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Remarks on coerciveness in Besov spaces
for abstract parabolic equations

Yoshitaka YAMAMOTO

1. Introduction

Several papers were devoted to the study of solutions in Besov spaces
with values in a Banach space for the abstract linear evolution equation of
parabolic type

1.1) {Dtu (t)+ A u(t)—  f(t) ,  < t < T
(

u (0 )=x .

Sinestrari [14], Holder spaces; Di Blasio [5], Slobodeckii spaces and Mur-
amatu [12], general Besov spaces. One of the main results there is that the
mapping

L: u  ( D tu  + Au, u(0))

is a bijection from the intersection of two Besov spaces with values in the
Banach space and the domain of the operator A and with exponents 1+ 0 and
0  respectively to the space of data ( f ,  x )  satisfying suitable compatibility
relations, the coerciveness in Besov spaces for the equation (1.1).

Let E  and F be Banach spaces with F  continuously embedded to E  and
a linear continuous operator A from F  to E  be given. Let us consider the
evolution equation in E  of the form (1.1). The aim in this note is to show that
the parabolicity of the equation is characterized by the coerciveness in Besov
spaces for the equation.

2. Notation and preliminaries

R  and C denote the fields of real and complex numbers respectively. Z+
is the set of nonnegative integers.

Let E be a Banach space . ...C(E) is the space of bounded linear operators
in E  with uniform operator norm 11.1f( E) .  For a linear operator A in E  we
denote the domain of A by 0 (A ) and the resolvent set of A by p(A).

Let 1<p<œ, o< T  ••.9 and nE Z+ or n =o e .  We set several function
spaces with values in E  as follows.
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gY(0, T; E) is the space of distributions on (0, T ) .  The derivatives of f
D'(0, T; E) are denoted by Dint. T; E) and L,(0, T; E) are the LP

spaces with respect to the Lebesgue measure dt and the measure I'  dt on (0,
T )  respectively. Let 1=(0, T ), (0, T ],  [0, T )  o r [0, C n(I; E) is the
space of n times continuously differentiable functions on I. C 73(I; E) is the
subspace of C n(/; E) which consists of functions whose derivatives of order
up to n belong to L - (0, T ; E ).  In the notation above we omit E when E = R
or C.

Analytic semigroups. The mapping S: (0, co)->±(E) is called an ana-
lytic semigroup in E if the following conditions are satisfied.

(1) S is analytic. There exist constants OE(0, 7r/2) and (DER such that
S is extended analytically in the sector Z o ={tE  C;largtl< y5} and
the extension, also denoted by S, satisfies the growth condition

s EnØlle 'S (t )ii .r(E)<to e  •

(2) S(h+ t2)=S(ti)S(t2) holds for ti, t2>0 .
(3) Let x E E .  If S(t)x=0 holds for t >0, then x=0.

The generator G of an analytic semigroup S in E is defined as follows:

O (G )={xEE; y E  E exists such that DtS(t)x - S(t)y =0 for t >0.1

Gx= y .

It is verified that G satisfies

1( ) (  CO+ OD Z0+7I/2 sup 'WA+ W  G Y I L C ( E ) < C °
AEZIriqr/2

for some constants Oe(0, 7r/2) and wE R .  The mapping SH, G from the set of
analytic semigroups to that of closed linear operators with the properties
above is bijective. The inverse of the mapping is expressed as the inverse
Laplace transform.

We remark that S is not necessarily strongly continuous at t=0 and
hence 9)(G) may not be dense in E .  Analytic semigroups of such type have
been already studied by Da Prato and Sinestrari [4] and Sinestrari [14],
although the definitions of an analytic semigroup and its generator were not
explicitly presented there.

The equation (1.1) is called of parabolic type if - A  is the generator of an
analytic semigroup in E.

Besov spaces. Let 1 i;t c, o, q 0 < 0 <00 and 0< T < 0 0 . Set m
-=[0]+1, where [0 ] is the largest integer which does not exceed O. For a
strongly measurable function f  on (0, T ) with values in E we put
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[f]eps(0 ,7 '; E ) —

  

M  k  ( 7 ) f  +  k h )
LP(0,T-Mh; E) a°, T / m)

      

We define the subspaces B L (0 , T ; E ) and /4,,,(0, T ; E ) of L P (0, T ; E ) as
follows:

(1) f  L 1) (0, T ; E ) belongs to B1, ,q (0 , T ; E )  i f  f  1.- - ,13,q(0,T; E)<

(2) fELP(0, T; E ) belongs to 14, q (0, T; E) if

f T ;  E )  a n d  I h- IEP(0,h; E)1LY (0,T)< Œ

• T; E ) and B ,,(0 , T ; E ) are Banach spaces with respective norms

ii1B13,a(0,T; E) If ILP(0,T; E) ± [ f ] . 4 , (0 ,T ;  E )

If114,q(0)T; E) — Ih  VILP(0,h; E )10 ,(0 ,T )+  IfIE I),q (0 ,T ; E)

• T ; E ) is called the Besov space on (0, T ) .  For Besov spaces on
general regions in R n including those with nonpositive exponents 0 we refer
the reader to M uramatu [9], [10]. We just collect some basic properties of
• T; E) and bf,, q (0 , T ; E ). In the following B(0, p, q) stands for B7.,,(0,
T ; E ) or 14, q (0, T; E).

Proposition 2 .1 .  L et lsp, p' <0 0 , q, q' <co, 0< 0 , 0' <co and 0< T
S oo.. Let us express 0 as 1+ a w ith 1 E Z+  an d  aE(0, 1].

(1) B(0, p, q)cB(0' , p, q') when 0> 0' .
(2) B(0, p, q)cB(0 — p - i p ' - ' , q ') when p' p, q' q, 0> p - ' — p' - '
(3) L et aE  C ((0, T )).  We have a f E B(0 , p, q) f or f E B(0 , p, q).

(4) L et T <c 0 . We have f  t f(s)dsEB(1+ 0, p, q) f or f EB (0 , p, q).0
(5) We have Dtk f E B(0 — k, p, q), 0 < k < 1 f or f E B(0 , p, q).
(6) B , q (0 , T ; E)= {f E B , q (0 , T ; E); D f (0) = 0 f o r  0  k  1  — 1 , D t t f

EEp°,q (0, T ; E)) .

W hen - p - i  is not an integer, we have

L q (0, T; E)

T; E) , when a— p 1 <0
{f B iSr,„(0, T; E); f (0)= 0} , when a— p- 1  >0 .

In the next section we will describe the compatibility relations between f
and x  for (1.1) to have a solution in some Besov spaces. To this end we
prepare the following:

Proposition 2.2. L et F  be a Banach space continuously embedded to E.
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Let 1 < p < 0 0 , 1<q<co, p - i<e<i+p - ' and 0< T<OED. F o r uE B W (0 , T ;
E)r113,,,,(0, T; F) w e have Dtu(0)E(E, F)e_p-i, q ,  the real interpolation space
between E  and F.

P ro o f  Among several equivalent definitions of the re a l interpolation
spaces we recall the K-method due to Peetre [13]:

(E , F ),,,= { x E E ; I t'K (t, x)la(o,..)<oel , 0< 71<1,  1 q œ ,

where

K (t, x )= —3)1E+ t ly 1 F ) , Peetre's K  functional.
yeF

By the well known fact that mintl, trn IK (h , x )< K (t, x ), t, h> 0, xE E we
have only to prove that 117/1 K ( • , Dtu(0))1 I g <- C  ° • This follows from
the estimate

K (t, Dal(0))1Dat(0)—  t - '(u(t)— u(0))1E+1u(t)— u(0)IF

r i
1Dtu(lr) —  D tu(0)1Edr H u(t)—  u(0)1F , 0<t ‹T0

and Young's inequality. Notice that both

a l( • )—  D tU M IL P (0 ,h ; E )IL Y ;(0 ,T ) and Ih 'Iu (•) — u(0)1Lp(0,k; fi)la(o,T)

are finite in view of Proposition 2.1 (6).

3. Results

Let E and F  be Banach spaces with F  continuously embedded to E and
a linear continuous operator A  from F  to E be given.

Let 1<p<00,1<q<00, 0< O<œ and 0< T < oo.
In view of Proposition 2.1 (5) we define the linear operator L from D(L)

T ; E )n M , q (0 , T ; F ) to È79,,(0, T; E) by

fu = D tu +  A u ,  u E O (L )  .

Assume that O —  p' is not an in teger. Set N=[0— p - 1 ] + 1 .  Do is the
subspace of ./3,,(0, T; E )x E  which consists of elements ( f  x )  of ./3,,(0, T;
E )x E  satisfying the conditions below: We put xo=x.

(1) If k<N , then x k E F . In this case we put xk+1=Dtk f(0 ) — Axk.
(2) xNE(E, F),_p-, + i _N ,,.

N -1
0 is a Banach space with norm I ,B g (0 ,T ; E )+ lxklF+IxN1(E 1 + 1 -N .4  •

k=0

Remark. For wE C  let Ow be the subspace of fg ,, q (0, T; E)x E defined
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for the operator co - A  a s  00 fo r A . We see that ( f , x ) if and only if
(e - wtf x)Eg)

For uE (0 , T ; E )n T; F ) we put

f= D tu + A u E B I,,, (0 ,T ;E ), x = u (0 )G E

When N=0, i.e., 0< < p - i , we apply Proposition 2.2 to f  t u(s)dsE MAO, T;

E) n (0 , T ; F ) and obtain ( f , x) 0. When N 1 ,  differentiating f  suc-
cesively (N -1) times and taking the traces at t =0 of the derivatives, we see
by Proposition 2.2 that ( f , x )E  00. Thus 00 is understood as the space of
data with the compatibility relations for (1.1) to have a solution in BW(0, T;
E)n BL(0, T; F).

We define the linear operator L from 0 (L )=B W (0 , T ; E ) n T;
to 00 by

Lu—(Dtu+ A u, u(0)) u E . D (L )

Our main result is described as follows:

Theorem . The fo l lo w in g  conditions about the opera tor A  are equivalent.
(1) L is  bijective f o r an y pa ir  of  (p, q, O, T ).
(2) L is  bijective for som e P a ir of  (p, q, O, T ).
(3) L  is  bijective for any pair o f  (p, q, O, T )  w ith  0—p1± in teger .
(4) L  i s  bijective for som e pair o f  (p , q, O, T )  w ith  0 — p- 1* integer.
(5) — A  is the g en e ra to r  of  an ana lytic semigroup in E.

Let us sketch the proof of the theorem.
(1) (2) and (3) (4) are obvious. (4) (2) follows from the facts that ( f ,

0)E00 for fE  T; E ) and that u E 0 (L ) with L u = (f , 0) turns out to
belong to 0 (L )  for fE B L (0 , T ; E ).

In the next sections we shall prove (2) (5), (5) (1) and (5) (3). ( 2 ) ( 5 )
is proved by constructing the analytic semigroup with generator — A . We
prove (5) (1) following the treatment of certain linear operator equations in
Banach spaces due to Da Prato and Grisvard [3]. (5)(3) is reduced to (5)
(1) and the behavior of analytic semigroups acting on the real interpolation
spaces.

4 .  Proof of (2) (5)

For x E E  we define U-m_ixEbIZ:(0, T; E) by

tm + 1

( U ,n_ix )(t)=  ( m + i ) I x  ,  0 < t< TT .

Then the linear operators Uk: E—> O(L), k> —m, are defined successively by
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solving the equations

(4.1k) LUkx=DtUk_ix , xE E  .

Putting for m, x, yE E

Vk =  t U k - 1 X  f  { ( 1? — 2 ) ( U  k -lX )(S ) — (k  rn )(U  k X )(S )1 C IS0

Wk = k X  f  t( U k Y )(s )d s  ,0

we have

Dtvk=(tDt+ k-1)Uk_ix—(k+ m)Ukx , Dtwk= AUkx— UkY

When k>— m +1, we see that vk, wkE0(L) and

LVk '
=

"D tVk- 1 1-,Wk 
—

D tW k -1  .

Noting that v_m=0, we obtain the following:

Lem m a 4.1. For k > — m + 1 , x E E  we have

(4.2) Ukx= k + m  (tD t+ k -1 )U k _ ix

We have by induction

Corollary of Lem m a 4.1. For x E E  we have

m !  (4.3) D t"U k x = tkDtUox ,(k + m )! w h e n  —11,1 k- 1

)! Dt
k - i t t k

Dt Uoxl(4.4) U k X  = (k + m w h e n  k .

Lem m a 4.2. Let x , y E E .  I f  AUkx=Uky holds fo r some k>— m , then
it holds fo r any  k —m.

The relations (4.3) show that the mappings

xl—, (k +m )!t - i ' D t 'U k x ,

are the same linear operators from E  to 0'(0, T ; F ), which we denote by S.
The derivatives of Sx are expressed as

(4.5) tn+mptn SX = ( n +  m )t i  ( - 1) n"  n )D t u kx .
k=0

These are derived by the identities
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t n + M  

( n + m
) l

tnf =  ( - 1 )n -
k

k ( 71

 t)D kt t h + M
( k + m ) ! '

f fk=0 fE g v (0 ,T ;F )

and using (4.4). (4 .5 )  together with (4.2) shows that S xE  C - ((0, 7 1 F ) for x
EE.

Thus the linear operators S(t): E -> F , 0< t T, are defined as follows:

S ( t ) x = ( S x ) ( t ) ,  x E E

We shall prove that S(•) is extended to an analytic semigroup in E and that
—A is its generator.

Differentiating (4 .1 ,)(m + 1) times, we first note the relation

(4.6) DtSx + ASx=0 , xEE .

Proposition 4 . 1 .  (1 ) x E E  belongs to F  if  and only if  there exists yEE
such that

(4.7) DtSx + Sy=0 .

W hen this is the case, we have y=Ax.
( 2 )  I f  Sx=0, then x=0.

P ro o f  By (4.6) and the definition of S, (4.7) is equivalent to AU ix=U ly .
By Lemma 4.2 it is also equivalent to AU-mx=U-m.Y.

Assume th a t  x  F .  T h en  w , E 0 ( L )  and  Lw_m—  U,_1(Ax— y).
Hence we have AU-mx= U_mAx. Conversely assume that A U_mx=U-my
holds for some y E E .  Then DtU- m + U-my=DtU-m-ix. This implies that
x E F .

We proceed to the proof of (2). Suppose that S x = 0 .  Since (4.7) holds
with y= 0 , w e have D t I L , n x = D t U , I x .  Differentiating this relation m
times, we obtain x -= S (t )x = 0 .

Lemma 4.3. There exist constants Ko and K1 such that

(4.8) tm -"P -Iltn D tliS (t)x lE  Tm - ' 1 KiKo n n!lx1E  , xEE ,0<t T

P ro o f  Since L is bicontinuous, there exists a constant Co such that

Iptli14q(0,T; E) E) , U E  ( L )  .

Applying this to (4.5), we obtain the estimates of the norms in E ,,(0 , T; E) of
tn+mDt'Sx. (4.8) is a consequence of Proposition 2.1 (2) with p'=q'=00.

Lemma 4.3 implies that the mapping (0, 11-> -C (E ), t S (t) is analytic.

Lemma 4 .4 .  L et 0< tl < T  an d  uE0r(0, t1; F) fl c°((o, to; E ) .  If  Thu
+ Au=0 in  D'(0, t1; E) and lim u (t)=0  in E, we have u=0  on (0, ti).t-o
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Rem ark. The assertion is valid if —A is the generator of an analytic
semigroup in E .  The proof is the same as below except for the use of the
analytic semigroup in place of S.

P ro o f For rE [ti, T ] we put 1),(0= S(r —  t)u(t), 0< t< ti. By (4.6) and
Proposition 4.1 (1) it is verified that Dtv, =0 in 0'(0, ti; E ) .  Hence vr =0 on
(0, t1). In view of the analyticity of S  and Proposition 4.1 (2) u  vanishes on
(0, ti).

Let us observe the behavior of S ( t )  a s  t - *0 precisely. We choose
E C - ([0, co)) so that ço attains the value 1 on [0, 1] and vanishes on [2, œ).
For rE(0, T ] and x E E  we define u_m_IE/V:(0, T; E ) by

u_ m _ i(t)= ço(t/ r)(U -m -ix )(t), 0<t< T

and u k E  ( f ) ,  k m, by L uk = D tuk -i. Then uk= Ukx, k> — m, on (0, r) by
Lemma 4.4. Repeating the argument in the proof of Lemma 4.3, we obtain

Proposition 4.2. There exist constants Ko and K1 such that

Mtn  An S(t)11-c(E)—< KiKon n! , 0< t .

Let ti, t2>0, ti+ t2 T  and x E E .  Put

u(t)= m
i

t f o
 t (t — sr S (s+  t2 )x d s  , 0 < t t i .

By virtue of (4.6) uE C 00([0, ti]; F ) satisfies

{

D iu(t)+A u(t)— m
t m

t S(t2)x , 0 < t t 1

u(0)=0.

Hence u= U_mS(t2)x on (0, t1) by Lemma 4.4. This implies

Proposition 4.3. L et t i  an d  t2 be as above. W e  have S(ti+ t2)= S(ti)
S(1-2).

Proposition 4.1, 4.2 and 4.3 show that S (• )  is extended to an analytic
semigroup in E and that —A is its generator.

5. Proofs of (5) (1), (5) (3)

The injectivity of L and L follows from the remark in section 4.
We shall prove that L and L  are surjective. In view of the remark in

section 3 we may assume that there exists a constant 0E(0, z12) such that

p ( -A )D x 0 + „ , ,  u( 0) SU P 11/1(/1 + A ) - 1 11-C(E)<oe
Ae.Em-F7,2
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Proof of surjectivity of L . Da Prato and Grisvard [3] investigated the
operator equations in Banach spaces written as the sum of two closed linear
operators. They developed a potential theory for what they called parabolic
equations, which is described as follows:

Let A  and 13 be closed linear operators in  a  Banach space X .  We
assume

(1) There exist constants 01 and 02 with 0< 02< 71- such that
10 ( — A)DZoi U{0}, p(— :6)p 0 2 u {o) and

suplIz(z+,4) - 1 11_c(x)<oe , suP112 .(z+ b- )  '11.r(x)<00 .

(2) (zi-FA) - 1  commutes with (22+,e) - 1 for ziE p( — A ) and z2E p( — E).
We set

D(B , q)— {xE X ;It'f3- m (t + rix la(0,.; x )<œ }  •

Let 7 be the contour running from e - i P̀ co to eiç'co such that y= { re"; r _O} U
{ re'; r 0} for some 0E(7c— 02, 01). Put

1  zR = 27z-z 7
f  ( A ) - 1 (—z-F .

Proposition 5 .1 .  Fo r x E D § (0 , q )  w e  hav e R x E D (A )C 10(P), (A
b )R x = x . Moreover, A Rx, f3- RxED§(0, q).

The surjectivity of L is reduced to the proposition by setting X = LI) (0, T;
E ) and the operators A , -A as follows:

(A )=  0 0 , T ; 0 (A )) , (A u )(t)=A u(t)

g ()— { u E  X ; DalE X , u(0)=0}  , E u= D u .

We remark that k g(0, T ; E)= D (B, q ) .  See [3] for the case q= p and 0< 0
<1 .

Proof of  Proposition. The proof goes in the same manner as in [3], where
the case 0< 0<1 was proved. W e only sketch the proof of the latter half.

As in the proof in [3], we have for t >0

1 (z+Â Y '(t+1-3)-mf3Rx= 
 2 7 z - i ./ 7

r  z
 ( t + z r

zd-r3)-1.xdz

( 1 )  The case 01 02. Let T t ,  t >0, be the holomorphic functions on some
open neighborhood of 7 expressed as
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Tt(z)—

{ z(z + Â) - 1  

when m=1t +z
rz ( 2 —  ) ' 2 -

(m — 2)!( t + ) m  d ,  w h e n  m 2 .

Notice that the estimate

Cm (m ina, ( t  z ) ( 0 , o o )  X yTt(411-e(x) -2F 1+

holds for some constant Cm. Since
m -2

=D m '— D z m 'T t(z )+ D  m-2-k{(24 m - 2 - k z( —  z+ A) - 1  

(t +2)M (m - 2 — k ) ! ( t— z r 'k=0

we have by Cauchy's integral theorem that

( t  + ) - mÈRx = 2
1
z i  f Tt(z)(— z+13) - 1  xdz

Integration by parts yields the contour integral of Tt(z)(— z+B- )- m x . Apply-
ing Young's inequality, we obtain the esim ate of the norm o f  t' Bm(t
+ f3) - mÈRx in LUO, co; X).
(2) The case 01 02. This case is proved with the use of the following
expression derived by Cauchy's integral theorem:

1  f   z (z+A ) - 1  

(t +.173)-mt3Rx= 
27ri .17 ( t  +  z )

m  (22) (—  z +P) - 1 (z+ f i) - ( m- 1 )  xdz

Proof of surjectivity of L .  Let y be the contour running in 2 . 0+;r12 from
e 'co  to  e '00 for some OE (712, 0+7r/2). The elements SAO, t >0, j Z+, of
1 (E )  given by

SA O= 2
1
7ri f  e"A - l (A +A ) - 1 d/1

satisfy the following: S; (•) are analytic . The ranges of SAO are included in
0(A ).

(5.1) DtS .,(t)+A S ;(t)=Dt e  , t >0

holds. suplit 'Dt'S;(t)Ilf(E)G cc. If xE E belongs to the closure of 0(A ) in E,t>o
So(t)x converges to x  in E  as t  tends to O. Furthermore, we have

Proposition 5 .2 .  Let 1- p- œ , i (:)0, p- '< e< i+p - ' and 0< T  <0 .
For xE(E , 0(A ))0_p-i, we have S ,(•)xEB -iV (0 , T ; E ) . In addition, if 1+0
>1, we have S_,(•)x .E3W e (0, T ; 0(A )).
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P ro o f  The first half follows from the expression

i ( - 1 ) m - k ( m ) S ,( t+k h ) x = e " ( e "  1 ) N - J A (.1+ A ) - 1  x clA

k=0 27rz '

m  j +  ,

the estimate le lL , (0,..) P- P f o r  R i l < 0  and  Young's inequality.
Recall that (E , 2 (A )) ,,={ x E E ;1 /1 17.4(.1+ A ) - 1 x1ia ( 0 , 0 . ;  E ) <  œ l 0<77<1, 1<q
- c o . See Triebel [17]. The latter from the first and (5.1).

Let (f,  x ) 0. We set
N-1 t k

g ( t ) =f ( t ) —

170 N. f (0) , 0  < t  < T

Note that gE B70, q ( 0 ,  T ; E ) .  The element u  of 0 ( L )  given by

N-1 t k
u(t)—  A x k+ S N ( t)x N  -F(L» g )(t)  , 0  < t < T

satisfies L u =( f , , x).

Department of Mathematics
Kyoto University
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