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On the Chern character of
symmetric spaces related to SU(n)

By

Takashi WATANABE

§ O. Introduction

Let (G, F ) be a compact symmetric pair. T h a t is, G  is  a compact Lie
group with an involutive automorphism s: G—> G and F is a closed connected
subgroup of G such that Gs = {xE G; s(x)= x}D FD(Gs),, the identity compo-
nent of G s .  Then the quotient M = GIF forms a compact symmetric space.
The aim  of th is paper is to  study  the Chern character homomorphism ch:
K*(M)—> H**(M; Q) [1, § 1] for two cases M= SU(2n)ISp(n) in section 2 and
M = SU(2n+1)1S0(2n+ 1) in section 3, where SU(n)OEM(n, C), Sp(n)OEM(n,
H ) and SO(n)cM(n, R) are the n-th special unitary, symplectic and rotation
groups, respectively. As a byproduct we will find a symmetry in a descrip-
tion of ch for M =SU (n+1) at the end of section 3. Finally in section 4 we
compute ch for M= SO(2n+ 1).

Our discussion is summarized as fo llo w s . Let 7r: G—> GIF be the projec-
tion and consider the commutative diagram

ch 
K*(GIF) > H **(G IF ; Q)

I
ch 

K*(G) > H * * (G ;  Q) .

In our cases, all the rings K*(GIF), H*(GIF: Q), K * (G ) and H*(G; Q) were
determined and all the homomorphisms except the upper ch were described;
further, the vertical homomorphisms are injective. So the upper ch can be
computed.
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§ 1. Preliminaries

We first deal with SU(2n)ISP(n). Let in be the unit matrix of degree n,
and set

( - I n ) .

.17z= In 0

Define a map s2: SU(2n)-> SU(2n) by s2(A)=JnAIn' for A E SU(2n), where A
denotes the complex conjugate of A .  Clearly .52 is  an involution. Let 12:
SP(n)-* SU(2n) be the map defined by

for X= A+ jBESp(n) ,

where j  is the element of H such that H = C {1 } C {j} and j 2 =  - 1 .  Clearly
12 i s  a  monomorphism of topological groups. It is easy to check that
(SU(2n), 12(SP(n))) i s  a com pact symmetric p a ir . Thus SU(2n)ISp(n)
becomes a compact symmetric space, which is denoted by A ll in R. Cartan's
notation.

Choose a maximal torus T  of SU(2n) so that s 2 ( T ) C T .  Let L (T )  be
the Lie algebra of T .  There are simple roots a, a2, •• • , a2n_1: L(T) - >R such
that the corresponding Dynkin diagram is

a2 a3 a 2 n - 3 122 n - 2 Œ 2 n - 1

where, with respect to a certain inner product ( , ) on L( T)* =HomR(L( T), R),
(a„ az)=2 if (a„ a ,+ i)=  1  if 1 i<2n - 1 ;  otherwise (a„ a3 ) =0.
Hereafter we follow [4]. We may regard a, as an element of H 2 (B T ; Q), and
then H *(B T; Q ) is the polynomial algebra Q[ai, •••, a 2 ,1 ].  Denote by s2: T
-> T the restriction of .s2 to T .  According to [9], B.4`: H*(BT; Q)-> H*(BT;
Q) is given by

(1.1) Bs(ai)=a2n_i (1=1, 2, •••, 2n-1).

Let oh, 0)2, •••, ahn_i be the fundamental weights determined by a2, ---,a2n-i.
Then we have

i - 1

(1.2) wi=(112n)((2n- i)Ejœ i +1
2 n - 1

E (2n -  j)a i )
j= 1

(see [4]). Since H*(BT; Z)=Z[w i,•••, ( 0 2 n - 1 ]  (see [3, § 10.1]), it follows from
(1.1) and (1.2) that B.4`: H*(BT; Z)-> H*(BT; Z) is given by
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(1.3) Bs(w1)=6u2n_1 (i=1 , 2, •••, 2n-1) .

Let R , be the reflection of L (T )*  relative to  a„ i.e., with respect to  the
hyperplane { x E L (T )*; (ai, x )= 0). Then RI, R 2 , •  •  •  , R 2 n -1  generate the Weyl
group W (S U(2n)) and act on H 2 (B T ; Z )  by the formulas

R ,(c o ,)=- E (2 (a„ z ) /(a i , a,))co, and
,#,

R,(co1 )= 0  if i * j

In this case, we have

Ri(uh) --  - col +  ,

R ,(co1)=a),_1- co,+1 (i=2 , 3, •--, 2n-2),

R2n-1(CO2n-1)- CO2n –2  CO2n –1

Put

t i =  W i

(1=2, 3, •••, 2n-1),

t2n —  R 2 n -1 ( 1 -2 n -1 ) —  C O 2 n -1  •

Then H * (B T ; Z )= z [t i , .• • , t2n ]gei), where ci=  +••• +  t2n , and it follows
from (1.3) that

(1.4) B st(ti)= -  t2 + 1 1 2, •••, 2n).

For a commutative ring R  with a unit 1 E R , let a i(x i ,  x 2 ,  •  •  •  ,  x n ) denote the
i-th  elementary symmetric polynomial in R[xi, x2, •••, x n ] .  For a compact
connected Lie group G with a maximal torus T , we denote by i :  T  G the
inclusion, by a*: H*(B G; R )-> H* - 1 (G; R ) the cohomology suspension and by
H *(B T ; R ) w ( G )  the subalgebra of H * (B T ; R )  invariant under the action of
the Weyl group W (G).

L e t c,+1=6,+i(ti, •••, t2n)EH 21 +2 (B T ;  Z ) .  S in c e  W (S U (2 n ))  a c ts  on
H 2 (B T ; Z )  as the group of permutations on •••, t2n}, w e have H *(B T ;
Z)w(suc 2 n » -  z [c

2 , c 3 , • «, czn] and it follows from (1.4) that

(1.5) BsZ(c1-F-1)=(-1)z±ic 1+1 (1=1, 2, •••, 2n-1).

Since H *(S U (2n); Z ) has no torsion, by [2, § 29] B i: B T  -> B S U(2n) induces
an isomorphism H *(B S U (2n); Z )=.- 11*(B T ; Z ) W ( S U ( 2 n ) )  (so we shall identify
them). Therefore H *(B S U(2n); Z )=Z [c2, c3, •••, c2n]. Let x21-1-1=0* * (c i+ i)E
H 2 1 (S U (2 n ) ; Z ) . Then

(1.6) H *(S U (2n); Z ) is the exterior algebra A z(x3, x3, •••, x4n-i)
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(see [2, § 19]).

Proposition 1.1. st: H *(S U (2n); Z )-> H *(S U (2n); Z ) is given by

sgx21+1)=( - 1) 1 + i  x2i+i( 1 = 1 , 2 ,  •••, 2n-1).

P ro o f  We have

.s (x21+1)=sJ`(0- *(ci 1))

=6 * (B4`(ci+1)) by the naturality of a*

=0"* (( - 1) i + l ci+1) by (1.5)

=( - 1)
i+ 1

X2i+1 •

Choose a maximal torus T ' of Sp(n) so that i2( T ') c  T .  Let L ( T ') be the
Lie algebra of T ' .  There are simple roots 4  4  • • - , L (T ')->R  such that
the corresponding Dynkin diagram is

(41-1a n
0 0 0    ,

where (4  4 = 2  if 1 1 <  n ; (a;,, d i)=4; (4  a41)= -1 if 1 i< n -1 ; (a;,- i , a)
=2; otherwise (4  a . )= 0 .  Then H * (B T '; Q )= (1[(e, •-•, di]. Denote by 12: T '
-> T the restriction of i2 to T ' .  According to [9], Big': H * (B T ; Q)->H*(BT';
Q ) is given by

(1.7) B il`(cri)=d=B iZ (a2n-i) ( i=1 , 2, •••, n) .

Let oA, w ,c o ' n  be the fundamental weights determined by 4 •••, a .
Then we have

i-1 n-1
(1.8) (di=  EiC4+ E  CZ; + (1/ 2)an) •

3=1

Since H * (B T '; Z ) - •••, c o ] ,  it follows from (1.2), (1.7) and (1.8) that Big':
H *(B T ; Z )-> H *(B T '; Z ) is given by

(1.9) Bz1(cui)=co'i=B4'(w2n_i) ( i=1 , 2, •--, n) .

Let R ; be the reflection of L( 
T ) *  relative to 4  Then the action of W (Sp(n))

on H 2 (B T '; Z )  is given by

f f (c o )=  -  ct) + co ,

( i =2, 3, • •-, n -1 )  ,

R;i(a);,)=2co'n-i -  cu;, .



Chern character 153

Put

,

t i= 1 ?i( t i)= -  c o 'i- i+ (i =2, 3 , •-, n) .

Then H * (B T '; Z )=Z [t;,••• , t] and it follows from (1.9) that

(1.10) B it( t i) -  t (1=1, 2, •-, n),

Bz1(t2n+1-1)= -  t; (i=1, 2, •-, n).

Let q1=(1(1' 2 , tZ2 , •••, t 2 )E11 4 i (B T '; Z ) .  Since W (SP(n)) acts on H 2 (B T '; Z )
as the group of permutations on {t;, •--, t;i} together with substitutions -  ti,
we have H *(B T '; Z ) W ( s P ( n) ) =Z[qi, Q2, •••, qn] and it follows from (1.10) that

(1.11) B i ( c 2 ) = ( - 1)'qz (i=1, 2, •-, n),

Bil(c21-F1)=0 (i=1, 2, •••, n - 1 ) .

By [2], H*(BSp(n); H *(B T '; Z ) w ( s P ( n) ) . Therefore

(1.12) H*(B SP(n); Z )= Z [ q i ,q 2 ,• • - ,  q d .

Let ,4 -1=a*(q i)E H 4 ' - 1 (S p (n ); Z ) . Again by [2],

(1.13) H *(S p(n ); Z )=A z (4 .

Proposition 1.2. iJ̀ : H*(S U(2n); Z )->11*(S p(n); Z ) is given by

i ( x 4 1 ) =( - 1)'.4-1 (1=1, 2, •--, n) ,

i(x41+1)=0 (i=1, 2, •-, n - 1 ) .

Proof . This follows from (1.11).

We next deal with S U (2n+1)1S 0(2n+1). Define a m a p  SU(2n+1)->
S U(2n+ 1) by s i(A )=A  for A E SU (2n + 1). Clearly si is an involution. Let

S O (2n+1)-*S U (2n+1) b e  the map derived from the inclusion R C  C.
Clearly i1 is a monomorphism of topological groups. It is easy to check that
(S U (2 n+1), ii(S 0 (2n+1)))  i s  a compact symmetric p a ir . T hus SU(2n
+1)1S 0(2n+ 1) becomes a compact symmetric space, which is denoted by AI
in P . C artan 's notation.

Choose a maximal torus T  of SU(2n + 1) so that si( T)OE T . There are
simple ro o ts  a , az, a z n :  L( T)--*I? such that the corresponding Dynkin
diagram is

 

a 2 n  -2 a 2 n  -  1 a2n

o ,
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where (a i, ai)=2  if 1<=i 2n; (ai, ai+i)= -1  if 1 i<2 n ; otherwise (a i, a ) =0 .
Then H * (B T ; Q )= Q[al, •••, a2n]. Denote by si: T - *  T  the restriction of si to
T .  According to [9], B s ': H *(B T; Q )->  H *(B T; Q ) is given by

(1.14) B .S t ( a i ) =  a 2 n + l - i (i=1, 2, 2n).

Let oh, (02 , •• •, a h n  be the fundamental weights determined by ai, a2, •--, a2n.
Then we have

(1.15) co i=(11(2n+1))((2n+1- OE jai + i i (2n+1- f )cr.i) •

Since H*(B T ; Z )=Z [coi,•••, W 2,,], it follows from (1.14) and (1.15) that Bsi':
H *(B T ; Z )-> H *(B T ; Z ) is given by

(1.16) BsP(co,)= co2n+i-, ( i=1 , 2, •• •, 2n) .

Let R , be the reflection relative to a,. Then the action of W (S U (2n+ 1)) on
H 2 (B T ; Z )  is given by

R i(c o i)=  w i+  c ° 2

R1(C0) — (0i-1 C O i+ Wi+1 (i=2, 3, •••, 2n-1),

R 2n(W 2n) —  (02n-1 —  a ) 2n .

Put

col

(i=2, 3, 2n)

t2n+ i-R 2n (t2n )- ah n  •

• ,• • • , ,Then H * (B T ; Z )= Z [t , t 1 1 (r ) where c i=c i( t i ,  • • ,  t ), and it fol-
lows from (1.16) that

(1.17) B s i ( t , ) = -  t2n+2-, (i=1, 2, •••, 2n+1).

Let c1+1=az+I(t1, •••, t2n+I)EH 2 2 (B T ; Z ) .  Then H *(B T ; Z )
W ( S U ( 2 n + 1 ) ) _

Z [C 2 ,

C3, C2n+11 and it follows from (1.17) that

(1.18) B sP (c+ i)- (-1 )"- lc1 + 1 (i=1, 2, •••, 2n) .

By [2 ], H * (B S U (2 n +1 ); Z )=- 11*(B T ; Z )
W ( S U ( 2 n + 1 ) ) _

Z [C 2 ,  C3, •• • , c2n+1]. Let
6*(c,+ H 2 ‘±l(SU(2 n + 1); Z ) .  Then

(1.19) H*(SU(2n+1); Z)=Az(xs, xs, x4n+1) •

Proposition 1 .3 .  si: H*(SU(2n+1); Z)-> H*(SU(2n-F1); Z) is given by
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s t ( x 2 + 1 ) - (  1 ) ' + 'x2z+1 (1=1, 2, •••, 2n) .

P ro o f  This follows from (1.18).

Choose a maximal torus T ' of SO(2n+1) so that ii( T ') c  T  .  There are
simple roots 4  4  an':  L (T ')->  R  such that the corresponding D ynkin
diagram is

(6 (4,-2
> 0 ,

where ( 4  4 = 2  if 1 i<  n ;  (an, a )=1; (4 4E1)= - 1 if 1 n; otherwise ( 4
4 = 0 .  Then H *(BT '; Q )= Q [c4, «, a ]. Denote by T  the restric-
tion of i to  T ' .  According to [9 ], Big': H *(BT; H *(B T '; Q ) is given by

(1.20) B ii (4 =  4 - B it ( a 2 n + i- i ) ( i = 1, 2, •••, .

Let w , w , •--, co'n be the fundamental weights determined by cK, 4 •-• ,
Then we have

(1.21) (.0;.= Eia.;+1=1 (i= 1 , 2 , •••, n-1) ,

a/n=(1/2)± ./(4
j =1

Since H *(BT'; Z )=Z[co'i, w; ] , it follows from (1 .15), (1 .20) and (1.21) that
H *(B T ; Z )->  H *(B T '; Z ) is given by

(1.22) Bit( co i) = (di= Bil'( co2n+i- i)( i = 1 ,  2, • • • , n - 1)

BiP(con)=20.);,=Bit(con+i).

Let R  be the reflection relative to d i .  Then the action of W(S0(2n+ 1 )) on
1-12 (B T '; Z ) is given by

R i(w I )=  -  col+ coZ ,

(i=2, n-2) ,

R1(co'n-1)= a/n-2 -  a/n-i+2(o'n,

R'n(co'n)-(o'n-i- ((In.

Put

t;=

ti= ./?--1(t;-1)= (1 = 2 , 3 , • • • , n -1 ) ,
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t R-1(t7;-1)= — co'n-i+2co;z.

Then H * (B T '; Z )=Z [t ,• • • ,t ] and it follows from (1.22) that

(1.23) B it(t,)= t, (i=1, 2, •••, n),

B it(tn+1)=0

Bit(t2n+2-,)= — t[ (i=1, 2, ••-, n).

L e t  pz=61(6 2 , 62 , •••, t 2 )E H 4 '( B T ' ;  Z ) .  S in c e  W (S 0 (2 n +1 ))  a c t s  on
H 2 (B T '; Z ) as the group of permutationsi o , oni ) ) {ti', •{-p•, , t, 1 }2,togetherp n ]g. ether with substitu-
tions t;, we have H *(B T '; Z )

 z  
and it follows

from (1.23) that

(1.24) B it(c ,i)= (-1 )'p i (1=1, 2, •-•, n),

Bit(c2i+1)=0 (i=1, 2, .

Suppose given a field k of characteristic p * 2 .  Since H *(S 0(2n+1); Z )
has no odd torsion, by [2, § 29] H *(B S 0(2n+1); k ) H * (B T '; 12)

W ( S 0 ( 2 n + 1 ) ) .

Therefore

(1.25) H*(BS0(2n +1); k)= k[Pi, P2, • •• , Pn] .

Let x:Ii_i=6*(pi)EH 4 i - i (S 0 (2 n + 1 ); k ) .  By [2 ],

(1.26) H*(S 0(2n+1); 12)=A k (4.1.,•••,.4,,_1) .

In this way, from (1.24) we obtain a result on the behavior of it: H*(S U(2n
+ 1 ); 12)-011*(S0(2n+1); k ), w hich  is qu ite sim ilar to  Proposition 1.2.
However, in section 4 we will prove its integral version (Proposition 4.1).

§ 2. The Chern character of SU(2n)ISp(n)

The cohomology of SU(2n)/SP(n) is known (e.g., see [10, Vol. I, Chap. 3,
Theorem 6.7, (1)]).

Proposition 2 .1 .  H*(S U(2n)IS P(n); Z )  has no  torsion  and  there exist
elements e41-FiEH 4 ' 1 (SU(2n)ISP(n); Z) (i=1, 2, •••, n-1) such  that

H*(SU(2n)ISp(n); Z)=A z(e5, e9,••-, e4n-3) .

I f  7r2: S U(2n)-*S U(2n)IS P(n) is  the projection, 7-r2*: H*(S U(2n)IS p(n); Z)-->
H*(S U(2n); Z ) satisfies R-2*(e41+1)=x41+1.

P ro o f .  Consider the Serre spectral sequence {Er, cir} for the integral
cohomology of the fibration
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SU(2n) 71-2 >SU(2n)/SP(n) >I3SP(n)

induced by Bi2: B S p(n)- ,  B S U (2 n ) . By (1.12) and (1.6),

E2=H*(BSP(n); Z)OH*(SU(2n); Z )

Z [q i, Q 2 , •  •  •  , q n ] a l1 z ( x 3 , x 5 ,  •  •  •  ,  x 4 n - 1) •

Since each x2i + IE H 2 i +1(SU (2n ); Z ) transgresses to ci+iEH 2 1 1 2 (B SU(2n); Z )
in the Serre spectral sequence of the universal SU(2n)-bundle, it follows from
(1.11) that

d41(1C )x4-1)=(-1 ) i giO1( i =1, 2, •-, n)

dr(10x4i+i)=0( i = 1, 2 , •-, n -1 ; r 2) .

Then a routine spectral sequence argument yields the result.

Let U(n) and U be the n-th and infinite unitary groups, respectively. A
representation of a compact Lie group G  is a homomorphism G-> U(n) of
topological groups, where n is its dimension. The representation ring R(G)
of G has the structure of a A-ring (see [8, 12(1.1)]) given by the exterior power
operations Ah : R (G)->R (G) for k -a:O. Let 3: R(G)-> 1? - 1 (G) be the homomor-
phism of abelian groups defined by assigning to a representation p: G-> U(n)
the homotopy class ,e(p)=[1,2p]E[G, U]=k - 1 (G), where en: U(n)-> U is the
canonical injection. Then d  has the following properties ([7, p. 8]):

(2.1) i f  pi, (32 are representations of  G  o f  dimensions ni, n2 respectively,
then 13(p1p2)= n28(P1)+ ni/3(P2);

(2.2) i f  n  denotes the triv ial representation of  G of  dim ension n , then
R (n)=0 f o r all nE Z .

Consider the inclusion Ai: S U(2n)-> U(2n). It gives rise to an element Ai
E R (S U (2 n )) . Since A1 admits a highest weight w i= ti , we see that {t,; i =1,
2, •••, 2n} is the set of weights of Al. If we write Ak=  Ak (A l)  then

(2.3) R (S U (2 n ) )=Z [)  A2, • ,  A 2 n - 1]

(see [8, 13(3.1)]) and .s": R(SU(2n))-- ,  R (S U(2n)) is given by

(2.4) .4`(.1k)=.12n-k (k= 1, 2 , •••, 2n-1).

This is equivalent to (1.1), because - 1 ,  - 2 ,  •  •  • ,  A 2 n - 1  are the irreducible represen-
tations determined by a, a2, •-, a2n_1 through the fact that each Ah admits a
highest weight coh.

Consider the composite Ai= A li2: Sp(n)-> U(2n). It gives rise to an ele-
ment A iE R (Sp(n)). Since Ai admits a highest weight c.o = t, we see that {± t ;;
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i =1, 2, •••, n) is the set of weights of A .  If we write A'k= Ak (Ai), then

R (Sp (n ))=Z [2 ,

(see [8, 13(6.1)]) and R (SU(2n))-* R (Sp(n)) is given by

(2.5) 1V /4)= 4= 1V /12n-0 (k=1, 2, •••, n) .

This is equivalent to (1.7) because Ai, A2, • ,  A  are the irreducible representa-
tions determined by 4  4  •••,

For any compact connected Lie group G w ith torsion-free fundamental
group, the Z/(2)-graded K-ring of G was determined by Hodgkin [7, Theorem
A ] .  His result is stated as follows: K *(G ) has no torsion and therefore it has
the structure of a Z/(2)-graded Hopf algebra; if G is semi-simple and R (G )=
Z[pi, •--, pi] for some representations p„ then K *(G ) is the exterior algebra
A zGe(pi), -•-, R (pi)), where the 8(p )  are primitive. In particular, for G=
S U (n+ 1) we have

K*(SU(n+1))=Az(R(/11), R(A2), •-, R(An))

(see (2.3) and (3.2)).
Moreover, the Chern character of S U (n+ 1) was computed in [12] for all

W e recall the result. D efine a function 0 : N x N x N -> Z  by

(2.6) 0 (n , k , q )=' ( -1 ) i - 1 (  n

i

 )iq - 1  .

Then by [12, (2.2) and Lemma 1] we have

Proposition 2.2. ch: K *(S U(n+1))-->11**(S U(n+1); Q) is given by

ch(13(2k))-- z i (( - 1)ii!)0(n+1, k , i+  1)x2+1( k 1 )  .

The K -theory  of S U(2n)/S P(n) w as determ ined by M in a m i [1 1 ] . To
state his result, we need some notation. Let G and F  be as in section 0. If
two representations pi, p2: U ( n )  satisfy pilF= p21F, we have a m a p ! :

 GIF
-) U (n) defined by f(xF)=P1(x)102(x) - 1  fo r  xFE G /F. W e denote  by R(pi
- P2) the hom otopy class [In f]E [G IF , u ]=  k - 1 ( G IF ) .  If Jr: G ->G IF is  the
projection, as noted in [5, p. 325], Tc*: 1?- 1 (G/F)->1? - 1 ( G) satisfies

(2.7) 7r*C3(pi- p2))=,e(pi)- R(p2) .

Applying this construction to  the case G/F=SU(2n)/SP(n), b y  (2.5) we get
elements R(Ak - /127,-k)ER- 1 (SU(2n)/Sp(n)) (k=1, 2, • ••, n -1 ) .

Proposition 2.3 . ([11, Proposition 6.1]). With notation as above,
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K*(SU(2n)/SP(n))=A z( /3(21- /12n-i),  , 13(Â n-i -  An+1))

Now we are ready to state our main result.

Theorem 2.4. W ith no tation  as in  Propositions 2 .3  a n d  2.1, ch:
K *(S U(2n)IS p(n))-> H**(S U(2n)IS p(n); Q) is given by

n-i
ch (8 (2 k  —A2n-k))= E (21(2i)!)0(2n, k , 2i+1)e4i+1 (k=1, 2, n -1 )  .

P ro o f  We have

R-2*(ch(3(2k- A 2,,k))) -- ch(71-2*(fi(Ak- 22n-k)))

ch(i3(A k )- d(A 2,k )) b y  (2.7)

=ch(i3(.1k)) - ch(d(22,2-k)).

By Proposition 2.2,

2n-1
(2 .8 ) C h ( d ( i l k ) ) =  E  ((-1)i li!)0(2n, k , i+1)x 2

and

2n-1
(2 .9 ) C h ( ( A 2 n - k ) ) =  E  (( - 1)ii!)0 (2n ,2n -  k , i+1)x21+i .

But

ch(13(A 2n-k))-ch(d(si(A k))) by (2.4)

=st(ch(13(.1k)))
2n-1

= .521' (  E  (( - 1)1i0q5(2n, k, i+1)x2i+1) by (2.8)

2n-1
E  ( ( -1 )1 i! )ç b (2 n , k , i+1 )( -1 ) ' x 2 i+i by Proposition 1.1

and so

2n-1
(2.10) ch(,8(/12n_k))=- (11i!)0(2n, k, i+1)x2H-1 .

Therefore

ch(g (ilk ))— ch(/3(/12,k))

2n-1
E  (((-1)' +1)Ii!)0(2n , k , i+1)x 21+i by (2.8) and (2.10)i=i
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n-1
= (21(2 i)!)0(2 n, k, 2i +1)x4z+iz=1

=R -2*(X(2/(2i)!)0(2n, k, 2i +1)e4z-Fi)

since 7r2*(e41-F1)=x41+1 by Proposition 2.1.

Since 7r2*: H*(SU(2n)1SP(n); Q)--* H*(SU(2n); Q) is injective by Proposition
2.1 and (1.6), the result follows.

For example, if n=2 , 3 or 4, the equalities of this theorem are seen to be:
if n=2,

ch(3(Ai — A3))=e5;

if n=3,

ch(R(Ai — A3)) = e5 + (1 /12)e9 ,

Ch(3( /12 / 1 4 ) )  2  e 5  (5/6)e9,

if n=4,

ch( 13(AI — A7))=e5+(1/12)e9+(1/360)e13,

ch( i3(A2 — A6))=4e5 — (2/3)e9—(7/45)e13,

ch(d(A3—A5))=5e5—(19/12)e9+(49/72)e1 3 .

§ 3. The Chern character of S U (2n+1)150(2n+1)

The cohomology of S U(2n+1)1S 0(2n+1) is known (e.g., see [10, Vol. I,
Chap. 3, Theorem 6.7, (2) and (3)]).

Proposition 3 .1 . Let k  be a field. T h e n
if  the characteristic o f k  is

H*(S U(2n+1)1S 0(2n+1); k )=A k (e5, es, •-•, e4n+1)

where e4i-FiEH 4 '(S U(2n+1)1S 0(2n+1); 12);

(ii) if the characteristic o f k  is 2,

H*(S U(2n+1)1S 0(2n+1); k )=A k(e2, e3,•-•, e 2 n + 1 )

w here ei+ieH 1 (S U (2n+1)1S 0(2n+1); k ) and

Sq 1(e21)=e21+i, Sq'(e21+i)=0 (i=1, 2, •••, n).

T hus H*(S U(2n+1)1S 0(2n+1); Z ) has 2-torsion and there exist elements
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e4i+1E11 4 i ±l (S U(2n+1)1S 0(2n+1); Z ) (1=1,2, n ) such that

H*(S U(2n+1)1S 0(2n+1); Z )1T or=A z(e5, es, •••, e4n+1) .

I f  7ri: SU(2n+1)— >SU(2n+1)1S0(2n+1) i s  the projection, ire: H *(S U (2n
+1)1S0(2n+1); Z )— >H*(SU(2n+1); Z ) satisf ies R-1*(e4i+1)=2x4i+1.

P ro o f  Consider the Serre spectral sequence (Er, dr} for the cohomology
with R-coefficients of the fibration

S U(2n+1) >S U(2n+1)1S 0(2n+1) >B S 0(2n+1)

induced by B S 0(2n+1)— > B S U(2n+1). If R = k  is a field of characteris-
tic p* 2 , by (1.25) and (1.19),

E2=H *(B S 0(2n+1); k )® H *(S U (2n+1); k )

= k [P l, P 2 , ••• , Pd®Ak(,X3, X5, •••, X4n+1) •

Since each x21-piEH 2 1 '(S U (2 n + 1 ) ; k )  transgresses to  ci-F1 H 2 i + 2 (B SU(2n
+1); k ) in the Serre spectral sequence of the universal S U(2n+1)-bundle, it
follows from (1.24) that

d 4 ,(1 0 x 4 -1 )= (-1 ) 1p , 0 1  (i=1, 2, ••-, n),

dr(1C)x4,1-1)=0 (i=1, 2, •••, n; .

T hen  a routine spectral sequence argument y ie ld s  th a t E.= A k(x5, xs,•••,
x4n+1)• So there exist elem ents e41+iEH 4 i n (S U(2n+1)1S 0(2n+1);
tha t R-1 ' ( e 4 i + 1 ) = x 4 i + 1 .  Hence ( i)  follows.

If R = k  is a field of characteristic 2, by [3, § 30] and (1.19),

E2=H *(B S 0(2n+1); k )O H *(S U (2n+1); k )

—  k[W 2, W 3, W 2n, W 2n+1]0Ak(X3, X5, •••, X4n+1)

k )  such

where w 1+iE H ' 1 (B S 0(2n+1); k ) and

(3.1) Sql(w2i)= W 2 1 + 1 ,  S q l ( W21+1) = 0  (i=1, 2, •••, n).

Since Bill': H*(B S U(2n+1); k )— H*(B S 0(2n+1); k ) satisfies BiP(ci+1)= w+-1
(see [10, Vol. I, Chap. 3]), it follows that

d21+ 2(10x2i+ 1)=  w L01 (i=1, 2, 2n) .

T hen  a routine spectral sequence argument y ie ld s  th a t E .=Jk (w 2, bv3,
W2n+1), where Zli, denotes the k -a lg eb ra  having a simple system of generators.
S o  th e re  e x is t  e le m e n ts  e1+1EH H A S U (2n+1)1S 0(2n+1); k ) such  tha t
ji`(w H.1)=e,+1. From this and (3.1) we deduce the last two equalities of (ii).
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Since the composite (B u)j1 is null homotopic, we have

0= jt13i1"(ci+i)— it(wL)=0+1.

Hence the remaining part of (ii) follows.
The above facts imply that if R =Z , then each x4 i_ ieH 4 - 1 (SU (2n+1);

Z ) transgresses to a generator of a summand Z  in H 4 '( B S 0(2n+1); Z ); each
x4i+ IE H 4 i+1(SU (2n+1); Z ) transgresses to a generator of a summand Z/(2) in
H 4 2 (B S 0 (2 n +1 ); Z ); and 2x41+IEH 4 1 (S U (2 n + 1 ) ;  Z )  survives to  E-.
This proves the existence of an element e4,-FiE H 4 ' 1(S U (2n+ 1)/S 0 (2n+ 1);
Z ) such that 71-1*(e4H-1)=2x41+1, and the rest follows from (i) and (ii).

Consider the inclusion AI: S U (2n+ 1)--*  U (2n+ 1). It gives rise to an
element .11 R (S U(2n+ 1)). Since A1 admits a highest weight col w e  s e e
that {t,; i=1, 2, •-•, 2n+1} is the set of weights of /11. If we write Ak=A h (.11),
then

(3.2) R (S U(2n+1))=Z [A l, A 2 , •  •  • , A2n]

(see [8, 13(3.1)]) and st: R (S U(2n+1))-+ R (S U(2n+1)) is given by

(3.3) sP(Ak)=Â2n-Fl-k (k = 1, 2, 2n) .

This is equivalent to (1.14).
Consider the composite Ai= SO(2n+1)-> U ( 2 n + 1 ) .  It gives rise to

an element Ai R (S 0 (2 n +1 )) . Since /1 admits a highest weight (.o = t;, we
see that {-± t;, 0; i=1, 2, .••, n} is the set of weights of A L  If we write /1;,=
Ak (Ai), then

(3.4) R (S 0(2n+1))= X2]

(see [8, 13(10.3) ]) and it: R (S U(2n+1))-> R (S 0(2n+1)) is given by

(3.5) iiK(Ak)= iP(A2n+i-k)( k = 1 ,  2, n) .

This is equivalent to (1.20).
The K -theory of S U(2n+1)1S 0(2n+1) was also determined by Minami

[1 1 ] .  Applying the previous construction to the case G /F=S U (2n+1)1S 0(2n
+1), by (3.5) we get elements 13(Ak - A2n+i-k)E 1?- 1 (S U(2n+1)1S 0(2n+1)) (k =
1, 2, ••., n).

Proposition 3.2 ([11, Proposition 8.1]). W ith notation as above,

K *(S U(2n+1)1S 0(2n+1))=A 43(/11 - A2n), •• • , 3(An - An+1)) .

Now we are ready to state our main result.

Theorem 3.3. With notation as in Propositions 3.2 and 3.1, ch: K *(SU(2n
+1)1S 0(2n+1))-> H**(S U(2n+1)1S 0(2n+1); Q) is given by
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c h (R (A k  /12n+1-k))= i i (11(2000(2n+1, k, 2i+  1)e44-1

(k=1, 2, •••, n) .

P ro o f  We have

Zi* (Ch(g(Ak — A2n+1-10)) —  ch(71*(3(Ak —  /12n+i-k)))

= ch(g(Ak)— 73(A2n+i-k)) by (2.7)

=ch(3(A k )) — ch(R (A 2n+i-k)) •

By Proposition 2.2,

(3.6) ch(g(A k ))= ((-1)V i!)0(2n +1, k , i+1)x 2i+1

and

(3.7) c h (3 (A 2 n +i-k ) )= ((-1)1i!)0(2n + 1, 2n + 1 — k, i +1)x21+1 .

But

ch(R (22n+i-k ))=ch(R (si(A k ))) by (3.3)

= si(ch(R(A k)))

= si(A q-1)z  Ii0(2n +1, k , i +1)x 2i+1) by (3.6)

= ( ( - 1) Ii0g2n +1, k , 1+1X - 1Y + 1 .x21+1 by Proposition 1.3

and so

(3.8) ch(R (A 2n+1-0)=— (1/i.1 )q5(2n k, i +1)x21+1 .•

Therefore

ch(i3(Ak)) — ch(fi(A2n+i-k))

=  ( ( ( - 1 ) i +1)/i!)0(2n+1, k , i+1)x2i+i by (3.6) and (3.8)

= z
1(2/(2i)!)0(2n+1, k, 21+1)x 4 1 + 1

=- 71-1* ( (11(20!)q5(2n+1, k , 2i+1)e4i+1)
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since 7-1.1*(e4,+1)=2x4+1 by Proposition 3.1.

Since 7ri*: H*(S U(2n+1)1S 0(2n+1); Q)-41*(S U(2n+1); Q) is  injective by
Proposition 3.1 and (1.19), the result follows.

For example, if n=1, 2 or 3, the equalities of this theorem are seen to be:
if n=1,

ch(g(21— /12)) = (11 2) e5

if n=2,

ch((/11— /14)) = (1/2)e5+ (1/24)es ,

ch(,3(.12— 23)) = (1/ 2)e5 — (11/ 24)es

if n=3,

ch(8(Al — A6))= (1 / 2)e5+ (1 /24)e9+ (1 / 720)ei3

ch(3(/12— A5))= (3 / 2)e5 — (3/8)es — (19 / 240)en ,

ch(13(.13—.14))= e5 — (5 /12) e 9 + (151 / 360) ei3 ,

By comparing (2.9) with (2.10), we find that the relation 0(2n, 2n— k, i+1)
= ( - 1 ) 1+1 q5(2n, k , i+1) h o ld s  fo r i, k = 1, 2 , • • • , 2 n -1 . By com paring (3.7)
w ith  (3.8), w e  a ls o  f in d  th a t  th e  re la tio n  0(2n+1, 2n+1 —  k, i+1)=
(-1 ) 1 '  0(2n + 1, k, i+1)  holds for i, k = 1, 2, •••, 2n. Summing up, by means of
topology we have shown that

(3.9)t h e  r e l a t i o n  O(n+1, n+1—  k , i+1)=(-1)" - lçb(n+1, k, i+1)

holds f or i, k = 1, 2, •••, n

In view of Proposition 2.2, this relation expresses a symmetry in a description
of ch of S U(n+1) (see [12, Theorem 2]).

There is another curious relation concerning the function q5 of (2.6). In
R (SU(n+1))=Z [A l, A2, An] we have An+1 = 1 and /4=0 for k > n+ 1. From
this and (2.2), 8(ilk)=0 for n+ 1. Combining this with Proposition 2.2, we
find that

(3.10) the relation .75(n+1, k , i+1) = 0 holds for n +1  and

i =1, 2, •••, n

Of course, it is not immediate to deduce (3.9) and (3.10) directly from (2.6).
The author would like to thank Drs. Shin-ichiro Hara, Susumu Kono and Jun
M urakam i who taught various such proofs independently.
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§ 4. The Chern character of SO(2n+1)

Since H * (S 0 (2 n +1 ); Q )  is an exterior algebra generated by primitive
elements Zi,_IEH 4 1 '(S 0 (2n + 1); Q) (i=1, 2, •••, n), using the Poincaré dual-
ity, we can take elements Zi-IE H ' i (S 0 (2 n + 1); Z )  such that

(4.1) H * (S 0 (2 n +1 ); Z )1 T o r=A z (4 .x . ,•--, z in-i)

and the image of each under the coefficient group homomorphism
H 4 i- 1 (S 0 (2n+1); Z )->H 4 '( S 0 ( 2 n +1 ) ; Q )  is primitive.

Proposition 4.1. With notation as in (1.19) and (4.1), H *(S U (2n+1);
Z )-q -1 * (S 0 (2 n +1 ); Z ) is given by

iP(x4i-1)=( - 1) i 2.41-1 (i=1, 2, n ),

(i=1, 2, •••, n ) .

Pro o f . Consider the Serre spectral sequence {Er, dr} for the cohomology
with R-coefficients of the fibration

S O (2n+1) 1.1 >S U (2 n +1 ) 7 r1  >S U (2 n +1 )1 S 0 (2 n +1 )

induced by S U (2 n +1 )1 S 0 (2 n +1 )->B S 0 (2 n +1 ). I f  R = k  is  a field of
characteristic p*2, by Proposition 3.1(i) and (1.26),

E 2=H *(S U (2n+1)1S 0 (2n+1); k )® H *(S 0 (2n+1); k )

Ak(e5, e9, • , e4ni-1)(DAk( 4 .r, • • •, 47z-i) •

Since each .4 ,-1 E H 4 '( S 0 ( 2 n + 1 ) ; k )  transgresses to P1 H 4 '( B S 0(2n+1);
k ) in the Serre spectral sequence of the universal SO(2n+1)-bundle and JP(p)
=0 (see the proof of Proposition 3.1(0), it follows that

dr(10x:ii_i)=0 ( i=1 , 2, •••, n ; r

and hence E2 = E-.
If R = k  is a field of characteristic 2, by Proposition 3.1 (ii) and [2],

E 2=H *(S U (2n+1)1S 0(2n+1); k )C )H *(S 0(2n+1); k )

=A k(e2, e3,--, e2n+1)OZIk(x;, ,•••, x7z) •

where x ; E  i
( S 0 (2 n  +1 ) ; k ) . Since each x;E H i (S 0(2n +1); k ) transgresses

to w i+IGH i +1 (B S 0(2n +1); k ) in the Serre spectral sequence of the universal
S O(2n+1)-bundle and j i ( w i + 1 ) = e i + i  (see the proof of Proposition 3.1(ii)), it
follows that
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(4.2) c lz ii(1 0 x )=e +1 0 1 (i=1 , 2, •••, 2n) .

From (3.1) we also have

(4.3) S ql(x L _1)=x L  , S a 1(x L )=0 (1 -1 , 2, •••, n ) .

Let p : H * (S 0 (2 n +1 ); Z )->H * (S 0 (2 n +1 ); Z/(2)) be the coefficient group
homomorphism induced by reduction mod 2. Using (4.2) and (4.3) we observe
that for i=1, 2, ••-, n

{

xL_IxL. - .4i-1 if 4i-1< -2n
xL _IxL if 4 i-1 > 2 n

and

--- --(10Sql)(e2iC)xL - 1).

Then a routine spectral sequence argument yields that

E -=11k (e2O x i, e304  •••, e2n-p1OxL2).

The above facts imply that if R =Z ,  then for i =1, • ••, n d21 sends .4,-1E
E20 '4 1 ' to a generator, which is represented by e210xL_1, of a summand Z/(2)
in E22 1'2 ; and 2x:1-1 survives to E - .  This proves that ii(x4,_1)=2x_1 up to
s ig n . (Here we put the sign ( - 1 )  on the right side of this equality for fitting
it to suit the first equality of (1.24).)

The second equality is obvious for dimensional reasons.

The K-theory of S O (2n+1) was determined by Held and Suter [6, Satz
(5 .15 )]. We recall their result. The spinor group Spin(2n +1) appears as the
universal covering group of S O ( 2 n +1 ) .  Let p: Spin(2n+1)-> SO(2n+1) be
the two-fold covering projection. Consider the composite /11=/liP: Spin(2n
+ 1 )-  U ( 2 n +1 ) .  It gives rise to an element /lie R (Sp in (2n + 1)). Write /1k

=

—2n+1.A h (A i)  and let A  • Spin(2n+1)-> U(2n) be the spin representation. Then

R(Spin(2n+1))=zr2L - 1 ,  —2, •••, A n - 1 , Z2n+11

where the relation

(4.4) An+12-/In +•••/11+ 1

holds (see [8, 13(10.3) ]) . From this, by the theorem of Hodgkin [7] we have

K*(Spin(2n+1))=Az(3 (Ai), d e (A n - 1 ) ,  3(Z12n+1)) •

With this notation (and (3.4)), they showed that there are two extra elements
e2n+1EK -1 (S 0 (2 n +1 ))  and E2n-FiEK ° (S 0 (2 n + 1)) such that
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K*(S0(2n+1))=[Az(8(/1), • • • , R(/1;7-1), E2n+1)10T2n+111 (E2,2 (5 -6 A )+1— ,2n+1, y

where T2n+1=Z{1}(DZ/(2 n ){2,i+11, and that p*: K *(S 0(2n+1))->K * (Spin(2n
+ 1)) satisfies

(4.5) p*(,3(.1))= ,3(.1k) (k- - 1)

and

(4.6) p*(E2,z+i)=2,3(An+i).

Thus we have

Proposition 4.2 ([6 , K oro llar (2 .10)]).  With notation as above,

K *(S 0(2n+1))/T or= A z (13(A ), •-•, d(A-1), E2n+i) •

Lemma 4 .3 .  In  K *(S 0 (2 n + 1 ))/ T o r the following relation holds:

2 n
e2n+1 =  i d ( i l 'h) •k=1

P ro o f  We have

p * (2 n E2n+1)=2' 113(42.+1) by (4.6)

=d(An+1 2 ) by using (2.1)

= ( A h ) by (4.4)

= A d(A k ) since ,3 is additive

= ,3(ilh) by (2.2)

= i
t

i P*(73(4)) by (4.5)

- - P* ( i i r3(/10) •

Since p* clearly gives an injection K *(S 0 (2n+1))/T or -> K*(Spin(2n + 1)), the
result follows.

Since the range of ch: K *(S 0 (2n+1))-)11** (S 0 (2n+1); Q ) is a vector
space over Q, it factors to give

ch: K *(S 0(2n+1))/T or->H **(S 0(2n+1); Q ) .

Theorem 4.4. W ith n o tatio n  as  in  Proposition 4 .2  a n d  (4.1), ch:
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K*(S0(2n+1))1Tor- , H**(S 0(2n+1); Q) is given by

ch(g(Q)= ,*1
 i ((-1 )' - '2/(2i-1)00(2n+1,

(k =1, 2, •••, n-1) ,

ch(E2n+1)=i (( — 1
)

1- 1 2 /(2 i — 1)0((1/ 2n ) q5(2n +1, k ,2i)).ri-i=i k=1

P ro o f  Apply it: H*(SU(2n+1); H*(S 0(2n+1); Q) to the equality
(3.6). Then the left hand side is

it(ch(R(/1k)))=ch(R(it(A k)))=ch(g(4)) by (3.5)

and the right hand side is

((-1 ) i li!)0(2n+ 1, k, i+1)x21+i)

((-1) 2 i - 1 1(2i-1)!)0(2n+1, k ,2i)(-1)'2.4i_i by Proposition 4.1i=1

= i ( ( - 1 ) i - 1 2/(2i-1)00(2n+1, k, .

This proves the first equality.
By using Lemma 4.3, the second equality is obtained from the first.

For example, if n=1, 2 or 3, the equalities of this theorem are seen to be:
if n=1,

ch(e3)=x ;

if n=2,

ch(3(ili))=2x — (1/3) ,

ch(E5)=2x+(116)x4 ;

if n= 3,

ch(R(.1))=2x—(1/3)x4+(1/60)x1i

ch(i3(.1))=10x+(1/3)x—(5/12)xi

ch(e7)=4,x+(1/3)x4+(1/30)xi1 .

Department of Applied Mathematics
Osaka Women's University
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