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On the Chern character of
symmetric spaces related to SU(n)

By

Takashi WATANABE

§0. Introduction

Let (G, F) be a compact symmetric pair. That is, G is a compact Lie
group with an involutive automorphism s: G— G and F is a closed connected
subgroup of G such that G’={x€G; s(x)=1x}D FD(G?)., the identity compo-
nent of G°. Then the quotient M =G/F forms a compact symmetric space.
The aim of this paper is to study the Chern character homomorphism c#:
K*(M)-H**(M; Q) [1, § 1] for two cases M=SU(2n)/Sp(n) in section 2 and
M=SU@2n+1)/SO(2n+1) in section 3, where SU(n)CM(n, C), Sp(n)CM(n,
H) and SO(n)C M(n, R) are the n-th special unitary, symplectic and rotation
groups, respectively. As a byproduct we will find a symmetry in a descrip-
tion of ch for M=SU(n+1) at the end of section 3. Finally in section 4 we
compute ck for M=SO(2n+1).

Our discussion is summarized as follows. Let m: G- G/F be the projec-
tion and consider the commutative diagram

ch

K*(G/F) H**(G/F; Q)
* l l *

ch
K*(G) H**(G; Q)

In our cases, all the rings K*(G/F), H*(G/F; Q), K*(G) and H*(G; Q) were
determined and all the homomorphisms except the upper ¢/ were described;
further, the vertical homomorphisms are injective. So the upper ¢k can be
computed.
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§1. Preliminaries

We first deal with SU(2#)/Sp(n). Let I, be the unit matrix of degree #,
and set

0 _In
7o)
Define a map sz SU(2n) - SU(2#n) by s:(A)=J,AJ."" for A&SU(2n), where A

denotes the complex conjugate of A. Clearly s; is an involution. Let #:
Sp(n)— SU(2n) be the map defined by

A -B
iz(X)Z(B I ) for X=A+jBESp(n),

where j is the element of H such that H=C{1}®C{j} and j’=—1. Clearly
72 is a monomorphism of topological groups. It is easy to check that
(SU@2n), #(Sp(n))) is a compact symmetric pair. Thus SU(Q2#n)/Sp(n)
becomes a compact symmetric space, which is denoted by AII in E. Cartan’s
notation.

Choose a maximal torus 7 of SU(2#x) so that s:(T)CT. Let L(T) be
the Lie algebra of 7. There are simple roots a1, a2, ***, @2n-1: L(T)— R such
that the corresponding Dynkin diagram is

a1 [22) as d2n-3 d2n-2 d2n—-1

o o o O—o0 o

’

where, with respect to a certain inner product (, ) on L(T)*=Homz(L(T), R),
(@;, @)=2 if 1£i22n—1; (@, @i+1)=—1 if 1=:/<2n—1; otherwise (a;, @;)=0.
Hereafter we follow [4]. We may regard a; as an element of H*(BT; Q), and
then H*(BT; Q) is the polynomial algebra Q[ai, -, @2x-1]. Denote by s T
- T the restriction of s to T. According to [9], Bs#: H*(BT; Q)-» H*(BT;
Q) is given by

(1.1) Bsf(a)=am-: (1=1,2,--,2n—1).

Let wi, ws, ***, w22-1 be the fundamental weights determined by i, @z, --*,@2n-1.
Then we have

12 w=0/20)(@n—i) Lia+i 5 @n—ia)

(see [4]). Since H¥(BT; Z)=Z[w., -, w2a-1] (see [3, § 10.1]), it follows from
(1.1) and (1.2) that Bs$: H¥(BT; Z)-» H*(BT; Z) is given by
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(1.3) Bs¥(w:)=wzn-: (i=1,2,+,2n—1).

Let R: be the reflection of L(T)* relative to a, i.e., with respect to the
hyperplane {x&€ L(T)*; (a;, x)=0}. Then Ri, R», -:-, R2n-1 generate the Weyl
group W(SU(2#»)) and act on HXBT; Z) by the formulas

Rw:)= —wi—j;i(Z(af,-, a;)/(a;, @;))w;  and
Rw;)=0 if i=+j.

In this case, we have
Ri(w)=— w1+ w2,
Rlw)=wi.1—wi+wis (1=2,3,--,2n—2),
RZn—;(a)Zn—l):(I)Zn—2~a)2n—l .

Put
h=w1,
ti=Ria(tic)=—wiatw:  (1=2,3,-,2n—1),
ton= Ran-1(t2n-1)= — W2n-1 .

Then H*(BT; Z)=Z[t, -, t2n]/(c1), where ci=HhH~+-+t2s, and it follows
from (1.3) that

(]..4) BS;(ti):_t2n+l—i (Z:]-y 2v Y 2”)'

For a commutative ring R with a unit 1€ R, let 0:(x1, x2, ***, x») denote the
i-th elementary symmetric polynomial in R[xi, xz, -**, x»]. For a compact
connected Lie group G with a maximal torus 7', we denote by 7: T G the
inclusion, by ¢*: H*(BG; R)- H*'(G; R) the cohomology suspension and by
H*(BT; R)"“ the subalgebra of H*(BT; R) invariant under the action of
the Weyl group W(G).

Let cimi=0inlh, -, ) EH***(BT; Z). Since W(SU(2#n)) acts on
H*BT; Z) as the group of permutations on {#, ***, t2x}, we have H*(BT;
Z)V"SUEM =Z[ ¢y, c3,++, c2a] and it follows from (1.4) that

(1.5) Bs#(civ1)=(—1)"cin (1=1,2,--,2n—1).

Since H¥(SU(2n); Z) has no torsion, by [2, § 29] Bi: BT -» BSU(2#x) induces
an isomorphism H*(BSU(2»); Z)=H*(BT; Z)"“V®" (so we shall identify
them). Therefore H¥(BSU(2n); Z)=Z|ca, c3, ***, C2n). Let xzis1=0*(ci11)E
H**Y(SU(2#n); Z). Then

(1.6) H*(SU(2n); Z) is the exterior algebra Az(xs, s, =+, Zan-1)
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(see [2, §19]).
Proposition 1.1. sf: H*(SU(2n); Z)-» H*(SUQ2n); Z) is given by
5 (x2ie) = (=1 xpi1 (1=1,2,-+,2n—1).
Proof. We have
$3(22in1)=5F(0*(ci41))
=0*(Bs#(ci+1)) by the naturality of o*
=0*((=1)™*'cin) by (1.5)
=(—1)""22i1 .

Choose a maximaltorus T’ of Sp(%) so that i2( T )C 7. Let L(T’) be the
Lie algebra of T'. There are simple roots ai, a3, -+, an: L(T’)— R such that
the corresponding Dynkin diagram is

’

[431

, ’ , ’
a3 An-2 an-1 Qn
O )
J A4

O—0 ,

a2
O
A

where (@}, a/)=2 if 1=i<n; (@), an)=4; (&}, aiv)=—1if 1Si<n—1; (an_1, ar)
=2; otherwise (a/, @j)=0. Then H*(BT’; Q)= Q|ai, -, 7). Denote by iz: T~
- T the restriction of 2to T’. According to [9], Bi#: H*(BT; Q)-» H*(BT":
Q) is given by

1.7 Bif(a:)=ai=Bif(am-;) (i=1,2,-, n).

Let wi, w3, -+, w» be the fundamental weights determined by ai, a3, -, an
Then we have

i-1 n-1
(1.8) wi= g‘.lja,’--l-z'( g}.a}+(1/2)a§z).

Since H¥(BT'; Z)=Z[ w1, -**, wy), it follows from (1.2), (1.7) and (1.8) that Bi3:
H*(BT; Z)-» H*(BT’; Z) is given by

(19) Biﬁk(wi)=w;’=BZ’2*(Cl)2n—i) (Z:]-, 2, -, 7’1) .

Let R; be the reflection of L(7)* relative to @;. Then the action of W(Sp(»))
on H*(BT’; Z) is given by

Rw)=—wi+ws,
R{w)=wi-1— wit+ win (1=2,3,--,n—1),

Rwn)=2wn-1—wh.
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Put
H=wi,
H=Ri(t-))=—wiaitw; (i=2,3,, n).
Then H¥(BT"; Z)=Z[#, -+, t] and it follows from (1.9) that
(1.10) Bif(t)=ti  (i=1,2,,n),
Bif(tum-)=—t;  (i=1,2,,n).

Let g;=0{t?, t52, -, tEH*(BT"; Z). Since W(Sp(n)) acts on HX(BT"; Z)
as the group of permutations on {#, -*-, s} together with substitutions ¢/— — ¢/,
we have H¥(BT’"; Z)VSP™=Z|q\, q2, -, g»] and it follows from (1.10) that

(1.11) Bif(c)=(=1D'q: (=12, m),
Bis(c2i41)=0 (i=1,2,,mn—1).
By [2], H*(BSp(n); Z)=H*(BT"; Z)"“*")  Therefore
(L.12) H*(BSp(n); Z)=Zla\, @z -+, an] .
Let xii-i=0*(g.) € H*"(Sp(n); Z). Again by [2],
(1.13) H*(Sp(n); Z)=Azxs, 3, -+, Tin-1) .
Proposition 1.2. & H*(SU@2#»); Z)- H*(Sp(n); Z) is given by
i3 (x4i-1) =(—1)'4i21 (i=1,2,-, m),
#(xan)=0  (7=1,2,-, n—1).
Proof. This follows from (1.11).

We next deal with SU(2%+1)/SO(2n+1). Define a map si: SUQ2xn+1)-
SU@2n+1) by si(A)=A for ASU@2n+1). Clearly s, is an involution. Let
i: SO2n+1)-»SU(@2n+1) be the map derived from the inclusion RCC.
Clearly 7 is a monomorphism of topological groups. It is easy to check that
(SU@2n+1), 4(SO@2n+1))) is a compact symmetric pair. Thus SU(2#n
+1)/SO(2n+1) becomes a compact symmetric space, which is denoted by AI
in E. Cartan’s notation.

Choose a maximal torus 7 of SU(2xn+1) so that s;(7)CT. There are

simple roots a1, @, ***, az»: L(T)— R such that the corresponding Dynkin
diagram is
[431 a3 on—2 an—-1 2n

[£2)
O O O @ O O
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where (@, @:)=2 if 1=i<2n; (a;, ai)=—1 if 1=i<2n; otherwise (@, a;)=0.
Then H*(BT; Q)= Qla, -+, a2x]. Denote by s;: T = T the restriction of s, to
T. According to [9], Bs¥: H¥*(BT; Q)-» H*(BT; Q) is given by

(1.14) Bst(a)=aens1-:  (1=1,2,--,2n).

Let wi, wz, ***, w2r be the fundamental weights determined by @, @, -+, @n.
Then we have

L15)  0=/@ntDN@n+1-i) o +iZ@n+1-5)a).

Since H¥(BT; Z)=Z[w, -+, wax], it follows from (1.14) and (1.15) that Bsi:
H*(BT; Z)-» H*(BT; Z) is given by

(1.16) Bst(w:)=wzns1-:  (1=1,2,-+,2n).

Let R;: be the reflection relative to @;. Then the action of W(SU(2%+1)) on
H*BT; Z) is given by

Ri(w)=—wit w2,
Rw)=win—witwi  (i=2,3,-,2n—1),
Ron(®2n)= w2n-1— W2n .

Put
h=w:,
t=Ri.(tis)=—wiatw:  (i=2,3,,2n),
toni1= Ran(t2n) = — w2n .

Then H*(BT; Z)=Z[t, -, tza+1]/(c1), where ci=01(t, =+, t2n+1), and it fol-
lows from (1.16) that

(1.17) Bsi(t)=—tense-:  ({=1,2,--,2n+1).

Let Ci+1:O'i+1(t1, M t2n+1)€H2i+2(BT; Z). Then H*(BT; Z)W(SU(2"+1))=Z[Cz,
3, ***, Cans1) and it follows from (1.17) that

(1.18) Bst(civ)=(—1)""cin1 (1=1,2,--,2n).

By (2], H¥(BSU(2n+1); Z)=H*(BT; Z)WSvent =7zl c, cs -+, Cans1). Let
Taim=0*(ci1)EH¥ Y (SUQ@2n+1); Z). Then

(1.19) H*(SU@2n+1); Z)=Az(xs, x5, ***, Tan+1) .

Proposition 1.3. si: H*(SU@2n+1); Z)-» H*(SU@2n+1); Z) is given by
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st (x2i4) =(=1) " 2s41 (1=1,2, -, 2n).
Proof. This follows from (1.18).

Choose a maximal torus 7 of SO(2n+1) so that 2:(7)CT. There are

simple roots ai, e, -+, an. L(T’)~ R such that the corresponding Dynkin
diagram is

al 0] as Q-2 n-1 an

o o o 0 o0—=0,

where (a/, a))=2if 1= i< (an, an)=1; (a}, ai+1)=—1if 1= i< n; otherwise (¢},
@;)=0. Then H*(BT’; Q)=Q|ai, -+, an]. Denote by 74: T'— T the restric-
tion of 71 to 7. According to [9], Bi¥: H*(BT; Q)- H*(BT’; Q) is given by

(1.20) Bi¥(a:)=ai= Bif(azn+1-:) (i=1,2,-,m).

Let w1, ws, -, w» be the fundamental weights determined by ai, as, ‘-, an
Then we have

i—1 n
(1.21) w=2dja+ixe (=12, n—1),
w;=(1/2)j§jaf}.

Since H¥(BT’"; Z)=Z[ w1, -+, wy], it follows from (1.15), (1.20) and (1.21) that
Bit: H¥(BT; Z)-» H*(BT’; Z) is given by

(1.22) Bit(w:)=wi=Bif(wm-:) (=12, n—1),
Bif(wn)=2wr=Bii(wn+1) .

Let R; be the reflection relative to @/. Then the action of W(SO(2#+1)) on
H¥BT’; Z) is given by

Ri(0)=— w1+ w3,
Riw)=wia—witwivi (=23, n—2),
Ru-wn-1)=wn-2— wp-1+2wn,
R wh)=wn-1— wy.
Put
ti=wr,

t=Ri(ti)=—wiate: (=23, n—1),
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tr=Ru-i(th-1) = — wn-1+ 205
Then H*(BT'; Z)=Z[4, -+, t;] and it follows from (1.22) that
(1.23) Bit(t)=ti  (i=1,2,-,n),
Bit(tn+1)=0,
Bit(tnse-)=—1t;  (i=1,2,,n).

Let pi=o0:(t% % -+, E5)EHY(BT"; Z). Since W(SO(2n+1)) acts on
H*(BT'; Z) as the group of permutations on {#{, ---, £+} together with substitu-
tions ¢/~ —t{, we have H*(BT"; Z)"C*D=Z[p, p,, -+, pn] and it follows
from (1.23) that

(1.24) Bit(c:)=(—1)p:  (i=1,2,---, n),
BZ.T(Czu.l):O (l=1, 2, oy n)

Suppose given a field & of characteristic p#2. Since H*(SO2n+1);: Z)
has no odd torsion, by [2,§29] H*(BSO(2xn+1); k)= H*(BT’; k)¥Soer+)
Therefore

(1.25) H*(BSO(2n+1); B)="k[p, p2, -+, pn) .
Let xiimi=0*(p)E HY'(SO(2n+1); k). By [2],
(1.26) H*(SO@2n+1); B)=Aw(xs, x7, ***, Zin-1) .

In this way, from (1.24) we obtain a result on the behavior of 7f: H*(SU(2xn
+1); B)-» H*(SO(2n+1); k), which is quite similar to Proposition 1.2.
However, in section 4 we will prove its integral version (Proposition 4.1).

§ 2. The Chern character of SU(2n)/Sp(n)

The cohomology of SU(2n)/Sp(n) is known (e.g., see [10, Vol. I, Chap. 3,
Theorem 6.7, (1)]).

Proposition 2.1. H*(SU@2#)/Sp(n); Z) has no torsion and there exist
elements es; €S H*" TN (SU@2n)/Sp(n); Z) (i=1,2, .-, n—1) such that

H*(SU(ZW)/SP(W)i Z):Az(es, €9, "', Can-3) .

If m: SU@2n)-SUQ2n)/Sp(n) is the projection, ms*: H*(SU(2n)/Sp(n); Z)-
H*(SU(2n); Z) satisfies 5 (esiv1)=Tai+1.

Proof. Consider the Serre spectral sequence {E;, d-} for the integral
cohomology of the fibration
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SU@n) —2—-SU@2n)/Sp(n) — BSp(n)

induced by Bis: BSp(n)— BSU(2#n). By (1.12) and (1.6),
E,=H*(BSp(n); ZYQH*(SUQ2n); Z)
:Z[Ql, qz Qn]®/12(x3, Xs, ', x4n-1) .

Since each zz:4:€ H¥*(SU(2#n); Z) transgresses to ci+1€ H* 4 BSU(2n); Z)
in the Serre spectral sequence of the universal SU(2#)-bundle, it follows from
(1.11) that

dsi(1®x4i-1)=(—1)"q:®1 (i=1,2, -, n),
dr(1®x4i+1)=0 (Z=1, 2, n—1; 7’22)
Then a routine spectral sequence argument yields the result.

Let U(%) and U be the »-th and infinite unitary groups, respectively. A
representation of a compact Lie group G is a homomorphism G- U(n) of
topological groups, where # is its dimension. The representation ring R(G)
of G has the structure of a A-ring (see [8, 12(1.1)]) given by the exterior power
operations A% R(G)- R(G) for £=0. Let 8: R(G)- K '(G) be the homomor-
phism of abelian groups defined by assigning to a representation p: G- U(n)
the homotopy class B(p)=[we]E[G, Ul=K(G), where tn: U(n)- U is the
canonical injection. Then B has the following properties ([7, . 8]):

(2.1) if o1, 02 are vepresentations of G of dimensions ni, n. respectively,
then B(p102)=n2L(p1)+ n16(02);

(2.2) if n denotes the trivial representation of G of dimension n, then
B(n)=0 for all nEZ.

Consider the inclusion Ai: SU(2#n)— U(2#). It gives rise to an element A
€R(SU(2n)). Since A admits a highest weight w,=*4, we see that {¢; i=1,
2, -+, 2n} is the set of weights of Ai. If we write 1.=A%*(A), then

(2.3) R(SU(Z%))=Z[/11, /12, .ty /12;:—1]
(see [8, 13(3.1)]) and sf: R(SU(2x))— R(SU(2n)) is given by
(2.4) SZ*(/lh)zllzn—b (k=1, 2, -, 271_1) .

This is equivalent to (1.1), because Ai, 4, ***, A2n—1 are the irreducible represen-
tations determined by @, @, -**, @1 through the fact that each A, admits a
highest weight we.

Consider the composite Ai=A172: Sp(n)— U(2xn). It gives rise to an ele-
ment 1€ R(Sp(n)). Since Al admits a highest weight wi=#{, we see that { + ¢/;
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i=1,2, -, n} is the set of weights of Al. If we write A,=A4%(4]), then
R(Sp(m)=Z[A, 4, -+, A7

(see [8,13(6.1)]) and ##: R(SU(2n))- R(Sp(n)) is given by

(2.5) (A== (lenn)  (k=1,2,--, m).
This is equivalent to (1.7) because Ai, 4, -, A4 are the irreducible representa-
tions determined by a1, @, -+, an

For any compact connected Lie group G with torsion-free fundamental
group, the Z/(2)-graded K-ring of G was determined by Hodgkin [7, Theorem
A]. His result is stated as follows: K*(G) has no torsion and therefore it has
the structure of a Z/(2)-graded Hopf algebra; if G is semi-simple and R(G)=
Z[ o1, -, p.] for some representations p;, then K*(G) is the exterior algebra
A z(B(p1), -, Blpr)), where the B(p:) are primitive. In particular, for G=
SU(n+1) we have

K*(SU(n+1))=Az(B(4), B(A), -+, B(An))

(see (2.3) and (3.2)).
Moreover, the Chern character of SU(»n+1) was computed in [12] for all
n=1. We recall the result. Define a function ¢: N XN XN - Z by

(2.6) ¢(n, &, q)Zi‘.(-l)"“(kn .)z‘"‘l.
i=1 —1

Then by [12,(2.2) and Lemma 1] we have

Proposition 2.2. ch: K*(SU(n+1))-» H*(SU(n+1); Q) is given by
ch(BAN)= (=D /NP +1, k, i+ Dazies (k21).

The K-theory of SU(2#n)/Sp(n) was determined by Minami [11]. To
state his result, we need some notation. Let G and F be as in section 0. If
two representations o1, p2: G- U(n) satisfy o\|F = p.|F, we have a map f: G/F
- U(n) defined by f(xF)=p1(x)p(x)™" for xFEG/F. We denote by £(p:
— p2) the homotopy class [twf1E[G/F, Ul=K (G/F). If n: G- GJF is the
projection, as noted in [5, p. 325], 7*: K-'(G/F)— K~(G) satisfies

(2.7) 7*(B(01— 02))=B(01) — B(02) .

Applying this construction to the case G/F=SU(2%)/Sp(n), by (2.5) we get
elements B(Ax—Aen_n)EK U SU2n)/Sp(n)) (k=1, 2, ---, n—1).

Proposition 2.3. ([11, Proposition 6.1]). With notation as above,
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K*(SU@2n)/Sp(n))=Az(B(A—22n-1), *+*, B(An-1— Ans1)) .
Now we are ready to state our main result.

Theorem 2.4. With wnotation as in Propositions 2.3 and 2.1, ch:
K*(SU(2n)/Sp(n))-» H*(SU(2n)/Sp(n); Q) is given by

Ch(ﬂ(/bz_AZn—k))=:g(2/(2i)!)¢(2ny k, 2i+1)€4i+1 (kzl, 2, 7’1—1) .
Proof. We have

75 (ch(B(Ae— Aen-1))) = ch(7(B(Ae — A2n-4)))
= Cl’l(B(/lk) - B(/bn—k)) by (2-7)
=ch(B(Ax)) — ch(B8(A2n-r)) .

By Proposition 2.2,

(28)  chBUN= 2 (~Dfi)$(@n, b i+Dzae

and

29 ch(BUen-)= & (~1)/i)d(2n, 21—k, i+ Dziar

But
ch(B(en-2))=ch(B(s#(Ax))) by (2.4)
=s7(ch(B(Ar)))

=(E (~1/i)@n b i+ Do) by (28)

=2:’=2_11(<—1)f/z'1)¢(2n, k. i+1)(—1)*' 2201 by Proposition 1.1
and so
2n—1
(2.10) ch(B(Aen-r))=— 231 1/1)p2n, k, i+1) L2141 .

Therefore

Cl’l(ﬁ(/lk)) - Ch(ﬁ(/bn—k))

=S (=1 +D/i)d(@n b, i+ D2z by (28) and (2.10)
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=’:§':(2/(2z')!)¢(2n, E 20+ 1) Zarn

= (S /@ $(@n, b 2i+Deqs)

since 75*(esi+1)=x4:+1 by Proposition 2.1.

Since m*: H*(SU(2n)/Sp(n); @)~ H*(SU(2n); Q) is injective by Proposition
2.1 and (1.6), the result follows.

For example, if =2, 3 or 4, the equalities of this theorem are seen to be:
if n=2,

ch(B(h—A))=es;

if n=3,
ch(B(A—2))=es+(1/12)es,
ch(B(A—A))=2es—(5/6)es,

if n=4,
ch(B(A—A))=es+(1/12)es+(1/360)es
ch(B(2e—2e)) =4es—(2/3)ea—(7/45)ers ,
ch(B(2s— %)) =5es—(19/12)es+(49/72)ers .

§ 3. The Chern character of SU2nr+1)/SO02n+1)

The cohomology of SU(2x#+1)/SO(2n+1) is known (e.g., see [10, Vol. I,
Chap. 3, Theorem 6.7, (2) and (3)]).

Proposition 3.1. Let k be a field. Then
(1) if the characteristic of k is p+2,

H*(SU@2n+1)/SO@2n+1); k)=Aw(es, es, =, esns1) ,
where ey €EH*" T (SUQ2n+1)/SO2n+1); k);
(i) if the characteristic of k is 2,
H*(SUQn+1)/SO@2n+1); k)=Awez, es,*+, €ans1) ,
where e €EH T (SUQCn+1)/SO2n+1); k) and
Sq'(ezi)=eris1, Sq'(€2:41)=0 (i=1,2,+, m).
Thus H*(SUQ2n+1)/SOQ2n+1); Z) has 2-torsion and there exist elements
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e EH "' (SUQ2n+1)/SO2n+1); Z) (i=1,2, -+, n) such that
H*(SUQ2n+1)/SO2n+1); Z)/ Tor=Az(es, e, ***, €ans1) .

If m: SUQn+1)»SU@2n+1)/SO2n+1) is the projection, m*: H*(SU(2n
+1)/SO@2n+1); Z)-» H*(SUQ2n+1); Z) satisfies mi*(esi+1)=2Zai+1.

Proof. Consider the Serre spectral sequence {E-, d-} for the cohomology
with R-coefficients of the fibration

SU@n+1)—ESU@R+1)/S0@n+1) —L— BSO@n+1)
induced by Bii: BSO(2n+1)— BSU(2n+1). If R=EF is a field of characteris-
tic p+2, by (1.25) and (1.19),
E:=H*(BSO2n+1); B)YQH*(SU@2n+1); k)
zk[pl, b2, -, Pn]®/1k(133, Xs, ***, 1‘4n+1) .

Since each xz;s1EH**(SU(2n+1); k) transgresses to c:«1€EH***(BSU(2n
+1); k) in the Serre spectral sequence of the universal SU(2x+1)-bundle, it
follows from (1.24) that

d4i(1®x4i—1)=(—1)"pi®l (izl, 2, oty n) )
dr(1®x4,-+1)=0 (i=1, 2, IR /8 7’;2) .

Then a routine spectral sequence argument yields that E.=/(xs, X9, -,
Zan+1). So there exist elements ey € HY(SU2#n+1)/SO(2n+1); k) such
that m*(esss1)=x4:41. Hence (i) follows.

If R=~F is a field of characteristic 2, by [3, § 30] and (1.19),

E,=H*(BSOQ2n+1); YQH*(SU(2n+1); k)
= klwz, w3, -+, Wan, Want1|@Nr(x3, Ts, **, Tan+1)
where w1 € H*'(BSO(2n+1); k) and
(3.1) Sq' (waei)=wair1, Sq"(w2ir1)=0 (=1,2, - n).

Since Bif: H¥*(BSU(2n+1); B)-» H*(BSO@2n+1); k) satisfies Bif(ci+1)= w?i
(see [10, Vol. I, Chap. 3]), it follows that

d2i+2(1Qx2i41) = w1 @1 (i=1,2,---,2n).

Then a routine spectral sequence argument yields that Ee=4k(ws, ws, -,
wen+1), where 4x denotes the k-algebra having a simple system of generators.
So there exist elements e €EH ' (SU2xn+1)/SO(2n+1); k) such that
J¥(w:is1)=ew1. From this and (3.1) we deduce the last two equalities of (ii).
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Since the composite (B71)/1 is null homotopic, we have
Ozjkal.fk(CiH):/.l*(W?H):e?+1 .

Hence the remaining part of (ii) follows.

The above facts imply that if R=Z, then each x4:.-1€H* ' (SU2n+1);
Z) transgresses to a generator of a summand Z in H*(BSO(2n+1); Z); each
Zan1EHY(SU(2n+1); Z) transgresses to a generator of a summand Z/(2) in
H**Y(BSOQ2n+1); Z); and 2xs:mi€EH**(SU@2n+1); Z) survives to FE.
This proves the existence of an element e € H**'(SU(2n+1)/SO(2n+1);
Z) such that m*(es;+1)=2x4:+1, and the rest follows from (i) and (ii).

Consider the inclusion A: SUQ2n+1)- U(2xn+1). It gives rise to an
element LER(SU(2n+1)). Since A admits a highest weight wi=#4, we see
that {t; i=1,2, -+, 2n+1} is the set of weights of A.. If we write A,=A*(A),
then

(3.2) R(SUQn+1)=Z[A, As, =+, A2n]
(see [8,13(3.1)]) and s¥: R(SU(2n+1))- R(SU(2n+1)) is given by
(3-3) Sl*(/‘k)=/12n+l—k (k‘—‘l, 2, 2%) .

This is equivalent to (1.14).

Consider the composite Ai=Aii: SOQ2n+1)- U(2n+1). It gives rise to
an element A€ R(SO(2#n+1)). Since A admits a highest weight wi=1{, we
see that {£#,0; i=1,2,--+, n} is the set of weights of A.. If we write A,=
A*(A1), then

(3.4) R(SOQ@u+1)=Z[A, A, -, Al
(see [8,13(10.3)]) and i#: R(SU(@2n+1))— R(SO(2n+1)) is given by
(3.5) if‘(/ik):/lsz l'l*(/lZIH-l—k) (kzl, 2, cte n) .

This is equivalent to (1.20).

The K-theory of SU(2n+1)/SO(2n+1) was also determined by Minami
[11]. Applying the previous construction to the case G/F =SU(2n+1)/SO(2n
+1), by (3.5) we get elements B(Ax— Aens1-x)EK(SUQRn+1)/SO2n+1)) (k=
1,2, -, n).

Proposition 3.2 ([11, Proposition 8.1]). With notation as above,
K*(SUQ2n+1)/SO2n+1))=Az(B(A— Zen), ==+, B(An— An+1)) .
Now we are ready to state our main result.

Theorem 3.3. With notation as in Propositions 3.2 and 3.1, ch: K¥(SU(2n
+1)/SO@2n+1))-» H*(SU@2n+1)/SO2n+1); Q) is given by
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ch(B(An—ans1-)) = 21/ @iN2n+1, k, 2+ Dewisn

(k=1,2,, n).
Proof. We have
1 (ch(B(A— Aen+1-#))) = ch(7*(B(Ax — Azn+1-4)))
=ch(B(A) = B(Aens1-)) by (2.7)
= ch(B(Ax)) = ch(B(Aens1-4)) .
By Proposition 2.2,
(36)  ch(BOAN)=Z(~1D/iDP2n+1, b, i+ 1)z

and

3.7 ch(B(Azn+1-x))= 12"11(( —1)iN@2n+1,2n+1—Fk, i +1)Z2is1 .

But
ch(B(en+1-1))=ch(B(s(Ax))) by (3.3)
=st(ch(B(Ar)))
=SHB(—DYi@n+1, b i+ Daasr) by (36)
=3 (—1)/id2n+1, k i+1)(~D)*'zse by Proposition 1.3
and so

(3.8) Ck(ﬁ(/l2n+l—k)>: - izgnl(l/l'!)qﬂ@%‘l‘l, E i+ 1)xeis: .

Therefore

ch(B(Ar)) — Ch(ﬂ(/IZnH—k))

=S~ D' +D)/i)p@n+1, £ i+Dzaes by (36) and (38)
= 332/ @DN$@n+1, k, 2+ 1)zuin

=7n*(§]1(1/(2i)!)¢(2n+1, k, 2i+1)ews)

163
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since 7m*(esi+1)=2x4+1 by Proposition 3.1.

Since #*: H*(SU(2n+1)/SO2n+1); Q)-» H*(SU(2n+1); Q) is injective by
Proposition 3.1 and (1.19), the result follows.

For example, if #=1, 2 or 3, the equalities of this theorem are seen to be:
if n=1,

ch(B(Ai—22)=(1/2)es;

if n=2,
ch(B(Ai—A))=(1/2)es+(1/24)es,
ch(B(A—23))=(1/2)es—(11/24)es

if n=3,
ch(B(A—26))=(1/2)es+(1/24)es+(1/720)e1s
ch(B(Ae—2As))=(3/2)es—(3/8)es—(19/240)e13 ,
ch(B(As—A))=es—(5/12)es+(151/360)es

By comparing (2.9) with (2.10), we find that the relation ¢(2#n, 2n—k, 1+1)
=(—1)"*"'¢(2n, k, i+1) holds for ¢, k=1,2--,2n—1. By comparing (3.7)
with (3.8), we also find that the relation ¢Q2n+1,2x+1—Fk, i+1)=
(=1)"*'¢(2n+1, k£, i+1) holds for 7, k=1,2, -+, 2n. Summing up, by means of
topology we have shown that

(3.9 the relation ¢(n+1, n+1—*Fk i+1)=(—1)"@d(n+1, & i+1)
holds for i, k=1,2, n.

In view of Proposition 2.2, this relation expresses a symmetry in a description
of ch of SU(n+1) (see [12, Theorem 2]).

There is another curious relation concerning the function ¢ of (2.6). In
R(SU(n+1))=Z[A, A, -, 2] we have A»s1=1 and A.=0 for £#>xn+1. From
this and (2.2), B(A)=0 for k=#xn+1. Combining this with Proposition 2.2, we
find that

(3.10) the relation ¢(n+1,k, i+1)=0 holds for k=n+1 and
=12, n.

Of course, it is not immediate to deduce (3.9) and (3.10) directly from (2.6).
The author would like to thank Drs. Shin-ichiro Hara, Susumu Kono and Jun
Murakami who taught various such proofs independently.
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§4. The Chern character of SO2n+1)

Since H*(SO(2xn+1); Q) is an exterior algebra generated by primitive
elements xi;,-1€EH* "' (SO2n+1); Q) (1=1, 2, -+, n), using the Poincaré dual-
ity, we can take elements xi;-1 € H*"'(SO(2n+1); Z) such that

(4.1) H*(SO2n+1); Z)/Tor=Az(x5, x5, ***, Tin-1)

and the image of each xi;-1 under the coefficient group homomorphism
H*Y(S0@2n+1); Z)-» H*'(SO@2n+1); Q) is primitive.

Proposition 4.1.  With notation as in (1.19) and (4.1), i¥: H*(SU(2n+1);
Z)->H*(SOQ2n+1); Z) is given by

il*(xu—l)z(_l)izxii—l (i=1, 2, n) )
Z'l*(l'u+l):0 (izl, 2, 7’1) .

Proof. Consider the Serre spectral sequence {E;, d-} for the cohomology
with R-coefficients of the fibration
SO@2n+1) —2-SU@n+1) —B-SU@2n+1)/SO@n+1)

induced by ji: SUQ2#n+1)/SO(2n+1)-»BSO(2n+1). If R=Fk is a field of
characteristic p+2, by Proposition 3.1(i) and (1.26),

E,=H*(SUQ2n+1)/SO2n+1); BYQH*(SO2n+1); k)
=Au(es, e, -, eans1)QAu(x3, 27, ***, Tin-1) .

Since each xi: 1€ H* Y (SO(2n+1); k) transgresses to p.<H*(BSOQ2n+1);
k) in the Serre spectral sequence of the universal SO(2%+1)-bundle and j#(p.)
=0 (see the proof of Proposition 3.1(i)), it follows that

dr(1Qxi:-1)=0 (1=1,2,, m; r=2)

and hence E;=Fe.
If R=F is a field of characteristic 2, by Proposition 3.1 (ii) and [2],

E,=H*(SU2#n+1)/SO2n+1); BYQH*(SO2n+1); k)
=ANu(es, €3, -+, €2n1)Qdu(xi, x5, -+, Xon) .

where ;i€ H{(SO(2n+1); k). Since each x;€ H'(SO(2n+1); k) transgresses
to w1 €EHM'(BSO(2%n+1); k) in the Serre spectral sequence of the universal
SO(2n+1)-bundle and j#(w:+1)=e:+1 (see the proof of Proposition 3.1(ii)), it
follows that
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(4.2) din(1®z)=en®1  (i=1,2,-,2n).

From (3.1) we also have

(4.3) Sq'(xri-)=x3:, Sg'(x3)=0  (i=1,2,-, n).

Let o: H*(SO(2n+1); Z)-» H*(SO(2n+1); Z/(2)) be the coefficient group
homomorphism induced by reduction mod 2. Using (4.2) and (4.3) we observe
that for 1=1,2,---, n

(zirs) X2i-1X2:— Lhi-1 if4i—1=2n
X4i-1)= . .
PALai X3i-1X3: if4:—1>2n

and
dz:‘(1®xéi—1xéi)=€2i®xéi
:(1®S(]1)(ezi®l‘éi—1) .
Then a routine spectral sequence argument yields that
Eo=/N1e:R@xi, e3Qx3, **, €20+1QX2n) .

The above facts imply that if R=Z, then for i=1, -+, n dz; sends x::-1E
E:"*! to a generator, which is represented by e::@uax3:-1, of a summand Z/(2)
in E22"*; and 2xi:-1 survives to E«. This proves that ii*(xs-1)=2xi:-1 up to
sign. (Here we put the sign (—1)? on the right side of this equality for fitting
it to suit the first equality of (1.24).)

The second equality is obvious for dimensional reasons.

The K-theory of SO(2%n+1) was determined by Held and Suter [6, Satz
(5.15)]. We recall their result. The spinor group Spin(2x%+1) appears as the
universal covering group of SO(2n+1). Let p: Spin(2n+1)- SO(2xn+1) be
the two-fold covering projection. Consider the composite Ai=Aip: Spin(2#n
+1)-» U(@2n+1). It gives rise to an element A€ R(Spin(2x+1)). Write A.=
A%(A) and let Zonsr: Spin(2x+1)— U(2") be the spin representation. Then

R(Spin@n+1)=Z[A, &, -+, An-r, dansi]

where the relation

(4.4) Loni?=2n+ Anr+ A +1

holds (see [8,13(10.3)]). From this, by the theorem of Hodgkin [7] we have
K*(Spin(2n+1))=A2(B8(A), -+, B(An-1), B(dzn+1)) .

With this notation (and (3.4)), they showed that there are two extra elements
a1 €EK(SO2n+1)) and &4 K°(SO(2n+1)) such that
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K*(SO(2n+1))=[AZ(,B(/1{), °tcy 6(/1;:—1), €2n+1)® T2n+1]/(€2n+1®«§2n+1) s

where Ten1=Z{1}PDZ/(2"){&2n+1}, and that p*: K*(SO(2n+1))- K* (Spin(2n
+1)) satisfies

(4.5) p*(BA))=B(A)  (k=1)
and

(4.6) p*(e2n41)=2B(L2n+1) .
Thus we have
Proposition 4.2 ([6, Korollar (2.10)]). With notation as above,
K*(SO(2n+1))/ Tor=Az(B(A), -+, B(Ar-1), €2041) -
Lemma 4.3. In K*(SO(2n+1))/Tor the following relation holds:

Vegmsr = kZZ‘,l,B(/i;) .

Proof. We have
2*(2%€2n41)=2"""B(L2n+1) by (4.6)

= B(Lon+1®) by using (2.1)

=A( kZZIO/ik) by (4.4)

=kZZIOB(/u) since B is additive
=é1,8(/1k) by (2.2)

=31 p*(B(A) by (4.5)

=" (B AR).

Since p* clearly gives an injection K*(SO(27+1))/Tor- K*(Spin(2%+1)), the
result follows.

Since the range of ch: K*(SO(2n+1))-»> H**(SO(2n+1); Q) is a vector
space over Q, it factors to give

ch: K¥(SO@2n+1))/Tor-> H*(SO2n+1); Q).

Theorem 4.4. With wnotation as in Proposition 4.2 and (4.1), ch:
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K*(SO@2n+1))/Tor-»> H*(SO2n+1); Q) is given by
ch(B()= B(—1)~'2/2i = D) $2n+1, &, 2)zhe-s
(k=1,2,--,n—1),
ch(ezns) = 2 (=1)'2/2i = DN(A/2) 2 $(2n+1, k, 20))ziccs

Proof. Apply ii: H*(SUQ2n+1); @)~ H*(SO(2n+1); Q) to the equality
(3.6). Then the left hand side is

i (ch(B(Ax))) = ch(B(i(Ae))) = ch(B(A) by (3.5)
and the right hand side is

S DPEn+1, b, i+ Dainr)

g"l((—1)2f-1/(2z'—1)1)¢(2n+1, k, 2i)(—1)"224:-, by Proposition 4.1

P12/ @i—D)(2n+1, b, 20)is

This proves the first equality.
By using Lemma 4.3, the second equality is obtained from the first.

For example, if =1, 2 or 3, the equalities of this theorem are seen to be;
if n=1,

ch(es)=x3;

if n=2,
ch(B(A)=2x3—(1/3)x7,
ch(es)=2x3+(1/6)x7 ;

if n=3,
ch(B(A))=2x:—(1/3)x7+(1/60)x11 ,
ch(B(A2) =105+ (1/3)x7—(5/12)x11,
ch(er)=4x3+(1/3)x7+(1/30)x1, .
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