On the Chern character of symmetric spaces related to *SU(n)*

By

Takashi WATANABE

§ O. Introduction

Let (G, F) be a compact symmetric pair. That is, G is a compact Lie group with an involutive automorphism *s*: $G \rightarrow G$ and *F* is a closed connected subgroup of *G* such that $G^s = \{x \in G; s(x) = x\} \supset F \supset (G^s)_e$, the identity component of G^s . Then the quotient $M = G/F$ forms a compact symmetric space. The aim of this paper is to study the Chern character homomorphism *ch:* $K^*(M) \rightarrow H^{**}(M; Q)$ [1, § 1] for two cases $M = SU(2n)/Sp(n)$ in section 2 and $M = SU(2n+1)/SO(2n+1)$ in section 3, where $SU(n) \subset M(n, C)$, $Sp(n) \subset M(n, C)$ *H*) and *SO(n)* $\subset M(n, R)$ are the *n*-th special unitary, symplectic and rotation groups, respectively. As a byproduct we will find a symmetry in a description of *ch* for $M = SU(n+1)$ at the end of section 3. Finally in section 4 we compute *ch* for $M = SO(2n+1)$.

Our discussion is summarized as follows. Let $\pi: G \rightarrow G/F$ be the projection and consider the commutative diagram

In our cases, all the rings $K^*(G/F)$, $H^*(G/F; Q)$, $K^*(G)$ and $H^*(G; Q)$ were determined and all the homomorphisms except the upper *ch* were described; further, the vertical homomorphisms are injective. So the upper *ch* can be computed.

Communicated by Prof. G. Nishida, December 11, 1992

§ 1. Preliminaries

We first deal with $SU(2n)/S_p(n)$. Let I_n be the unit matrix of degree *n*, and set

$$
J_n=\begin{pmatrix} O & -I_n \ I_n & O \end{pmatrix}.
$$

Define a map *s₂*: $SU(2n) \rightarrow SU(2n)$ by $s_2(A) = I_n \overline{A} I_n^{-1}$ for $A \in SU(2n)$, where \overline{A} denotes the complex conjugate of A . Clearly s_2 is an involution. Let i_2 : $Sp(n) \rightarrow SU(2n)$ be the map defined by

$$
i_2(X) = \begin{pmatrix} A & -\overline{B} \\ B & \overline{A} \end{pmatrix} \quad \text{for } X = A + jB \in Sp(n),
$$

where *j* is the element of *H* such that $H = C(1) \oplus C(j)$ and $j^2 = -1$. Clearly i_2 is a monomorphism of topological groups. It is easy to check that $(SU(2n), i_2(Sp(n)))$ is a compact symmetric pair. Thus $SU(2n)/Sp(n)$ becomes a compact symmetric space, which is denoted by *A ll* in R. Cartan's notation.

Choose a maximal torus *T* of $SU(2n)$ so that $s_2(T) \subset T$. Let $L(T)$ be the Lie algebra of *T*. There are simple roots $a_1, a_2, \dots, a_{2n-1}: L(T) \rightarrow \mathbf{R}$ such that the corresponding Dynkin diagram is

 α_1 $\begin{array}{ccccccccc}\n\alpha_2 & & \alpha_3 & & & \alpha_{2n-3} & & \alpha_{2n-2} & & \alpha_{2n-1} \\
\hline\n\circ & & \circ & & \circ & & \circ & & \circ & \circ & \circ\n\end{array}$ Ω

where, with respect to a certain inner product (,) on $L(T)^* = \text{Hom}_R(L(T), R)$, $(a_i, a_i) = 2$ if $1 \le i \le 2n-1$; $(a_i, a_{i+1}) = -1$ if $1 \le i < 2n-1$; otherwise $(a_i, a_j) = 0$. Hereafter we follow [4]. We may regard α_i as an element of $H^2(BT;\, \mathbf{Q})$, and then $H^*(BT; Q)$ is the polynomial algebra $Q[a_1, \dots, a_{2n-1}]$. Denote by *s₂*: *T* \rightarrow *T* the restriction of s₂ to *T*. According to [9], *Bs*^{*}: *H*^{*}(*BT*; *Q*) \rightarrow *H*^{*}(*BT*; *Q)* is given by

$$
(1.1) \t Bs_2^*(\alpha_i) = \alpha_{2n-i} \t (i=1,2,\cdots,2n-1).
$$

Let $\omega_1, \omega_2, \dots, \omega_{2n-1}$ be the fundamental weights determined by $\alpha_1, \alpha_2, \dots, \alpha_{2n-1}$. Then we have

$$
(1.2) \t\t \omega_i = (1/2 n)((2n - i)\sum_{j=1}^{i-1} j\alpha_j + i\sum_{j=i}^{2n-1} (2n - j)\alpha_j)
$$

(see [4]). Since $H^*(BT; \mathbf{Z}) = \mathbf{Z}[\omega_1, \cdots, \omega_{2n-1}]$ (see [3, § 10.1]), it follows from (1.1) and (1.2) that *Bs*^{*}: $H^*(BT; Z) \rightarrow H^*(BT; Z)$ is given by

Chern character 151

$$
(1.3) \t Bs_2^*(\omega_i) = \omega_{2n-i} \t (i=1,2,\cdots,2n-1).
$$

Let R_i be the reflection of $L(T)^*$ relative to α_i , i.e., with respect to the hyperplane $\{x \in L(T)^*; (\alpha_i, x) = 0\}$. Then $R_1, R_2, \dots, R_{2n-1}$ generate the Weyl group $W(SU(2n))$ and act on $H^2(BT; Z)$ by the formulas

$$
R_i(\omega_i) = -\omega_i - \sum_{j \neq i} (2(\alpha_i, \alpha_j) / (\alpha_j, \alpha_j)) \omega_j \quad \text{and} \quad R_i(\omega_j) = 0 \quad \text{if} \quad i \neq j \ .
$$

In this case, we have

$$
R_1(\omega_1) = -\omega_1 + \omega_2,
$$

\n
$$
R_i(\omega_i) = \omega_{i-1} - \omega_i + \omega_{i+1} \qquad (i = 2, 3, \dots, 2n - 2),
$$

\n
$$
R_{2n-1}(\omega_{2n-1}) = \omega_{2n-2} - \omega_{2n-1}.
$$

Put

$$
t_1 = \omega_1 ,
$$

\n
$$
t_i = R_{i-1}(t_{i-1}) = -\omega_{i-1} + \omega_i \qquad (i = 2, 3, \cdots, 2n - 1),
$$

\n
$$
t_{2n} = R_{2n-1}(t_{2n-1}) = -\omega_{2n-1} .
$$

Then $H^*(BT; \mathbf{Z}) = \mathbf{Z}[t_1, \dots, t_{2n}]/(c_1)$, where $c_1 = t_1 + \dots + t_{2n}$, and it follows from (1.3) that

$$
(1.4) \tBs2*(ti) = -t2n+1-i \t(i=1, 2, ..., 2n).
$$

For a commutative ring *R* with a unit $1 \in R$, let $\sigma_i(x_1, x_2, \dots, x_n)$ denote the *i*-th elementary symmetric polynomial in $R[x_1, x_2, \dots, x_n]$. For a compact connected Lie group *G* with a maximal torus *T*, we denote by *i*: $T \rightarrow G$ the inclusion, by σ^* : $H^*(BG; R) \to H^{*-1}(G; R)$ the cohomology suspension and by $H^*(BT; R)^{W(G)}$ the subalgebra of $H^*(BT; R)$ invariant under the action of the Weyl group $W(G)$.

Let $c_{i+1} = \sigma_{i+1}(t_1, \dots, t_{2n}) \in H^{2i+2}(BT; \mathbf{Z})$. Since $W(SU(2n))$ acts on $H^2(BT; Z)$ as the group of permutations on $\{t_1, \dots, t_{2n}\}$, we have $H^*(BT)$ Z ^{*w*(*su*(2*n*))}= $Z[c_2, c_3, \cdots, c_{2n}]$ and it follows from (1.4) that

(1.5) $Bs_2^*(c_{i+1})=(-1)^{i+1}c_{i+1}$ $(i=1, 2, \cdots, 2n-1)$.

Since $H^*(SU(2n); \mathbb{Z})$ has no torsion, by [2, § 29] *Bi*: $BT \rightarrow BSU(2n)$ induces an isomorphism $H^*(BSU(2n); \mathbf{Z}) \cong H^*(BT; \mathbf{Z})^{W(SU(2n))}$ (so we shall identify them). Therefore $H^*(BSU(2n); \mathbf{Z}) = \mathbf{Z}[c_2, c_3, \dots, c_{2n}]$. Let $x_{2i+1} = \sigma^*(c_{i+1}) \in$ $H^{2i+1}(SU(2n); \mathbb{Z})$. Then

(1.6)
$$
H^*(SU(2n); \mathbf{Z})
$$
 is the exterior algebra $\Lambda_Z(x_3, x_3, \cdots, x_{4n-1})$

(see [2, § 19]).

Proposition 1.1. s_i^* : $H^*(SU(2n); \mathbb{Z}) \rightarrow H^*(SU(2n); \mathbb{Z})$ *is given by*

$$
s_2^*(x_{2i+1}) = (-1)^{i+1} x_{2i+1} \qquad (i=1,2,\cdots,2n-1).
$$

Proof. We have

$$
s_2^*(x_{2i+1}) = s_2^*(\sigma^*(c_{i+1}))
$$

= $\sigma^*(Bs_2^*(c_{i+1}))$ by the naturality of σ^*
= $\sigma^*((-1)^{i+1}c_{i+1})$ by (1.5)
= $(-1)^{i+1}x_{2i+1}$.

Choose a maximal torus *T'* of *Sp(n)* so that $i_2(T') \subset T$. Let $L(T')$ be the Lie algebra of *T'*. There are simple roots a'_1 , a'_2 , \cdots , a'_n : $L(T') \rightarrow \mathbf{R}$ such that the corresponding Dynkin diagram is

 α_1' α_2' α'_3 α'_{n-1} *0 0 0 ,*

where $(a'_i, a'_i) = 2$ if $1 \le i \le n$; $(a'_n, a'_n) = 4$; $(a'_i, a'_{i+1}) = -1$ if $1 \le i \le n-1$; (a'_{n-1}, a'_n) $=$ 2; otherwise (a_i, a_j) =0. Then $H^*(BT; Q) = Q[a'_1, \dots, a'_n]$. Denote by *i*₂: *T'* \rightarrow *T* the restriction of i_2 to *T'*. According to [9], Bi_2^* : $H^*(BT; \mathbf{Q}) \rightarrow H^*(BT; \mathbf{Q})$ *Q)* is given by

$$
(1.7) \t Bi2*(\alphai) = \alpha'i = Bi2*(\alpha2n-i) \t (i=1, 2, ..., n).
$$

Let ω_1 , ω_2 , \cdots , ω_n be the fundamental weights determined by α_1 , α_2 , \cdots , α_n . Then we have

(1.8)
$$
\omega'_{i} = \sum_{j=1}^{i-1} j \alpha'_{j} + i \left(\sum_{j=i}^{n-1} \alpha'_{j} + (1/2) \alpha'_{n} \right).
$$

Since $H^*(BT';\mathbf{Z}) = \mathbf{Z}[\omega'_1, \cdots, \omega'_n]$, it follows from (1.2), (1.7) and (1.8) that Bi^*_2 : $H^*(BT; \mathbf{Z}) \rightarrow H^*(BT; \mathbf{Z})$ is given by

(1.9)
$$
Bi_2^*(\omega_i) = \omega_i = Bi_2^*(\omega_{2n-i}) \qquad (i=1, 2, \cdots, n).
$$

Let R'_i be the reflection of $L(T')^*$ relative to a'_i . Then the action of $W(Sp(n))$ on $H^2(BT'; Z)$ is given by

$$
R'_{i}(\omega'_{1}) = -\omega'_{1} + \omega'_{2},
$$

\n
$$
R'_{i}(\omega'_{i}) = \omega'_{i-1} - \omega'_{i} + \omega'_{i+1} \qquad (i = 2, 3, \cdots, n-1),
$$

\n
$$
R'_{n}(\omega'_{n}) = 2\omega'_{n-1} - \omega'_{n}.
$$

$$
t'_{1} = \omega'_{1},
$$

\n
$$
t'_{i} = R'_{i-1}(t'_{i-1}) = -\omega'_{i-1} + \omega'_{i} \qquad (i = 2, 3, \cdots, n).
$$

Then $H^*(BT';\mathbf{Z}) = \mathbf{Z}[t'_1, \dots, t'_n]$ and it follows from (1.9) that

(1.10)
$$
Bi_2^*(t_i) = t'_i \qquad (i = 1, 2, \cdots, n),
$$

$$
Bi_2^*(t_{2n+1-i}) = -t'_i \qquad (i = 1, 2, \cdots, n).
$$

Let $q_i = \sigma_i (t_1^2, t_2^2, \cdots, t_n^2) \in H^{*i}(BT'; \mathbf{Z})$. Since $W(Sp(n))$ acts on $H^2(BT'; \mathbf{Z})$ as the group of permutations on $\{t'_{1}, \dots, t'_{n}\}$ together with substitutions $t'_{i} \rightarrow -t'_{i}$, we have $H^*(BT';\mathbf{Z})^{w(\text{sp}(n))} = \mathbf{Z}[q_1, q_2, \cdots, q_n]$ and it follows from (1.10) that

(1.11)
$$
Bi_2^*(c_{2i}) = (-1)^i q_i \qquad (i = 1, 2, \cdots, n),
$$

$$
Bi_2^*(c_{2i+1}) = 0 \qquad (i = 1, 2, \cdots, n-1).
$$

By [2], $H^*(BSp(n); \mathbf{Z}) \cong H^*(BT'; \mathbf{Z})^{w(sp(n))}$. Therefore

(1.12) $H^*(B\mathcal{S}p(n); \mathbf{Z}) = \mathbf{Z}[q_1, q_2, \cdots, q_n].$

Let $x'_{4i-1} = \sigma^*(q_i) \in H^{4i-1}(Sp(n); \mathbb{Z})$. Again by [2],

(1.13) $H^*(Sp(n); \mathbf{Z}) = A_{\mathbf{Z}}(x'_3, x'_7, \dots, x'_{4n-1}).$

Proposition 1.2. i_2^* : $H^*(SU(2n); \mathbb{Z}) \rightarrow H^*(Sp(n); \mathbb{Z})$ *is given by*

$$
i_2^*(x_{4i-1}) = (-1)^i x'_{4i-1} \qquad (i=1, 2, \cdots, n) ,
$$

$$
i_2^*(x_{4i+1})=0 \qquad (i=1, 2, \cdots, n-1).
$$

Proof. This follows from (1.11) .

We next deal with $SU(2n+1)/SO(2n+1)$. Define a map s_1 : $SU(2n+1) \rightarrow$ *SU(2n+1)* by $s_1(A) = \overline{A}$ for $A \in SU(2n+1)$. Clearly s_1 is an involution. Let *i*₁: $SO(2n+1) \rightarrow SU(2n+1)$ be the map derived from the inclusion $\mathbf{R} \subset \mathbf{C}$. Clearly i_1 is a monomorphism of topological groups. It is easy to check that $(SU(2n+1), i_1(SO(2n+1)))$ is a compact symmetric pair. Thus $SU(2n)$ $+1$ / $SO(2n+1)$ becomes a compact symmetric space, which is denoted by *AI* in \bar{E} . Cartan's notation.

Choose a maximal torus *T* of $SU(2n+1)$ so that $s_1(T) \subset T$. There are simple roots α_1 , α_2 , \cdots , α_{2n} : $L(T) \rightarrow \mathbf{R}$ such that the corresponding Dynkin diagram is

$$
\begin{array}{cccccccc}\n a_1 & a_2 & a_3 & a_{2n-2} & a_{2n-1} & a_{2n} \\
 \odot & \odot & \odot & \odot & \odot & \odot & \odot \\
 \end{array}
$$

where $(a_i, a_i) = 2$ if $1 \le i \le 2n$; $(a_i, a_{i+1}) = -1$ if $1 \le i \le 2n$; otherwise $(a_i, a_j) = 0$. Then $H^*(BT; \mathbf{Q}) = \mathbf{Q}[\alpha_1, \dots, \alpha_{2n}]$. Denote by $s_1: T \to T$ the restriction of s_1 to *T*. According to [9], Bs_1^* : $H^*(BT; Q) \rightarrow H^*(BT; Q)$ is given by

$$
(1.14) \tBs_1^*(\alpha_i) = \alpha_{2n+1-i} \t(i=1,2,\cdots,2n).
$$

Let $\omega_1, \omega_2, \dots, \omega_{2n}$ be the fundamental weights determined by $\alpha_1, \alpha_2, \dots, \alpha_{2n}$. Then we have

$$
(1.15) \t\t \omega_i = (1/(2n+1))((2n+1-i)\sum_{j=1}^{i-1} j\alpha_j + i\sum_{j=i}^{2n} (2n+1-j)\alpha_j).
$$

Since $H^*(BT; \mathbf{Z}) = \mathbf{Z}[\omega_1, \cdots, \omega_{2n}]$, it follows from (1.14) and (1.15) that Bs_1^* : $H^*(BT; \mathbf{Z}) \rightarrow H^*(BT; \mathbf{Z})$ is given by

$$
(1.16) \tBs_1^*(\omega_i) = \omega_{2n+1-i} \t(i=1,2,\cdots,2n).
$$

Let R_i be the reflection relative to a_i . Then the action of $W(SU(2n+1))$ on $H^2(BT; Z)$ is given by

$$
R_1(\omega_1) = -\omega_1 + \omega_2 ,
$$

\n
$$
R_i(\omega_i) = \omega_{i-1} - \omega_i + \omega_{i+1} \qquad (i = 2, 3, \cdots, 2n - 1),
$$

\n
$$
R_{2n}(\omega_{2n}) = \omega_{2n-1} - \omega_{2n} .
$$

Put

$$
t_1 = \omega_1 ,
$$

\n
$$
t_i = R_{i-1}(t_{i-1}) = -\omega_{i-1} + \omega_i \qquad (i = 2, 3, \cdots, 2n) ,
$$

\n
$$
t_{2n+1} = R_{2n}(t_{2n}) = -\omega_{2n} .
$$

Then $H^*(BT; \mathbf{Z}) = \mathbf{Z}[t_1, \dots, t_{2n+1}]/(c_1)$, where $c_1 = \sigma_1(t_1, \dots, t_{2n+1})$, and it follows from (1.16) that

$$
(1.17) \tBs1*(ti) = -t2n+2-i \t(i=1, 2, ..., 2n+1).
$$

Let $c_{i+1} = \sigma_{i+1}(t_1, \dots, t_{2n+1}) \in H^{2i+2}(BT; \mathbf{Z})$. Then $H^*(BT; \mathbf{Z})^{W(SU(2n+1))} = \mathbf{Z}[c_2]$ c_3 , \cdots , c_{2n+1} and it follows from (1.17) that

(1.18) $Bs_1^*(c_{i+1}) = (-1)^{i+1}c_{i+1} \qquad (i=1, 2, \cdots, 2n).$

By [2], $H^*(BSU(2n+1); \mathbf{Z}) \cong H^*(BT; \mathbf{Z})^{W(SU(2n+1))} = \mathbf{Z}[c_2, c_3, \cdots, c_{2n+1}].$ Let $x_{2i+1} = \sigma^*(c_{i+1}) \in H^{2i+1}(SU(2n+1))$; **Z**). Then

$$
(1.19) \tH*(SU(2n+1); Z) = \Lambda_Z(x_3, x_5, \cdots, x_{4n+1}).
$$

Proposition 1.3. s_i^* : $H^*(SU(2n+1); \mathbb{Z}) \to H^*(SU(2n+1); \mathbb{Z})$ *is given by*

 $s_i^*(x_{2i+1}) = (-1)^{i+1}x_{2i+1}$ $(i=1, 2, \cdots, 2n)$

Proof. This follows from (1.18) .

Choose a maximal torus *T'* of $SO(2n+1)$ so that $i_1(T') \subset T$. There are simple roots α'_1 , α'_2 , \cdots , α'_n : $L(T') \rightarrow \mathbf{R}$ such that the corresponding Dynkin diagram is

$$
\begin{array}{ccccccccc}\n\alpha'_1 & \alpha'_2 & \alpha'_3 & \cdots & \alpha'_{n-2} & \alpha'_{n-1} & \alpha'_n \\
\odot & \odot & \odot & \odot & \odot & \odot & \odot\n\end{array}
$$

where $(a'_i, a'_i) = 2$ if $1 \le i < n$; $(a'_n, a'_n) = 1$; $(a'_i, a'_{i+1}) = -1$ if $1 \le i < n$; otherwise (a α'_i = 0. Then $H^*(BT; Q) = Q[\alpha'_1, \cdots, \alpha'_n]$. Denote by *i₁*: $T' \rightarrow T$ the restriction of i_1 to *T'*. According to [9], Bi_1^* : $H^*(BT; \mathbf{Q}) \rightarrow H^*(BT; \mathbf{Q})$ is given by

$$
(1.20) \tBi1*(ai) = ai' = Bi1*(a2n+1-i) \t(i=1, 2, ..., n).
$$

Let ω'_1 , ω'_2 , \cdots , ω'_n be the fundamental weights determined by α'_1 , α'_2 , \cdots , α'_n . Then we have

(1.21)
$$
\omega'_{i} = \sum_{i=1}^{i-1} j \alpha'_{j} + i \sum_{j=i}^{n} \alpha'_{j} \qquad (i = 1, 2, \cdots, n-1),
$$

$$
\omega'_{n} = (1/2) \sum_{j=1}^{n} j \alpha'_{j}.
$$

Since $H^*(BT';\mathbf{Z}) = \mathbf{Z}[\omega'_1, \cdots, \omega'_n]$, it follows from (1.15), (1.20) and (1.21) that Bi_1^* : $H^*(BT; Z) \rightarrow H^*(BT; Z)$ is given by

(1.22)
$$
Bi_1^*(\omega_i) = \omega_i = Bi_1^*(\omega_{2n+1-i}) \qquad (i=1, 2, \dots, n-1),
$$

$$
Bi_1^*(\omega_n) = 2\omega_n = Bi_1^*(\omega_{n+1}).
$$

Let R_i be the reflection relative to a_i . Then the action of $W(SO(2n+1))$ on $H^2(BT';\,boldsymbol{Z})$ is given by

$$
R'_1(\omega'_1) = -\omega'_1 + \omega'_2,
$$

\n
$$
R'_i(\omega'_i) = \omega'_{i-1} - \omega'_i + \omega'_{i+1} \qquad (i = 2, 3, \cdots, n-2),
$$

\n
$$
R'_{n-1}(\omega'_{n-1}) = \omega'_{n-2} - \omega'_{n-1} + 2\omega'_n,
$$

\n
$$
R'_n(\omega'_n) = \omega'_{n-1} - \omega'_n.
$$

Put

$$
t'_{1} = \omega'_{1},
$$

\n
$$
t'_{i} = R'_{i-1}(t'_{i-1}) = -\omega'_{i-1} + \omega'_{i} \qquad (i = 2, 3, \cdots, n-1),
$$

 $t'_n = R'_{n-1}(t'_{n-1}) = -\omega'_{n-1} + 2\omega'_{n}$.

Then $H^*(BT';\mathbf{Z}) = \mathbf{Z}[t'_1, \dots, t'_n]$ and it follows from (1.22) that

(1.23)
$$
Bi_1^*(t_i) = t'_i \qquad (i = 1, 2, \cdots, n),
$$

$$
Bi_1^*(t_{n+1}) = 0,
$$

$$
Bi_1^*(t_{2n+2-i}) = -t'_i \qquad (i = 1, 2, \cdots, n).
$$

Let $p_i = \sigma_i (t_1^2, t_2^2, \cdots, t_n^2) \in H^{4} (BT; \mathbb{Z})$. Since $W(SO(2n+1))$ acts on $H^2(BT';\mathbf{Z})$ as the group of permutations on $\{t'_1, \dots, t'_n\}$ together with substitutions $t_i' \rightarrow -t_i'$, we have $H^*(BT'; Z)^{w(so(2n+1))} = Z[p_1, p_2, \dots, p_n]$ and it follows from (1.23) that

(1.24)
$$
Bi_1^*(c_{2i}) = (-1)^i p_i \qquad (i = 1, 2, \cdots, n),
$$

$$
Bi_1^*(c_{2i+1}) = 0 \qquad (i = 1, 2, \cdots, n).
$$

Suppose given a field *k* of characteristic $p \neq 2$. Since $H^*(SO(2n+1); \mathbb{Z})$ has no odd torsion, by [2, § 29] $H^*(BSO(2n+1))$; $\mathbf{k}) \cong H^*(BT^{\prime}; \mathbf{k})^{W(SO(2n+1))}$ Therefore

(1.25)
$$
H^*(BSO(2n+1); \mathbf{k}) = \mathbf{k}[p_1, p_2, \cdots, p_n].
$$

Let $x'_{i-1} = \sigma^*(p_i) \in H^{4i-1}(SO(2n+1))$; *k*). By [2],

$$
(1.26) \tH*(SO(2n+1); k) = \Lambdak(x'_3, x'_7, \cdots, x'_{4n-1}).
$$

In this way, from (1.24) we obtain a result on the behavior of i^* : $H^*(SU(2n))$ *+1*); \mathbf{k} \rightarrow $H^*(SO(2n+1))$; \mathbf{k} , which is quite similar to Proposition 1.2. However, in section 4 we will prove its integral version (Proposition 4.1).

§ 2. The Chern character of $SU(2n)/Sp(n)$

The cohomology of $SU(2n)/S_p(n)$ is known (e.g., see [10, Vol. I, Chap. 3, Theorem 6.7, (1)]).

Proposition 2.1. $H^*(SU(2n)/Sp(n); \mathbb{Z})$ has no torsion and there exist $P(\text{elements } e_{4i+1}) \in H^{4i+1}(SU(2n)/Sp(n); \mathbb{Z})$ $(i=1, 2, \dots, n-1)$ such that

 $H^*(SU(2n)/S_p(n); \mathbf{Z}) = A_z(e_5, e_9, \cdots, e_{4n-3}).$

If π_2 : $SU(2n) \rightarrow SU(2n)/Sp(n)$ *is the projection,* π_2^* : $H^*(SU(2n)/Sp(n); \mathbb{Z}) \rightarrow$ *H**(SU(2*n*); **Z**) *satisfies* $\pi_2^*(e_{4i+1}) = x_{4i+1}$.

Proof. Consider the Serre spectral sequence $\{E_r, d_r\}$ for the integral cohomology of the fibration

$$
SU(2n)\xrightarrow{\pi_2} SU(2n)/Sp(n)\xrightarrow{\qquad} BSp(n)
$$

induced by Bi_2 : $B\mathcal{S}p(n) \rightarrow B\mathcal{S}U(2n)$. By (1.12) and (1.6),

$$
E_2=H^*(BSp(n); \mathbf{Z})\otimes H^*(SU(2n); \mathbf{Z})
$$

= $\mathbf{Z}[q_1, q_2, \cdots, q_n]\otimes \Lambda_{\mathbf{Z}}(x_3, x_5, \cdots, x_{4n-1}).$

Since each $x_{2i+1} \in H^{2i+1}(SU(2n); \mathbf{Z})$ transgresses to $c_{i+1} \in H^{2i+2}(BSU(2n); \mathbf{Z})$ in the Serre spectral sequence of the universal $SU(2n)$ -bundle, it follows from (1.11) that

$$
d_{4i}(1 \otimes x_{4i-1}) = (-1)^{i} q_{i} \otimes 1 \qquad (i = 1, 2, \cdots, n),
$$

$$
d_{r}(1 \otimes x_{4i+1}) = 0 \qquad (i = 1, 2, \cdots, n-1; r \ge 2).
$$

Then a routine spectral sequence argument yields the result.

Let $U(n)$ and U be the *n*-th and infinite unitary groups, respectively. A representation of a compact Lie group G is a homomorphism $G \rightarrow U(n)$ of topological groups, where *n* is its dimension. The representation ring $R(G)$ of G has the structure of a λ -ring (see [8, 12(1.1)]) given by the exterior power operations λ^h : $R(G) \rightarrow R(G)$ for $k \ge 0$. Let β : $R(G) \rightarrow K^{-1}(G)$ be the homomorphism of abelian groups defined by assigning to a representation $\rho: G \rightarrow U(n)$ the homotopy class $\beta(\rho) = [\ell_n \rho] \in [G, U] = \tilde{K}^{-1}(G)$, where $\ell_n: U(n) \to U$ is the canonical injection. Then β has the following properties ([7, p. 8]):

- (2.1) *if* ρ_1 , ρ_2 are representations of G of dimensions n_1 , n_2 respectively, *then* $\beta(\rho_1 \rho_2) = n_2 \beta(\rho_1) + n_1 \beta(\rho_2)$;
- (2.2) *if n denotes the triv ial representation of G of dim ension n , then* $\beta(n)=0$ *for all* $n \in \mathbb{Z}$.

Consider the inclusion λ_1 : $SU(2n) \rightarrow U(2n)$. It gives rise to an element λ_1 $\in R(SU(2n))$. Since λ_1 admits a highest weight $\omega_1 = t_1$, we see that $\{t_i; i=1, \ldots, n\}$ 2, \cdots , 2*n*} is the set of weights of λ_1 . If we write $\lambda_k = \lambda^k(\lambda_1)$, then

$$
(2.3) \qquad R(SU(2n)) = \mathbf{Z}[\lambda_1, \lambda_2, \cdots, \lambda_{2n-1}]
$$

 $(\text{see } [8, 13(3.1)])$ and s_2^* : $R(SU(2n)) \to R(SU(2n))$ is given by

$$
(2.4) \t s2*(\lambdak) = \lambda2n-k \t (k=1, 2, ..., 2n-1).
$$

This is equivalent to (1.1), because $\lambda_1, \lambda_2, \dots, \lambda_{2n-1}$ are the irreducible representations determined by $\alpha_1, \alpha_2, \dots, \alpha_{2n-1}$ through the fact that each λ_k admits a highest weight ω_k .

Consider the composite $\lambda'_1 = \lambda_1 i_2$: $Sp(n) \rightarrow U(2n)$. It gives rise to an element $\lambda_i \in R(Sp(n))$. Since λ_i admits a highest weight $\omega_i = t_i$, we see that $\{\pm t_i\}$; $i=1, 2, \cdots, n$ is the set of weights of λ'_1 . If we write $\lambda'_k = \lambda^k(\lambda'_1)$, then

$$
R(Sp(n)) = \mathbf{Z}[\lambda'_1, \lambda'_2, \cdots, \lambda'_n]
$$

(see [8, 13(6.1)]) and i^* : $R(SU(2n)) \rightarrow R(Sp(n))$ is given by

$$
(2.5) \t i*2(\lambdak) = \lambda'k = i*2(\lambda2n-k) \t (k=1, 2, ..., n).
$$

This is equivalent to (1.7) because λ'_1 , λ'_2 , \cdots , λ'_n are the irreducible representations determined by $\alpha'_1, \alpha'_2, \cdots, \alpha'_n$.

For any compact connected Lie group *G* with torsion-free fundamental group, the Z/(2)-graded K-ring of *G* was determined by Hodgkin [7, Theorem A. His result is stated as follows: $K^*(G)$ has no torsion and therefore it has the structure of a $\mathbb{Z}/(2)$ -graded Hopf algebra; if G is semi-simple and $R(G)$ = $\mathbf{Z}[\rho_1, \cdots, \rho_\ell]$ for some representations ρ_i , then $K^*(G)$ is the exterior algebra $A_{\mathbf{z}}(\beta(\rho_1),\cdots,\beta(\rho_l))$, where the $\beta(\rho_i)$ are primitive. In particular, for $G=$ $SU(n+1)$ we have

$$
K^*(SU(n+1)) = \Lambda_Z(\beta(\lambda_1), \beta(\lambda_2), \cdots, \beta(\lambda_n))
$$

(see (2.3) and (3.2)).

Moreover, the Chern character of $SU(n+1)$ was computed in [12] for all $n \ge 1$. We recall the result. Define a function ϕ : $N \times N \times N \to Z$ by

(2.6)
$$
\phi(n, k, q) = \sum_{i=1}^{k} (-1)^{i-1} {n \choose k-i} i^{q-1}.
$$

Then by $[12, (2.2)$ and Lemma 1] we have

Proposition 2.2. *ch:* $K^*(SU(n+1)) \rightarrow H^{**}(SU(n+1); Q)$ *is given by*

$$
ch(\beta(\lambda_k)) = \sum_{i=1}^n ((-1)^i/i!) \phi(n+1, k, i+1) x_{2i+1} \qquad (k \ge 1).
$$

The K-theory of $SU(2n)/S_p(n)$ was determined by Minami [11]. To state his result, we need some notation. Let *G* and *F* be as in section 0. If two representations ρ_1 , ρ_2 : $G \rightarrow U(n)$ satisfy $\rho_1 | F = \rho_2 | F$, we have a map *f*: G/F \rightarrow *U*(*n*) defined by $f(xF) = \rho_1(x)\rho_2(x)^{-1}$ for $xF \in G/F$. We denote by $\beta(\rho_1)$ $(-\rho_2)$ the homotopy class $[\iota_n f] \in [G/F, U] = K^{-1}(G/F)$. If $\pi: G \to G/F$ is the projection, as noted in [5, p. 325], π^* : $K^{-1}(G/F) \rightarrow K^{-1}(G)$ satisfies

$$
(2.7) \t\t \pi^*(\beta(\rho_1-\rho_2)) = \beta(\rho_1)-\beta(\rho_2).
$$

Applying this construction to the case $G/F = SU(2n)/Sp(n)$, by (2.5) we get elements $\beta(\lambda_k - \lambda_{2n-k}) \in \tilde{K}^{-1}(SU(2n)/Sp(n))$ (k=1, 2, …, n-1).

Proposition 2.3. ([11, Proposition 6.1]). *With notation as above,*

Chern character 159

$$
K^*(SU(2n)/Sp(n)) = \Lambda_Z(\beta(\lambda_1-\lambda_{2n-1}),\cdots,\beta(\lambda_{n-1}-\lambda_{n+1})).
$$

Now we are ready to state our main result.

Theorem 2.4. *W ith notation as in Propositions* 2 .3 *a n d* 2.1, *ch:* $K^*(SU(2n)/Sp(n)) \rightarrow H^{**}(SU(2n)/Sp(n); Q)$ *is given by*

 $\sum_{n=1}^{\infty}$ $ch(\beta(\lambda_k - \lambda_{2n-k})) = \sum_{i=1}^{n} (2/(2i)!) \phi(2n, k, 2i+1) e_{4i+1}$ $(k=1, 2, \cdots, n-1)$

Proof. We have

$$
\pi_2^*(ch(\beta(\lambda_k - \lambda_{2n-k}))) = ch(\pi_2^*(\beta(\lambda_k - \lambda_{2n-k})))
$$

= $ch(\beta(\lambda_k) - \beta(\lambda_{2n-k}))$ by (2.7)
= $ch(\beta(\lambda_k)) - ch(\beta(\lambda_{2n-k}))$.

By Proposition 2.2,

(2.8)
$$
ch(\beta(\lambda_k)) = \sum_{i=1}^{2n-1} ((-1)^i/i!) \phi(2n, k, i+1) x_{2i+1}
$$

and

(2.9)
$$
ch(\beta(\lambda_{2n-k})) = \sum_{i=1}^{2n-1} ((-1)^i/i!) \phi(2n, 2n-k, i+1) x_{2i+1}.
$$

But

$$
ch(\beta(\lambda_{2n-k})) = ch(\beta(s_2^*(\lambda_k)))
$$
 by (2.4)
\n
$$
= s_2^*(ch(\beta(\lambda_k)))
$$

\n
$$
= s_2^*(\sum_{i=1}^{2n-1}((-1)^i/i!) \phi(2n, k, i+1)x_{2i+1})
$$
 by (2.8)
\n
$$
= \sum_{i=1}^{2n-1}((-1)^i/i!) \phi(2n, k, i+1)(-1)^{i+1}x_{2i+1}
$$
 by Proposition 1.1

and so

$$
(2.10) \t\t ch(\beta(\lambda_{2n-k}))=-\sum_{i=1}^{2n-1}(1/i!)\phi(2n, k, i+1)x_{2i+1}.
$$

Therefore

$$
ch(\beta(\lambda_k)) - ch(\beta(\lambda_{2n-k}))
$$

= $\sum_{i=1}^{2n-1} (((-1)^i + 1)/i!) \phi(2n, k, i+1) x_{2i+1}$ by (2.8) and (2.10)

$$
=\sum_{i=1}^{n-1} (2/(2i)!) \phi(2n, k, 2i+1) x_{4i+1}
$$

= $\pi_2^* \left(\sum_{i=1}^{n-1} (2/(2i)!) \phi(2n, k, 2i+1) e_{4i+1} \right)$

since $\pi_2^*(e_{4i+1})=x_{4i+1}$ by Proposition 2.1.

Since π^* : $H^*(SU(2n)/Sp(n); \mathbf{Q}) \rightarrow H^*(SU(2n); \mathbf{Q})$ is injective by Proposition 2.1 and (1.6), the result follows.

For example, if $n=2$, 3 or 4, the equalities of this theorem are seen to be: if *n=2,*

$$
ch(\beta(\lambda_1-\lambda_3))=e_5;
$$

if *n=3,*

$$
ch(\beta(\lambda_1-\lambda_5))=e_5+(1/12)e_9,
$$

 $ch(\beta(\lambda_2-\lambda_4)) = 2e_5 - (5/6)e_9$,

if *n=4,*

$$
ch(\beta(\lambda_1 - \lambda_7)) = e_5 + (1/12)e_9 + (1/360)e_{13},
$$

\n
$$
ch(\beta(\lambda_2 - \lambda_6)) = 4e_5 - (2/3)e_9 - (7/45)e_{13},
$$

\n
$$
ch(\beta(\lambda_3 - \lambda_5)) = 5e_5 - (19/12)e_9 + (49/72)e_{13}.
$$

§ 3. The Chern character of $SU(2n+1)/SO(2n+1)$

The cohomology of $SU(2n+1)/SO(2n+1)$ is known (e.g., see [10, Vol. I, Chap. 3, Theorem 6.7, (2) and (3)]).

Proposition 3.1. Let **k** be a field. Then

(i) if the characteristic of k is $p \neq 2$ *,*

 $H^*(SU(2n+1)/SO(2n+1);$ *k* $) = A_k(e_5, e_9, \cdots, e_{4n+1}).$

 $where \ e_{4i+1} \in H^{4i+1}(SU(2n+1)/SO(2n+1)); \mathbf{k});$

(ii) *if the characteristic of* \boldsymbol{k} *is* 2,

 $H^*(SU(2n+1)/SO(2n+1); \mathbf{k}) = A_{\mathbf{k}}(e_2, e_3, \cdots, e_{2n+1}),$

 $where$ $e_{i+1} \in H^{i+1}(SU(2n+1)/SO(2n+1));$ **k**) and

$$
Sq1(e2i) = e2i+1, Sq1(e2i+1) = 0 \quad (i=1, 2, \cdots, n).
$$

Thus $H^*(SU(2n+1)/SO(2n+1); \mathbb{Z})$ *has* 2-torsion and there exist elements

$$
e_{4i+1} \in H^{4i+1}(SU(2n+1)/SO(2n+1); \mathbb{Z})
$$
 $(i=1, 2, \cdots, n)$ such that

$$
H^*(SU(2n+1)/SO(2n+1); Z)/Tor = \Lambda_Z(e_5, e_9, \cdots, e_{4n+1}).
$$

If π_1 : $SU(2n+1) \rightarrow SU(2n+1)/SO(2n+1)$ *is the projection,* π_1^* : $H^*(SU(2n+1))$ $+1)/SO(2n+1);$ **Z**) \rightarrow *H*^{*}(*SU*(2*n*+1); **Z**) *satisfies* $\pi_1^*(e_{4i+1})=2x_{4i+1}.$

Proof. Consider the Serre spectral sequence $\{E_r, d_r\}$ for the cohomology with R-coefficients of the fibration

$$
SU(2n+1) \xrightarrow{\pi_1} SU(2n+1)/SO(2n+1) \xrightarrow{\jmath_1} BSO(2n+1)
$$

induced by Bi_1 : $BSO(2n+1) \rightarrow BSU(2n+1)$. If $R = \mathbf{k}$ is a field of characteristic $p\neq 2$, by (1.25) and (1.19),

$$
E_2 = H^*(BSO(2n+1); \mathbf{k}) \otimes H^*(SU(2n+1); \mathbf{k})
$$

= $\mathbf{k}[p_1, p_2, \cdots, p_n] \otimes A_{\mathbf{k}}(x_3, x_5, \cdots, x_{4n+1}).$

Since each $x_{2i+1} \in H^{2i+1}(SU(2n+1))$; *k*) transgresses to $c_{i+1} \in H^{2i+2}(BSU(2n+1))$ *+1); k*) in the Serre spectral sequence of the universal $SU(2n+1)$ -bundle, it follows from (1.24) that

$$
d_{4i}(1 \otimes x_{4i-1}) = (-1)^{i} p_{i} \otimes 1 \quad (i = 1, 2, \cdots, n),
$$

$$
d_{r}(1 \otimes x_{4i+1}) = 0 \quad (i = 1, 2, \cdots, n; r \ge 2).
$$

Then a routine spectral sequence argument yields that $E_{\infty} = \Lambda_k(x_5, x_9, \cdots, x_n)$ x_{4n+1}). So there exist elements $e_{4i+1} \in H^{4i+1}(SU(2n+1)/SO(2n+1);$ **k**) such that $\pi_1^*(e_{4i+1}) = x_{4i+1}$. Hence (i) follows.

If $R = \mathbf{k}$ is a field of characteristic 2, by [3, § 30] and (1.19),

$$
E_2 = H^*(BSO(2n+1); \mathbf{k}) \otimes H^*(SU(2n+1); \mathbf{k})
$$

= $\mathbf{k}[w_2, w_3, \cdots, w_{2n}, w_{2n+1}] \otimes \Lambda_k(x_3, x_5, \cdots, x_{4n+1}),$

where $w_{i+1} \in H^{i+1}(BSO(2n+1));$ *k*) and

 $Sq^{1}(w_{2i})=w_{2i+1}, \quad Sq^{1}(w_{2i+1})=0 \quad (i=1, 2, \cdots, n).$

Since Bi_1^* : $H^*(BSU(2n+1);$ $\boldsymbol{k}) \rightarrow H^*(BSO(2n+1);$ $\boldsymbol{k})$ satisfies $Bi_1^*(c_{i+1}) = w_{i+1}^2$ (see [10, Vol. I, Chap. 3]), it follows that

$$
d_{2i+2}(1\otimes x_{2i+1})=w_{i+1}^2\otimes 1 \quad (i=1, 2, \cdots, 2n).
$$

Then a routine spectral sequence argument yields that $E_{\infty} = \Delta_k(w_2, w_3, \cdots,$ w_{2n+1}), where Δ_k denotes the **k**-algebra having a simple system of generators. So there exist elements $e_{i+1} \in H^{i+1}(SU(2n+1)/SO(2n+1);$ **k**) such that $j_1^*(w_{i+1})=e_{i+1}$. From this and (3.1) we deduce the last two equalities of (ii).

Since the composite $(Bi_1)j_1$ is null homotopic, we have

 $0=i_1^*Bi_1^*(c_{i+1})=i_1^*(w_{i+1}^2)=e_{i+1}^2$.

Hence the remaining part of (ii) follows.

The above facts imply that if $R = \mathbb{Z}$, then each $x_{4i-1} \in H^{4i-1}(SU(2n+1))$; *Z*) transgresses to a generator of a summand *Z* in H^4 ^{*'*}($BSO(2n+1)$; *Z*); each $x_{4i+1} \in H^{4i+1}(SU(2n+1); \mathbb{Z})$ transgresses to a generator of a summand $\mathbb{Z}/(2)$ in *H*^{4*i*+2}(*BSO*(2*n*+1); *Z*); and $2x_{4i+1} \in H^{4i+1}(SU(2n+1); Z)$ survives to E_{∞} . This proves the existence of an element $e_{4i+1} \in H^{4i+1}(SU(2n+1)/SO(2n+1))$ *Z*) such that $\pi_1^*(e_{4i+1})=2x_{4i+1}$, and the rest follows from (i) and (ii).

Consider the inclusion λ_1 : $SU(2n+1) \rightarrow U(2n+1)$. It gives rise to an element $\lambda_1 \in R(SU(2n+1))$. Since λ_1 admits a highest weight $\omega_1 = t_1$, we see that $\{t_i; i=1, 2, \dots, 2n+1\}$ is the set of weights of λ_1 . If we write $\lambda_k = \lambda^k(\lambda_1)$, then

$$
(3.2) \qquad R(SU(2n+1)) = \mathbf{Z}[\lambda_1, \lambda_2, \cdots, \lambda_{2n}]
$$

(see [8, 13(3.1)]) and s_i^* : $R(SU(2n+1)) \rightarrow R(SU(2n+1))$ is given by

$$
(3.3) \t s1*(\lambdak) = \lambda2n+1-k \t (k=1, 2, ..., 2n).
$$

This is equivalent to (1.14).

Consider the composite $\lambda'_1 = \lambda_1 i_1$: $SO(2n+1) \rightarrow U(2n+1)$. It gives rise to an element $\lambda'_1 \in R(SO(2n+1))$. Since λ'_1 admits a highest weight $\omega'_1 = t'_1$, we see that $\{\pm t_i', 0; i=1, 2, \dots, n\}$ is the set of weights of λ'_1 . If we write $\lambda'_2 =$ $\lambda^k(\lambda_1)$, then

$$
(3.4) \qquad R(SO(2n+1)) = \mathbf{Z}[\lambda'_1, \lambda'_2, \cdots, \lambda'_n]
$$

(see [8, 13(10.3)]) and i^* : $R(SU(2n+1)) \rightarrow R(SO(2n+1))$ is given by

$$
(3.5) \t i*(\lambdak) = \lambda'k = i*(\lambda2n+1-k) \t (k=1, 2, ..., n).
$$

This is equivalent to (1.20).

The K-theory of $SU(2n+1)/SO(2n+1)$ was also determined by Minami [11]. Applying the previous construction to the case $G/F = SU(2n+1)/SO(2n)$ *+1),* by (3.5) we get elements $\beta(\lambda_k - \lambda_{2n+1-k}) \in \tilde{K}^{-1}(SU(2n+1)/SO(2n+1))$ (k= $1, 2, \cdots, n$.

Proposition 3.2 ([11, Proposition 8.1]). *With notation as above,*

$$
K^*(SU(2n+1)/SO(2n+1))=A_{\mathbf{z}}(\beta(\lambda_1-\lambda_{2n}),\cdots,\beta(\lambda_n-\lambda_{n+1}))
$$

Now we are ready to state our main result.

Theorem 3.3. *With notation as in Propositions* 3.2 *and* 3.1, *ch: K*(SU(2n* $+1$) $\langle SO(2n+1)) \rightarrow H^{**}(SU(2n+1)/SO(2n+1); Q)$ *is given by*

Chern character 163

$$
ch(\beta(\lambda_k - \lambda_{2n+1-k})) = \sum_{i=1}^n (1/(2i)!) \phi(2n+1, k, 2i+1) e_{4i+1}
$$

(k=1, 2, ..., n).

Proof. We have

$$
\pi_1^*(ch(\beta(\lambda_k - \lambda_{2n+1-k}))) = ch(\pi_1^*(\beta(\lambda_k - \lambda_{2n+1-k})))
$$

= $ch(\beta(\lambda_k) - \beta(\lambda_{2n+1-k}))$ by (2.7)
= $ch(\beta(\lambda_k)) - ch(\beta(\lambda_{2n+1-k}))$.

By Proposition 2.2,

(3.6)
$$
ch(\beta(\lambda_k)) = \sum_{i=1}^{2n} ((-1)^i/i!) \phi(2n+1, k, i+1) x_{2i+1}
$$

and

$$
(3.7) \t\t ch(\beta(\lambda_{2n+1-k}))=\sum_{i=1}^{2n}((-1)^i/i!)\phi(2n+1,2n+1-k,i+1)x_{2i+1}.
$$

But

$$
ch(\beta(\lambda_{2n+1-k})) = ch(\beta(s_1^*(\lambda_k))) \qquad \text{by (3.3)}
$$

= $s_1^*(ch(\beta(\lambda_k)))$
= $s_1^*(\sum_{i=1}^{2n}((-1)^i/i!)\phi(2n+1, k, i+1)x_{2i+1})$ by (3.6)
= $\sum_{i=1}^{2n}((-1)^i/i!)\phi(2n+1, k, i+1)(-1)^{i+1}x_{2i+1}$ by Proposition 1.3

and so

(3.8)
$$
ch(\beta(\lambda_{2n+1-k}))=-\sum_{i=1}^{2n}(1/i!)\phi(2n+1, k, i+1)x_{2i+1}.
$$

Therefore

$$
ch(\beta(\lambda_k)) - ch(\beta(\lambda_{2n+1-k}))
$$

= $\sum_{i=1}^{2n} (((-1)^i + 1)/i!) \phi(2n+1, k, i+1) x_{2i+1}$ by (3.6) and (3.8)
= $\sum_{i=1}^{n} (2/(2i)!) \phi(2n+1, k, 2i+1) x_{4i+1}$
= $\pi_1^* (\sum_{i=1}^{n} (1/(2i)!) \phi(2n+1, k, 2i+1) e_{4i+1})$

since $\pi_1^*(e_{4i+1})=2x_{4i+1}$ by Proposition 3.1.

Since π ^{*}: $H^*(SU(2n+1)/SO(2n+1);$ **Q**) \rightarrow $H^*(SU(2n+1);$ **Q**) is injective by Proposition 3.1 and (1.19), the result follows.

For example, if $n=1$, 2 or 3, the equalities of this theorem are seen to be: if *n=1,*

$$
ch(\beta(\lambda_1-\lambda_2))=(1/2)e_5;
$$

if *n=2,*

$$
ch(\beta(\lambda_1 - \lambda_4)) = (1/2)e_5 + (1/24)e_9,
$$

$$
ch(\beta(\lambda_2 - \lambda_3)) = (1/2)e_5 - (11/24)e_9,
$$

if *n=3,*

$$
ch(\beta(\lambda_1 - \lambda_6)) = (1/2)e_5 + (1/24)e_9 + (1/720)e_{13},
$$

\n
$$
ch(\beta(\lambda_2 - \lambda_5)) = (3/2)e_5 - (3/8)e_9 - (19/240)e_{13},
$$

\n
$$
ch(\beta(\lambda_3 - \lambda_4)) = e_5 - (5/12)e_9 + (151/360)e_{13},
$$

By comparing (2.9) with (2.10), we find that the relation $\phi(2n, 2n-k, i+1)$ $= (-1)^{i+1} \phi(2n, k, i+1)$ holds for $i, k=1, 2, \dots, 2n-1$. By comparing (3.7) with (3.8), we also find that the relation $\phi(2n+1, 2n+1-k, i+1)=$ $(-1)^{i+1}\phi(2n+1, k, i+1)$ holds for $i, k=1, 2, \dots, 2n$. Summing up, by means of topology we have shown that

(3.9) *the relation*
$$
\phi(n+1, n+1-k, i+1) = (-1)^{i+1} \phi(n+1, k, i+1)
$$

holds for i, k=1, 2, ..., *n*.

In view of Proposition 2.2, this relation expresses a symmetry in a description of *ch* of $SU(n+1)$ (see [12, Theorem 2]).

There is another curious relation concerning the function ϕ of (2.6). In $R(SU(n+1)) = \mathbf{Z}[\lambda_1, \lambda_2, \cdots, \lambda_n]$ we have $\lambda_{n+1} = 1$ and $\lambda_k = 0$ for $k > n+1$. From this and (2.2), $\beta(\lambda_k)=0$ for $k \geq n+1$. Combining this with Proposition 2.2, we find that

(3.10) the relation
$$
\phi(n+1, k, i+1)=0
$$
 holds for $k \geq n+1$ and

 $i = 1, 2, \cdots, n$.

Of course, it is not immediate to deduce (3.9) and (3.10) directly from (2.6). The author would like to thank Drs. Shin-ichiro Hara, Susumu Kono and Jun Murakami who taught various such proofs independently.

$§ 4$. The Chern character of $SO(2n+1)$

Since $H^*(SO(2n+1); Q)$ is an exterior algebra generated by primitive elements $x_{i-1} \in H^{i-1}(SO(2n+1))$; **Q**) $(i=1, 2, \cdots, n)$, using the Poincaré duality, we can take elements $x'_{4i-1} \in H^{4i-1}(SO(2n+1))$; **Z**) such that

 $H^*(SO(2n+1); \mathbb{Z})/\text{Tor} = A_{\mathbb{Z}}(x_3, x_7, \cdots, x_{4n-1})$

and the image of each x'_{4i-1} under the coefficient group homomorphism $H^{4i-1}(SO(2n+1))$; \mathbb{Z}) \rightarrow $H^{4i-1}(SO(2n+1))$; \mathbb{Q}) is primitive.

Proposition 4.1. *With notation as in* (1.19) *and* (4.1), i^* ; $H^*(SU(2n+1);$ Z \rightarrow *H*^{*} $(SO(2n+1); Z)$ *is given by*

$$
i_1^*(x_{4i-1}) = (-1)^i 2x'_{4i-1} \qquad (i = 1, 2, \cdots, n),
$$

$$
i_1^*(x_{4i+1}) = 0 \qquad (i = 1, 2, \cdots, n).
$$

Proof. Consider the Serre spectral sequence $\{E_r, d_r\}$ for the cohomology with R -coefficients of the fibration

$$
SO(2n+1) \xrightarrow{l_1} SU(2n+1) \xrightarrow{\pi_1} SU(2n+1)/SO(2n+1)
$$

induced by j_1 : $SU(2n+1)/SO(2n+1) \rightarrow BSO(2n+1)$. If $R = k$ is a field of characteristic $p\neq 2$, by Proposition 3.1(i) and (1.26),

$$
E_2 = H^*(SU(2n+1)/SO(2n+1); \mathbf{k}) \otimes H^*(SO(2n+1); \mathbf{k})
$$

= $\Lambda_k(e_5, e_9, \cdots, e_{4n+1}) \otimes \Lambda_k(x'_3, x'_7, \cdots, x'_{4n-1}).$

Since each $x'_{i-1} \in H^{4i-1}(\text{SO}(2n+1))$; **k**) transgresses to $p_i \in H^{4i}(\text{BSO}(2n+1))$ *k*) in the Serre spectral sequence of the universal $SO(2n+1)$ -bundle and $j_1^*(p_i)$ $=0$ (see the proof of Proposition 3.1(i)), it follows that

$$
d_r(1 \otimes x'_{i-1}) = 0 \qquad (i = 1, 2, \cdots, n; r \ge 2)
$$

and hence $E_2 = E_\infty$.

If $R = \mathbf{k}$ is a field of characteristic 2, by Proposition 3.1 (ii) and [2],

$$
E_2 = H^*(SU(2n+1)/SO(2n+1); \; \mathbf{k}) \otimes H^*(SO(2n+1); \; \mathbf{k})
$$

$$
= \Lambda_{k}(e_2, e_3, \cdots, e_{2n+1}) \otimes \Lambda_{k}(x'_1, x'_2, \cdots, x'_{2n}).
$$

where $x_i \in H^i(SO(2n+1))$; *k*). Since each $x_i \in H^i(SO(2n+1))$; *k*) transgresses to $w_{i+1} \in H^{i+1}(BSO(2n+1))$; *k*) in the Serre spectral sequence of the universal $SO(2n+1)$ -bundle and $j_1^*(w_{i+1}) = e_{i+1}$ (see the proof of Proposition 3.1(ii)), it follows that

166 *T . W atanabe*

 $d_{i+1}(1 \otimes x_i) = e_{i+1} \otimes 1 \qquad (i=1, 2, \cdots, 2n).$

From (3.1) we also have

 $Sq^1(x_{2i-1}) = x_{2i}^{\prime}$, $Sq^1(x_{2i}^{\prime})=0$ $(i=1, 2, \cdots, n)$.

Let ρ : $H^*(SO(2n+1))$; $\mathbb{Z}) \rightarrow H^*(SO(2n+1))$; $\mathbb{Z}/(2)$) be the coefficient group homomorphism induced by reduction mod 2. Using (4.2) and (4.3) we observe that for $i=1, 2, ..., n$

$$
\rho(x'_{4i-1}) = \begin{cases} x'_{2i-1}x'_{2i} - x'_{4i-1} & \text{if } 4i-1 \leq 2n \\ x'_{2i-1}x'_{2i} & \text{if } 4i-1 > 2n \end{cases}
$$

and

$$
d_{2i}(1 \otimes x'_{2i-1} x'_{2i}) = e_{2i} \otimes x'_{2i}
$$

= $(1 \otimes Sq^1)(e_{2i} \otimes x'_{2i-1})$.

Then a routine spectral sequence argument yields that

 $E_{\infty} = A_{\nu}(e_2 \otimes x_1, e_3 \otimes x_2, \cdots, e_{2n+1} \otimes x_{2n}).$

The above facts imply that if $R = \mathbf{Z}$, then for $i = 1, \dots, n$ d_{2i} sends $x'_{i-1} \in$ $E_2^{\,0,4i-1}$ to a generator, which is represented by $e_{2i} \otimes x'_{2i-1}$, of a summand $\boldsymbol{Z}/(2)$ in $E_2^{2i,2i}$; and $2x_{4i-1}$ survives to E_{∞} . This proves that $i_1^*(x_{4i-1})=2x_{4i-1}'$ up to sign. (Here we put the sign $(-1)^i$ on the right side of this equality for fitting it to suit the first equality of (1.24).)

The second equality is obvious for dimensional reasons.

The K-theory of $SO(2n+1)$ was determined by Held and Suter [6, Satz (5.15)]. We recall their result. The spinor group $Spin(2n+1)$ appears as the universal covering group of $SO(2n+1)$. Let p: $Spin(2n+1) \rightarrow SO(2n+1)$ be the two-fold covering projection. Consider the composite $\lambda_1 = \lambda'_1 p$: Spin(2n) $+ 1$) $\rightarrow U(2n + 1)$. It gives rise to an element $\lambda_1 \in R(\text{Spin}(2n+1))$. Write $\lambda_k =$ $\lambda^k(\lambda_1)$ and let Δ_{2n+1} : Spin $(2n+1) \rightarrow U(2^n)$ be the spin representation. Then

 $R(\text{Spin}(2n+1)) = \mathbf{Z}[\lambda_1, \lambda_2, \cdots, \lambda_{n-1}, \Delta_{2n+1}].$

where the relation

 (4.4) $\Delta_{2n+1}^2 = \lambda_n + \lambda_{n-1} + \cdots + \lambda_1 + 1$

holds (see $[8, 13(10.3)]$). From this, by the theorem of Hodgkin $[7]$ we have

$$
K^*(\mathrm{Spin}(2n+1)) = \Lambda_{\mathbf{Z}}(\beta(\lambda_1),\cdots,\beta(\lambda_{n-1}),\,\beta(\Delta_{2n+1}))\;.
$$

With this notation (and (3.4)), they showed that there are two extra elements $\varepsilon_{2n+1} \in K^{-1}(SO(2n+1))$ and $\xi_{2n+1} \in K^{0}(SO(2n+1))$ such that

$$
K^*(SO(2n+1))=[\Lambda_{\mathbf{Z}}(\beta(\lambda'_1),\cdots,\beta(\lambda'_{n-1}),\varepsilon_{2n+1})\otimes T_{2n+1}]/(\varepsilon_{2n+1}\otimes\xi_{2n+1}),
$$

where $T_{2n+1} = Z_{\{1\} \bigoplus Z/(2^n)\{\xi_{2n+1}\}\}$, and that p^* : $K^*(SO(2n+1)) \to K^*$ (Spin(2n) +1)) satisfies

$$
(4.5) \t\t p^*(\beta(\lambda_k)) = \beta(\lambda_k) \t (k \ge 1)
$$

and

$$
(4.6) \t\t p^*(\varepsilon_{2n+1})=2\beta(\Delta_{2n+1}).
$$

Thus we have

Proposition 4.2 ([6, Korollar (2.10)]). With notation as above,

$$
K^*(SO(2n+1))/\text{Tor} = \Lambda_Z(\beta(\lambda'_1),\cdots,\beta(\lambda'_{n-1}),\varepsilon_{2n+1}).
$$

Lemma 4.3. In $K^*(SO(2n+1))/\text{Tor}$ the following relation holds:

$$
2^n \varepsilon_{2n+1} = \sum_{k=1}^n \beta(\lambda'_k) \, .
$$

Proof. We have

$$
p^*(2^n \varepsilon_{2n+1}) = 2^{n+1} \beta(\Delta_{2n+1}) \qquad \text{by (4.6)}
$$

\n
$$
= \beta(\Delta_{2n+1}^2) \qquad \text{by using (2.1)}
$$

\n
$$
= \beta(\sum_{k=0}^n \lambda_k) \qquad \text{by (4.4)}
$$

\n
$$
= \sum_{k=0}^n \beta(\lambda_k) \qquad \text{since } \beta \text{ is additive}
$$

\n
$$
= \sum_{k=1}^n \beta(\lambda_k) \qquad \text{by (2.2)}
$$

\n
$$
= \sum_{k=1}^n p^*(\beta(\lambda'_k)) \qquad \text{by (4.5)}
$$

\n
$$
= p^*(\sum_{k=1}^n \beta(\lambda'_k)).
$$

Since p^* clearly gives an injection $K^*(SO(2n+1))/\text{Tor} \rightarrow K^*(\text{Spin}(2n+1))$, the result follows.

Since the range of *ch:* $K^*(SO(2n+1)) \rightarrow H^{**}(SO(2n+1))$; **Q**) is a vector space over **Q,** it factors to give

ch:
$$
K^*(SO(2n+1))/\text{Tor} \to H^{**}(SO(2n+1); Q)
$$
.

Theorem 4.4. *W ith n o tatio n as in Proposition* 4 .2 *a n d* (4.1), *ch:*

$$
K^*(SO(2n+1))/\text{Tor} \to H^{**}(SO(2n+1); \textbf{Q}) \text{ is given by}
$$
\n
$$
ch(\beta(\lambda_k^{\prime})) = \sum_{i=1}^n ((-1)^{i-1}2/(2i-1)!) \phi(2n+1, k, 2i) x_{i-1}^{\prime}
$$
\n
$$
(k=1, 2, \cdots, n-1),
$$

$$
ch(\varepsilon_{2n+1}) = \sum_{i=1}^{n} ((-1)^{i-1}2/(2i-1)!)((1/2^{n})\sum_{k=1}^{n} \phi(2n+1, k, 2i))x'_{4i-1}.
$$

Proof. Apply i^* : $H^*(SU(2n+1); Q) \rightarrow H^*(SO(2n+1); Q)$ to the equality (3.6). Then the left hand side is

$$
i_1^*(ch(\beta(\lambda_k))) = ch(\beta(i_1^*(\lambda_k))) = ch(\beta(\lambda'_k)) \qquad \text{by (3.5)}
$$

and the right hand side is

$$
i_1^* \left(\sum_{i=1}^{2n} ((-1)^i / i!) \phi(2n+1, k, i+1) x_{2i+1} \right)
$$

=
$$
\sum_{i=1}^n ((-1)^{2i-1} / (2i-1)!) \phi(2n+1, k, 2i) (-1)^i 2x'_{4i-1}
$$
 by Proposition 4.1
=
$$
\sum_{i=1}^n ((-1)^{i-1} 2 / (2i-1)!) \phi(2n+1, k, 2i) x'_{4i-1}.
$$

This proves the first equality.

By using Lemma 4.3, the second equality is obtained from the first.

For example, if $n=1$, 2 or 3, the equalities of this theorem are seen to be: if *n=1,*

$$
ch(\varepsilon_3)=x_3';
$$

if *n=2,*

$$
ch(\beta(\lambda'_1)) = 2x'_3 - (1/3)x'_7,
$$

$$
ch(\varepsilon_5)=2x_3+(1/6)x_7;
$$

if $n=3$,

$$
ch(\beta(\lambda'_1)) = 2x'_3 - (1/3)x'_7 + (1/60)x'_{11},
$$

\n
$$
ch(\beta(\lambda'_2)) = 10x'_3 + (1/3)x'_7 - (5/12)x'_{11},
$$

\n
$$
ch(\varepsilon_7) = 4x'_3 + (1/3)x'_7 + (1/30)x'_{11}.
$$

Department of Applied Mathematics Osaka Women's University

References

- [1] M. F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math., 3, Amer. Math. Soc., 1961, 7-38.
- [2] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math., 57 (1953), 115-207.
- [3] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces I, II, Amer. J. Math., 80 (1958), 458-538, 81 (1959), 315-382.
- [4] N. Bourbaki, Groupes et algèbres de Lie, Chapitres IV-Vl, Hermann, 1968.
- [5] B. Harris, The K-theory of a class of homogeneous spaces, Trans. Amer. Math. Soc., 131 (1968), 323-332.
- [6] R. P. Held and U. Suter, Die Bestimmung der unitären K-Theorie von $SO(n)$ mit Hilfe der Atiyah-Hirzebruch-Spektralreihe., Math. Z., 122 (1971), 33-52.
- [7] L. Hodgkin, On the K-theory of Lie groups, Topology, 6 (1967), 1-36.
- [8] D. Husemoller, Fibre bundles, second edition, Graduate Texts in Math., 20, Springer, 1974.
- [9] O. Loos, Symmetric spaces, I and II, Math. Lecture Note Ser., W. A. Benjamin, 1969.
- [10] M. Mimura and H. Toda, Topology of Lie groups, I and II, Transl. Math. Monog., 91, Amer. Math. Soc., 1991.
- [11] H. Minami, K-groups of symmetric spaces I, Osaka J. Math., 12 (1975), 623-634.
- [12] T. Watanabe, Chern characters on compact Lie groups of low rank, Osaka J. Math., 22 (1985), 463-488.