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On the theory of Jacobi forms and Fourier-Jacobi
coefficients of Eisenstein series

By

Tamotsu IKEDA

Introduction

In[1], [2], Bocherer calculated the Fourier-Jacobi expansion of holomor-
phic Eisenstein series. It was shown that a Fourier-Jacobi coefficient of holo-
morphic Eisenstein series is a finite sum of products of a theta function and
an Eisenstein series. The purpose of this paper is to develop the theory of
the Fourier-Jacobi coefficients of Eisenstein series on some quasi-split classic-
al groups. Unlike holomorphic case, a Fourier-Jacobi coefficient of nonholo-
morphic Eisenstein series is no longer a finite sum of products of a theta func-
tion and an Eisenstein series, but can be infinitely approximable by them.

Let k be a global field with char (k) #2, and A be the adele ring of k. §1
is devoted to the theory of automorphic forms on Jacobi groups. A Jacobi
group D is a semi-direct product of 2-step-nilpotent unipotent algebraic group
V and an algebraic group H whose action on the center Z of V is trivial. For
simplicity, we consider the following subgroups of G ==Spm+n:
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H= ( )es;),, ~Spy .
0,,,0‘1,,,0 ¢D
0 C 0 D

Then D=VH is a Jacobi group. Let S be a non-degenerate symmetric matrix
of size m. We regard S as a homomorphism Z—k by z+—=tr (Sz/2). Let ¢ be
a_non- trivial additive character of A/k, and put ¢s=¢° S. Let G(A) and
H(A) be the metaplectic covering of G A) and H (A), respectively, and D(A)
be the semi-direct product V (A) and H(A) of H (A). Put Vo= V/KerS.
Since Vo (A) is a Heisenberg group, it has the Schrodinger representation
which is realized on the Schwartz space S (X (A)). It can be naturally ex-
tended to the Weil representation ws of D). Let C3(D (k) \D(A)) be the
space of C*~functions ¢ on D (k) \D (A) such that ¢ (zvh) = ¢s (2) @ (vh) for
any zEZ(A). For each ¢E€S(X(A)), we define the theta function % by:

0% (vh) = Z wswh) ¢ (1) .
LeX (k) _
By the definition, @*€Cs (D (k)\D(A)).
In §1, we shall show that any closed subspace W of C¥% (D (k) \D(A)) in-
variant under the right translation of V (A) is generated by functions of the
form:

0% (vh) ¢ (uh) ©% (uh)du

V() \V(A)
Here vEV(A), hEH(A), 9 €W, and ¢y, ¢» are Schwartz function on X (A) .
(Proposition 1.3).
In §3, we shall apply our theory to Fourier-Jacobi coefficients of Eisen-
stein series. Let @ be a unitary character of A*/k*. Let I (w, s) be the
space of functions f on G (A) such that

F(pg) =w (det A)|det A5 (g) |

A B
)EP (A). Here,
0m+n tA -

l< + )
P
Om n tA !

We define an Eisenstein series E (¢; f) by

E(g; /)= Z ()

TEP\G

for any g E€G (A),p=<

AEGLyyn, AT'BESympn (k)

for f€I(w,s). Then Proposition 1.3 implies the space of S-th Fourier-Jacobi
coefficients of E (9; f), f€I(w, s) is generated by the products of a theta func-
tion and a function of the form:
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W ﬁ(k)\V(A)E (uh; f) ©° (wh)du .

We shall show that (1) is also an Eisenstein series of Siegel type associated
to

R(h; f, ¢) va(A/(mevwnh)a)s (vwah) ¢ (0)dv .
(Theorem 3.2). Here

0; 1
wi=—
—1; 0;

and we think of wm+n (resp. wn) as an element of G (resp. H). We remark
that R (h; f, @) is “genuine” when m is odd. Similar results also hold for
“genuine” f.

Our theory has some applications to the calculation of the residues of Eisen-
stein series. The author will treat this problem in forthcoming paper.

This paper was prepared during my stay at Institute for Advanced Study.

[ acknowledge partial support by NSF Grant DMS-8610730. It is my pleasure
to express a gratitude for their warm hospitality.

Notation

The space of n Xn and m X # matrices over k is denoted by M, (k), and
Mun (), respectively. The space of n X n symmetric and alternative matrices
are denoted by Sym, (k) and Alt,(k), respectively. The #n Xn zero and identi-
ty matrices are denoted by 0, and 1, respectively. If X is a square matrix,
det X and tr X stand for its determinant and trace, respectively. For a func-
tion f on a group G and x €G, we denote by o (x)f the right translation of f by
x ,ie, p@f(g) =f(gx). When G is locally compact, the Schwartz-Bruhat
space of G is denoted by S (G). If G is an algebraic group defined over a
field k, the group of k-valued points of G is denoted by G (k) or G. If wis a
representation of G, its contragredient is denoted by ©. When & is a global
field, the adele ring (resp. the idele group) of k is denoted by Ay or A (resp.
Af or A¥). We fix a non-trivial additive character ¢ of A/k. The volume:
A— R} is denoted by | | For a unipotent algebraic group U, we normalize
Haar measure du on U(A) so that Vol (U () \U(A)) =1.

§1. Representation theory of Jacobi groups

We shall recall the theory of metaplectic covering and Weil representation.
Let Sp. be the symplectic group of rank # defined over k:

On _ln P On _ln
g ln On g ln 0"

Spn= [g €GL;s
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{e2)

A'B=B'A, C'D=D'C, A'D—B'C=1,{ ,

A, B, C,DEM, (k) ,

For each place v of k, we define 2-cocycle ¢ (g1, 92) on Sps(k,) with values
in {#1} asin [9]. The metaplectic group Spx(k,) is by definition the 2-fold
covering group of Sps (k) determined by ¢ (g1, g2): An element of Spy (k) is a
pair (g, ), 9 € Spn (ky), L € |1}, and the multiplication law is given by
@1, €) @2, C2) = (9192, ¢ 91, 92) §i8z).  The Weil representation g, of Sps (ks)
on S My, (ky)) is characterized by the following equations:

A 0, R
w¢"<<<on t-1 )‘C>>‘D(X) = C,—v{g—&—) |det A20(x4) |

wh((( :),, fi ) C))‘D(X) = Cd’u(% (XB‘X))q)( X)

a)m(((? _Oln ) C>)¢(X)=Cru(l)‘”F<D(—X) :

OES My (ky)), X E My (ky), A EGLy (ky), BE Sym, (ky). Here FO is the
Fourier transform of @ with respect to ¢:

row) =, o may .

Here the measure dY is the self-dual measure for the Fourier transform F.
70 (@) is the Weil constant associated to ¢J». It is defined by the following
equation:

ﬁv‘pu(%axZ)qﬂ(x)dx:n (a)| a ;%j;v‘pv(_%a-lrz)(z(x)dx ’
3@ = pw)gux)ay .

X

X

Here dx, dy are the self-dual measure for the Fourier transform. If v <oo
and v 4 2, then there is a canonical splitting over the standard maximal com-
pact subgroup K,. The image of the splitting, which we also denote by K., is
the stabilizer of the characteristic function of Min (0,) for almost all v. The
global metaplectic group Sps(A) is the restricted direct product of Sp/:@v)
with respect to {K,} divided {(t,) €D, {1} |Ilst,=1}. Then the global Weil
representation wy of Sp:,TA) on S My, (A)) is well-defined. It is well-known
that there is a unique splitting over Sp, (k), which we identify with Sp, (k).
Since ¢ (41, g2)_is identically 1 on (P,NK,) X (P,NK,) for almost all v, the in-
verse image P(A) of P(A) is identified with the covering group defined by the
2-cocycle Ilc (91, 92), 91, 92€P(A). Then by (1.1) and (1.2),
v
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A 0y B 1 1
on 0, ‘-1 ) ¢ @(X)—Cm |detA|2Q)(XA) ,

N (R A ———

XEM1,(A), AEGL,(A), BESym,(A), 7(a) =I1,7.(as). Put
{01,
wn= 10,

wy (wn) @(X) =FP(X) .
Now we define a Jacobi group and a non-degenerate homomorphism of its
center.

Then

Definition. A Jacobi group D is a semi-divect of 2-step-nilpotent unipo-
tent algebraic group V and an algebraic group H whose action on the center Z of V
is trivial. A non-degenerate homomorphism S:Z—k 1s a homomorphism such that
V/Ker (S) is a Heisenberg group with center Zo=Z/Ker (S).

Put Vo=V/Ker(S), and Do=D/Ker (S). Zo can be identified with k via
S. Since V/Z=Vo/Zo has a natural symplectic structure, the conjugate action
gives a homomorphism H—Spy/z. Let Spv/z (A) be the metaplectic cover of
Spviz(A). Let H(A) be the covering of H(A) induced by H (A)—Spv/z (A).
Put D(A) =V (A)H(A). Let ] be the semidirect product of V and Spv/z. Put
J(A) =V (A)Spv/z (A) ._The homomorphisms V—Vo and H —Spy,z give homo-
morphisms D—J and D (A)—J(A). We denote these homomorphisms by ¢.

We will consider representations of D(A) on which Z (A) acts by ¢s.
Here ¢ps=¢°S. Since V, is a Heisenberg group, Vo has a coordinate system

Vo= lvo=(x, y. 2) |z, yEK", zEH .
such that the composition law of Vy is given by

(x1, yu 21) * (X2, Y2 22) = (xl+xz, y1+ye, z1+zz+(—xl—’w;2-x—2'yi> :
We define subgroups X,Y of V, by

X=\{(x, vy, 2)|ly=0,2=0 ,
Y=1{(x, y, 2)|lx=0,z=0} .

Then X and Y are maximal totally isotropic subspaces of V/Z complementary
to each other. Spy,z=Sp» acts on V, from the right by

( )AB—(A+CB+D)
X, Y,z CD—x yC, x yo, z) .
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The Schrodinger representation @y of Vo(A) on S(X(A)) is given by
wy)p(t) =¢(t+x) ¢<z+t'y +%x'y) .

for v=(x, y, 2) EVo(A), and ¢E€S(X(A)). By Stone von-Neumann theorem,
g is the unique irreducible representation of Vo (A) on which Zo(A) acts by
¢, i.e., the unique irreducible representation of V (A) on which Z (A) acts by
¢s. _The Schrodinger representation of Vo (A) extends to the representation
of J(A), the Weil representation wy. The restriction of g to Sps (A) is exact-
ly what we have described before.

For each €S (X (A)), the theta function @%(vh) is given by

0% (vh) = Z wy (vh) (1)

leX (k)

= Z wy(h) @ (1+x) ¢)<z+l'y +%x'y) ,
)
for vE Vo (A), h ESpn (A).

Let C3 (Vo (k) \Vo(A)) be the space of smooth functions f on Vi, (k) \Vo(A)
such that f(zv) = ¢ (2) f (v) for zEZ (A) with C*-topology. Then the homo-
morphism

6: S (X (A))—C5 (Vo (k) \ Vo (A))
given by ¢+—6°* is a topological isomorphism.

There is a J(A) invariant non-degenerate Hermitian inner product on
S(X(A)) given by

(¢1, ¢z) = b (t) P2 (t)dt .

X(A)

It is easy to see that

(¢, P2) = 0% (v) % (v)dv .

Zo(A) Vo()\Vo(A)

In particular, the contragredient of wy is Wy-1= Wg.

Let Sy(Vo(A)) be the space of smooth functions ¢ on V,(A) which satis-

fy 1) and 2):
1) @) =¢"(2)ew).
2) || is rapidly decreasing on Zo(A)\V,(A).

Sy (Vo (A)) is isomorphic to S (X Y) (A)). We put topology into
S¢(Vo(A)) by this isomorphism. Let (o, W) be a representation of Vo(A) on
which Z, (A) acts by ¢. We say that the representation ¢ extends to
S¢(Vo(A)) if the following integral

0(‘/’)“’:.[;,.@)\%@)‘0(”)o(”)w dv

defines separately continuous map S¢ (Vo (A)) X W—W. It is known that the
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Schrodinger representation wy extends to Sg (Vo (A)), and wy () =0 if and
only if ¢=0. It is easy to see that if we put

¢ ) :ﬂ,(A)¢1<t—%>¢z<t+%)¢(—z—t'y)dt

for ¢, p.E€S(X(A)), then 9 ES,(V,(A)), and
we (@) o= (¢, P3) * P .

Moreover functions of this form generate a dense subspace of Sy (Vy(A)).
Lemma 1.1. Let @1, @2, and ¢ as above. Then

Z o (h" uh) = 0% (vh) O (uh) |

1eZo(k)/Volk)

for hESp;TA) u, vEV,(A).

Proof. As a function of u, both sides are elements of Ci(V, (k) \Vo(A)).
For any ¢E€S (Vo(A)),

-1, -1 ¢
.]‘Zo(A)V,,(k)\Vn(A) Z (p(h v luh)@ (uh)du

1€ Zo (k) \V, (k)

= )(p(h'lv'luh) 0% (uh)du

Zo(A)\Vo(A

= ¢ (u) O¢ (vhu)du

Z0(A)\Vo(A)

= 92.9% (h)

= (@, ¢2) 0% (vh) .
Since the pairing (,) is non-degenerate, the lemma follows.

Lemma 1.2. Let (0, W) be a representation of Vo (A) on which Zo (A)
acts by ¢. Assume that (0,W) extends to the represention of Se(Vo(A)). Then
0(Se(Vo(A))) Wis dense in W.

Proof. Let @ be a linear functional on W such that <o (@)w, o> =0,
for any ¢ €S54 (Vo(A)) and any wEW. Then for any vi= (1, y1, 21) € Vo (A),

<o) o(@)owihw, w>= ¢ (v) <olwwrtHw, w>dv

Zo(A)\Vo(A)

= V(A)<0(v)w,171'><p(v)(/)(x1y—ry1)dv.
If Supp (@) is compact mod Zo(A), then this integral is absolutely conver-
gent and equal to the Fourier transform of <o (v)w, w> ¢ (v). Therefore <
o(w)w, w> must be identically zero.
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Let C5 (D (k)\D(A)) be the space of functions f on D (k)\D (A) such that
f(zvh) =¢s(2)f (wh) for any zEZ(A), vEV (A), hEH(A). We regard theta
functions as elements of C3 (D (£)\D (A)) by the embedding ¢.

Proposition 1.3. Let W be a closed subspace of C3 (D (k) \D(A)) in-
variant under the vight translation of V(A). Then functions of the following form
genevate a dense subspace of W.

O (vh) o \V(Mf(uh) 0% (uh)du ,
Here vEV (A), hEH (A), FEW, $1.9.ES(X(A)).

Proof. We regard W as a representation of V (A) by the right trans-
lation p. Let ¢ be as in Lemma 1.1. Then

¢)f (wh) = f v ® ) ) du

= o (W™ uh)f (uh)du

Z(A\V(A)

= -1,,-1
_fz(A)V(k)\V(A) Z @ (h w7 uh) f(wh)du .

1EZ(R)\V (k)

Since the last integral is absolutely convergent, the assumption of Lemma 1.2
is satisfied. Therefore the proposition follows by Lemma 1.2.

_Remark. Stone von-Neumann theovem implies that any representation 1
of D(A) on which Z (A) acts by s is essentially a tensor product:
(wgoe) Pt . _ _
Here wgy is the Weil vepresentation of J(A) and 7 is a representation of H(A).
(¢f. Piatetski-Shapiro, [11]) Proposition 1.3 means that when T is realized in

Cc2(D(R)\DA)), 7 is the space generated by functions on H(&)\H(A) of the form:

»/:’o<k)\v.,myf(uh) 0? (uh)du
hEH(R), FEW, $ES (X (A)).

§2. Eisenstein series of Siegel type

In this section, we consider Eisenstein series of Siegel type. Let mnu be
positive integers. Although our theory works for other groups considered in
[16], we will confine ourselves to the following situations for the sake of sim-
plicity.

(Case 1): Symplectic or metaplectic case:

( | S | P )’g _ ( | - Lotn )]
—Lain Oman —Lpin Omsin

G Spm+n [g eGLZm+2n
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(2)

A'B=B'A, C'D=D'C, A'D—B'C= 1m+,,] ,

A, B, C,DEMpyn k),

A B )
men AT

AE€EGLun, A'lBESymmm (k)] ’

z 0
OOn

2E€Symy (k)

0m+n 1m+n

lm 0
Omn
- X ln

1, x
0 1,

0m+m

X EMun (k)
| S

_'r ln J

Lntn

ty 0,

Yy EMmn (k)

0m+n 1m+n

1, x z vy
0 ln 'y 0,
V= X, YEMmn (k) , z—x'y ESymum (k)

m 0 0, O
0 0 B (A B)

H= ESPu{=Spu .
0, O 1, O cD

Z can be identified with Symm (k). Any homomorphism Z—Fk is of the
form: z+—tr (2S/2), for some SESym,, (k). We denote this homomorphism by
S, too. One can easily check that Vo=V/Ker(S) is a Heisenberg group if and
only if det S#0.
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(Case 2) Unitary case:

Let K be a quadratic extension of k, or k® k. Let 0 be the non-trivial auto-
morphism of K/k if K/k is a quadratic extension and (x, y)°= (y, x) if K=k ®k.
We fix an element 7 such that n°=—7. For a matrix 4, we denote A*="'4°.

We denote the space of Hermitian (resp. skew-Hermitian) matrices of size n
by Her, (K) (resp. SH,(K)).

G=SUm~+n, m~+n)
g 0m+n 1m+n *_ 0m+n 1m+n
- lm+n 0m+n - lm+n 0m+n

detg=1, A, B, C, DEMpyn (K),

= IQ € SLom 421 (K)

-(e2)

AB*=BA* CD*=DC¥*, AD*—BC*ZI,,,M] ,

A B
P= ( ) det A€k, AT\ BEHermn(K) | ,
m+n (A *) -1
1 z 0
m+n 00,
7= zEHer, (K)
0m+n 1m+n
( lm X 4 y
0 ln y* On
V=] X, YEMun (K), z—xy*EHerp, (K)
1, O
\ e | T
(/ 1, x
0y,
0 1, +m
X = €My, (K)
1, O
| 0m+n —x* ln
0, y
1m+n %
y* 0
0m+n 1m+n
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1, O 0, O
04| 0B A B
H= eSUm, n) (=SUMm,n) .
0 0 ‘ 1n 0 ¢ D
0 ¢C 0 D

Z can be identified with Hern, (K). Any homomorphism Z—k is of the
form: ztr (2S), for some SEHern, (K). We denote this homomorphism by S,
too. As in case 1, one can easily check that Vo= V/Ker (S) is a Heisenberg
group if and only if det S#0.

Let w be a unitary quasi-character of A*/k*. Let s€C. Let I(w, s) =
I¢(w, s) be the space of functions f on G (A) such that

f(pg) = w(det A)|det A|**f(g)

A B
for any gEG(A),p=< )EP(A). Here p=%l—, or m+n,

according as G =Spmsn, or SU(m+nm~+n). We also assume f is right finite
by standard maximal compact subgroup of G (A).

For (Case 1), we define I (w, s) "=I¢(w, s) ~ by the space of functions f
on G (A) Spm+n (A) such that

f(pg) _SW%PA_)CU (det A) S+ g)

A B — —
for any g EG(A), p= ((0 gt ) e)EP(A)’ where P(A) is the inverse
m+n

image of P(A) in S;;;:-n (A).
We define an Eisenstein series E (9; f) of type (w, s) (resp. (w,s)~) by

E(g; /)= Zf(rg) ,

r€P\G

fe€ls(w,s) (resp. I¢(w,s)”). This series converges for Re(s) >0, and can
be meromorphically continued to whole s-plane if f depends on s holomorphi-
cally. _

The Weil representation ws of H(A) on S(X(A)) is given as follows:

(Case 1): In this case H(A) is canonically isomorphic to either S,D;TA) or
Spa(A) X {1, according as m is odd or even. We regard ws as a representa-
tion of Spa  (A) by the canonical homomorphism Spﬁ)-’H (A). Then we have:

A0,
ws<<<n - ) 8>>¢(X)_8 Tﬁ'de“ﬂ ¢(xA4)
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ws(((;" 113) e)>¢(X)=6’”¢s(XB'X)¢(X) ,

ws (wn) ¢ (X) =Fsp(X) ,

Fs¢(X)= ¢ (Y) ¢ (trSX'Y)dY .

X (A)

Here 7s (a) is the Weil constant with respect to S. If S is equivalent to
diag (s1, s2,..., sm), then 7s(a) = H:”:lr(s;a)‘

(Case 2): In this case H(A) is canonically isomorphic to H (A) X {+1}. We
regard H(A) as a subgroup of H(A). Then we have

A 0,
ws(((}n (A%) 1 ))¢(X)—Xx/k(detA )|det A|"¢(X,A4) ,

L EE—

ws (wa) ¢ (X) =Fsp (X)
Fop(X)= [ $(V) ¢ (Trutr (SXY*))aY .

Here xx/ (a) is the character of A*/k* corresponding to K/k by the class field
theory.

§3. Fourier Jacobi coefficients of Eisenstein series

Definition.  Let ¢ be a C*~function on G (K)\G (A). The S-th Fourier-
Jacobi coefficient @s of ¢ is a function on D (k) \D (A) given by

¢s (wh) z.fzu-)\zm) ¢ (avh) ¢5* (@) dz

vEV(A), hEHA). Obviously ps€CZ (D (£)\D(A)).

As is shown in §1, the representation of Df(T&) generated by the
Fourier-Jacobi coefficients of Eisenstein series are generated by functions of
the form:

(3.1) 0% (vh) Es(uhyf) ©% (uh)du

V(k)\V (A)

where vEV(A), h€EH (A), o1, P2 ES(X(A)).
We consider the functions of the form;
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(3.2) fv 20 (whyf) ©% (vh)dv

where ¢ES(X(A)).

Let Q be the normalizer of V in G. The double coset P\G/Q is naturally
bijective to the Weyl coset Wp\W¢/Weq. By Casselman [3], each double coset
of Wp\ W¢/We has unique element of minimal length. From this, one can
easily check that a complete set of representatives of Wp\W¢/Wq is given by

Om—i 0 _lm—i 0
O 1n+i 0 0n+i
&i:
lm—i 0 Om—i 0
0 0n+l 0 1n+l

1=0, 1>, m. Note that P&Q is the unique open cell.

Lemma 3.1. If TEG is not contained in the open cell P&Q, then S is not
trivial on y7'PYN Z.

Proof. We may assume 7=§;, i >0, since for any ¢ €Q, ¢ normalizes

Z and ¢Sq7! is also non-degenerate. It is easily seen that y~! P, N Z contains
the subgroup of consisting of the last column and row.

Let <, > be the Hilbert symbol on A*XA*., Put x,(x)=<a, x>.

Theorem 3.2. Let fEI(w, s) or I(w, s)~. If ES(X(A)) is right fi-
nite by the action of the standard maximal compact subgroup of H(A), and
Re(s) 20, then (3.2) is an Eisenstein series associated to:

ROif, @)= [ flumeivwsh) s ush) § Odv .

The type of R (h; f, @) is as follows.

(Iy(wxa, s),a=(—1)2det S , If G=Spmsn, 2lm, f€Ic(w, s)
In(wxa, s)",a=(—1)2det S, If G=Spmen 2lm, fE€Ic(w, s)~
B.3) Y In(wxa )7 a=(—1)"2 et S . If G=Spmsn, 24m, fE€I;(w, 5)

Ii(wxa s), a=(—1)"7"det S, If G=Spman, 24m, f€I¢ (w, s)~
Iy (WX ™k/k0 S) If G=SU(m~+n, m+n) .

Proof. We may assume (3.2) is absolutely convergent. We treat
only (Case 1), and f€I(w, s). The proof for the remaining cases are similar.
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We break up the coset P\G into the following disjoint union:

Pe= U P\re@) | (P\PEQ) .

By Lemma 3.1,

vl'l/(k)\V(A)ES (vh; ) ©° (vh) dv

zfvoz)\v(A)E (vk; f) O (vh)dv

:Z Z f Vi (T0R) ©° (wh) dv

i>0 yEP\PEQ

+ Z j:/(k)\V(A)f(th)mdv .

TEP\PERQ

By Lemma 3.1, the first integral vanishes. One can easily check
P\P&Q=6 - (Y\V) - (Py\H) .

Here

A %k
Pr=1\o, -

Since each y€H normalizes V (k) and V (A),

Z ﬂ,(k)\v(Arf(th) O° (vh)dv

TEP\PEQ

- E Z fv(k)\vmrf(&ohrvh) 6° (wh)dv

nEY\V 7€P\H

= Z Zfv(k)\v(Arf(&rlvrh)@¢(vrh)dv

neY\V reP,\H

- Z »[;‘(k)\vmf(SWTh)mdv

A EGLn] ,

rEPY\H
= Z\ a7 Y. Flws () ¢(0)av
= Z fv(Mf(’SOWh)F(ws(1’Th)¢(0))dv

reP,\H
= Y [ ) osunrn) ¢ ©)dv

TEPy\H

=V [ mentanh) w5 ) O

TEPu\H
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Put

R (h; f, ¢)=fvwf(wm+nvwnh)ws (vwah) ¢ (0)dv .

The convergence of R (h; f, ¢) will be discussed later. We have shown that

(3.1) = Z R(yh; f. ¢) .

7€ Py\H

We have to prove R (k; f, ¢) €I (w, s) .

R(h; f, ¢) =fvwf(wm+nvwnh)ws (vwyh) ¢ (0) dv

1, x |z—x'y y
0 1, fy 0,
il JO I I e ush
ywd rwd za 1, 0
| I
—'r 1,
X ws (wah) @ () ¢ (tr (S (z+x'y) /2) )dzdydx
2y
lmin .
J 2
_j;w )-(A).fzwf Wmn wah
0m+n 1m+n

X ws (wah) @ () ¢ (tr (S (z+2x'y) /2) ) dzdydx

zZ Yy
Lo |
LS
“Jra Z(A)f W 'wnh
0m+n 1m+n
X Fg (a)s (wnh) ¢) (y) ds (z)dZdy
zZ Yy
Lo l ,
y 0,
_frm)fzwf Wt wih
0m+n 1m+n

X ws(h) ¢ (—y) ¢s(2)dzdy
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z y
1m+n '
Sl v
“Jra z(Arf W +n wah
Om+n 1m+n
X ws(h) ¢ (—y) ¢s(z)dzdy
1, B
If p= , €}, then
On l"
2y
Lusn ;
y 0,
Wm+n Wnp
L, 0O 00 z+yB'y y
lyin
B’y ln O B 'y On
= Wm+n Wn
1, —yB
0m+n 0 ln 0m+n 1m+n
We have
z Yy
1m+n ‘ ;
y 0O
Rph; /. ¢):.[Y(A)fsz Wmtn waph
0m+n 1m+n
X ws (ph) ¢ (—y) ¢s (2)dzdy
z+yB'y y
1m+n
o f f v O
&) z(Arf Wt wah
0m+n 1m+n

X ws(h) ¢ (—y) ¢s((z+yB'y) ) dzdy
=e"R(h; f, ¢) .

A 0,
If p= , € ], then
0, ‘A™!
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2y z yA
Lo | e |,
y On (yA) On
Wm+n Wrp =PWm+n Wn
0m+n ‘ 1m+n 0m+n ’ 1m+n
We have
zZ Yy
1m+n ‘
y 0
Rph: /. ) :fy(A).fzmrf Wt waph
0m+n ' 1m+n

X ws (ph) ¢ (—y) ¢s (2) dzdy

=8m___& (det A)ldet A|S+m+”T+1f' f
Y(A)J Z(A)

7-s(det A) “
z yA \
! (yA) 0,

wnh)a)s (h) ¢ (—yA) ¢s (2) dzdy

1m+n

S wmen

0m+n 1m+n

—en LW e 4)|get 4

s+l .
7_s(det A) 2 R(h f, @) .

The theorem follows by the property of the Weil constant:
7(@) 7 () =<ab>7(1)7(ab) .
We define holomorphic sections of I (w, s) as in Ikeda [6]. Roughly
speaking a holomorphic section of I (w, s) is a function f (k) which is holo-
morphic in s€C, and f (h) €I (w, s) for each s€C.

Lemma 3.3. If 1/ (h) is a holomorphic section of I(w, s), then R (m; f°, ¢)
1S absolutely convergent for the domain

n—m—1
(3.4) Re (s) >‘ 2
—un+m  (Case 2)

(Case 1)

and can be mevomorphically continued to the domain

_n—m+1
(3.5) Re (s) > [ g (Casel)
—n+m—1 (Case 2)
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Moreover, R (m; £, @) is holomorphic on

_"g] (Case 1), m=1,
(3.6) Re (s) > _% (Case 1), m>1 ,

—n+m—1 (Case 2)

Proof. We may assume f* and ¢ are decomposable; /¥ = [If®, ¢ =
[I¢,. There is a finite set T of places of k such that
v

(1) T contains all places above 2, o,

(2) T contains all places which ramify in K/k in Case 2.

(3) If v&T, then w, is unramified and ¢, is of order 0.

(4) If v&T, then 9|k, =1, and @, is the characteristic function of 0%
We have to show the absolute convergence of

2y
| . ;
) y 0n
ny(x )L(K) S7 \wmen ¢ (—y)|dady .
' 0m+n ‘ 1m+n
For vé& T,
z2 Yy
Lusn ,
) y 0,
fY(Ku)-fZ(Ky) i \wmen ¢, (—y) |dzdy
0m+n lm+n
2y
1m+ﬂ ¢
) y 0,
Z(Kv) fi | wman dz .
0 1n

This can be calculated by the usual Gindikin-Karperevich argument:

C( gn=mtl m+1>
v Cv(23+n—m+27) (C 1)
ooty L glenimni=ay (o
Lo (s+n—m-+r, xkid) (Case 2)
1 L,(s+n+m+1—r, xk/t)



Fourier-Jacobi coefficients 633

It follows that the product over v € T is absolutely convergent for the domain
(3.4). Ifve&T,

2y
Lnsn .
f (s) y On
v | Wm+n dz
Z(Ky)
Otn ’ ) P

is absolutely convergent for the domain (3.5). Moreover it is slowly in-
crease function with respect to the variable y. Therefore the local integrals
are absolutely convergent for the domain (3.5). We proved the first state-
ment. For the second statement, it will suffice to prove that

z oy
1m+n ‘ '
y 0, -
H fY(Ku)j-Z(Kv)fl()S) Wmtn ¢v(_y)¢s (Z) dZdy
veT 0m+n \ 1m+n
z 0
o | 0
= HfZ(K rfff’ W4 ¢s (z) dzdy
T Ormen ‘ Lntn

can be meromorphically continued to the domain (3.5), and is holomorphic on
the domain (3.6). In fact this kind of integral is calculated in Shimura [14],
[15].

LT<S+n-;-1‘ an) ﬁ 1 (Case 1)
pra— — 5 m: even,
LT(H%_ w) L1 Lr2s+ntm+1—2r, @) P
X mﬁ“ . (Case 1)
1 — > m: odd,
LT(S_'_n-H;H- , w) e Ly Cs+n+m+1—2r, w? rello, s)
z (Case 1)
H 1 m: even,
Lt (2s+n+m+2—2r, 0?)

=1

X

fe€llw,s)~
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il (Case 1)
+1 1
L ( 42 , ) m: odd,
T\ PR H Lr 2s+n+m+2—2rw?
=1 fE€Iw,s)~
ﬁ 1 (Case 2)
VL Le(stntm+1—r, wxih) JEI(w, s)

Here A= (—1) [Z]det S. Thus the second statement is proved.

Corollary 3.4. Let £ (h) be a holomorphic section of I (w, s).
Put R® (h) =R (h; O, §). Then

 f© ¢ = . (s)
./‘v(k)\v(A)E‘/’(Vh’f{ ) 0% (wh)dv=E (h; R®) ,

for the domain (3.5).

Lemma 3.5. _ Let s be a complex number in the domain (3.5). Let R (h)
be a function on H(A) whose type is as in (3.3). Then there exist an f (9) €
I (w, s) (or I (w, s) = in (Case 1)) and ¢ €S (X (A)) such that R (h) =

R(h; f, ).

Proof. We may assume R (k) is decomposable, so the problem is of
local nature: we have to find f, and ¢, such that

Yy
Lysn .
y 0,
R(h):j;m)fzmrf Wmtn wnh
0ﬂ1+71 1m+n

X ws(h) ¢ (—y) ¢s(z)dzdy.

First we assume v is non-archimeden. For simplicity, we treat (Case 1)
and omit v from the notation. Take any non-zero € S (X (k)). Take ¢ €
S(Z(k)) such that

20? (x) ¢s(2)dz=a#0 .

When §E€P * wpym * V * w, * H, we put

+1

@) =lgl'a " w (det A)|det AI*** 7 ws(h) ¢ (—y) @ )R () .

Here

o=, 1oy .
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z2 Yy
) P ,
y 0
g =pWm+n wah
0m+n ‘ 1m+n
A b eP(k)
p= )
Opmsn ‘AT

Put (9) =0, if &P * wmen = V = wn * H. Then one can easily check that this
is a well-defined function in I¢(w, s), and that R (h; f, ¢) =R (h).

Next we assume v is archimedean. Take ¢ and ¢ as above, and now we
assume ¢ is right Ky-finite under ws. Define f(g) as above. Then f(g) is no
longer Kg-finite function, but a well-defined continuous function. Put
L'-topology on I (w, s) by the restriction to (P N K¢) \K¢ = P\G. Put
L™-topology on Ix (w, s), similarly. Then the proof of Lemma 3.3 implies
(f, ¢)—R (h; f, ¢) is continuous with respect to L'-topology on I¢ (, s),
Schwartz topology on S (X (k)) and L'-topology on I¢(w, s). Ke-finite vectors
are dense in the L'-completion of I¢ (w, s), so we can find K¢-finite f(9) such
that R (h; f, @) is arbitrarily close to R (k) in L”-topology on Iz (w, s). Since
the subspace of Iy (w, s) of given Ky-type is finite dimensional, this implies
there exists an f(9) €I¢(w, s) such that R (k) =R (h; f, ¢).
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