 z 2 n i  

( 0 = 1 Z

where cp(z, a) is defined by (7.41),

(Ko (z, c())Eki(z, a )  -  
(K01z, 00)z

(7.53)

1z1 < 1
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ko (z, a), z E D+ i s  a n  K-quasiconformal extension of Ko (t, a). From (6.6), (7.18)—
(7.22) a n d  Sokhotski's formulas it fo llow s that fo r a n y  E  ( œ 1, a w a l ,  a m }

the  following inversion formula holds:

(7.54) u(x, a) = II(a)u(x) = A(Œ) 0 (r, = A(oc) Im(At, (exp(ir), ot))

=  A(a)(Im  [— (P(z, dz 1 H(lco (exp(ir), a), a)
f iz i< 1  z — Ko (exp(ir), a) 2

1 H(t, a) 
d T 1 )  .

27i —T — Ko (exp(ir), a)

8. Completeness of G.E.

To obtain a  general representation of the solutions of the Cauchy problem
(1.1) in  the  form (4.3) w e need to prove that the  system of G.E. u(x, a) e L 2 (Q)
is complete in  VV1(52). It m eans that for any u(x) E W1(52) there exists a  family
of G.E. u(x, a) e L 2 (52) corresponding to A =  — cos2 a  such that

(8.1) u(x) = I u(x, a)da ,
Jo

n/2
(8.2) Au(x) = I —cos 2 a • u(x, a)da .

Jo

It should be noted that the general theory on generalized eigenfunction expansions
(for example, [7 ]) guarantees in the case being considered by us the completeness
o f  a  system of such functions when the  space is more extensive than  L2 (52).

One of the possible ways to prove the completeness is to apply the inversion
7formulas. Actually we constructed th e  operator H (a), a e ( o —

2
{ a, , ... , am }

such that
n/2

(8.3) u(x) = f II(a)u(x)da

for any
ir/2

u(x) e D(II(a)) = I u (x , y )d y u(x, y) e c  VV1(52) .

  

So to prove (8.1), (8.2) it is sufficient to show tha t H(a) can be extended to an
operator H(a): VV1(52) —> L2 (52), D( -1(a)) = VV1(52) su ch  th a t (8.3) holds fo r  any
u(x) e W142).

W e shall apply another idea suggested by T . I . Zelenyak. H e proposed to
use the following well-known result.

Proposition 8.1. L et A  be  a  bounded selfadjoint operator in a H ilbert space
H .  L et f e H  and  f or any A  e [a, b] OE R there ex ist uA e H  satisfying
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(8.4)A u A — Au, = f .

T hen Eta m f = (E, —  Ea )f  = 0  w here E A  i s  th e  resolution o f  th e  identity corre-
sponding to A.

Proof of the proposition can be found, for example, in  [18].

Theorem  8.1. Fo r any  u(x) e  *1 (Q ) there ex ists a  fam ily  o f  G.E. u(x, a) E

L 2 (Q) corresponding to 2 = — cos 2 a, (a e 0, —1r{ a , ,  . . .  ,  a m}  such that (8.1), (8.2)
2

hold.

The proof of the theorem  is too tiresom e and needs a  lo t  of calculations.
Therefore in the present paper we only sketch it.

Sketch of  the p ro o f . To prove the theorem it is sufficient to show that for
every V(X) E &(Q) = fy e C 'Isupp y c  Q I  there exists a  family of G.E. u(x, a) e
L2 (Q) such that the following equation

it/2
(8.5) Au — Au = v(x) — u(x, 1)cloc cig f(x)

is  solvable in * 1 (Q )  for any 2 e ( — 1, OA {2,, ,  2m } , 2  = — cos2

Indeed, from  Proposition 8 .1  an d  th e  properties o f  th e  projectors E A  it
follows that

(8.6) E[_1, 1 ) f  = EEJ, l) f = ErAm , o )f = 0 , j  =  1, m —  1 .

As far as A has no eigenfunctions then

(8.7) E_, = O, j_o = E k i + 0  , E0  = / 5j  =  1 , m .

Because of (8.5)—(8.7) we obtain

(8.8) v(x) = I
ir/2

u(x, a)da .
Jo

As far as &'(Q) is dense in VVI(Q) then from the Parseval's equality and complete-
ness of VV1(Q), W 2(0, 2n) it follows Theorem 8.1.

L et V(X ) E 20 e ( — 1, O ) \ 2 ,  ... 2 ,„}  then  (8 .5 ) ho lds f o r  a  function
up e *1(Q ) if and only if

(8.9)

where

(8.10)

(up, 11/4 0„.)t. 2 ( 0 )  = —  ( f, dtlih„ (Q) II/EC(Q)

 

° (x) = a) =  x , sin a
°
 +  x 2 cos a

°
 ,

1 0( x )  =  to ,  a o,) =  x, sin a
°
 — x2 cos I° ,

° = arcos — 2°  .

    

Assume th a t u(x, a) e L 2 (Q) is  a  family of G .E. such that (8 .5) is solvable
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in *1(Q) for every A e (— 1, 0)\{/11, , An i }. T h e n  (8.9) holds for any A.
°
 E (— 1, 0)\

1A,, ..., 4,1. Under some conditions about the smoothness of u(x, a) which will
be checked later it can be show n that the following function

R I2 sin  (a  — a
°
)

 
sin(a + a

°
)

(8.11) w(x, a° ) =   2 cos 2e) u(x, Œ)dŒ
sin(a + a

°
) sin(a — a° )

2 sin a
°

' 2 cos a
°+ n —  )

g d g

also satisfies (8.9). Hence

(8.12) (up(x) — w(x, a° ), II/00)L2(Ø) = O,t f r  e

Therefore for any a
°
 e 0, —

2  
{a, , am } there exist some functions B((x, a

°
), a

°
),

D(ri(x, a° ), a° )  such that

(8.13) w(x, a
°
) + B((x, a ° ), a° ) + D(n(x, 2

°
), a° ) = up(x) e VV1(0) .

So the  problem of the  solvability in  *1(0) of (8.5) is reduced to  the existence
n

of the functions B (, a), D ( I, a) such that for any y E (o  — {a Œ}
2 1' ...'

(8.14) w(x, Y) + B((x, Y), Y) + D(11(x, Y), Y) e *1(Q) •

Using the  results obtained in  [9] it can  be  show n that the  solvability of (8.14)
is equivalent to the  solvability of

(8.15)
u(x, a) 4(x, y) n(x, y)

Sy- -  Y dœo o
y)gdn + B ((x, y), y) + D(n(x, y), y) e *142)

for any y e (0, —

2
) \{ a 1 , , am }  and for any small e > 0, where

A x v ( 11 )
sin y' 2 cos y

(8.16) f5( , n, Y) = sin 2y

The properties of the  function of the following type

u a) 
d a

g(x'

(x,

 fy_e Œ—y

where u(x, a )  is  a  family o f  G.E. a re  studied in  [9 ] when the formulas (5.11),
(5.12) are derived. U sing the  results obtained in  [9 ] it can  be show n that the
solvability of (8.15) is equivalent to the solvability of the  following systems:

4(x , 8 °
) ry(x , cep) (J Jo A x v

(8.17)
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(8.18) —
2  

j 0( r ,  y) cot at

I
P2(r, Y) — Pi O r , Y), Y) — 0,r  e  [ 0 ,  2 n ]

1 r

= Ç u (x , y, r) .
x v ( x )  

dS2 ,

cot—  , 1 2nr  —  )6(r, y) 
d r2 2  0 2  ,  y)

sin 2y
r e [0, 2n]

2

if y e ((0, oc)' L.1 (a 2  7 ) )  \{«,, 
2

Po(r, Y) — Po(kto(r, Y), Y) =  , r e [0, 2n]

(8.19)

,

Y)f  2 n

—2  0  P o er, y)[cot cot T  d t
2

k co(r,

2

A v(x)
= f  u ( x ,  y, r)  si

x
n  2 y   c/S2 , r e [0, 2 ]

if y e (a i , a2 )\ fa l , , 1. Here Pi (r, a), j  = 0, 1, 2 are 2n-periodic functions corre-
sponding to the  family o f G.E. u(x, a). T h e re fo re  u(x, a) satisfies the inversion
formulas (7.43), (7.54). A s fa r  a s  v(x) e &(S2) th en  it c an  b e  sh o w n  th a t the
function u(x, oc) determined by (8.18), (8.19), (7.43), (7.54) is sm ooth enough and
all the smoothness assumptions we used to derive (8.11)—(8.19) are valid.

Thus, using the form ulas (7.43), (7.54), (8.18), (8.19) w e construct fo r  any
e & (‘2) a  family o f G.E. u(x, oc) e L 2(0 )  such  that (8.8) h o ld s . T he  proof of

the theorem is completed.

9. Structure of solutions

N ow  w e can construct th e  general form  of the solutions of the C auchy
problem (1.1)

(1.1) pft = AP Plt=o = • Ptit=o = P i  •

Let po , p l  * 1 ( 0 ) .  Then from Theorem 8.1 it follows that there exist families
of G.E. ui (x, o() e L2 ( 2), j  =  0, 1  such that

n/2

(9.1) pi(x) = ai(x, a)da ,
o
n/2

(9.2) Api(x) = —cos '  a • uj (x, a)da .

Then the unique solution of the problem (1.1) can be written in the following form
71/2 sin (t • cos a)

 • d d a  .(9.3) p(x, t) = f [cos(t • cos a) • uo (x, oc) +  u l  ( x ,  acos cc

From  the Parseval's equality, the inversion formulas and Theorem 8.1 it follows
tha t the set
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rz/2 u (x, a) u(x, a) D

is  dense in  *1(0) a n d  th e  operator H (a) can be extended continuously to a

bounded operator rt(a): *1(Q ) L 2 (2), D( - 1(a)) = VV1(0 a E  (0 ,  .., an,}

such that for any u E NV142)
n/2

(9.4) u(x) = f II(cc)u(x)da
Jo

Therefore the  functions uf (x, a), j  = 0, 1 satisfying (9.1), (9.2) can be determined
by the following formula

(9.5) ui(x, a) = Ii(a)p i (x) , j  = 0, 1 , a  e  0 , {al, , c }.

Thus fo r any  po , p e  *1(Q) the unique solution of the problem (1.1) can be
written in  the  form (9.3) where the families of G.E. u j (x, a) e L 2 (Q), j  = 0, 1 are
determined by (9.5).
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