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O n  th e  theory o f  Jacobi forms an d  Fourier-Jacobi
coefficients of Eisenstein series

By

Tamotsu IKEDA

Introduction

In [1], [2], Bôcherer calculated the Fourier-Jacobi expansion of holomor-
phic Eisenstein series. It w as show n tha t a  Fourier-Jacobi coefficient of holo-
morphic Eisenstein se rie s  is  a  finite sum  of products o f  a  theta function and
an Eisenstein s e r ie s .  T he  purpose of th is paper is  to  develop  the  theory of
the Fourier-Jacobi coefficients of Eisenstein series on some quasi-split classic-
al groups. U nlike holom orphic case, a  Fourier-Jacobi coefficient of nonholo-
morphic Eisenstein series is no longer a finite sum of products of a theta func-
tion and an Eisenstein series, but can be infinitely approximable by them.

Let k be a global field w ith char (k) ± 2, and  A be the adele ring of k . § 1
is  devo ted  to  th e  theory  of autom orphic form s o n  Ja c o b i g ro u p s . A  Jacobi
group D is  a semi-direct product of 2-step-nilpotent unipotent algebraic group
V and an algebraic group H whose action on the center Z  of V is trivial. F o r
simplicity, we consider the following subgroups of G=SPm+n:
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Then D = VH is a Jacobi g ro u p . L e t S be a  non-degenerate symmetric matrix
of size m .  We regard S as a homomorphism Z —*le by z t r  (S z / 2 ) .  Let (/) be
a  non-triv ia l additive character o f  A /k , an d  p u t Os =  (,b S .  Let G (A )  and
H (A ) b e  the metaplectic covering of G (A ) and  H (A) , respectively, and D (A)
b e  the  sem i-d irec t p roduc t V  (A ) a n d  H (A )  o f  H ( A ) .  Put Vo = V/KerS.
S ince  V o (A ) is  a  H eisenberg group, i t  h a s  the SchrOdinger representation
w hich is realized on the Schw artz space S (X (A )) . I t  c a n  b e  n a tu ra lly  e x -
tended to the W eil representation ws  o f  D (A ) .  Let C°5° (D (k) \D (A ) )  b e  the
space of C- -functions go on D (k)\D (A ) su ch  th a t go (zvh) =  (z) g9 (vh ) for
any z E Z  ( A ) .  For each OES (X (A) ), we define the theta function eo by:

(P (yh ) =  cus (vh)g5(/) .
lExoo

By the definition, e 's E Cs° (D (k) \D (A) ) .
In §1, w e shall show that any closed subspace W  of C's° (D (k) \D (A)) in-

variant under the  righ t translation of V  (A ) is generated by functions of the
form:

' (vh) (uh) 9 4)2 (uh) d u  .f vco\ v (A)
Here y E V (A) , h E H (A) , ço E  W, and q51, 02 are Schw artz function on X (A ) .
(Proposition 1 . 3) .

In  §3, w e shall apply our theory to  Fourier-Jacobi coefficients of Eisen-
s te in  s e r ie s . L e t  w  b e  a  unitary  character o f A V /e x . L e t /  (co, s )  b e  the
space of functions f  on G (A) such that

f (pg) = w (det A ) Ida Ai s + m ± r 1 f (g)

( A B
for any g E G (A), p=-- E P  ( A )  .  Here,

Om + ,, `A - 1

P =1( 0
A

 ±n  t
 B

i )  A E G L . -Fn, 24 - 1B  Sy mm + n (k)

We define an Eisenstein series E  ;  f )  by

E (g; =  E f  ( r g )

r Ep\G

for f  I (w, ) . Then Proposition 1 .3  im plies the space of S-th  Fourier-Jacobi
coefficients of E (g; ,  f  e  I (0.), s) is generated by the products of a theta func-
tion and a function of the form:
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(1)
1 ,0 0 ,(,)

E (uh; eo (w o d u  .

W e shall show th a t (1 )  is  a lso  an Eisenstein series of Siegel type associated
to

R (h; f , 0 )  = i  (wm+nvwnh) ws (vwnh )  (0) dv

(Theorem  3.2). H ere

w i=
(  oi

 

Oi

and w e think of Wm-Fn (reSp. wn) a s  a n  element o f G  (resp. H) . We remark
tha t R  (h; f ,  0 )  is  "genu ine"  w hen  m  is  odd . S im ila r re su lts  a lso  ho ld  for
"genuine" f .

Our theory has some applications to the calculation of the residues of Eisen-
s te in  se r ie s . The author will treat this problem in  forthcoming paper.

This paper was prepared during m y stay at Institute for Advanced Study.
I acknowledge partial support by NSF G rant D M S-8610730. It is my pleasure
to express a gratitude for their warm hospitality.

Notation

T he space of n X  n and m X n  matrices over k  is denoted by Mn (k) , and
M m n (k ), re sp ec tiv e ly . The space of n x n symmetric and alternative matrices
are denoted by Symn (k ) and A lt (k ) , re sp e c tiv e ly . The n X n zero and identi-
ty  m atrices are denoted by On and L , re sp ec tiv e ly . If X  is  a  square  matrix,
det X  and tr X  stand for its determinant and trace, re sp e c tiv e ly . F o r a  func-
tion f  on a group G and x C G , we denote by p (x ) f the  right translation  of f  by
x  , i.e., p (x) f (g) = f  (gx) . W hen G is locally compact, the Schwartz-Bruhat
space of G is  deno ted  by  S (G) . If  G i s  a n  algebraic group defined over a
field k , the group of k-valued points of G is denoted by G (k ) o r G .  If TC is  a
representation of G , its contragredien t is denoted  by  ff. W hen k  is  a global
field , the adele ring (resp. the idele group) of k  is denoted by A k  or A (resp.
A;,` o r  A x ) .  W e fix  a  non-trivial additive character (/) of A /k. The volum e:
A-4C'. is  d e n o te d  b y  I  I . For a  un ipoten t algebraic group U, we normalize
Haar measure du on U(A ) so that Vol (U (k )\ U (A )) =1.

§ 1 .  Representation theory of Jacobi groups

W e sha ll reca ll th e  theory  of metaplectic covering and  W eil representation.
Let Sp n  be the symplectic group of rank n defined over k:

Sp n =  g GL2 n

(  On — ),g  (  O n  — i n )1
i nO n in On

  



618 Tamotsu Ikeda

{ ( A  „B
A, B, C, DEM n (k)

  

IA t B= B`A , CD = IY C, A`D—B tC=1,

For each place y of k, we define 2-cocycle c (g , 92) on spn(kv) with values
i n  1±-  11 a s  in  [9 ] .  The metaplectic group SPn(kr) is by definition the 2-fold
covering group of Spn (kv) determined by c  (91, 92): A n element of Sp,  (kv )  is  a
pair ( g ,  C) , g  E Spn (kv) , E  1 ±  1 1  ,  and the m ultiplication law  is given by
(91, CI) (92, C2) = (9192, c (91, 92) C1C2). The W eil representation coor  of SPn (kv)
on S (Min (kv)) is characterized by the following equations:

On
C))0 (x) =  (

T v (1 ) ■ Idet 4 0 (X A )
Tv odet A)

C)) 4 ) (X) = COvG (X YX ) )0  (X )  ,

0,11
 n C))° (X ) = Cry (1) - n FO (—X)

S  (Min (kv)), X E  M in  (kv) , A E G L n  (kr), B E SyMn (k v ). Here F 0  i s  the
Fourier transform of 0  with respect to (Pv :

F 0 (X )= - f 0(Y)(pr(X t Y)d Ymin(kr)
Here th e  measure dY i s  th e  self-dual m easure fo r  th e  F o u rie r  transform  F.
rv ( a )  is  the W eil constant associated to O r . I t  i s  d e f in e d  b y  th e  following
equation:

f k v 0 v (4 ix 2 )0 (x )d x = r , (a)1 (x)dx

- (x) f  (9 )  (P v  (x y )d y
cv

Here d x , d y  a re  th e  self-dual measure fo r  th e  F o u rie r  tra n sfo rm . If  y < 00
and y4'2, then  the re  is  a  canonical splitting over the standard m axim al com-
pact subgroup K .  The image of the splitting, which we also denote by K y , is
the  stabilizer of the  characteristic function of Min (or) fo r  a lm o s t  a ll v . The
global metaplectic group Sp7A ) i s  th e  restric ted  d ire c t product of Sp,  (kv)
with respect t o  1Kr1 d iv id e d  (tv) E T V  j± 11 Ilvtv =1} . Then the global Weil
representation wo of Sp7A) on S (Min (A)) is well-defined. It is well-known
th a t th e re  is  a  un ique  splitting over S p , (k) , w hich w e identify w ith Spn  (k).
Since c (g 1 , g 2 )  is identically 1 o n  (P y (1Kr ) x  (P„ fl K y )  fo r almost all y, the  in-
verse image P (A ) of P (A ) is identified with the covering group defined by the
2-cocycle lk  ( g  92 ), g i , 92 EP (A) . T hen by  (1.1) a n d  (1 .2),
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1
et A )  Id A R e t Ø (X A ) ,
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1

:  I
I

: ) ,  ) ) X  CO(-1g B tX) 0  (X)

X E Min  (A) , A E GL,, (A), B  SyM n  (A) , r (a) = nvrv (av) . Put

wn= ( O
n  i n  )

Then
(wn) P(X ) =F0 (X ) .

Now we define a Jacobi group and  a  non-degenerate homomorphism of its
center.

Definition. A Jacobi group D is a semi-direct of 2-step-nilpotent unipo-
tent algebraic group V and an algebraic group H whose action on the center Z of V
is trivial. A  non-degenerate homomorphism S:Z—>k is a homomorphism such that
V/Ker (S) is a  Heisenberg group with center Zo=Z/Ker (s).

Put V o = V/Ker  (s), a n d  Do =D/Ker (s). Z o can be identified w ith k via
S. Since V/Z= Vo/Zo has a  natural symplectic structure, the conjugate action
gives a homomorphism H - SPv,z. Let SPy/z (A )  b e  the metaplectic cover of
Spviz ( A ) .  Let H (A ) be  the  covering of H (A ) induced  by  H (A) —'SPv/z (A) .
Put D (A) = V (A) H (A) . Let J be the semidirect product o f V and Spviz. Put
j(A ) = V  (A) SP v z (A) . The homomorphisms  V - - - V0 and H 1—*Spv iz give homo-
morphisms D —*J and D (A) ( A )  . We denote these homomorphisms by t.

W e w ill consider representations o f  D (A ) o n  w hich Z (A )  a c ts  b y  Os.
Here O s=0 °S . Since Vo is a Heisenberg group, Vo has a coordinate system

Vo = Jv o =  (x ,y ,z )lx ,yE k n,zEk1 .

such that the composition law of Vo is given by
,  Cri tY2 — x2 t ,vi) yi, zi) • (x2, y2, z2) =(xi - Ex2, Y1 +Y2, zid- zz - r 2

We define subgroups X,Y of V o by

X =  1(x, y, z)ly =0, z=01
Y= 1(x, y, z)ix =0, z=01 .

Then X and Y are maximal totally isotropic subspaces of V IZ  complementary
to  each  o the r. Spv / z =Spn ac ts on V o from the right by

( A  B
(x,y,z) = (xA -f-.yC, xB -FyD, .

C  D

in  O n
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The Schriidinger representation coo of V 0 (A) o n  S (X (A )) is given by

coo (v) (t) =  (t + x )
z + t t ,

Y

 + T

Y

x t ' ' )

2 
for v=  (x, y, z) E Vo (A) , and 0  S (X (A) ) . By Stone von-Neumann theorem,
coo is the unique irreducible representation o f Vo (A ) on which Zo (A) acts by
0, i.e., the unique irreducible representation o f  V (A ) on which Z (A) acts by
O s . T he Schr6dinger representation o f  Vo (A ) ex tends to  th e  representation
of .1 (A) , the W eil representation w o. The restriction of coo to Sp7A) is exact-
ly what we have described before.

For each g5E S (X (A )) , the theta function eo(vh) is given by

e o (v h ) ,  E w0(vh)0(1)
leX(k)

= E 0 4 (0 0 (1 + x ) (P(z-Fl ty-F l x`y)
l eX (k )

for v E Vo (A) , h E Sp7A) .
Let C7; (11 0 (0 \ 1 7 0 (A ) )  be the space of smooth functions f  on  Vo (k)\Vo (A)

such that f (zv ) =  (z ) f (v ) for z E Z (A ) w ith  C- -topology. Then the  homo-
morphism

0: S (X (A) ) C( Vo (k)\Vo (A) )
given by o H - 0 0  is a topological isomorphism.

T h e re  is  a  J (A ) invarian t non-degenerate H erm itian inner product on
S (X (A) )  given by

(01, 02) L A ) 01 (t) 02 (t)dt

It is easy to see that

(v) e°2 (v)dv .( 0 , 0 2 )  =  
fo(A)vo(k),,,,,(A)

In particular, the contragredient of coo  is  wo -i =w 0.
Let So (Vo (A ))  b e  the space of smooth functions 9 o n  Vo (A) which satis-

fy  1) and 2):
1) 0 (zv) = 0 -1 (z) 9 (v).
2) 191 is rapidly decreasing on Zo (A) \ Vo (A).

(Vo (A ) )  is  isom orph ic  to  S ((X e (A) ). W e  p u t  topology into
So (Vo(A )) by this isom orphism . L et (a, IV) be a  representation of Vo(A) on
w hich  Zo ( A )  a c t s  b y  9 .  W e  s a y  th a t  t h e  representa tion  a  extends to
So(Vo(A)) if the following integral

a (0 )w = iz o (A )\ v o (A ) 9(v)cf(v)w dv

defines separately continuous map So (Vo (A)) X W W . It is  k n o w n  th a t the
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SchrOdinger representation wo extends to  So (Vo (A )) , a n d  coo (9) = 0 if and
only if 9 = 0 .  It is easy to see that if we put

(I) (v) = L A) 01(t 02(t - Ft) (— z — t t y) dt

for 01, 02 E S (X (A) ) , then 9 E So ( Vo (A) ) , and
04(9) 0= (0, 02) • 01 .

Moreover functions of this form generate a dense subspace of So (Vo (A)).

Lemma 1.1. Let 01, 02, and 9 as above. Then

E 9 (11- 1 v - 1 luh )=  E (vh) e02  (uh)
1E Z o(k  )/V o(k  )

for h E spn (A) u, vc vo (A) .

Proof. A s a function of u, both sides are elements of C7-1 (Vo (k)\ Vo (A)).
For any OES (Vo (A)),

f o (A) Vo(k) \ Vo(A) E 9  (h - iv - iiuh) 0 (uh)du
1E Z. (k) \Vo (k)

9 (h - l v - l uh) e0 (uh) du
fz,,(A)\vo(A)

9 (u) e o  (vhu) dufzo (A) \ VolA)

= 00)00 (vh)

= (0, 00 eh (vh ) .

Since the pairing  0  is non-degenerate, the lemma follows.

Lemma 1.2. L e t (or, IV) be a representation. of  Vo (A )  on which Zo  (A)
acts by 0. A ssum e that (cr, W) extends to the represention of So (Vo (A)) . T h e n
u(So(Vo(A )))W  is dense in W .

Proof. Let iv be a  linear functional on  W such  tha t <a(9)w, 127> =0,
for any çoESo (Vo (A )) and any w E  W . T h e n  for any Vi= (xi,  1, 21) E V 0 (A) ,

< a (v 1) a ( )  a(v 1) w, 1-47> —f( y )  <  a (vivW)w, fv- >dvzo(A)\vo(A)

= f(A) a (v )w , fii>  9  (v ) (x  —  xy  i)dv  .vo 

If Supp ((p) is compact mod Zo (A), then this integral is absolutely conver-
gent and equal to the  Fourier transform  of <a (Ow, 11- >  ç  (y). Therefore G
u(y)w, W. . >  must be identically zero.
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Let C7 (D (k) \D (A ) )  be the space of functions f  on .D (k) \D (A )  such that
f (zvh) = ( 2 ' )  ( v h )  for any z E Z (A), v E V (A) , h E H (A ) . W e regard theta
functions as elements of Cc; (D (k)\D (A )) by the embedding C .

Proposition 1.3. L et W  be a closed subspace of CS' (D (k) \D (A )) in-
variant under the right translation of V (A ) . Then functions of the following form
generate a dense subspace of W.

(vh) f f (uh) 0 °2 (uh) duv()\v(Ar

Here v E V (A) , h E H (A) , f  E li , 0 1 ,0 2  S (X (A )) •

Proof. W e regard  W a s  a  representation of V (A ) b y  the  right trans-
lation p. Let (,.0 be as in  Lemma 1.1. Then

p ( ) f  (vh) =
f ( A ) \ v ( A )  

(u) f (uhu) du

9 (h - l v - l uh)f (uh) du
f (A ) , v (A )

9 f (uh) d u  .
fz (A )v (0\v (A )

/Ezoov(k)
Since the  last integral is absolutely convergent, the assumption of Lemma 1.2
is satisfied. T h e re fo re  the proposition follows by Lemma 1.2.

Remark. Stone von - Neumann theorem implies that any representation
of D (A ) on which Z (A ) acts by  9s is essentially  a tensor product:

(wo o e) . —
Here coo is the W eil representation of j (A )  a n d  T  i s  a  representation of  H (A ) .
(cf. Piatetski-Shapiro, [11 ]) Proposition 1.3 m eans that w hen r  is realiz ed in
Cs (D (k)\D (A )), r is the space generated by functions on H (k)\H (A) of the form:

f (uh) eo (uh) d u  ,
fo (k ),vooty

hEH(A),fE W, q5E S (X (A )).

§2 . Eisenstein series of Siegel type

In  th is  section, we consider Eisenstein series o f S iege l type . L et m,n be
positive integers. A lthough our theory w orks for other groups considered in
[16] , we will confine ourselves to the following situations for the sake of sim-
plicity.

(Case 1): Symplectic o r metaplectic case:

{

G —SPm+n— g  E GL2m+2n
(  Om +n

g
+n O

l m + n

m + n )

t (0 m -F n 1-m+n)}

im + n O m + n
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= ,A  BD )1A, B,C,DEMm+ n(k),

  

}

A t B= B
t
A , CD= VC, À D

—
B`C=1,1_,,

A B
P =I

t  A - 1 ) 1A E G L m +n, AT
i
BESyMn i+ n  (k)

         

l m+n

   

zESymm(k) I

X, y E M m n(k) , z— xty E SYMm (k)

z=

                   

Om-1-n

  

1m+n

                                                 

l m Xo i Om+ m

X= X E M m n  (01
l m0

Om+n
—tx  i n

Om y \
1.+n ty o n\

Y=1
/ IY E  Mmn (k)

o n i ± n

l m 0l
lm-Fn

Om 0 \
O A 0 B B

H=

I
(A

C  D

ESP, -= S n  .
Om 0 l m0
o c O D /

Z can be identified with Sym m (k) . Any homomorphism Z
--

*k is  of the
form: z 1— , tr (zS/2), for some S E SyM m  (k) . We denote this homomorphism by
S, too. One can easily check that V o = V/Ker (S) is  a Heisenberg group if and
only if det S O.



g  O m + n  im + n  ) 0 *  (  O m + n  l m + n  ) 1 ,

lm +n O m +n 11-m + n  Om+n

det g =1, A, B, C, D E M m +n (K),

=  g E SL2m+2n (K)

= 16 — ( AC  DB )
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(Case 2) Unitary case:
Let K be a quadratic extension of k, or k k .  L et cr be the non-triv ial auto-

morphism of K/k if  K/k is a quadratic ex tension and (x, y) a = (y, x ) if  K=k 'ED k.
We fix an element /2 such that n a =  7 ) .  F or a  matrix A , we denote A * -='A a .
We denote the space of Herm itian (resp. skew-Hermitian) matrices of size n
by H e r (K )  ( r e s p . SHn(K)).

G = SU (m +n, ±n)

IAB* =BA * , CD* =DC * , AD *  —BC* =1m + n

P = 1(

A B
Om ± n  (A*)-1

det A Ek, /V I BE Her,n + n  (K)

  

z  0 \
0  On

 

z= I1m+n /Z E Her m  (K)

        

Om+n i m + n

               

1 .
0  l n

  

X, y  E M m n  (K), z—xy * EHerm (K)1

Ix c Mm n (K)

Iy  E M m n ( K )  ,

 

Om+n

           

l m x
0  l n

              

Om+n

           

lm+n

   

Om+n

 

lm+n
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Om 0 \

0 B
ESU (n ,n )

( AC )DB
=S U (n ,n )

1 . 0
O D /

Z  can be identified  w ith  H er. (K) . Any homomorphism Z—  qe is  of the
form: zl— qr (zS), for some S  H er. (K ) .  We denote this homomorphism by S,
too. A s in  case 1, one can easily check that V0=- V /K er (S) is a Heisenberg
group if and only if det S O.

Let w be a  unitary quasi-character of Ax/le x . L e t  s C . L e t  I (a), s) =
IG (CO, .3 )  be the space of functions f  on G (A) such that

f (pg) = (.1) (det A) Idet A Is + Pf (g)

(  A B
for any g  E G (A) , p  = E P  (A) . Here p =  

m 1
 o r  m  + n ,20 . 4.  (A *)

according as G = s p ,n + n ,  or SU(m+n,m + n ) .  W e also assume f  is right finite
by standard maximal compact subgroup of G (A) .

F o r  (Case 1), we define / (co, s )  =  I G (o), s) - b y  the  space of functions f
on G (A) = SPm+n (A) such that

s +
m+n+1 

f (pg) = E
( 1 )  

\ (det A)1det A 2 f (g ) ,r ozlet A )

AB \ \
 a n y  g E G (A ) P — (( , E  E P (A) , w here  P (A ) is  the inverse

Opn+n fit - 1

image of P (A ) in Sp. + n  (A).
We define an Eisenstein series E (g; f) of type (0 ), s) (resp. (w , s ) -) by

E ( g ; f ) = E f ( y g ) ,
r Ep\G

f  IG  (a), s) (resp. IG  (0 ), s ) -) . This series converges for Re (s) » O, a n d  can
be meromorphically continued to whole s-plane if f  depends on s holomorphi-
cally.

The W eil representation ws of H (A) on S (X (A )) is given as follows:

(C ase  1 ): In  th is  case H (A ) is canonically isom orphic to either Spn (A ) or
Spn  (A) X ±[ , according as m  is odd o r e v e n . W e  regard ws as a  representa-
tion of spn  (A) by the canonical homomorphism Sp2-A) — H (A) . Then we have:

c o s  ( UA on )

\\On fA ' (x) =Em
 r s

r(ds e
(
t
i )A )  Idet A IlTo (xA
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Ws

(((Oi n 1 
B\

' s ) ) °  (X )  = Em (X13 tX) 0 (X)

cos (u)n ) 0 (X) =Fs0 (X)

Fs0 (X ) -= i x  (A ) ( Y )  (trSX' Y)d Y .

Here Ts (a )  is the Weil constant with respect to  S. I f  S  is equivalent to

diag (si, sm), then Ts (a) n  I T (sia)

(Case 2): In this case H A )  is canonically isomorphic to H (A ) X I ± 11 . We
regard H (A )  as a subgroup of H (A) . Then we have

ws

(( A0n 0 °4 - 1
))Ø (X) — Xiuk (det A m ) Ida A Im0 (X,A )

c a s

( (  i(Pnn
))0 (X

—
) —  (XBX* ) 0 (X)

(wn) (X ) =F50 (X)

Fs0 (X ) =1: 6,0 0 01 (Trxiktr (SXY* ) )d Y .

Here X K /k (a) is the character of A</k< corresponding to K/k by the class field
theory.

§3. Fourier Jacobi coefficients of Eisenstein series

Definition. Let 0 be a -function on G (K)\G (A) . The S-th Fourier-
Jacobi coefficient cps of go is a function on D (k)\D (A ) given by

s (vh) = (I) (zv h) (z) d zfz(0\z(A)

v E V (A) , E H (A) . Obviously ços  E (D (k) VI (A) ) .

A s  is shown in  §1, the representation o f  D (A ) generated  by the
Fourier-Jacobi coefficients of Eisenstein series are generated by functions of
the form:

(3.1)0 ° '  ( v h ) f E (u h f)  0 0 2  (uh) duvoov(A)

where v E V (A), h E H (A) , 01, 02 S  (A) ) •
We consider the functions of the form;
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(3.2) iv  (k) v (A)
Es (v hf ) eo (vh)dv

where OE S (X (A) ) .
Let Q be the normalizer of V in G .  The double coset P\G/Q is naturally

bijective to the W eyl coset Wp\WG/WQ. By Casselman [3], each double coset
o f  Wp\ WG/WQ h a s  unique element of m inim al le n g th . F ro m  th is , one  can
easily check that a  complete set of representatives of Wp\WG/WQ is given by

i = 0, 1— , n i. Note that .P13Q is the unique open cell.

Lemma 3.1. If  TEG is not contained in the open cell P W , then S is not
trivial on r i Pr CI Z.

Proof. W e may assume r=  i> 0 , since for any g E Q, g normalizes
Z  and gSg - 1  is  a lso  non-degenera te . It is  easily  seen  tha t T- 1  P, n Z contains
the subgroup of consisting of the last column and row.

L et < ,  >  be the Hilbert symbol on A' x A ' .  Put x a (x) =  <a, x > .

Theorem 3.2. Let f E  (0 ), s ) or I (a), s) If  g5 E S (X (A )) is right f i-
n ite  by  the action of  the standard m ax im al com pact subgroup o f  H (A ) , and
Re (s ) »0 , then (3 .2 ) is an Eisenstein series associated to:

R (h; f, ç5) = i v  ( A jf (wm+nvwnh) (vwn h) ç5 (0) dv .

The type of R (h; f, 0) is as follows.

H (COXa, s) , a =  ( - 1)Idet S , If  G  S P m + n, 21m, f EIG (co, s)

Iji ( WXa, s ) ,  a =  ( - 1)Idet S If  G SP,n+n, 21m, f EIG (0.), s)

(3.3)
H  ( W ) C a ,  s )  ,  a =  ( -1 ) det S  ,  If G = Sp,n + n , 2 m, f E I G (0), s)

H  (0 )X a , s ) a =  ( - 1) m 2 i det S , If  G=SP m + n , 2 m, f EIG ((.0, s)

(0 -q m  K/k, S) If  G = S U (m + n ,m + n ) .

Proof. W e  m a y  assum e  (3 .2 )  is  abso lu te ly  convergen t. W e treat
only (Case 1), and JE/ (w, s). The proof for the remaining cases are similar.
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We break up the coset P\G into the following disjoint union:

P \G=  U  (P \ P W ) U  (P\PoQ ) .
i>0

By Lemma 3.1,

fvuov(A)Es (vh;.f) O (vh)dv

E (vh; eo (vh)dvf,(0,v(A)

=E E fv(k),v(A (rv h) 0 Ø (vh)dv
i >0 Tep\pe,Q

E f v (k) \v(A
(Tv h) CY' (v h)dv  .

r eP \ P oQ

By Lemma 3.1, the first in tegra l vanishes. One can easily check
P\P0 (2=o  • (Y\ V ) •  (PH \ H ) .

Here

*
PH—

r o n  t 1 )

Since each TE1/ normalizes V (k ) and V(A),

fv,k)\V(ATf  (rvh) e0 (vh)dvE 
r e P\PeoQ

= f v
e0 (v h)dvE E ,,,(A)f(onrvh)

n v  r Ep„\H

=  E E fv(k),,(A)f(oriv Jo"' (vrh) dv

n E Y\ V r E PnVi

= E
f y coy (Ay 

f (ovyh,) (vrh) dv
reP H\o

—E E F (w sovroo (on d ,
re P \H lEY(k)

= E fv(A,f ( o v rh )F  (w s  TO 0 (0)) dv
TEP,Ao

—E f v (A )f(ovrocos(wnvrog5(0)dv

f V ( A
,f (w m +ny w nrow s(v w n,h),( 0 )d v  .

A G L I

e P„Vi



We have to prove R (h; f, 0) E /  (0 ), .3)

R (h; f, 0) = (A l  (wm+nvwnh) cos (vwn h) (0) dv

1. x

0 in

f(A)f(A)f(Ai Wm+n

Onz ±n

i 0n,

z—x t y  y

t y On

_tx

w s(w „h )0 (,)0  (tr (s (z - Fx`y) /2)) dzdydx

Fourier-Jacobi coefficients 629

Put

R (h; f, =  fv ( A lf (Wm+eWnh ) ws (VWnh ) ( 0 )d v  .

The convergence of R (h; f ,  0) will be discussed later. We have shown that

(3.1) = R (VI; f , 0) .
PH\II

wnh

/ /

 

W m + n  (

1„,+ „

 

z  y

t y  On \
 wnh

lm+n I
f(A)fy (A) f(A/

     

Om+n

      

x cus  (wn h )ç b (x ) (tr (S (z±2x t y)/2))dzdydx

 

z  y

 

wn h )

 

t y  On

 

fy(A)...L(A)f Wm+n

                      

Om +n i m + n

        

X Fs  (cos  (wnh) (Y) Os (z) dzdy

  

/ 1_m+ n

 

fy(A)L(A)f Wm+n

                     

x (h) ( — Y) Os (z) dzdy
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l m +n
z y

ty On

l n B

fY (A) fz,A7 )wnhW m +n(

Om+n lm+n

x cos (h) 15 ( —y) (z) dzdy

Ti p =
On in

, s), then

1m+n
z  y

t y  O \

Om+n lm+n I

   

Wm+n WnP

•

l m 0 0 0 z y IA y

B ty 1n 0  B
1m+ n

t y On
Wm+n Wn

Om+n
—yB

Om +n l m ± n

0 l n

We have

   

1m+n
z  y

1y  On

 

wnPh)R (ph; f, q5) = y(A)f z(Al

    

Wm+n

                  

Om +n 1-m+n

        

X cos (Ph) ( — y) 0s (2) dzdy

z - f - y g y  y  \

y On \
=Em I,(A)f.(A)f Wm+n wn h

/
X cos (h) ( — y) (Ps((z-FyB ty))dzdy

= E m R (h ; f, 0 ) •

l m+n

If p= (
\
t

' On 1)'
E ), then



Om+n 1m+n

T-s (1)
=6

m
( . 0  ( d e t  A )1det A Is + n 421 /? (h; f, 0 ) .
T-s(det A)

Wrn+n

Z y A

( y A )  On

1m+n

Fourier-Jacobi coefficients

z  y
1-m+n

ty  On
WnP — PWm+n

Z y A

( y A )  On
Wm+n

631

Wn •

Om+nOm +n im -fnim +n  I

We have

 

W m + n  (

lm + n
z  y

ty

 

R (ph; f, 0) =
y (A) fz (A )

f

 

wnph

   

Om+n l m+ n

      

X cos  (Ph) 95 ( (z) d zdy

r_s(1) 
— E r-,(det A ) CO ((let A ) Ida A l" m + n I l

f , ( A ) f z ( A )

The theorem follows by the property of the Weil constant:
T(a)T(b) = <a,b> r (1) r (ab) .

W e define holomorphic sections of I (co, s )  a s  in  I k e d a  [ 6 ] .  Roughly
speaking a  holomorphic section of I (co, s ) is  a  function t s )  ( h )  w hich is holo-
morphic in s E  C , and r s ) (h) E i (0 ),  s ) for each s E C.

Lemma 3.3. If f s) (h ) is a holomorphic section of I (co, s), then R (m; fs ) , 0)
is absolutely convergent for the domain

n—m-1 
(Case 1)

(3.4) Re (s) > 2
—n-Fm (Case 2)

and can be meromorphically continued to the domain

I  n—m+ 1 (Case 1)
(3.5) Re (s) > 2

—n-Fm —1 (Case 2)



1 m
z y

t y On

\\

\
Sbv( — y) dzdy

Oni+n lm+n / /

/
Wm +nf Y(K t) f Z (K v )

i v

z  y

'y  On

dz .Wm+n
f,S)

1 Z (K v )
1 m +nOm +n\

For v

L y (s+n — m ±r, Xic-3 )  
I  I  (s ±n ±m +1 — r, ?Ciro!)r=1
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Moreover, R (m; ts ) , 0 )  is  holomorphic on

(3.6) Re (s) >

n - 1  
2

n —m 1 
2

—n-Fm — 1

(Case 1 ) ,m 11

(Case 1), m >1

(Case 2)

   

Proof. W e m ay assume f ( s) a n d  0  a re  decomposable; f ( s ) = rity s ) ,  0 =

il Oy. There is a  finite set T of places of k such that

(1) T contains all places above 2, co,
(2) T  contains all places which ramify in K /k  in Case 2.
(3) If v Er T, then w,, is  unramified and (Pv is  of order O.
(4) If v'$T, then f y ( s ) l i f y l ,  an d  0 v is  the characteristic function of o .

W e have to show the absolute convergence of

      

z  y

'y  On

1m+n

         

1,n + n

                 

fia(Kv f z u c v )
As)

Wm+n

      

O ( — y) dzdy .

                     

Om+n

 

//

                          

This can be calculated by the usual Gindikin-Karperevich argument:

cv(s+ n  m2
+ 1 )  ' 2

11n   cv(2s±n — m +2r) 
cv(s + n-Fm+1) 1. 1 Cv (2 s± n ± m ± 1 -2 r)

2 /  r=1
(Case 1)

(Case 2)
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It follows that
(3.4). If y Er

the
T,

product over y

lm +n

T  is absolutely

z y
ty On

convergent for the domain

iZ iv ( dzWm+n
(Kr)

Om+n lm +n

is  abso lu te ly  convergen t fo r the  dom ain  ( 3 .5 ) .  M oreover it is slow ly  in-
crease function with respect to  th e  v a r ia b le  y . Therefore the local integrals
a re  absolutely convergent for the dom ain ( 3 .5 ) .  W e proved th e  first state-
m e n t .  For the second statement, it will suffice to prove that

lm +n

Om+n

T

iz (K v i -7(j3)

v T

Wm +n

\ \

Om+n lm+n / /

Z O \\

0  On

(,bs (z) dzdy

! S )
f y (K v ) L (K v )

Wm+n

lm+n
z  y \ \
ty On

   

Ov( — Y) (z ) d z d y

              

can be meromorphically continued to the domain (3 .5), and is  holomorphic on
the domain ( 3 .6 ) .  In  fact this kind of integral is calculated in  Shimura [14],
[15].

n+1 
L T ( S ±  2 ,  (-1 ) XLI

2
1 

( C a s e  1)

L T ( .5-1- 'n ± m ± 1 II LT (2s +n -km +1 — 2r, w2)
m: even,

2 r=1 f E I (0), s)

m+1 
2

1
m :  odd,

n 1 2

( C a s e  1)

) I  LT  (2s+n-Fm +1 — 2r, wL T (s 1
- n ± m + 1

2 ,  w  r=1 fE/  ( W,

2
1
( C a s e  1)

m: even,Fl LT (2s ±n -I-m +2 — 2r, (0 2 )r=1 f E I (w, s)



z  y
ty 0,,

11-m+n

w„h)
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n+1 
2 (Case 1)

T (s  
2

n +1 ,)
L T  (2 s  ± n  -F m

1

+ 2  — 2 r ,c 0 2 )
m: odd,X

°

f Ei (0), .5)
r=1

H LT (S -I-n -1-m +1 —r, wxia) fE I  (0 ), s)r=1

1( C a s e  2)

Here d =  (-1 ) M d et S. Thus the second statement is proved.

Corollary 3.4. Let f (s) (h) be a holamorphic section of I (w, s).
Put R (s) (h) =R (h; f (s), çb). Then

f voo\v(A) 
E0  (yh; f(s) ) e° (yh )dy =E (h; R( s) )

for the domain (3.5) .

L em m a 3.5. Let s be a complex number in the dom ain (3.5) . Let R (h)
be a function on H (A ) whose type is  as  in  (3 . 3) . Then there exist an f  ( g )  E
I G (w , s ) (or 1G (C O , .5) —  in  (C ase  1 ) )  and  0 E S  (X  (A )) such that R (h) =
R (h; f, 0) .

Proof. W e m ay assume R  (h ) is decomposable, so the problem  is of
local nature: we have to find f v and 0, such that

I I lni+n

R ( h ) = .  L u l u /  Wm-En

Om+n

X w s(h ) (— (z)dzdy.

First w e assume y is  non-archimeden. For sim plicity, w e treat (Case 1)
and omit y  from the notation. Take any non-zero 0 E  S  (X  (k ) )  .  T ake (I) E
S (Z (k)) such that

L(k)

   

(Jo (x) (z )dz= a*0  .

When g EP • w n ± m  • V  • w n  H ,  we put

f (g )  =11011-
1a- 1w(det A)Idet Al s ± cos (h ) ( — y ) (z )R  (h ) .

Here

lo—fy ( k ) 10(y)rdy ,
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z  y
im +5

y  On

g =pw,n+n wnh

Om+n m+n

( A B
P = E P  (k ) .

f l m + n  tA

Put f  (g ) = 0 , if g EEP • wm+ n V  • Tun • H . Then one can easily check that this
is a well-defined function in /G (a), s) , and that R (h; f, R (h ).

Next we assume y is  a rch im edean . T ake  0  a n d  0  a s  above, and now we
assume 0 is right KH-finite under W .  Define f  (9 ) as above . T hen  f (g )  is  no
lo n g e r  K G -fin ite  function , b u t  a  w e ll-de fined  con tinuous func tion . Put
L'-topology o n  IG (CO, .3) b y  the  re str ic tion  t o  (P  (-1 K G ) \ K G  P\ G .  Put
1,- -topology on /H (co, s ) ,  s im ila r ly . T h e n  th e  proof o f  Lemma 3.3 implies
( f ,  0) 1— q ?  (h ;  f ,  0 )  is continuous w ith  respect to  L '-topology o n  IG (a), s)
Schwartz topology on S  (X  (0 ) and L'-topology  on  IG (w, s) . KG-finite vectors
are dense in the L'-completion of IG (0), s) , so we can find KG-finite f  ( g )  such
that R  (h ; f, 0 ) is arb itrarily  close to R  (h ) in 1. - -topology on /H  (w , s ). Since
the  subspace of IH (CO, .3) of given KH-type is finite dimensional, this implies
there exists an f  (g ) EIG (0), .5) such that R (h ) =R  (h; f,
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