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Almost transversality theorem
in the classical dynamical system 1

By

Kiyoshi ASANO

1. Problem and m ain result

The purpose of th is paper is to  show tha t the Lagrange plane moving
along the H am ilton flow  is  a lm o st transversal t o  th e  b a se  space, if the
Hamiltonian satisfies a  non-degeneracy condition.

Let S2 be a  domain in R ,  .(J=S2xR n be the phase space on S2 (i.e., the
cotangent bundle T*(S2)) and H(t, x , E) be a  smooth function defined on R X
Q .  W e assume

[H.1] axaa/H(t, x , e )  C l (R x S2) for + del 2,

We consider the Hamilton flow defined by H, i.e. the characteristic curve
defined by the differential equation

dX =  x(t E )dt ae "
dE d H  
dt dx

(1.1)s t= s = x Es2 ,

E lt=s = E E R n

T he so lu tion  (X (t), E (t)) o f  th e  intial va lue  problem  (1.1)—(1.1)s exists
uniquely in a maximal time interval /0—/o(s, x, $), which is described as

(1.2) X (t)=X (t, x , E)= X (t , s, x , X  ,

E(t)= E(t , x , •)= (t , s, x , e)= ,

or

(1.2)' (X (t), E(t))=S (t, s)(x , e).

The mapping S (t, s) is a local diffeomorphism in S satisfies

(1.3) S (t, s)S (s, r)=S (t, r )  (transitive law)
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(1.4)' dt
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S(s, s)= 1r=identity

Taking a cotangent vector z =(y , , 72)E R xn x R en = T to(S 2), we have

d (1.4)
d t  

X i ( t ) z =ii tx(t , x , 23)x V )z + H „(t, x ,

d 7 1 (t)z= — Hxx(t , X, E)X 1(t)z— Hxe(t , x, 37),F1 (t)z ,dt

(1.4).9 (X 1(t)z, E l (t)z)1 t=s =z  .

Here (XV), 2171(0) is a bundle map from T (1,e) (S)) into T(t,H)(S2- ) induced from
a differentiable map S(t, s), and

(1.5) Hex=(a2Hlaeox3) , Hxe= (a2 Hlax ,

Hee = (a 2 H-la$1oe3) , x xx=(a2Hlaxiax i )E C l (R X S2) .

If we take a standard (orthogonal) coordinate system (x, e)=(xi, ••• , xn,
••-, en) in S2x Rn =42, then we can express the linear mappings X i ( t)  and

,E0 (t) as

n axn  ax (1.6) X l(t)z =EY • (0+  E  713  „  (t)
1=1 v x , i=1 vq;

2_71( t ) z = iy , a E ( t)+i7 T a E (t) z = '( y , R 2n1=1a x , .J=1 de.;

In what follows X 1(t) and ,F1(t) are considered as the mappings from T t e) (..(j)
to Rn . Sometimes we use a simpler expression

(1 .5 ) ' Zi(t, x , e)— t(X '(t)z , ,E,7 1 (t)z )

As is well known, the differential equation (1.4) is called the variational
equation associated with (1.1), and has a unique solution Z i (t, x , $)z  in 10 for
each z =  y ,  )E R2 Linear independence of 12:71 Rc 2 n _  T t m (S2) implies the
linear independence of {Z'(t, x, In this paper, however, we are con-
cerned with the rank of 1X-1 (t, x,

We introduce a  symplectic form (skew-symmetric non-degenerate inner
product) [  ,  ]  of R 2 . Denote by < , > the usual inner product in R ', and put

(1.7) [w, z]=<v, —<y, 77> f o r  w =t(v , 7 /), z =t(y , O E R 2 n .

For convenience we define two projections p  and q from R 2n to R n by
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(1.8) Pz =y , , q z - - f o r  z =t(y ,n  .

With these notations we write

(1.9) pZ '(t)—  X l(t) , qZ i(t)=E 1(t).

The form [ , lis invariant along the Hamilton flow, i.e.

d (1.10)
d t  

[Z 1 (t)w , Z '(t)z1= d  { <X 1(t)v , 5' 1(0 0dt

—<X 1 (t)y, 2-7,7 1 ( t)0 1 =0

We call a linear subspace L  of R 'n a null plane, if [w, zl=0 for each w,
z E L .  An n-dimensional null plane of R'n is called a L agrange plane. (1.10)
means that Z i (t, x, E) maps a null plane L  of nt, e) (S2) onto a null plane Z i (t,
x, E)L of T (','y,g) (..(j). The following Lemma is useful in later discussions.

Lemma 1 .1 . L et L  be a Lagrange plane of R 2 n, and dimPL=k, 0<k n.
Then, there exists an orthonorm al basis {el, ••• , en} of  R n such that {ze=t(ee,
pee1);1<i<k} U{ zs=t(0, es); k +1 <j<n }  is  a  basis o f  L  and  {e,, — ,e,}  is a
basis of  pi,.

P ro o f  Let { we= t (ve, 71e); 1<i_<n} be a basis of L . W e  can assume that
-•, vk} is an orthonormal set, <ye, v i>=64;,1<i, j<k , and vk-Fi =•••= vn=0.

The symplectic relation:

[ we, ws]=<ve , 71.i>— <vs , rie>=0

implies that 77.e, k +1 <j<n , is orthogonal to {vi, •••, vk}, that is, ni  p L  for k
+1< j < n . Applying a  suitable transformation to {we; 1 < i< n },  we can
assume that {7zi ; k + 1 < j < n} is an orthonormal set and {iii; 1 i <k }  is orth-
ogonal to 7b, k +1 <j<n .

Taking an orthogonal matrix Q, we make a new basis Ize=t(ye, -e); 1<1
<k}U{z i =t(0, 77.e); k + 1 < j < n} of L  by the transformation

(1.11) • • • ,  yk)=(v1,•-•,v0Q

Then we have a matrix-equalities

(1.12) (<.Yi, 70)Q— tQ(<<vi, 2ie>)Q =((<yi, ,

(1.13) (<Yi, Yi>)= t Q(<vi, vi>)(2= t V ai.i)Q— Ek .

A suitable orthogonal matrix Q diagonalizes the symmetric matrix (<ve, 7); >),
i.e.
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(1.14) , 1 i , j k .

(1.13) means that {yi, •••, yk} is an orthonormal set, and (1.11) means that
is orthogonal to 1. 77,k + 1 , 7)n} c ( p L ) 1 . Hence •••, "i,} ŒPL which is

spnned by f y i ,  • • • ,  y k l .  This fact and (1.14) prove

(1.15) , 1 i k.Q . E . D .

R em ark . We call the basis tzi, •••, znI the standard basis of L.

Take a complementary pair (L, MI of Lagrange planes such that

(1.16) Lem= I ? '  (orthogonal direct sum).

Then we re-coordinate ..6-S2x l e  by

(1.17) .S2 X liinDt(x , e)= w+ 71)E L O M

We define a family of the moving Lagrange planes by

(1.18) M (t, w, 72)= Z 1 (t, w,7))M Z 1 (t ,x , e )M .

M (t, w, 7)) may be defined only locally. We put

(1.19) m (t, w, 7))=- dimX 1(t, w, 0=dimpZ 1 (t, w,.

Then we have the following theorem describing the bifurcation of singular-
ities where X i (t, w, 7)) is not transversal to Q.

Theorem 1. A ssume that H(t , x, E) satisfies [H ,1] and

[H.2] x, E)> 0 (Positive definite) f o r (t x , $ )E R x .(j .

Take a pair of Lagrange planes (L, M) satisfying (1.16), let M  be the initial
Lagrange plane at  (s, x, e)=(s, w, 7i)E .0, and  define by (1.18) the Lagrange
planes M(t , x, e) M(t, w, 77) m oving along the Ham ilton f low  (X(t , x, E),
E(t , x, starting from (s, x,

Assume

[D.1] m(to, wo, 7)o)=m<n , (wo, 77o) (xo, Eo)E toEIo(s, xo, .

If  (X0, E0)=(X(t0, xo, E0), ,E(to, x., E0)) is not a stasionary point of  the equation
(1.1) near t = to, then: there exist neghibourhoods Uo of  (xo, eo) and  Vo=[to —  a,
to+ a]x Uo of (to, xo, $0), and a family of functions (0,(x, E)= 0(w, 7)); m+1-

n}cLip(Uo) such that

[D.2] (1) O f(xo , $0 )=0 , m +1 ‹ j<n ,

(2) ( t ,  x, $)=(t , w, Vo satisfies m(t , x, e)< n if  and  only if
t = to+ 0_7 (x, f o r some j ,  m + 1  j
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Here Lip( Uo) is the set of  L ipschitz  continuous functions defined on Uo.

2. Proof of Theorem 1

We note that the stationary solution (X , E ')=-(x, E) may appear only for
the discrete set of EE Tx

* (S2), if xES2 is fixed. Under the conditions stated
in Theorem 1, we have the following Lemma 2.1 which is a trivial version of
Lemma 1.1.

Lemma 2.1. Assume m(to, xo, $0)=dimX 1(to, xo, E0)—m n. Then: there
exist a  basis {7) , ••• , 7),,9 of  M  and an orthogonal basis {ei ° , ••• , en°} of  Rn =
TA(S2), Xo= X(to, xo, ,  such that

(2 .1 ) (1 ) e i °= X'(to, xo, E0)77, ° = PZ 1(to, xo, $0)7),° ,

E l (to, xo, e0)7), ° = xo, $))7),° = e,° 1 i < m

{ e .° ) is a basis of  X l (to, xo, ,

( 2 )  e.,° = xo, $0)74,°

X 1(t0, xo, Eo)7)3° =0 , n i + 1 j n.

In what follows we assume L= T1*(.(2) and M = T$ *(Rn) fo r simplicity,
and identify the point (y, 7))E-6 with the element o f  T( 1̀,$ ) (-(2

-
).

Suggested by Lemma 2.1, we define two linear mappings K (t, x, E) and
J(t, x, E) acting in R .  ( 1 )  If m(t, x, E)= n, we put

(2.2) K(t , x, E)= , x, E)X 1(t , x, E r  , i.e.

K(t, x , E),( 1(t, x,E)77=E 1(t,x,E)22 , 7 M .

The symplectic relation

<x-17), E
' >=<X ' , > , 7 2 , E M = R n  ,

shows that K (t, x, E) is a  symmetric operator in R ".
(2) If m(to, Xo, Eo)<n, we put with a  suitabl real number A

(2.3) A(to, xo, Eo, /0= AX 1 (to, xo, eo) xo, eo)

J(to, xo, $0, /)= X 1(to, xo, $o)A(to, xo, Eo, A ) '.

More presicely, we take bases {711°, 7/n9 of M  and  (el°, • • • ,  e n c l -  of Rn

specified in Lemma 2.1, and observe

(2.4) A(to, xo, $0, A)7ii° —{(11—
, 1

— e , m < i s n
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If we choose /IED(6)=1/1ER; d<1/11<d- , m axlp il< U/41, the continuity of
A (t, x, $, A) implies that there exists a neighbourhood Vo of (to, xo, $0) such
that there holds

(2.5) A (t, x, e, /)M =  R n  fo r  (t, x , e)E , AE D(6) .

Hence the mapping J(t, x, $ , A) is well defined for ( t  x, $ , /OE Vox D(2 o- ) i.e.

(2.3)' J(t, x, E, A)1AX 1 (t , x, $)— E'l(t , x, $)}  = El(t x, $)72 , E M .

If m(t, x , $)=n, the definition (2.3) (or (2.3)') reduces to

(2.6) j( t, x, $, A)={A—K(t, x, .

The linear mapping J(t, x, $, A) is also symmetric.
We note

(2.7) m(t, x, E) —  rank J(t, x, $, A)=m.

For abbreviation we write

z =(x , E ) ,  Zo=(Xo, x , e) , 2 - 0= (to, xo, $0)

A = A (2", A) , A o= A (i0, A ) , = .)0 ( )  X o l  X i ( Z- 0) e t c .

Since A and Ao are invertible on M , we have

(2.8) A0-1= /10- 1  B A ' = B A »  ,

B =B (t,x ,$,A )=A o— A

= — /U V  , z)— x'(to, z )}  +{ ' 1(t, z) — El(to, zo)} .

If we choose a sufficiently small neighbourhood Vo, the operator norm I1A0 - 1 1311
is also small, e.g. 11A0 - 1 1311<1/2 for (Z-", /I)E V0xD(2o-). Hence we obtain

(2.9) (1—A0-1B)-1=1+A0-1B+(A0 - T)2+---

(2.10) A-1=(1-213-1B)-1A0=A0-1+Ao-lBA0-1+Ao-lBCBA0-1 ,

C=(1—  A o'B) - 1 .

From (1.4) it follows

(2.11) — =(t — t0){1-TixX0 l  — + Y  (t , z)

Y (2 .0  a= a l
;  (2'0)=0 , Frix = Hex( 20) , H IL = Het( 2-o) etc.

(2.12) —S01= —(t — to)W.LX01 - 1- -/hE,011+ 0(t, ,
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0( ZO= (2 .0)=0

We also note

(A -le i° ,
(2.13) Joei°=X 01210-lei°=

0 ,

{ b ti o(A

e i  ,

,
m < i< n .

(2.14)

Let Po and Qo be the orthogonal projections from R n  to the subspaces
spanned by { ei°, • - - ,  e.°) and {4+1, •••, e n 9 , respectively. Then we have the
trivial equalities:

(2.15) Lo Qo = — Qo , Po — /1Jo = — LoPo

Combining (2.8)—(2.15) with (2.3)' and putting r= t—  to, we obtain

(2.16) J=X1A-1

=Jo+ r{ — LoPoK j o LoPo —T0HIL0P0 — LoPol—neLoPol

+ r{Qorrido+ Q01-ILL0P0}+ r{joHL Qo + LoPoMe Q0}

—  rQolne Qod- ,

a 3 
9 ( '20)= at (  -4 )=0

Introducing a new linear mapping Go, we rewrite (2.16) as

(2.16)' J = Jo+ rGo— r D o —  , where

(2.17) Go is independent of 2‘ and Q0G0Q0=0 ,

Do= QoliTe Qo= QoDo= DoQo >0 on QoRn .

Note that the linear mappings Jo, Go, Do and 9  are symmetric in R .
Temporalily we consider these mappings acting in C n .  Define the ortho-

gonal projections P (E )  and Q ( i )  by

(2.18) (2(..•- ) = f( p - J (2 - , A)) - 1 d ,  ( Q ( 2 - 0)= Q0) ,

P(2 )=1 - 0 2 .) ,  (P (2 - 0)=P0),

where F  is a circle {tiE C; E >0} containing 0 and excluding {(A — P10 ) - 1 ;
1 < i< m }.  If we take a sufficiently small neighbouhood 14, Q(2") and P (:- )
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are in C1 ( Vo) and orthogonal projections in R 5 . Moreover we have

(2.19) J(2, A)Q(2)= Q(2)J( 2, A) , J(2, A)P(2)=P(2)J(2, A) ,

(2 )  rank J(2, /1)=rank J(2, A)Q( 2)+ rank J ( ,  /OP( 2) ,

rank J( A )P (  2 )=  m  f o r  2E Vo, AED(o. ) .

(2.20) (1) J(2, A)Q (2)= TD(2)+ E(2) ,

(2) p(2)= Q( -2')D0Q(2)> 0 o n  Q(2- )R n  ,

(3) D(2), E(2)= Q(2)3 (2)Q(2)E O K )  , E (2 0 )=  T ( 20)=0,

(2.21) (1 )  rank J(2, A)Q(2)=rank((— r+F(2))1e(i)R , ),V o ,

(2) F( 2')=D( 2 ) - 1 1 2 E ( 2. )D( 2.) - 1 / 2 E C 1 ( Vo)

F( 20= (20)=0 .

Since F (2 ) is symmetric in Q(2)R 5 , we apply the min-max principle to
estimate the variance of the eigenvalues {T( 2)= ri (r, z); m+1<j<n} of F (2 )
in Q(2)R 5 . Then we have

(2 .22 ) (1 ) ri ( 2)E Lip( Vo) , r i ( 20=0 , m + l< j<n ,

(2) lri(r, 2 ) —  ri(r', r1/2 f o r  r, r'E[— 8, 8] , zE Uo

if we choose >0 and a neighbourhood Uo of zo sufficiently small.
By virtue of (2.22) (2), we can apply the classical implicit function theo-

rem in order to solve he equations

(2.23) r= z -,(r ,z ), m + 1 < j< n

Taking smaller 8 > 0 and Uo (if neccessary), we can prove that the equation
(2.23) hs a unique solution: r=0,(z), for each zE Uo, such that 0,(z)ELip(Uo),
0(20)=0, m+1<j< n. Conversely, if (r, z)E[ — 8, 8] x Uo and r= r,(r, z) for
some j, m < j<n , then it follows r= 0 ,(z ).  This completes the proof.
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