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Almost transversality theorem
in the classical dynamical system 1

By

Kiyoshi ASANO

1. Problem and main result

The purpose of this paper is to show that the Lagrange plane moving
along the Hamilton flow is almost transversal to the base space, if the
Hamiltonian satisfies a non-degeneracy condition.

Let 2 be a domain in R”, 2= X R" be the phase space on 2 (i.e., the
cotangent bundle T*(£2)) and H(¢, x, £) be a smooth function defined on R X
9. We assume

[H.1] 020 H(t, x, ) ECH(RX Q) for |a|+]8l<2,

We consider the Hamilton flow defined by H, i.e. the characteristic curve
defined by the differential equation

(1.1) %Z%_g (t 2. B (1.1)s Xlis=zEQ,
‘fi—fz —%—2’(:, X, 5), Elis—EER".

The solution (X(¢), Z(¢)) of the intial value problem (1.1)—(1.1)s exists
uniquely in a maximal time interval l=1I(s, x, £), which is described as

(1.2) X()=X(t, x, &)=X(t,s,x,6)=X,
E)=E(t,x,&)=E(t,s,x2,6)=5,

or

(r2y (X(t), 2()=5(t, s)(x, &) .

The mapping S(¢, s) is a local diffeomorphism in £ and satisfies

(1.3) S(t,s)S(s, »)=S(t, ») (transitive law),
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S(s, s)=1=identity .

Taking a cotangent vector 2=(v, 7)E R X R"= Ti%.6(2), we have

(1.4) —X‘(t)z He(t, X, 2) X (t)z+ Hee(t, z, E)EY )z,

4 2\ z=— Hualt, X, E)X(£)2— Hauelt, 2, 5)E(1)z,

(14)s  (X'(D)z, E'(1)2)]e=s=2

Here (X'(¢), £'(t)) is a bundle map from T¢&,e(R2) into T¢%.5(82) induced from
a differentiable map S(¢, s), and

(1.5) H..=(0*H/0¢:0x;) , Hze=(0H/0x:0&;) ,
HEE=(62H/aéiaéi) ) Hm=(82H/3x13xJ)E CI(RXQ) .

If we take a standard (orthogonal) coordinate system (x, £)=(x1, -+, Zn,
&, -, &) in QX R"=2, then we can express the linear mappings X'(¢) and
Z(t) as

(1.6) X(t)z= z":yz (t)+iJ = (1)

El(t)z= Zn!yza“ (t)+2n!77] (t), z='(y, ))ER*".

In what follows X'(¢) and 5'(¢) are considered as the mappings from 7% (2)
to R”. Sometimes we use a simpler expression

(L5) Z\(t, x, &)="(X\t)z, E'(t)2),
’ d 1 172 1 2__ Hex Hee
(1.4) S Z'=Ht, 2,62, H —(_HH _Hﬁ).

As is well known, the differential equation (1.4) is called the variational
equation associated with (1.1), and has a unique solution Z'(¢, x, £)z in I, for
each z=(y, 7)ER?". Linear independence of {z,}C R*>"= Ti%.,(2) implies the
linear independence of {Z!(¢, x, £)z;}. In this paper, however, we are con-
cerned with the rank of {X'(¢, x, £)z;}.

We introduce a symplectic form (skew-symmetric non-degenerate inner
product) [ , ]of R?”. Denote by < , > the usual inner product in R”, and put

(1.7) [w, z]=<v, &>—<y, 3> for w=% v, n), z=i(y, H)ER*™.

For convenience we define two projections p and ¢ from R?” to R" by
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(1.8) pz=y, qz=¢ for z=%y,0).
With these notations we write
(1.9) pZH()=X'(t), eZ'()=E'(¢).

The form [ , ] is invariant along the Hamilton flow, i.e.
d 1n 1 _ad 1 =1
(1.10) 7 [Z'(t)w, ZX(t)z]= P (KXY (t)v, EM(H)O

—<X'(t)y, ENt)mp}=0.

We call a linear subspace L of R** a null plane, if [w, 2]=0 for each w,
z2E€L. An n-dimensional null plane of R?" is called a Lagrange plane. (1.10)
means that Z(¢, x, £) maps a null plane L of T¢.¢(£2) onto a null plane Z'(¢,
x, &)L of Tk =(2). The following Lemma is useful in later discussions.

Lemma 1.1. Let L be a Lagrange plane of R*", and dimpL=Fk, 0<k<n.
Then, there exists an orthonormal basis {e\, -, en} of R" such that {z.=(e:,
wie:); 1<i<k}U{z;="%(0, e;); k+1<j<m} is a basis of L and {e1, -, ex} is a
basis of pL.

Proof. Let {w:=*(v:, 7:); 1<i<n} be a basis of L. We can assume that
{v1, =+, v} is an orthonormal set, <v:, v;,5=20y, 1<i, j<k, and vis1=+""=0v,=0.
The symplectic relation:

(w:, wi]=<v:, 7,5 —< s, 9:>=0

implies that 7;, k+1<;j<w#, is orthogonal to {vi, -+, va}, that is, 7; L pL for &
+1<j<wun. Applying a suitable transformation to {w:1<i<#}, we can
assume that {7;; k+1<j<wu} is an orthonormal set and {7:;; 1<i <k} is orth-
ogonal to 7;, k+1<;<n.

Taking an orthogonal matrix @, we make a new basis {z:=(y;, &); 1<i
<k}U{z;=%0, »;); k+1<j<n} of L by the transformation

(L.11) (1, v =(01, -+, va) @,
(G, G =(m, -+, 70)@ .
Then we have a matrix-equalities
(1.12) (i, 2)="QKw;, 27)Q="Q(Kv;, 7)) Q=((<ys, &),
(1.13) Kyi, y2)='Q(vs, 1) Q="Q(0)Q=Ex .

A suitable orthogonal matrix @ diagonalizes the symmetric matrix (Kv;, 7;7),
ie.
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(1.14) i, p=pbs, 1<i,j<k.

(1.13) means that {yi, -, y&} is an orthonormal set, and (1.11) means that {&,
-, &} is orthogonal to {7e+1, =*, 72} C(pL)*. Hence {&, -, &} pL which is
spnned by {1, -**, y}. This fact and (1.14) prove

(1.15) &=y, 1<i<k. Q.E.D.
Remark. We call the basis {z, -, z»} the standard basis of L.
Take a complementary pair {L, M} of Lagrange planes such that

(1.16) LE®M=R*" (orthogonal direct sum).

Then we re-coordinate 292 X R by

(1.17) QXR"D(x, &)=w+n="w, n)ELDOM .

We define a family of the moving Lagrange planes by

(1.18) M(t, w, 9)=Z"(t, w, )M=Z"(t, x, E)M .

M(t, w, 7) may be defined only locally. We put

(1.19) m(t, w, n)=dimX'(¢, w, p)=dimpZ'(¢, w, n)M .

Then we have the following theorem describing the bifurcation of singular-
ities where X'(¢, w, ) is not transversal to L.

Theorem 1. Assume that H(t, x, €) satisfies [H, 1] and
[H.2] Het, x, £)>0 (positive definite) for (¢, x, E)ERXQ .

Take a pair of Lagrange planes {L, M} satisfying (1.16), let M be the initial
Lagrange plane at (s, x, £)=(s, w, n)EQ, and define by (1.18) the Lagrange
planes M(t, x, E)=M(t, w, n) moving along the Hamilton flow (X(t, x, €),
E(t, x, £)) starting from (s, x, ).

Assume

[D.1] m(to, wo, )=m<n, (wo, 70)=(x0, £)EQ, L I(s, 20, &) .

If (Xo, Eo)=(X(to, X0, £0), Z(to, 0, £0)) is not a stasionary point of the equation
(1.1) near t=to, then: there exist neghibourhoods Us of (xo, &) and Ve=[ts— 9,
to+ 81X Us of (to, o, &), and a family of functions {¢(x, E)=¢;(w, 7); m+1<
j<n}CLip(Us) such that

[D~2] (1) ¢ixo, £0)=0, m+1<j<mn,

(2) (¢, x, &)=(t, w, n)E Vs satisfies m(t, x, E)<n if and only if
t=to+ ¢i(x, &) for some j, m+1<j<n.
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Here Lip(Uh) is the set of Lipschitz continuous functions defined on U.

2. Proof of Theorem 1

We note that the stationary solution (X, £)=(x, £) may appear only for
the discrete set of £€ T:*(R), if xR is fixed. Under the conditions stated
in Theorem 1, we have the following Lemma 2.1 which is a trivial version of
Lemma 1.1.

Lemma 2.1. Assume m(to, xo, Eo)=dim X (to, xo, Eo)=m<n. Then: there
exist a basis {m°, -, 7"} of M and an orthogonal basis {e° -+, e’} of R"=
T(82), Xo=X(to, x0, &), such that

(21) (1) e’=X"(to, xo, E)7:°=pZ (o, X0, E0)7:°,
E'(to, x0, E0)n"=qZ (to, X0, E)n°=ple®, 1<i<m,
{el® -+, en®} is a basis of X'(to, 20, E)M ,
(2) e’=E"Y(to, 20, &)1’ ,
XY to, 0, E0)7°=0, m+1<j<n.

In what follows we assume L= T:*(Q2) and M= T:*(R") for simplicity,
and identify the point (v, 7)€ 8 with the element of T¢t.e) (D).

Suggested by Lemma 2.1, we define two linear mappings K(¢, x, £) and
J(t, x, ) acting in R”. (1) If m(¢, x, £)=n, we put

(2.2) K(t,z, &)=E'(t, x, &)X (¢, x, )7, e
K(t, z, &)X (t,x, E)n=FEt, x,E)n, nEM.
The symplectic relation
X'9, B'O=[X'¢,E'p>, n, (EM=R",

shows that K(¢, x, £€) is a symmetric operator in R”.
(2) If m(to, xo, o)< m, we put with a suitabl real number A

(23) A(fo, Xo, Eo, /‘)ZAX](lLo, Zo, éo)—El(to, Zo, 50) s
J(to, o, &0, A)=X"(to, xo, E0) Alto, xo, Eo, )" .

More presicely, we take bases {7’ -, 7."} of M and {e\’, -, e.°} of R"
specified in Lemma 2.1, and observe

(A—pe’, 1<i<m
4 A 7= m<izn
(2.4) (to, 20, &0, A)7 {_eio , m<i<n.
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If we choose A€ D(0)={AER; 0<|A|< 7, max|u’|< 6< 5/4}, the continuity of
A(t, x, € A) implies that there exists a neighbourhood Vi of (f, xo, &) such
that there holds

(2.5) A(t,x, E, DM=R" for (t,x,6)€Ve, AE€D(0).

Hence the mapping J(¢, x, &, A) is well defined for (¢, x, & A)€ VoxX D(20) i.e.
2.3y J(t, x, & VAX(t, 2, &) -5t x, On=E'(t, 2, E)n, 2€EM.

If m(¢, x, £)=mn, the definition (2.3) (or (2.3)") reduces to

(2.6) J(t, 2, & N={A—K(t, z, E))".

The linear mapping J(¢, x, &, A) is also symmetric.
We note

(2.7) m(t, x, &)=merank J(¢, x, & D)=m.
For abbreviation we write

2=(x,8), 2=(x0,&), 2=(t,2,8), Zo=(t, 20, &),

A=A(Z,1), A=A(Z,4), X'=X'(2) Xo'=X'"(zZ,) etc.
Since A and Ao are invertible on M, we have
(2.8) A= Ay'=A'BAT'=AT'BA,

B=B(t, x, &, )=A—A
=—MX'(¢t, 2)— X'(to, 2} +{Z'(¢, 2) — ' (o, 20)} .

If we choose a sufficiently small neighbourhood Vs, the operator norm | A. ™' Bl
is also small, e.g. |Ao"'B|<1/2 for (Z, )€ Vo X D(20). Hence we obtain

(2.9) (1-A'B)'=1+ A 'B+(As 'B)*+---,
(2.10) A'=(1-A'B) A=A '+ A 'BAy '+ A ' BCBAL !,
C=(1—-A"'B) A"
From (1.4) it follows

(2.11) X'—Xo'=(t — to){H&:Xo' — HS:E'} + Y (8, 2),
N_0Y .\ 0 _ 5 0 __ 5
Y(ZO)—T(ZO)—O , Hex—st(Zo) , Hee—Hee(Zo) etc.

(2.12) F'— 5= —(t — to){H% X' — H% 50"} + 6(¢, ) ,
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6(20)=22 (20)=0.

We also note

A—p)ted, 1<i<m
2.13 2=X'Aov'e ’ .
(2.13) Joel 0 {0, m<i<n,
plt(A—=p) e, 1<i<m,
-1,0_
(2.14) Loe, =5 Ao € {eio‘ m<i<n.

Let P, and & be the orthogonal projections from R” to the subspaces
spanned by {e!’, -, ex’} and {en+1, -*, e:°}, respectively. Then we have the
trivial equalities:

(2.15) LoQo=—6s, Po—AJo=—LoFs.
Combining (2.8)—(2.15) with (2.3)" and putting r=¢— f, we obtain
(2.16) J=X'A"!
=Jo+t{—LoPoH&Jo—JoH2e LoPo— JoH3: Lo Po— Lo PoH: Lo Py}
+ o{QoH2:]o+ QoHe: LoPo} + t{JoH2 Qo+ LoPoHee Qo)
—tQuH%E Qo+ I,

J(zo)— (zo) 0.

Introducing a new linear mapping Go, we rewrite (2.16) as
(2.16) J=Jo+1Go—1Dy— Y9 , where
(2.17) Go is independent of Z and QvGoQo=0
Do= QoH?: Qo= QoDo=Do@Qo>0 on QR".

Note that the linear mappings Jo, Go, Do and J are symmetric in R".
Temporalily we consider these mappings acting in C*. Define the ortho-
gonal projections P(Z) and Q(Z) by

218) QD) =er [(u=J(Z, ) d, (Q(2)=Q0),

27
P(2)=1-Q(2), (P(Z0)=Ph),

where I is a circle {#=C; |¢|= £>0} containing 0 and excluding {(A—x")™";
1</<m)}. If we take a sufficiently small neighbouhood Vo, Q(Z) and P(Z2)
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are in C'(V5) and orthogonal projections in R”. Moreover we have
(2.19) J(z2, DQ(2)=Q(2)J(2,4), J(zZ, AP(2)=P(2)](Z,4),
(2) rank J(Z, A)=rank J(Z, )Q(Z)+rank J(Z, )P(Z),
rank J/(Z, )P(Z)=m for ZEV, AED(0).
(2.20) (1) J(z,HQ(2)=—rD(2)+E(2),
(2) D(2)=Q(2)DQ(2)>0 on Q(Z)R",

() D(2), E(2)=Q(2)I(2)Q(2)eC Vo), E( Eo)=%(§o)=0,

(221) (1) rank J(3,DQ(2)=rank((—z+F(2))|esrn), ZE€ Vo,
(2) F(2)=D(2)"*E(2)D(Z)"*&C(V,),

F(z0=2 (z0=0.

Since F(Z) is symmetric in Q(Z)R", we apply the min-max principle to
estimate the variance of the eigenvalues {7;( 2)=r;(r, 2); m+1<j<n} of F(2)
in Q(Z)R™. Then we have

(2.22) (1) z(2)eLip(Vo), z(20)=0, m+1<j<n,
©2) lr(r, 2)—o(r, 2)|<|t—7|/2 for r,rE[—96,06], z2€Un,

if we choose 6 >0 and a neighbourhood U, of 2z sufficiently small.
By virtue of (2.22) (2), we can apply the classical implicit function theo-
rem in order to solve he equations

(2.23) r=r(r,2), m+1<;<n.

Taking smaller 6 >0 and Us (if neccessary), we can prove that the equation
(2.23) hs a unique solution: 7= ¢,(z), for each z& Uy, such that ¢;(z)ELip(Us),
¢(20)=0, m+1<j<n. Conversely, if (r, z)€[— 6, 6] X Us and r=1i(z, 2) for
some j, m<j<wn, then it follows r=¢;(z). This completes the proof.
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