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and pseudo-differential operators
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By

W aichiro MATSUMOTO

§ O. Introduction

On scalar and higher order partial differential operators (or pseudo-
differential operators) with characteristic roots of constant multiplicity, we
know a normal form which brings a  satisfactory consideration of those
structures:

(0.0) p(t , x, Dt, Dx) D +  E aak ( t , x)D xaD tm - k

1 5 k 5 m

— P l (t , x, Dt, Dx)°•••°P d (t, x, Dt, Dx) mod S [ D ]

(t , x, Dt, Dx) = (D t— x ,  D x ) ) m i

:±l± bk(t , x , D x)°(D t x ,  D x ) ).(mi - k)

ordbk < vk —1 , (u N ) ,,

where m eans th e  operator product. (See  H . K um ano-go  [10 ] and
T. Nishitani [25 ].) In  th e  above, th e  p rin c ip a l p art o f P.'  is  on ly

x, Dx)) , where /1,(t, x, E) is positively homogeneous of order v.
Using this normal form, H. Kumano-go [10] and S. Mizohata [24] character-
ized the C-  well-posedness of the Cauchy problem on p(t , x, D i, D r). We
remark that the above normal form corresponds to the following system:

(0.0')
7 Q 1  Q 2

Q d /
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= x , D M -1 ) . (t, x , D x ); m ,X m , ,

x , e) = De(t, x , e)-F D'J(t, x , ,

Doi (t, = A M A  ,

D'J — (   °o r d e r  v - 1 ,

where

0 1
0 1

J(s)= s x s .
0 1

T he principal part o f the above system is C)i d[Lni (Dt Dx))
— J (m,)ID x11 and it is the Jordan normal form consisting of only one block for
each eigenvalue . The lower order term C)i dD'-'(t, x , DO is a  matrix of
Sylvester type corresponding to the principal part. (See also K. Kajitani [5]. )

On the other hand, on systems of partial differential operators (or ps.d.op.'
s)  with characteristic roots of constant multiplicity, we have not yet such
simple and fructuous normal form. We know a normal form of Arnold type
given by V. M. P e tk o v . (See V.I. Arnold [2], V.M.Petkov [26] and Theorem
2.6 in this paper.) However, it seems that we need more simple normal form
in order to understand those structures.

In applications, we need 4 categories of differential operators and, corre-
sponding to them, co and F  have different meanings.
1. Differential operators acting on holomorphic functions.

In this case, co is an open set in Ct i  x C," and r is an open conic set in Ce s.
2. Differential operators acting on real analytic functions.

In this case, co is an open set in Rt 1 x R.,' and F is an open conic set in R e '.
It becomes very important to introduce an open complex neighborhood 63
of co and an open conic complex neighborhood P = IeE  C E ; 11m$l< EIRe$1,
R eeE T I of F. ( e . is a positive constant.)

3. Differential operators acting on ultradifferentiable functions.
4. Differential operators acting on functions of C -  class.

In cases of 3 and 4, co is an open set in Rd x R.,' and F  is an open conic
set in R .
Here, we say that F  is conic when O F  and C F  implies toe /' for

arbitrary p> O. Further, we often say that S2 c Rti x R s É x R e ' (or Ct I x GX EX
Ce ) is conic when (t, x, o)osZ and (t, x , $)E.S2 implies ( t, x , pe) .6  for
arbitrary p> O.
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We consider K x K  systems of differential or classical pseudo-differential
operators of order v (yER, v >1) on w x r ;

(0.1) P(t, x, Dt, D .) = IKDt— A (t , x, D1),

A (t, x, e)— EA i(t , x, ,i=0

A ,(t , x , C) ; (positively) homogeneous o f order v— i ,

(iEZ+={0, 1, 2, ••• },

in case of differential operator, v E N  and 0<i< v).

Throughout § 0 to § 3, we assume the following;

Assumption 0. The characteristic polynomial of P(t, x, Dt, D .) on A:
det(AIK — Ao(t , x, C)) has roots /1,(t, x, e )  of constant multiplicity m , on
CO X rvol (1<i < d , EY=im, — K ), that is, det(AI K — Ao(t , x, C)) is decomposed
on w  FVO ) as FIY=1(Â - - -vi,(t, x, am' , where A (t , x, e)* A r (t , x, e) if j* .r and
m, are constant natural numbers.

Rem ark 0.1. We shall introduce matrices with entries of "meromorphic
formal symbols". For them, Assumption 0 will be applied to formal sums of
type IRDt — E7=0A(t, x, and satisfied except on poles.

Rem ark 0.2. When w x F is not simply connected, in general, /1,(t, x, C)
becomes multi-valued even if A (t, x, D .) is a differential operator. In order
to give the role of true symbol of ps.d.op. to 2,(t, x, e), we need decompose the
domain to some simply connected ones. However, in this paper, we treat it
as a global multi-valued function, because we need only formal calculus.

R em ark 0.3. Even if w x F is not simply connected, when every /1,( t, x, e)
is real, it is single-valued and smooth under Assumption 0.

R em ark 0.4. Under Assumption 0, every /1,(t , x, C) is  a s  smooth as
Ao(t, x , C ). (See Proposition 2.1.).

When we transform systems, we accept only similar transformations

(0.2) x, Dx).P(t, x, Dt, D.).N(t, x, D.)

in  order to keep the form of /KA, where N - 1 ( t, x, D .)  is  the inverse of
N(t, x, D .) as the matrix of operators and A. B  means the product of A  and
B  as the (matrix of) operators. (We denote the inverse of No(t, x, C) as the
matrix of functions by (No(t, x, e)) - '.) We call N (t, x , D .) a  transforming
operator.

As a normal form of the principal part, the Jordan normal form is natural.
Here, since the commutator does not take part in the principal part, the
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principal part is transformed by the same rule as the matrix of functions.
Can we transform it to its Jordan normal form by a  smooth and regular
matrix No(t, x, E)? The answer is "No".

Example 0.1. e = 1 .

(

t x  — t2 ) .(0.3) Ao(t, x, EV E' = n
x` — tx

Ao(t, x, E) is nilpotent and then it satisfies Assumption 0. However, to trans-
form the above Ao(t, x, to a triangular matrix, we need a singular matrix.

1
If we take No(t, x)--=  t  °  or N i(t, x )=  tw e  havex  1

0)

W (

0  1A) (N orA 0 No = — t $v ,
0  0

( 0  1
(0.4') (N O-IA N ' =  x el).

0  0

In the former case, No is regular except on {t =0} and in the latter case, N1 is
so except on {x=0}. I n  either case, we need accept an exceptional set for the

regularity of m atrix . If we take go=
( 1 0  ,  

we can keep the regularity of
x / t 1)

matrix. However, we lose the smoothness on {t  = 0 } . We cannot keep both
of the regularity and smoothness. (See also W. Matsumoto [12, I].) On the
other hand, if we consider Ao(t, x, E), No(t, x) and N O , x ) as the matrices
with entries of meromorphic functions, No(t, x) and NI( t, x) become regular
and (0.4) and (0.4') hold in such c la s s . These are the reasons why we shall
accept an  exceptional set for general case and why we shall introduce
meromorphic symbols for the holomorphic case and the real analytic case.
Further, when we transform systems of the form by Petkov to more simple
form, these ideas —the exceptional sets and the meromorphic symbols— again
play essential role.

We give our main theorem, which we reformulate in § 3.

Theorem (Normal form of systems =  Perfect block diagonalization).
I f  P(t, x, D0, Dx) in  (0.1) satisfies Assumption 0 , there exists an  open conic
dense subset of  cox  F. For an arbitrary (t0, x., E.) in 65, there exist a conic
neighborhood co.xF., tn,, k , 1 5 , 7 5 d , 1 5 k 5 8 j ,  (

8
. 7 ,  nmEN, Ek6=1nik—mJ)

and a matrix N(t, x, Dx) invertible as the matrix of ps.d.op.'s on co.x F. such
that
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(0.5) N-10 P. N  has the following form modulo AS—  .

Q1, 1

Q 1 ,2

Q 1 ,8 1

Q 2 ,I

Q d ,d 'd

= x, D.0)— Dik(t , x, Dx); n jk X  nik

DA (t, x , =  D e f t  x, $)+ D'A (t , x , E).

Do lk ( t, x, e) = A nik )lel l)

D 'A  =(. order v -1  .

Further, if  the symbol o f  P(t , x , Dt, Dx) is holomorphic (Case 1) o r real
analytic (Case 2), f= coxF V 5 is an analytic set, 18; li d, In and
N(t , x , E) are taken globally on cox F \Z  and (0.5) also globally holds.

Remark 0.5 . In the above theorem, if v  is an integer, if A,(t, x , E) is
homogeneous and if F = FIU(—  F1) (Fi is convex and — Fi={$; — $EFI}),
setting Mt, x , E )=(-1 ) 11)1 /1; (t , x, E )  in co x (— TI), we can take every term in
the asymptotic expansions of N(t, x , E) and D'h (t, x , E) not only positively
homogeneous but also homogeneous in co x F. T h is  fact often makes the
considerations in applications simple and clear.

In the above theorem, (0.5) means that QA is equivalent to the following
scalar higher order operator

(Dt — /1,(t , x, D ) ) " +  lower order terms.

Then, P(t, x , Dt,Dx ) is equivalent to some of scalar higher order operators
with a characteristic of constant multiplicity on co0 x r o .  This suggests that
we can obtain necessary conditions on the well-posedness by the same way as
in case of single equation. For the necessity, we shall use various classes of
formal symbols. Further, we shall also use the above theorem in order to
show the sufficiency assuming the holomorphy or the real analyticity of the
original symbols. (See § 4.)
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§ 1. Formal symbols

"KC cS2" means that K  is a compact subset of D and ax n as2= 0, where
aA is the boundary of a set A. Let R  be the set of real numbers, C be the set
of complex numbers, N  be (1, 2, 1 ,  Z+ be NU {0} and R + be {aE R;
For t E R  and x E R " (or tE C and xE CO, we set =(t, x )=(x o, xi, •••, x

For a= (ao, a ,  • • , at), a '= (a6, 4 a'f) in Zf+ 1 and ,3=(,31, 82, fit) in
Z I ,  w e  s e t  lal = a o + a i+ •••+ a e , a± a'=(ao± a6, •••, ar-F-cit), a ! =

( al  a !
'!(a— a')! ' a axo axia k.

(  a \ a a V z o (  a r i  (  a a i
ax,

D. ia_( 1)1a1(  a  y We often identify a=(ai, • • • , ai)EZ " and (0, a)=

(0, al, -•-, at)E Z f + 1 . a' 5 a  means that a, ; ai

For a in Z "+' and fi in Z", we set Og(t , X, E)=-1).±-"( )fla u--., E). For a

and ,3 in Z ", we denote Dx"( ) f i a(t , x , e)= 4a)(t, x , E ) also by aM(t , x, E).

We set 1$1= i(e1) 2 + ($2)2 + +  ( , ) 2  not only for $ in R e ' but also for $ in
Ce' . T h e n , 1E1 i s  holomorphic in the domain flImEl<Re$11. Here, we
always take the branch which is positive for $ in R ' \ { 0 } .  We denote the
absolute value of EE Ce ' by 11E11 (=ilImel 2 +1Re1 2 ).

We say that D cR t i x Rs" x  & " (or Ct' x Cx"x Ce ') is conic when (t, x , 0)

ll
IQ  for arbitrary (t, x ) and (t, x , E)ES2 implies (t, x , pE)ES2 for arbitrary P
> 0 .  When a conic subset D- o f D  satisfies n {Ile =1}COES2 n {I $11=1}, we
say that D is a conically compact subset of D. W e say that X in  2c C dx
Cx"x Ce ' is an analytic set if it is the zero set of a holomorphic function in D.

For an open set (or the closure of an open set) D in CL , we set

M(S2) =  {holomorphic fun ction s in Q ),

,5T1(S2) = {meromorphic fun ction s in Q ).

5i1(s2) is the quotient field of SC(S2).

Let IM17,0 be a positive, monotone increasing and logarithmically con-
vex (i.e. (Mn) 2 Mn-1Mn+1) sequence. For an open set (or the closure of an
open set) D  in R `, we set

{M,i }(,(2) = { f C - (Q) ; V K C  E Q ,  C, R >0,

V aE Z L , supif O af  CR ialM 1 al

B{M}W ) = If (D) ; A C , R >0, V aE Z L , sup.Q1Dafl CR 1'21 11/1.1} ,

ao!ai!- • • a i! , and

On the topologies of the ultradifferentiable classes, see H. Komatsu [9].
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Making the notation simple, we admit 1110=00 and set e fœl(s2)= e (D ) and
..B1001(D)=g(D). W e consider that {M 0={00 } satisfies all assumptions
introduced hereafter. On {M0} =0, we assume the following.

Assumption 1. It holds that

(1.1) { Mn/n!} is logarithm ically convex and monotone increasing
and {M0} is differentiable (i.e. A R 0 1  Mn+i<Ro n Mn).

or

Assumption 1'. For every k Z, replacing finite elements of IM0)=0, it
holds that

(1.1') {Mn+no/n!} is logarithmically convex and monotone increasing.

On the properties on {M0} -0, see S. Mandelbrojt [11] and W. Matsumoto
[13].

Remark 1 . 1 .  Even if we replace finite elements of {M0}77=0, the spaces
{1110}(D) and .B1M0(9) rest same. Then, we can relax the conditions (1.1)

and (1.1') only for n > 1 . Indeed, for the condition (1.1') we always need
replace some finite elements of {M0}77=0 depending on k ..

Example 1.1 (Holomorphic and analytic c lasses). M n=n! satisfies (1.1)
but does not (1.1').

Example 1.2 (Gevrey c la ss ) . M n=n!" (K>1) satisfies both of (1.1) and
(1.1').

Example 1 . 3 .  Mn= n!Kexpan° (p>1, a>0, Ic R )  satisfies both of (1.1)
for n »1  and (1.1') when 1<p<2 and does only (1.1') when p >2.

Remark 1 .2 .  We can normalize {M0};7=0 a s  M0=1 replacing Mn by
(M o ) 'M n . Through this paper, we treat only normalized IMO;7-0. It is
convenient to introduce Mn for negative n .  We set M0=M0=1 for n<0.

Under the condition (1.1), it holds that

(1.2) q !r!  
< 

111,111,
MP( q + r < p ,  q , r < p ) .

Under the condition (1.1'), replacing {M0};7=0 by {CRnM0}=0 (C, R >0 ) and
further Mn suitably for n<2k 0+1 , it holds that

(1.2') <   M P + k  

a r l r ! Mq+kMr+k
( q + r< p ,  q , r< p ,  0 < k < k 0 ) .

Under (1.1) or (1.1'), it holds that
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( A I  )1 1 n ( 1 1 4 1/(n+1)
(1 .3 )

Ivan. 0 ' 1 , 7 + 1  

n! (n+1)!

(In case of (1.1'), we take k=0 in (1.2').)

( n 1 )

This implies that e{M }(S2) and g {Mn}(Q) are closed under decomposition by
f 4=0 and by a >0 respectively. (See W. Rudin [28 1.)

To consider the structure of systems of ps.d.op.'s, those asymptotic
expansions are essential.  ( S e e ,  f o r  exam ple, F. T reves [30 ] and
W. Matsumoto [14].) Then, w e on ly consider th e  asymptotic expan-
sions naming them the formal symbols and denote them by a(t , x, E)=-

E7=oai(t , x, E). Of course, these are formal sums. We are concerned with
the formal symbols and treat neither true symbols nor true operators up to § 3.
(On the construction of a true symbol from a formal symbol, see L. Boutet
de Monvel and P. Krée [4], L. Boutet de Monvel [3], W. Matsumoto [14],
F. Treves [30] e.t.c.)
It is essential that w e on ly need th e  arithmetical operations and the
differentiation in the calculation of formal symbols, both of which are the
local operations.

We consider formal symbols on a conic set co x  F . Of course, we can
replace co x F  by a general conic set .(2-  in Rt i  x Rx! x R t

É (or Ct i x Cxi x C/).
However, on the view points of applications and notation, we adopt a product
s e t .  Corresponding to the four categories of differential operators mentioned
in Introduction, we introduce following categories of formal symbols.

Definition 1.1 (Meromorphic formal sym bol). Let co x T' be an open
conic se t in  C t l X Cxix C Y . W e  sa y  th a t  a  fo rm al sum  a(t , x, E)=-
E7=oai(t , x, E) is a meromorphic formal symbol, when fai(t , x , s a t i s f i e s
the following;

There exist an analytic conic set I  in co X  (co x F\X {el =0}=0) and
and it holds that

(1.4) ai(t,x ,E ) belongs to M a) x F)C13C(co x r\z) and it is positively
homogeneous of order K  i  on E  (iEZ+).

(1.5) For an arbitrary conically compact subset ô in  co x /AL', there
exist C >0 and R >0, and we have

x, e)I CR i i!leil ' i o n  (7) (iEZ-F).

Remark 1.3. (1.4) and (1.5) imply

(1.5') For an arbitrary conically compact subset (T) in  co x F\f, there
exist C >0 and R >0, and we have
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x,
< o n  6.3

(iEZ +, aEZ + 1 +1 , gE Z ± É).

On the other hand, (1.5') implies (1.4) and (1.5) except the meromorphy and the
positive homogeneity.

Remark 1 . 4 .  In the estimate (1.5) and (1.5'), El is used as a meromorphic
scale of order. W e can  replace it, for example, by one of $, (2

Remark 1.5. In Definition 1.1, X  does not depend on i. This is very
important in applications.

In Definition 1.1, if X  is empty, we have a holomorphic formal symbol.

Definition 1 . 2  (Holomorphic form al symbol). W e  sa y  th a t a  formal
sum a(t, x , e)=E7=0a,(t, x , e) is a holomorphic formal symbol if a(t, x , e) is
a meromorphic formal symbol with X =0.

Corresponding to differential operators with real analytic coefficients, we
use the meromorphic and holomorphic formal symbol classes on (ox P; di is
a  complex neighborhood of co  and P is { $  Ce É ; < R e $ 1 } ,
( E>0). (See pp16, 2.)

Definition 1.3  (Form al sym bol of c lass {M , N } , case of Mn< co  and
N <0 0 ) .  We assume that each of {11/ } =0 and {N,}=0 satisfies Assumption 1
or 1', respectively . Let co x F be an open conic set in R t'x  x  R 1 . W e  sa y
th a t  a  fo rm al sum  a(t, x , $)=ET-oa,(t, x  e )  i s  a  form al sym bol of class
{M , N }, when {a,(t , x, e)}  satisfies the following;

There exists K R, and it holds that

(1.6) a,(t, x , e) belongs to C - (co x .F) and it is positively homogeneous of
order on $  (iEZ+).

(1.7) there exist C >0 and R > 0, and we have

x, E)i on cox F

(iEZ+, œ Z +', g E z + i )

In case of 111,2=c0 and Nn< co , we replace (1.7) by the following;

(1.7') there exists R >0 and, for every i E Z ±  and aEZ _/ ", there exists
Cia >0 such that

,aRlflIN,+1,311E1laqgAt, x, E)1 C o n  c o x F .

In case of Mn—Nn=œ, we replace (1.7) by the following;
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(1.7") for every iE Z + ,  aE Z +
1+1, R EZ +i, there exists Cio >0 and we

have

Iain t ,  X , a o n  cox F

R em ark  1 .6 . In  c a se  o f Mn = c o  and  Arn< co , w e s e t  Ln=max{1,
maxi+lain{C,a}} and Mn= n!2L iL 2.--L n. Then, {Mn}Z-0 satisfies Assumption 1'
and a(t , x , e) in  S{00, Nn} belongs to S{Mn, Nn}. In case of Mn=Nn =co,
starting from Ln=max{1, M a X t + m a x f l a l , I f i l l s n { C i a s } } ,  we set Mn by the same way.
Then, {Mn}=0 satisfies Assumption 1' and a(t , x , e) in  S{00, co} belongs to
S{Mn, Mn}. Therefore, on the calculus, we need consider only the case of
Mn< 00 and N n<oo . On the notation of S{Mn, N}, see the following part.

We can also treat the case of Mn < 00 and Nn=c0, but we shall not use this
class in applications.

R em ark 1.7. Through all definitions, we assume the positive homogene-
ity on a,( t ,x ,C ) . In applications, it is useful but on the view point of a closed
calculus, we can drop it. By the same reason, we can also relax the meromor-
phy of a,(t , x, C) in Definition 1.1.

We call K  the order of a(t , x, C). Let us denote the set of the meromor-
phic formal symbols of order K by S il(w x  F), that of the holomorphic formal
symbols of order K  by SHK(co X F )  and that of the formal symbols of class
{Mn, Nn} of order K  by S K { M ,  Nn}(co x  F ), respectively. Further we set
Sm(c.o x F)= U ,SmK(a) x F) and so on. On the other hand we set SJ■fhonz(co x F)
={a(t , x, e)ESmK(coxF); a(t , x, e)= ao(t , x, C)} and so on.

Definition 1.4 (True order). When a(t , x, e)=E7=oa,(t , x, C) has the
order K , a,( t ,x ,e )=- 0 (0 <i<io )  and a,o(t,x , we say that a( t ,x ,e )  has
the true order ic—i0 on w x F

The rules of calculation are common to all categories of the formal
symbols. Then, we represent them by S(co X F )  o r S .  We introduce a
product in S(0) x F), which corresponds to the product of ps.d.op.'s.

Definition 1.5 (Product and adjoint). For a(t , x , e)=E7=oa,(t, x, C) and
b(t, x, e)=E7=0b1(t , x, C) in S(co x F), we set

(1.8) a(t , x, E)° b(t , x, = ci(t , x, ,

ci(t, x, = E —
1
,a ;

( 7 ) (t, X , e)bk(7)(t, x, ,

(Product of a(t , x , e) and b(t , x , C) in S) ,
CO

(1.9) a* (t,x ,e )= N rai* (t,x ,e ) ,
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1 _a 1* = Ej+171=1,7ez. ,

(A djoint of  a(t , x, in  S) .

Proposition 1.1 (L. Boutet de Monvel and P. Krée [4]). L et S  be Sm, SH
or S{Mn, N } . W e  assume A ssumption 1 or 1' on {Mn}=0 and {.1\1 }72'=0 respec-
tively in case of  S= S{Mn, S ( c o x  . 1 1  is -algebra ov er C . If  th e  princi-
pal part ao(t, x, of  a(t , x , $)=E7.-oa,(t , x , does not vanish identically in
case of  S= Sm, does not vanish in case of  S = S H and  lao(t , x, C. >0 in
case of S{Mn, a(t , x , E) is invertible.

For a ring G, we set Mat (Ki, K2; G)=11(1x K2 matrices with entries in Gl,
M at(K; G)= M at(K  , K ; G )  an d  GL (K ; G)=1inv ertible square m atrices of
order K  w ith entries in  G I .  For A (t, x , $ )=(a' k (t , x, É)) K I,1  k 1 ( 2 E

Mat(Ki, K2; G), we set A P , x, , x , A)) where a- m (t , x,
=E7---oalk (t , x , E ) .  We have A(t , x , E)=E7=0.11,(t , x , E).

Let S  be Sm(cox F), SH(cux F) or S{Mn, Nn}(co F) (M n< 00, N < œ )  and
co be a conically compact subset of co x F\Z. For A (t, x, E)=E7=0A 1(t , x,
in Mat(Ki, K2; SK (w x F)) (A ,(t , x , E)=(a 3,k (t, x , E))), we set

(1.10) ; 71=1111 ; Tii(0)= m a x  su p 2K i! 
i e Z ,,c re Z .+ 1 , f le Z + i j,k  (t ,x ,C )e c e )- ( 2 -0 M i+ la IN i+ 1 1 3i 1

x la iik (t , x , E)11 i+1,81T2i-Fral-Frfil

w here K >max{Ki, K 2 ) . 11A; T11(65) converges for 0< T « 1 . H e re , Mn, ATn
and 1E1 are replaced by n!, n! and 1$11 respectively in case of S =S m  and SH,
I  =0 in case of S =S H and S{Mn, Nn}, and ci) can be replaced by co x F in case
of S=S{ Mn,

Following L. Boutet de Monvel and P. Krée [4], we obtain the following
propositions on matrices with entries of formal symbols.

Proposition 1.2. L et S  be Sm, SH o r S{Mn, Nn}(Mn< 0 0  an d  N < œ ) .
We assume A ssumption 1 o r 1' on {111, }n°-0 and {Nn}Z=0 respectively in case of
S = N n }  .  Fo r A(t , x , in  M at(K i, K2; SK (a)x  F)) an d  B (t , x , e) in
M at(K2, K3; S '(0)x  F)), A ( t  ,  x , B (t, x , E) belongs t o  Mat(Ki, K3;

S " K ' ((0 X F ) )  and satisfies

(1.11) A ° B ; T M  A ; TINB ; TM,

where K  in the norm  (1.10) is taken as K>maxi<1‹3[K1

By virtue of Proposition 1.2, we have

Proposition 1.3. 1) Fo r S= Sm, if  A (t , x , E) belongs to Mat(K; SK(cox
11) and satisfies detA0(t, x , E)*0, it has the inverse in G L (K ; S '((ux  1)).
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2) F o r S= SH, i f  A (t , x , e ) belongs to Mat(K; SK(cox 11) an d  satisfies
detAo(t, x , e )*0  it has the inverse in GL(K; S'(wx F)).

3) L et S  be S{Mn, Nn.}. W e assume A ssumption 1 o r  1 ' o n  {M, },7=0 and
{Nn};7=0 respectively. I f  A(t , x, e) belongs to Mat(K; S'(co x F)) and satisfies
IdetAo(t, x, e)1> c. >0, it has the inverse in GL(K; S - (cox F)).

P ro o f  Let I — A ' be Ao(A0) - 1 . A ' is given by (A0) - 1 ° =0A' 0 ', where
A ' °" means the operator product of A "s  of h-times. In this procedure, the
pole set increases only by the decomposition by det Ao(t, x, e) in case 1).

Q.E.D.

The formal symbol A(t, x, e) whose principal symbol satisfies the condi-
tion in Proposition 1.3 is called "non-degenerate". On the other hand, if the
principal symbol of A(t, x, E) does not satisfy the condition in Proposition 1.3,
A(t, x, e) is called "degenerate". We remark that there exist formal symbols
which are degenerate but invertible.

§ 2. Separation of characteristic roots

Let G be a  r in g . We denote

B =

 /B1 B2

B d )

E  Mat(K; G) , BJ EMat(K, ; G)

d
( K =  K ) ,

j=1

by B= BKDB20 -

Further, let us
q i ; 1 d)

G, 7,, k means

•. (DBd=01 dB; and say that B  is  sp lit to  {B.,}1 d.
s e t  q ' = (q " • • , (q.LE ET,41k0,= m ,)  and

— 01dOnz, +J(k)), where /1E

the direct sum on k from In to 1, @ PA does AC)—(DA and

0 1
0 1

0 1
E Mat(k ; G) .j(k )=

q-') is a Jordan normal form with respect to /1,. q. is the number of kx k
blocks in J(/1,,
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Example 2 .1 .  In case of K = mi=10  (d=1), /11=0  and q 1 =(0, 0, 0, 0, 0, 0,
1, 0, 2, 2), 1 (0, q') = J (4)( j (2)01(2)C) J (1)C) J (1) has the following form.

0 1
0 1

0 1
0

0 1
0

0 1
0

0
0

For A (t , x , E)=E7=0A 1(t , x , 0EM at(K ; Sv (cox  F)), we give some ele-
mentary propositions.

First, we consider the case of smooth symbols. For the elements in
Sm(wx F), we regard them as the elements in  SH(oi x F \ I ) .  We represent

x  (co x_r\X in case of Sm) by D.
Proposition 2 .1 .  L et S  be SH or SIMn, N O . W e assume that Ao(t , x, e)

belongs to Mat(K; SX ,,,,(Sj)) and satisfies Assumption 0 (in case of S = NO,
f urther (1.3) on {Mn} ,̀7=0 an d  {N n } z = 0 ) .  Then, the eigenvalues { /1)(t , x, E)V=1
of A o(t , x, E) belong to .51‘0.(S2).

Of course, we need only Rudin's condition —almost increasing— on
{M/n!}=0 and {Nn/n!}=0 instead of (1.3), but we do not adhere to the best
possibility on this condition. In Propositions 2.2, 2.4 and 2.5, we also assume
(1.3) but also need only Rudin's condition. (See W. Rudin [28].)

P ro o f  By virtue of the following formula, the proposition is obvious.

(2.1) x , e) = 
1

2 7 rm - 1  c

f  d  
log{det(HK — A0( t, x, e))41/1 ,

I 

where C is a simple closed path around .1,(t, x , e) alone in  C. Q.E.D.

In general, the Jordan structure of the generalized eigenspaces changes
depending on (t, x ,  e ) .  However, as the dimension of each generalized eigen-
space is constant, we have the following.

Proposition 2.2. L et S  be SH or S{ illn, N } . W e  assume that Ao(t , x, e)
belongs to M at(K ; 0 .(S ) ) )  an d  satisfies A ssumption 0  ( in  c as e  o f  S =
S{Mn, Nn}, further (1.3) on {Mn}Z=0 and {N, }̀ ,7=0). For arbitrary (t0, xo, E0) in
S, there exist a conic neighborhood co.x  F0 in  S

-
2' and a basis of the generalized
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eigensPace of , x, E) in Sgo,n(a )0x F 0).

P ro o f  Since the following matrix P,(t, x, E) gives the projection to the
generalized eigenspace o f /1,(t, x , e ) and it  is  sm o o th , the proposition is
obvious;

 r(2.2) Pi(t, x, E) = 2   A o ( t ,  x ,  e ) ) - 1 c1/1 ,

where C is a simple closed path around .1 ) (t, x , e) alone in C. Q.E.D.
B y  Proposition 2.2, following H. Kumano-go [10], K. K ajitani [5], T.

Nishitani [25] and W. Matsumoto [15], we have the following proposition on
P(t, x, Di, Dx) given in (0 .1 ) . We denote the set of differential polynomials
on Di with coefficients in S  by S [D ].

C orollary 2.3 (Separation o f ch a rac te ris tic  ro o ts) . L e t S  be S H or
S{ M , N } . W e  assume that P(t, x , Di, E) belongs to Mat(K; S '(,6)[Di]) and
satisfies Assumption 0 (in case of NO, further A ssum ption 1 o r 1' on
{Mn}̀ i7=0 and {1\10} 0 , respectively). For arbitrary  (t0, x ., E.) in s)- , there exist
a conic neighborhood a )0x r . in Q  and N(t , x , e) in GL(K; S'(o)ox F .)), for
which it holds that

(2.3) N (t, x , e) - 1 . P(t, x , Di, e)°N(t, x , e) = iClif<dPJ(t, x , Di, e)

where

PJ(t, x , Di, e) = x, E),
0 0

Bi(t, x, e )=  Bii( t, x, .
i =0

Here, .130-7 (t , x , e) belongs to M at(m , ; )ox  F .)) and h as  the unique
eigenvalue /1,(t , x, e)

In order to obtain the above corollary in case of S=SH and S{M,z, N}, we
can  apply  the proof o f T . Nishitani [25] on scalar operators to system s.
H is  p ro o f  stands on a successive approximation. On the o th e r  hand,
{N,(t, x, E)} and {B /(t, x , a  are obtained easily  in class S{oe, co). The
author gave another proof directly evaluating them. (See W. Matsumoto [15].)

On the view point of technique, Corollary 2.3 corresponds to the decompo-
sition of scalar and higher order operators mentioned at the start of Introduc-
tion. C orollary 2.3 is the best result if w e hope to keep the smoothness of
symbols.

W e  h o p e  to  ta k e  N(t, x , E) in C orollary  2 .3  g lobally . H ow ever, in
general, it becomes meromorphic in case of S= SH. Further, if we hope to
transform  Be(t, x, E ) to  its  Jordan normal form, w e also  need accept an
exceptional set for N(t, x, and B i (t, x, E), which is a pole set in case of S
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= S H . (Recall Example 0.1 near ( t , x ) = 0 . )  By this reason, from now on, we
consider Sm instead of SH.

As we globally consider the structure of systems in case of S=Sm, we
assume the following.

Assumption 2  (In case of S = S m ). The eigenvalues of Ao(t, x, E) are
holomorphic in co X F.

We denote the number of kx k blocks in the Jordan normal form of B0-7 (t,
x, $) at (t, x, e) by a t  , x, $) and set e t ,  x, E)=(aln i (t , x, gln,_1(t , x, $), • • • ,

x, E)), (Enkiikq-k(t , x, $)=7n1 ). Further, we set Q(m)—{q=(qm, qm-i,
qi)EZ_Fm;Enki=ikqh=m) and g ive it the lexicographic order and the order
topology. It is easily seen that e t ,  x, is lower semi-continuous and
especially, in case of S= Sm, e t ,  x , e )= m a x re t , x , E ) except on a conic
analytic set. By these facts, we have the following proposition.

Proposion 2.4. L et S be Sm o r S{Mn, N } . W e  assume that Ao(t, x,
belongs to SX0.(coxF) and  satisfies Assumption 0 ( in  case of  S=Sm, further
A ssumption 2 an d  in  c as e  o f  S= S{Mn, N } , f urther (1.3) o n  {11/1} =0 and
{N } = 0 . There exists an  open conic dense subset U '= U  a eQ(.,)U -1 (q ) of wx F
such  that e t, x, $)-= q on  U " (q ) .  Especially, in case of  S= Sm, = (P(q".)
( ] q",, in  Q(m,)), w XF\U" (=I" )  i s  a conic analytic set and e t ,  x, E)< q",, on
Z 3 .

Remark 2 . 1 .  In case of S = S {M , N } ,  in general, U " is composed of
some o f U"(q)'s.

Example 2.2.

A0(0, x,L ,  =  ( o * 0  (t>0 ),
0 0 = 0  (t_- _0).

For the above A0( t, x , E ), U ((1 , 0))=(0, 00) and U((0, 2))=( — 00, 0).
The existence of the matrices of the above type causes many difficulties

in the theories on the systems of differential equations with non-quasianalytic
coefficients. (See W. Matsumoto [12, I] and [16] and also Remark 4.1 in § 4 of
this paper.)

W e set [ q ]= (q '  (1 2 , • ,  Q .') and Q Q(mi) x Q(m2) x •-• x Q (m d). The
above proposition brings the following.

Proposion 2.5. We assum e that Ao(t, x, E) belongs to S i;.(coxF ) and
satisfies Assumption 0 ( in case of  S= Sm, further A ssumption 2 and in case of
S=S{M,,Nn }, further (1.3) on {M } =1) and  {Nn}'=0).

1 )  L et S be Sm. There exists No(t, x, in Mat(K; Sgo.(coxF)), invertible as
a  matrix of  functions, such that
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(2.4) (No(t , x, e)) - 1 240(t, x, e)No(t , x, e) = .1(A, ,

where the pole set E =U.`1=11. ( q -'. and I '  are those in Proposition 2.4.)

2 )  L et S be S{Mn, Nn}. There exists an open conic dense subset U =U[ q i.e
U ([q ]) of  cox  F. For every (t0, x . ,  0 ) in  U ([q ]),  there exist a conic neigh-
borhood coox F .  in  U ([q ]) and No(t, x, E) in Mat(K; Sgom(coox .)), inverti-
ble as a matrix of  functions, such that

(2.4') (No(t, x, E)) - 1 110(t, x, $)No(t, x, E) = J(À,, q i ; l<  < d )le V

on co.xFo.

In both cases 1) and 2), we can take the entries of  No(t , x, $) as the polynomials
of  the entries of  Ao(t, x, E), and {/11 (t, x, E)}.

Remark 2 .2 .  To see the last assertion in Proposition 2.5, we remark that
we can obtain a Jordan basis through the construction of Jordan chains, that
is, solving linear equations with parameters by the fundamental transforma-
tio n s. Here, we do not rely the formula (2.2).

By Proposition 2.5, following the proof of Proposition 2.3 and the proofs
in V. I. Arnold [2] and V. M. Petkov [26], we arrive at the result on P(t, x,
Dx) by V. M. Petkov.

Theorem 2.6 (Normal form of V . M . P etkov  [26 ]). W e assume that
P(t , x, Dt, E) belongs to Mat(K; Sy (cox r)[D,]) and satisfies Assumption 0 ( in
case o f  S= Sm, further A ssumption 2 and in  case of  S=S{Mn, Nn}, further
Assumptions 1 or 1' on {Mn}7=0 and {N n }Z=0).

1 )  L et S be Sm . There ex ists -N(t , x, e) in  GL(K; S°(cox r)) such that

(2.5) N-(t, x,E) - 1 . P(t, x, Dt, e)° -1\7(t, x, e) = (1)1 dP-'(t, x, e)

PJ(t , x, E) = AJ(t , x, e)) —  e (t, x , e )

Ci (t, x, e) = E) E Mat(M; ; S 0 ) ,

CO3 (t, x, E) = J(0, q-'0)$1'

C  , x , $ ) ; generalized Sylvester type ( i 1) .

and Pole set = uy=a,  are  those in Propositions 2.4 and 2.5.)

Here, the matrix F  of  generalized Sylvester type corresponding to 1 (0,
m eans the m atrix  which is decom posed to blocks {M }  ( n h h ,  is  the block
corresponding to the h-th block of  size k in the direction of  row  and  to the
h' -th block of size k ' in the direction of  column, 1<k, k' <m,,1<h, h'
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Further, FM , has the following form;

when (k , h)>(k ', h') ,

(2.6)

when (k , h)<(k ', h') ,

where, we give the lexicographic order to { (m i — k +1, h) ; 1< k < m 1 ,
1<h<

2 )  L et S  be S{ M n, N} . There ex ists an open conic dense subset U =U[ q ].(2
U([q]) of  a)x F which is obtained in Proposition 2.5 2). For every (t0, x0, E.)
in U([q]), there exist a conic neighborhood a0x F.  in U ({ q]) and -M t, x , E)
in GL (K ; S°(a).x .x i  0 ) )  su c h  th at (2.6) holds in  c o .x F  .  replacing ce=
J(0, qi.)El" by Co' = J(0, glel v •

In  both cases 1) and 2), the entries of x ,  e )  ( l <  j  <  d )  and those of
x, E) are the Polynomials of  tili(t, x , e)li d, those derivatives of  order

up  to  i., the entries of  A i(t x , e) and those derivatives of order up to i.—  i
(0 <i<i.) .

Remark 2.3 . In Corollary 2.3 and Theorem 2.6, in case of S = S {M , N},
the entries o f N (t, x, E), (t , x , E), B -I(t , x , e) and C-7 (t, x , e )  belong to
SIM,i+3, Nn+31. If {M } =0 (INnIZ=0, respectively) satisfies Assumption 1, they
also belong to S{Mn, Nn--3} (to S{Mn+3, N } , respectively).

Remark 2.4. W e can take A (t, x , E) in SY-lhom(co x F ) in case of S= Sm.
Let us denote the pole set of A(t, x, E) by ZA, that of Ci (t, x, E) by Eci and the
zero set of detgro(t, x, E) by Zfi) 0 . It holds that EcicZA UZgo.

In order to see the form of matrix of generalized Sylvester type, we give
an example corresponding to Example 2.1.

Example 2.3 . In case of K = m i=10 (d=1), A l =0 and q l = (0, 0, 0, 00, 0, 1,
0 2, 2), 1 (0, q 1 ) = J(4)0J(2)(1)/(2)C)J(1)0J(1). Corresponding to 1 (0, q'), the
m atrix of generalized Sylvester type has the following form,

o 

o
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where the entries vanish except the asterisks.

Remark 2 .5 .  For qi =(.7';,,, •••, qi) in Q(m ; ), we set 8;=- E7Pilqi and
ni k=ko for 1+D%+ia ik h<E'k%qi; (1<le0<m1 , that is, 1 h<8.; ). It holds
that 1 (0, q9= -(1)

§ 3. Normal form of systems in formal symbol classes

If we adhere to the given principal part, Theorem 2.6 would be the best
result. However, if we accept some entries of lower order terms as a part of
the principal part, we can further transform ST- 1 0P o g  in Theorem 2.6 to more
simple form. In order to carry out this, we need use degenerate and inverti-
ble formal symbols. (See the last part of § 1.)

Theorem 3.1 (Normal form of systems P e r f e c t  block diagonalization).
We assume that P(t , x, Dt, e) belongs to Mat(K; S'(wx F)[Dt]) and satisfies
Assumption 0 (in case of  S= Sm, further Assumption 2 and in  case of  S=
S {M , N ), further Assumption 1 o r 1' on {M }=0  and {Nn},z°=0).

1 )  L et S  be Sm . There exist N(t , x, e) in  GL(K; s(coxr)), and
nikEN , E 6kj= 1 n j k  M A  such that

(3.1) N(t, x, e) - 1 . P(t, x, Dt, e)0N(t, x, e)

01 S i  < d 0 1  k t, X, D— t,

Q i k  = 1,,,„(Dt— .1,(t , x, e))— DJk(t , x, e) ;  n,kx n,k

DJ4 (t , x, E) = D eft x , e )+  D " k (t, x, E)

De(t, x, e .) = J(nk)E1E  M at(n ,k  ; S X 0 ,,z (c o x  F))

0
D'J k ( t ,  X, =  ( fr ik (1 )  ..• bik(nik ))

E  M at(n ik  ; 1(co X r ) )
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2 )  Let S  be S {M ,N n }. There exists an open conic dense subset U=UE,1
U ( [q ] )  of  cox  (dif f erent f rom  that in Theorem 2.6). For every ( t . ,  x . ,  e . )
in  U ([q ] ) ,  there exist a conic neighborhood w .x  V 0 in  U ( [q ] )  and N (t,  x, E)
in  G L (K ;S (w o x F . ) )  such that (3.1) holds in w 0XV0  replacing El' by  E",
where {6.,}1 d and {n are decided by the rule given in Remark
2.5. ( The entries of N (t, x , e ) and DJk(t, x, E) belong to S{M,i+ko, Nn+ko}(coox
T'a) for some k .  in Z + .  If  {M0}=0 ({N}=0, respectively) satisfies Assumption
1, they also belong to N n+ko}(w ox  .) (to S{M n+ko,Nn}(cooxF.), respec-
tively).

In  both cases 1) and 2), we can take the entries of {D / (t, x , E )) and of
x , e )} as the polynomials of the entries o f {A,(t, x, E)}, {/1.7(t, x, e)}1.,‹ri

and those derivatives.

Remark 3 .1 .  The orders of the entries of N (t, x, E) and N (t, x, E) - 1  are
different each other and some of them may be positive.

Remark 3 .2 .  On x T'0 (in case of S =  S m , we take w. x To such as
xr0 nz= q5), we can construct true symbols from the fom al symbols

N (t, z , E )  and D(t, z ,, , . . i d(ll)i k aiD J k (t ,x ,E ).  Of course, we need
some additional conditions on {M0}7=0 and {N0} =0 in case of S=S{Mn,
(See, for example, L. Boutet de Monvel and P. Krée [4], L. Boutet de Monvel
[3], F. Treves [30] and W. Matsumoto [14].) Thus, Theorem 3.1 implies the
theorem given in § 0.

Proof . As the proofs are parallel, we treat only the case of S = S m .  We
start from Theorem 2.6. Since the operator is split to P l (t, x, D t, E ), P 2 (t ,
x ,D t ,e ) ,— , and P d (t, x, D t, E ), we can consider each one independently.
From now on, we only consider one of {/="(t, x, Dt, E)1 and omit the suffix "j".
We set r = m ax{k; 1  k  T rz ,q k l_ }  and r'=min{k; 1 < k q k > I . } .  Then,
the size of the largest blocks in the Jordan normal form Co/Ei'=J(0; q . )  is
r  x  r  and the smallest one is r 'x  r '.

We classify C(t, x , e ) to three cases.

1. There is at least an entry not vanishing identically on the first column
from the r +1-th row to the last row.

2. Every entry on the first column from the r +1-th  row to the last row
vanishes identically but there is at least an entry not vanishing identically on
the r-th  row from the r +1-th column to the last column.

3. Every entry on the first column from the r +1-th row to the last row and
on the r-th  row from the r +1-th column to the last column vanishes identi-
cally.

In either case, we reduce the system as follows.
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Case 1. Let tt be the maximum of the true orders of the entries on the first
column from the r +1-th row to the last ro w . W e take a weighting operator
W(E)=irei v - P abn- r. T a k in g  the similar transformation of P(t, x , Dt, e) by
W (e), we have;

(3.2) 13(t, x, Dt, W -1(e)°P(t, x, Dt, E)°W (e)

= Inz(Dt— /1(t , x, $))— C(t , x, E),

C(t, x , $) = gC,(t, x, E) E  Mat(m ; Su) .

C0/E1  has the following form, where Jk [h]=J(k ) (r'

Co rests nilpotent but has a Jordan chain longer than  r.

Case 2 .  Let II be the maximum of the true orders of the entries of the r-th
row  from  the r +1-th colum n to  the la s t  c o lu m n . W e  ta k e  a  weighting
o p e ra to r  W(e)=L-EI P - ' e L n - r an d  t a k e  th e  s im ila r  transformation of
P(t , x, Dt, $) b y  W(e);

(3.3)

P (t, x , Dt, $) = W - 1 ($)-P(t, x , Dt, $)0 W(E)

1.(Dt— A(t , x, $))— , x, $)

CV , x , $) = c± 0 0;(t, x , $) E  Mat(m ; Su) .

CVE11) has the following form.
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06 rests nilpotent but has a Jordan chain longer than r.

In case of S{M, Nn}, the entries of C (t, x, e) and 0 '( t , x, e) belong to
S I M , , , , ,  N n + ,-0 . If {Mn}Z=0 ({Nn}'=o, resp.) satisfies Assumption 1 , they
a lso  b e lo n g  to  S{Mn, Nn+u-y} S{Mn+v-p, N n}, re sp .)  b y  v ir tu e  of the
differentiability of {Mn}n°=0 ({Nn} =0, resP.).

Case 3. C(t , x, e) is split to the first r x  r block and the rest (m— r)x (m— r)
block. Here, the first block has the form of D' in (3.1).

In Cases 1 and 2, we apply Theorem 2.6 again, where new r  is larger than
the original r .  In Case 3, we consider only the rest (m— r) x (m— r) block.
In any case, we repeat this procedure. Since, through each procedure, new r
becomes larger or else the size of system to be considered becomes smaller, we
arrive at Theorem 3.1 in finite procedures. Here, N (t, x , e) is the alternate
products of non-degenerate transforming operators o f  typ e  -N(t , x, e) in
Theorem 2.6 and degenerate weighting operators of type W (e) introduced
above.

In each procedure of Cases 1  and 2 , the zero set of detgo(t, x, e) is
incorporated in the exceptional set.

Q.E.D.

§ 4. Applications to the Cauchy problem

§§ 4.1. Cauchy-Kowalevskaya theorem for system s. We consider the
Cauchy problem in a complex domain Q for a system of partial differential
equations with holomorphic coefficients;

(4.1)

where

{ P(t, x,Dt,Dx)u = f(t, x),
u(1- 0 ,  x) = ço(x) ,
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(4.2) P(t, x, Dt, Dx) = IKDt -  E  A a(t, x )D za  .
la152,

If v=1, (4.1) has the unique local holomorphic solution for holomorphic ç(x)
and f ( t ,  x ) .  When v >1, we have the following theorem.

Theorem 4 .1  (W . Matsumoto and H . Y am ah ara  [1 7 ]) . I n  (4.2), we
assume v  >1 . The following four conditions are equivalent.

(a) V (to , x .) ,Q , V  co: complex neighborhood o f  (I 0, x0), V  ço(x)EJC(a)n
{t= t 0)), 'V  f(t , x) ,IC(a)), 1_14(t x): holomorphic so lu tio n  o f  (4.1) in  a
neighborhood of  (t0, x .).

(b) Ao(t , x )$ °  is nilpotent an d , in  th e  n o rm al f orm  of
P(t , x, Dt, E) in  Theorem 3.1, it holds that

(4.3) true order of  b ( p ) 1- -( -1)(n,k  - I)) , .

(c) In  the meromorphic formal symbol class, P(t , x, Dt, E) is transformed to
a first order system.

(d) The determinant of  P(t , x, Dt, Dx) in sense of  M . Sato and M . Kashiwara
[29] is a Kowalevskayan polynomial, that is, its degree is K : th e  num ber of
unknown functions an d  equations.

We prove the above theorem as (a) (b) (c) (a) and (b)4=>(d). We can
prove (a) (b) by the usual way as S. Mizohata [22] applying Theorem 3.1.
(b) (c) and (b)<=>(d) are trivial. Then, we need show (c) ( a ) .  We reset
t 0= 0 .  We have the fundamental solution E(t; x , Dx)=EZ-ot k e(k)(x, Dx) for
f 0, where e(k)(x, Dx) is  a  differential operator of order at most vk  with
holomorphic coefficients. Under Condition (c), we can show the following
inequality;

(4.4) le( k)(x, $)1 hi= o CR k - h (k -  h)!1lEr "

on an arbitrary conically compact set in Q x CA E, where v. is a non-negative
integer, E is a conical analytic set and C and R  are positive constants. Since
e(k)(x, E) is a holomornhic function of x  and E (4.4) holds on D x C / by the
maximum principle. This implies that E(t; x , Dx) operates on the holomor-
phic functions of x  on S2 n ft =0} for small

The proof of (c) (a ) is  a modification of M. M iyake [18], where the
formal solutions were considered. (See W. Matsumoto and Yamahara [17].)

A detailed proof will be given in the forthcoming paper.

§§ 4 .2 . Levi condition for systems. We consider the Cauchy problem in
a real domain Q for general system of partial differential equations with real
analytic coefficients;
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(4.5)
{

P(t, x, Dt, Dx)u = f(t, x) ,
u(t , x) = ço(x) ,

where

(4.6) P(t, x, Dt, Dx) = I D t — E  Aa(t, x)Dxa .
l a l s v

By the same way as S. Mizohata [21] (or K. Kajitani [6]) and [20], we have
the following theorem.

Theorem  4.2. We assume that all coefficients of P(t , x, Dt, Dx) are real
analytic in D . If  the Cauchy problem (4.5) is C -  well-posed in D, that is,

( a )  V  (t  x Q , 3 a): neighborhood of  (t 0, x 0), V ço(x)EC - (R ), V  f(t , x)
C- (R " 1 ) ,  3 lu(t, x)E C - (a)): solution of (4.5) in w,

the following three equivalent conditions hold.

(i3) Ao(t , x, e)=Eial=i,A,,(t , x)$' is nilpotent and, in  the norm al f orm  of
P(t , x, Dt, in  Theorem 3.1, it holds that

(4.7) true order of b(p) < 1—(v —1)(nik— p) , (l<P‹ ndk) .

Further, the principal part of  (3.1) in sense o f  Volevi't has real characteris-
tic roots.

( y )  In the meromorphic formal symbol class, P(t , x, Dt, e) is transformed to
a formally hyperbolic operator, that is, an operator of f irst order and with real
characteristics.

( 8 )  The determinant of P(t, x, Dt, Dx) (=detsKP) in  sense of  M . Sato and
M . Kashiwara [29] is a  hyperbolic polynom ial. ( W e say  that pt, x, r, C) is
hyperbolic i f  its total degree is equal to its degree on r  and  it has only  real
roots on r f o r all (t, x, C) in Q X Re'.)

detsKP is a polynomial with real analytic coefficients. (See M. Sato and
M . Kashiwara [29] and E . Andronikov [1].) T hen , if a  root o n  r  has a
constant multiplicity, it is real analytic. Assuming that every root of detsKP
has a constant multiplicity, we can again apply Theorem 3.1 on N 'o P o N  in
Condition (7). We denote this new normal form by adding a tilde.

Theorem  4.3. We assume that all coefficients of P(t , x, Dt, Dx) are real
analytic and every root of  detsKP= 0 on r  has a constant multiplicity. T h e n
the following three conditions are equivalent.

( a )  The Cauchy problem (4.5) is C -  well-posed in  D.
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(E )  Condition (7 ) holds and f urther in the norm al f o rm  o f  transformed
operator N - 1 . P .N  in  Theorem 3.1, it holds that

(4.8) true order o f  Pk(p) —(n,n—p) , (1<p_<.n,k-1) .

( ) In the meromorphic formal symbol class, P(t, x, Dt, e) is transformed to
a formally hyperbolic system with a diagonal principal part.

We prove the above theorem as (a) (s) ( ) (a ) .  We can show (a)
(e) by the usual way as S. Mizohata [24] applying Theorem 3.1. (E) ( )  is
trivial. Then, we need to show ( ) (a ) .  W e reset t0=0. W e have the
fundamental solution E(t,x ,D x)=E7=ot k e (k )(x ,D x ) for f 0 ,  w h e r e
e(k)(x, Dx) is a  differential operator of order at most vk with holomorphic
coefficients in a complex neighborhood s-2-  of Q. However, under Condition
(8), the order of e(k)(x, Dx) is at most k+ v 0. By virtue of the assumption of
the constant multiplicity of characteristic roots, E (t; x, Dx) is expressed as a
Fourier integral operator E ,̀1=1E.,, : EJ(t, x, e)=EZ=ot k ei(k)(x, C ) modulo

where O., is a phase function with respect to a characteristic root 2. ;  and
ei(k )(x ,e ) belongs to S H ""(Q  x R i ). Under Condition ( 0, we can show the
following inequality;

(4.9) le (k ) (x , $)1 < C/ek!11$11 0 '

on an arbitrary conically compact set in x  P\x , where V. is a non-negative
in teger, f'= {$  C ; Jm C <eIRe, R e $ E R },  is a conical analytic set in ..(j
X F and C and R are positive constants. Since e'(k)(x, e) is a holomorphic
function of x  and $, (4.9) holds on Q x by the maximum principle. This
implies that E (t; x, Dx) operates on the functions of x  in  C- (S2 ntt =OD for
small

A  detailed proof will be given in the forthcoming paper [16].

Remark 4 .1 .  In Theorem 4.3, if  we remove the real analyticity of
coefficients, (E) ( = (  ) )  is necessary for C -  well-posedness but not sufficient.
We can construct a counter-example:

/ 0 1  0 \  0  0  0 \
0  0  p x —  0 0  !At)

01 \ v (t ) 0 0 /

where p ( t )  and v ( t )  are nonnegative, they belong to C - (R ) , suppp={0} U
LY=i[a2n, a2n-1] an d  suppv={0} U U=I[a2n+i, a2n] (an \ 0). The condition
(E) is satisfied on each [an+i, an] (n E N ), on [ai, 00) and on ( -00, 0] but the
Cauchy problem for the above operator is not C -  well-posed at the initial time 0.
(See W. Matsumoto [16] and [12, I].)

We can also obtain the characterization of Gevrey well-posedness by the
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similar manner.
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