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Remarks on coerciveness in Besov spaces
for abstract parabolic equations

Yoshitaka YAMAMOTO

1. Introduction

Several papers were devoted to the study of solutions in Besov spaces
with values in a Banach space for the abstract linear evolution equation of
parabolic type

Dau(t)+Au(t)=f(t), 0<t<T
(1.1)
u(0)==x.
Sinestrari [14], Holder spaces; Di Blasio [5], Slobodeckii spaces and Mur-

amatu [12], general Besov spaces. One of the main results there is that the
mapping

L: u— (Dwu+Au, u(0))

is a bijection from the intersection of two Besov spaces with values in the
Banach space and the domain of the operator A and with exponents 1+ 8 and
0 respectively to the space of data (f, x) satisfying suitable compatibility
relations, the coerciveness in Besov spaces for the equation (1.1).

Let E and F be Banach spaces with F' continuously embedded to E and
a linear continuous operator A from F to E be given. Let us consider the
evolution equation in E of the form (1.1). The aim in this note is to show that
the parabolicity of the equation is characterized by the coerciveness in Besov
spaces for the equation.

2. Notation and preliminaries

R and C denote the fields of real and complex numbers respectively. Z.
is the set of nonnegative integers.

Let E be a Banach space. L(E) is the space of bounded linear operators
in E with uniform operator norm ||+||z). For a linear operator A in E we
denote the domain of A by 9(A) and the resolvent set of A by p(A).

Let 1<p<oo, (< T <o and nEZ; or n=00. We set several function
spaces with values in E as follows.
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D(0, T; E) is the space of distributions on (0, 7). The derivatives of f
€9(0, T; E) are denoted by D/*f. L?(0, T; E) and L%(0, T; E) are the L?
spaces with respect to the Lebesgue measure df and the measure ¢~'dt on (0,
T) respectively. Let I=(0, T), (0, T], [0, T) or [0, T]. C™I;E) is the
space of # times continuously differentiable functions on I. C¥/; E) is the
subspace of C"(I; E) which consists of functions whose derivatives of order
up to # belong to L*(0, T; E). In the notation above we omit £ when E=R
or C.

Analytic semigroups. The mapping S: (0, ©)— L(FE) is called an ana-
lytic semigroup in E if the following conditions are satisfied.

(1) Sisanalytic. There exist constants (0, 7/2) and w< R such that
S is extended analytically in the sector Xs={t<C;|argt|< ¢} and
the extension, also denoted by S, satisfies the growth condition

suplle ' S(#)|ce) <o
teXly

(2)  S(ti+t)=S(#)S(#) holds for #, £>0.
(3) Let x€E. 1f S(¢)x=0 holds for >0, then x=0.

The generator G of an analytic semigroup S in E is defined as follows:
D(G)={xEE; yEE exists such that D:S(¢#)x—S(¢)y=0 for ¢£>0.}
Gx=y.

It is verified that G satisfies

(=0 +G)DZpsrz,  sup [AA+w—G)|ow<oo

for some constants ¢ (0, 7/2) and wER. The mapping S—G from the set of
analytic semigroups to that of closed linear operators with the properties
above is bijective. The inverse of the mapping is expressed as the inverse
Laplace transform.

We remark that S is not necessarily strongly continuous at =0 and
hence 9(G) may not be dense in E. Analytic semigroups of such type have
been already studied by Da Prato and Sinestrari [4] and Sinestrari [14],
although the definitions of an analytic semigroup and its generator were not
explicitly presented there.

The equation (1.1) is called of parabolic type if —A is the generator of an
analytic semigroup in E.

Besov spaces. Let 1<p<oo, 1<g<oo, (< g<o0 and 0< T <o0. Set m
=[#]+1, where [@] is the largest integer which does not exceed 4. For a
strongly measurable function 7 on (0, 7) with values in E we put
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We define the subspaces Bg.q(0, T; E) and Bjq(0, T; E) of L?(0, T; E) as
follows:

(1) fEL*0, T; E) belongs to Bh.q(0, T; E) if [flataorier<co.
(2) f€L*(0, T; E) belongs to B0, T; E) if

FEBS A0, T; E) and |h7°f|ren; &)l1d0,m <0 .
B3..(0, T: E) and B}..(0, T; E) are Banach spaces with respective norms
| 188 q0.75 £y=1f|rrc0.7: 8y F+ [ 188 40,75 B
| 188, 0.7: £y= ™| flLecons o)l Lz, my 1 £ 88 p0.75 £y -

B$4(0, T; E) is called the Besov space on (0, 7). For Besov spaces on
general regions in R” including those with nonpositive exponents 8 we refer
the reader to Muramatu [9], [10]. We just collect some basic properties of
B340, T; E) and B§.o(0, T; E). In the following B(6, p, ¢) stands for B$,4(0,
T;E) or B0, T; E).

Proposition 2.1. Let 1<p, p'<o0, 1<q,qg'<00, 0< 4, 0'<0 and 0<T
<oo, Let us express 0 as |+ o0 with |€EZ, and ¢=(0, 1].

(1) B(0,p,q)CB(, p,q") when 6>0'.
(2) B(8,p,)B(O—p"'+p"", 0, q") when p'=p,q'=q, §>p"' —p'.
(3) Let a=C3(0, T)). We have af€B(8, p, q) for fEB(8, p, q).

(4) Let T<oo. We have ltf(s)dSEB(1+6’, b, q) for f€B(6,p, q).

(5) We have DffEB(0—Fk, p,q),0<k<I for fEB(8, p, q).
(6) BZ:q(O, T; E)={f€B}40, T; E); D£f(0)=0 for 0<k</—-1, D{f
€B35.0, T; E)}.

When o—p~' is not an integer, we have

Bg,‘](oy T; E)
_|B$.4(0, T, E), when c—p'<0
{(feB8(0, T: E); F(0)=0}, when c—p~'>0.

In the next section we will describe the compatibility relations between f
and x for (1.1) to have a solution in some Besov spaces. To this end we
prepare the following:

Proposition 2.2. Let F be a Banach space continuously embedded to E.
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Let 1<p<oo, 1<g<oo, p7'<<1+p™" and 0K T<oo. For ucBp (0, T;
EYN B0, T; F) we have Dau(0)E(E, F)o-p-1,q, the veal interpolation space
between E and F.

Proof. Among several equivalent definitions of the real interpolation
spaces we recall the K-method due to Peetre [13]:

(E, F)oo={x€E; |t "K(t, 2)|ti0m <0}, 0<7<1, 1<g<oo,
where

K(t,x)zig‘f_(lx—y|5+t|y|p), Peetre’s K functional .

By the well known fact that min{1, #4}K(h, x)<K(¢, x), t, >0, xEE we
have only to prove that |27 °|K(+, D:u(0))|ce0,m|L%0.0<o0. This follows from
the estimate

K(t, Deu(0)) <|D.u(0) — ¢ (2 (#) — 2 (0))| e +|2e(#) — u(0)|r
SfIDtu(tr)—Dtu(o)lgdr+|u(t)—u(0)|p, 0<t<T

and Young’s inequality. Notice that both
|h~ | Deue(+) — Dewe(0)| Loco,n: £yl L%0,my and [A™%|2e(+) — 2(0)|r0,n5 |20, 1)

are finite in view of Proposition 2.1 (6).

3. Results

Let £ and F be Banach spaces with F' continuously embedded to £ and
a linear continuous operator A from F to E be given.

Let 1<p<oco, 1<g<o0, (< <00 and 0< T <o,

In view of Proposition 2.1 (5) we define the linear operator L from 9(L)
=B}>qu(0» T; E)nt.q(O» T;F)to Bg,a(O, T; E) by

Lu=Du+Au, usdD(L).

Assume that 8—p7! is not an integer. Set N=[0—p']+1. D, is the
subspace of B},¢(0, T; E)X E which consists of elements (f, x) of B3¢0, T;
E) X E satisfying the conditions below: We put xo=2x.

(1) If k<N, then z,EF. In this case we put xz+1=D#f(0)— Axx.

(2) avE(E, Fo-p-141-n,q.

N-1
@o is a Banach space with norm |f|3§’,,q(o,r;5)+ §0|$k|[:+|x1v|(5,p)s_p-1,‘_m .

Remark. For w& C let 9, be the subspace of B},q¢(0, T; E) X E defined
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for the operator w+A as 9, for A. We see that (f, £)€9, if and only if
(e™“f, )ED..

For u€B}(0, T; E)YN B} 4(0, T; F) we put
f=Du+Auc B} 0, T:E), x=u(0)EE.

t
When N=0, i.e., 0<8<p™!, we apply Proposition 2.2 to /(; u(s)dse B372(0, T:

E)N B30, T; F) and obtain (f, x)€9,. When N >1, differentiating f suc-
cesively (N —1) times and taking the traces at ¢ =0 of the derivatives, we see
by Proposition 2.2 that (f, x)€9,. Thus 9, is understood as the space of
data with the compatibility relations for (1.1) to have a solution in B}(0, T;
E)N B0, T; F).

We define the linear operator L from 9(L)=B}{0, T; E)N B} .40, T; F)
to 9, by

Lu=(Dau+Au, u(0)), usD(L).
Our main result is described as follows:

Theorem. The following conditions about the operator A are equivalent.
(1) L is bijective for any pair of (p,q, 0, T).

(2) L is bijective for some pair of (p,q, 8, T).

(3) L is bijective for any pair of (p,q, 0, T) with 0 —p~'+ integer.

(4) L is bijective for some pair of (p, q, 8, T) with §—p '+ integer.
(5) —A is the generator of an analytic semigroup in E.

Let us sketch the proof of the theorem.

(1)=(2) and (3)=(4) are obvious. (4)=(2) follows from the facts that (f,
0)E9D, for fEBS (0, T; E) and that u€ D (L) with Lu=(f,0) turns out to
belong to D(L) for FEB} L0, T; E).

In the next sections we shall prove (2)=(5), (5)=(1) and (5)=(3). (2)=(5)
is proved by constructing the analytic semigroup with generator —A. We
prove (5)=(1) following the treatment of certain linear operator equations in
Banach spaces due to Da Prato and Grisvard [3]. (5)=(3) is reduced to (5)=
(1) and the behavior of analytic semigroups acting on the real interpolation
spaces.

4. Proof of (2)=(5)
For xEE we define U-n—1xE B0, T; E) by

m+1
(U_m_lx)(t)=d—mx, 0<t<T.

Then the linear operators Ux: E— D(L), k> —m, are defined successively by
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solving the equations
(4.1x) LUk-IC:D:Uk—ll‘ , x€FE.

Putting for k= —m, x, yEF

oe= U1z + [ 1k =2(Usr2)(s)— (k+ m)(Usx)(s)}ds

t
we=Up_1x— ka_./o‘ (Uky)(s)ds )

we have
Dwr=(tD:+k—1)Ur1x—(k+m)Usx, Dawr=AUwx— ULy .
When k> —m+1, we see that v, w,E 9D (L) and
Lvi=Dws-r, Lwr=Daws-,.
Noting that v-»=0, we obtain the following:
Lemma 4.1. For k>—m+1, x€FE we have

1

(4.2) U;zl?= E+m

(th+k“1) Up-rx .

We have by induction

Corollary of Lemma 4.1. For x€FE we have

/
4.3) Dtl_kUk.l‘:(k_T_n—;n),tthon s when —m<k<l

W) Ua=(pplsrDA e Dlha) . when k=1,
Lemma 4.2. Let x,yEFE. If AUrx= U,y holds for some k= —m, then
it holds for any k=—m.
The relations (4.3) show that the mappings
x= (B+m)it "D U, —m<k<l

are the same linear operators from E to 9°(0, T; F), which we denote by S.
The derivatives of Sx are expressed as

n

(4.5) t"+'"Dt"Sx=(n+m)!éo(—1)""‘( P

)DtUk.I‘ .

These are derived by the identities
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tn+

Tt mi /= 2( v k() {(k+m)'f} fEDO, T: F)

and using (4.4). (4.5) together with (4.2) shows that Sxe C=((0, T']; F) for x
eFE.

Thus the linear operators S(¢): E—»F,0<¢t<T, are defined as follows:
S()x=(Sx)(t), x€EE.

We shall prove that S(+) is extended to an analytic semigroup in E and that
— A is its generator.
Differentiating (4.1-»)(m+1) times, we first note the relation

(4.6) D.Sx+ASx=0, x<E.

Proposition 4.1. (1) xEE belongs to F if and only if there exists yEE
such that

(4.7) D:Sx+Sy=0.

When this is the case, we have y=Ax.
(2) If Sx=0, then x=0.

Proof. By (4.6) and the definition of S, (4.7) is equivalent to AUrx= Uyy.
By Lemma 4.2 it is also equivalent to AU-nx=U-ny.

Assume that xEF. Then w--€9D(L) and Lw-n=U-n(Ax—7Y).
Hence we have AU-nx=U-»Ax. Conversely assume that AU-nx=U-n»y
holds for some y€E. Then D:U-nx+ U-ny=D.U-n-1x. This implies that
xEF.

We proceed to the proof of (2). Suppose that Sx=0. Since (4.7) holds
with y=0, we have D.U_nx=D.U-n-1x. Differentiating this relation m
times, we obtain x=S(¢)x=0.

Lemma 4.3. There exist constants Ko and K, such that

(4.8) Pt DAS() x| < T K K" xEE0<t<T.

Proof. Since L is bicontinuous, there exists a constant Co such that
| Dete| 53, 400,75 £9< Col Lutl 34 0,758y, uED(L).

Applying this to (4.5), we obtain the estimates of the norms in B§,¢(0, T'; E) of
t""D/Sx. (4.8) is a consequence of Proposition 2.1 (2) with p'=¢g =o0.

Lemma 4.3 implies that the mapping (0, T]- L(E), t — S(¢) is analytic.

Lemma 4.4. Let 0<tH<T and usD(0, h; F)YNC°(0, t); E). If Dwu
+Au=0in D0, t.: E) and ltig)lu(t)=0 in E, we have u=0 on (0, ).
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Remark. The assertion is valid if —A is the generator of an analytic
semigroup in £. The proof is the same as below except for the use of the
analytic semigroup in place of S.

Proof. For r€[t, T] we put v(t)=S(r—t)u(t), 0<t<t. By (4.6) and
Proposition 4.1 (1) it is verified that Dw.=0 in 9D°(0, 4; E). Hence v.=0 on
(0, #1). In view of the analyticity of S and Proposition 4.1 (2) « vanishes on
(0, t1).

Let us observe the behavior of S(¢) as #—0 precisely. We choose ¢
e C=([0, )) so that ¢ attains the value 1 on [0,1] and vanishes on [2, ).
For r€(0, T] and xEE we define u-n-1€ B4J(0, T; E) by

U-m-1(1) =@t/ U-marx)(t), 0<t<T

and ux€D(L), k>—m, by Lur=Dsutr-1. Then us=Usx, k= —m, on (0, 7) by
Lemma 4.4. Repeating the argument in the proof of Lemma 4.3, we obtain

Proposition 4.2. There exist constants Ko and K such that
"t”DtnS(f)"_[(E)gKlKon%./ y o<t T .

Let #, >0, h+£<T and x€E. Put
_1r -
u(t) = [ =S (s + t)ads, <<t
By virtue of (4.6) u< C=([0, #]; F) satisfies

Dtu(t)-l-Au(t):%S(tz)x , 0ty
#(0)=0.
Hence u=U-»S(#)x on (0, #) by Lemma 4.4. This implies

Proposition 4.3. Let t and t, be as above. We have S(h+t)=S(t)
S(t).

Proposition 4.1, 4.2 and 4.3 show that S(-) is extended to an analytic
semigroup in E and that — A is its generator.

5. Proofs of (5)=(1), (5)=(3)

The injectivity of L and L follows from the remark in section 4.
We shall prove that L and L are surjective. In view of the remark in
section 3 we may assume that there exists a constant ¢<(0, 7/2) such that

p(—A)DZ¢+m2U{0} , Aeszl‘ip,2||/1(/1+A)_l||I(E)<oo .
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Proof of surjectivity of L. Da Prato and Grisvard [3] investigated the
operator equations in Banach spaces written as the sum of two closed linear
operators. They developed a potential theory for what they called parabolic
equations, which is described as follows:

Let A and B be closed linear operators in a Banach space X. We
assume

(p There exist constants ¢i and ¢, with 0<7z—¢.<¢ 1<z such that
p(_A)DZWU{O}y p(_B)DZ¢zU{O} and

sup |2(z+ A) Yy <oo, supllz(z+B) | <oo.

2E5y, 2€2%y,

(2) (z+A)"! commutes with (z+B)™" for za€p(—A) and z< o(—B).
We set

Di(8, ¢)={xE X;|t°B™(t + B) "x|1300.0: %)< 0} .

Let y be the contour running from e oo to e’¥oo such that y={re™*; » =0} U
{re™; » =0} for some ¢=(r—¢2, ¢1). Put

1

k= 2

[+Ay (—z+B)ydz.
_Proposition 5.1. For xEDs(0,q) we have RreD(A)ND(B), (A
+B)Rxr=x. Moreover, ARx, BRx<D3(8, q).

The surjectivity of ~L is reduced to the proposition by setting X =120, T;
E) and the operators A, B as follows:

D(A)=L0, T; D(A)), (Au)t)=Au(t)
D(B)={uceX: Duc X, u(0)=0}, Bu=Du.

We remark that Bg.o(0, T: E)=D3(6, q). See [3] for the case g=p and 0< 4
<1.

Proof of Proposition. The proof goes in the same manner as in [3], where
the case 0< <1 was proved. We only sketch the proof of the latter half.
As in the proof in [3], we have for ¢ >0

1 2(z+ A)!
2mi Jy (t+2)™

(t+B) "BRx= (—z+B)'xdz.

(1) The case ¢1>¢.. Let Ty, t>0, be the holomorphic functions on some
open neighborhood of y expressed as
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A)-1
%, when m=1

(2= " L(E+ A)
= (m—2t+O"

Tt(Z):

d¢, when m=>=2.

Notice that the estimate

Cn (min{l, |z|/t})™!
Tl 1+4/IA ’

I Te(2l o< (¢, 2)€(0, 00) X y

holds for some constant C». Since

(z+A)7 e m2 g (22)" R 2(— 24+ A)7
e D T2+ Z D { =G }

we have by Cauchy’s integral theorem that

1

(t+B)” BRxZ—W

/;Dz'”"Tt(z)(—z-l-B)‘lxdz.

Integration by parts yields the contour integral of T.(2)(—z+B) ™x. Apply-
ing Young’s inequality, we obtain the esimate of the norm of t°B™(¢
+B) "BRx in L%(0, o; X).

(2) The case ¢1<¢,. This case is proved with the use of the following
expression derived by Cauchy’s integral theorem:

1 z2(z+A)",

(t+B) "BRx= 2ty (t+2)"

22)" Y (—z+B) (z+B)"" Vxdz .

Proof of surjectivity of L. Let y be the contour running in Xs+z2 from
e oo to e¥oo for some ¢E=(n/2, p+x/2). The elements S;(¢), ¢t >0, j€Z,, of
L(E) given by

1

Sj(t): 27 4

e (A+A)dA

satisfy the following: S;(+) are analytic. The ranges of S;(¢) are included in
D(A).

(5.1) Dtsj(t)+AS,~(t)=Dt{%}1 , t>0

holds. stligllt”‘th”S,-(t)llr(E)<00. If x& E belongs to the closure of 9(A) in E,
So(t)x converges to x in E as ¢t tends to 0. Furthermore, we have
Proposition 5.2. Let 1<p<oo, 1<g<co, p~'<f<1+p "' and 0< T <co,

For x€(E, D(A))o_p1,q we have S;(-)x= B0, T; E). In addition, if j+0
>1, we have S;(*)xE Bi3*%0, T; D(A)).
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Proof. The first half follows from the expression
Z m—k 1 At AR __ m J
(-1 ( )S(t+kh)x— S [ —maiAG+ A 2 B

m=7+1,

the estimate |e*|Lr0m<p ?'|RA™*" for RA<0 and Young’s inequality.
Recall that (E, D(A))n={x€E; |A"AQA+ A) " 2| 1%0,0;: 5y <0}, 0<7<1, 1<q
<o, See Triebel [17]. The latter from the first and (5.1).

Let (f, x)€9,. We set
N-1 tk
o(O=£(0- S LDH0), 0<1<T.
Note that g€ B},¢(0, T; E). The element u of D(L) given by
u(t)= tl‘k'l'SN(t)xN'i‘(L '9)(t), 0<t<T
satisfies Lu=(f, x).
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