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Poisson measures on the configuration space
and unitary representations
of the group of diffeomorphisms

By

HIROAKI SHIMOMURA

Introduction

Let X be a connected para-compact but not compact C*-manifold and m
be a locally Euclidean measure with smooth local densities. In [6], Vershik-
Gel’fand-Graev considered representations of Diff X, group of diffeomorphisms
with compact supports, defined by quasi-invariant measures, especially Pois-
son measures Py in the space I'x of infinite configurations on X. The present
paper is a supplement of their works and we summarize it as follows : First in
section 1 we extend the notion of configuration space I'x to some general topo-
logical space X and show that I'y is a standard space equipped with a natural
measurable structure 6. Next we consider Poisson measures P, with intensi-
ty m on the measurable space (I'x, €) and investigate the mutual equivalence
of P, with respect to another one, say P» and investigate their ergodicity
with respect to action groups arising from the basic space X. These are con-
tents in section 2. Lastly in section 3 we generalize the results obtained in
[6] of the equivalence of elementary representations of Diff X generated by
Poisson measures. QOur main result is stated in Theorem 3.1 and its Corol-
lary in section 3.

1. Basic properties of configuration space

1.1. Definition of configuration space. Let K be a Polish space.
That is, the topology of K is derived from a metric d such that (K, d) is a com-
plete separable metric space. And let K" be the direct product of the n copies
of K and define a metric d% on K" such that d (x, y) = 2% d (x;, yi), for x=
(x1, **, xn), y= (yy, =+, yn) EK". Then K" is a Polish space with the metric
d% Put K"={x=(xy, *, xa) lxi#x; for all i%j}. As K" is an open set in K",
K" is again a Polish space with the induced topology. A metric 0% with
which (K", 6%) is a complete separable metric space is for example as follows:
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dk (x., y) _
di(x, y) +di (@, (K")°) +di(y, (K")°)’

0% (x, y) =

where

d% (x, (E”) °) is the distance from x to the complemented set of K"
Next let us consider an n-point set 7 in K. The collection of all such 7’s will

be denoted by Bi. For y={x1, -** 2}, ¥ ="1x1, -+, 22} €EB% put

d’ (r. 1) ZJQGf dg ((xy, =, xn), @ow, =, Tom))
and
o (r, 7) = inf Ok ((x1, =, xa), @ow, "+, Tomw)), where &, is the
g n

symmetric group. It is easily checked that d§” and 0§ are equivalent metrics
on B% and (B%, 6) is a complete separable metric space. Therefore Bk is a
Polish space with this topology. The Borel o-field on B% will be denoted by

B(B%). Now for each subset A in K let us consider a number map N, : B —
{0, 1, -+, n} defined by Na(y) =|rNA|=*(yNA), where *A denotes the num-
ber of elements of a set A.

Lemma 1.1. If Uis an open set in K, then {y[Nu(7)21} is also open in
B% for each 1=0, 1, -+, n.

Proof. There is nothing to prove for I=0. So let Ny (o)) 21 =1. By
the definition of Ny, some [ elements x, *--, x; of 7o exist in U. Take >0
such that U, (x;) CU (=1, -++,1), where U. (x;) = {x €K|d (x, x;) <e}. Then

it is easy to see that d’ (1, 1) <e implies Ny (7) 21. (Q.E.D)

It is a direct consequence of the above lemma that Np ( <) is B(BE)
-measurable for all Borel sets B in K. The converse assertion also holds.
For this let us see the following lemma.

Lemma 1.2. For any €>0 and for any 7€ Bk theve exists some open set
Oe (y) which belongs to to the smallest g-algebra B with which all the functions
Ng (+) (B is a Borel set in K) are measurable such that 7€ O (7’) c

{rlag’ (7, 7) <e).

Proof. For the set y={xr), -, x4}, let us take 1 such that e>7n>0 and
Un/n (I,') n U,,/n (1‘,) = ¢ (l 3&]) and put Oe (')’) = n7=1{')” T/ N Un/n (x,)|% 1} .
Then we have Y€ O, (y)€%B and O:(7) is an open set by Lemma 1.1. And if
Y ={y1, ", ya} € O: (7), then by the choice of  we may conclude that y; €

Ugpn(x:) (G=1,++,u). This implies d¥’ (7, ¥) <& and the lemma is proved.
(Q.E.D)

Now take any open set G in Bt. Then by the above lemma and the separabil-



Poisson measures 601

ity of B% there exist some open sets Oe, (7.) (€,> 0) such that G =
Up-10e,(74). So we have G €® and therefore B(B%) C%B. Hence we have,

Theorem 1.1. (B%, d$”) is a Polish space and the Borel o-field B (B%)
coincides with the smallest o-algebra with which all the functions Ng(+) (Bisa
Borel set in K) are measurable.

Next let us consider the direct sum of By (n =0, 1,+-+), Bk = 20 BE,
where By = {¢}. It is easy to see that Bg is again a Polish space with the
direct sum topology and the Borel o-field B (Bk) coincides with the smallest
o-algebra with which all the functions Ng ( *) on Bg (B: Borel sets in K) are
measurable. Now consider a topological space X which satisfies following
two properties.

(B.1) X is a union of increasing subsets K, (m=1,2,+-+), and
(B.2) K, is a Polish space with the induced topology of X for each n.

We shall call such a sequence {K,} basic sequence. Since a map Tk, xn (n
<m): YE€Bgn—7N K, E Bk, is measurable with rspect to B (Bg,) and B (Bk,)
in virtue of Theorem 1.1, so the projective limit of (Bk,Tgnkm) . lim (Bgs,

ﬂxn.Km) :{(Yn) eH::lBK,:'”Kn,Km (Tm)=7’n for m>n} is a Borel set in the infinite
product space Il;-,Bk,, and the later is a Polish space with the product topolo-
gy. Thus lim (Bk, Tk.k») is a standard space. (See, [4].) As is easily

seen, there is a one-to-one correspondence between lim (Bk, Tknkm) and a

set [y= {TITCX such that |rﬂK,,|<00 for all n} which is called the configura-
tion space on X. So identifying lim (Bky, Tknxm) with Iy, we have a stan-

dard measurable structure on Ix. It is easy to see that its o-algebra € coin-
cides with the smallest o-algebra with which all the functions Nz ( +) on Iy
(B: Borel set in X) are measurable. Thus we have,

Theorem 1.2, The measurable space (I'x, €), where € is a minimal
o-algebra with which all the functions Ng( + ) (B: Borel set in X) are measurable
1s a standard space.

For a Borel subset Y in X we put I'y={yElklyCY) =€yl lyn Y=
0}. Naturally I'y is a measurable subspace and its o-algebra also coincides
with the minimal o-algebra with which all the number maps Ng( * ) (B: Borel
set in Y) are measurable.

Remark 1. When X is a locally compact and o-compact metrizable
space (for example X is a para-compact manifold), there is an increasing
sequence {X,} of open sets with compact closure such that Uy_,X,=X. If we

choose this sequence {X,} as a basic sequence, then the configuration space I'y
consists of countable sets 7 which satisfies |rﬂK|<00 for all compact sets K.
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As is easily seen, it is equivalent to say that ¥ has no accumulation points in
X.

1.2. Definition of Poisson measure. Let m be a non atomic Borel
measure on X such that m (K,) <o for all n where {K,} is a basic sequence.
Let K be one of K,'s and put mx=m|K. By the non atomic assumption the

product measure mk% of n copies of mg is regarded naturally as a measure on
K" So we can define a measure mg, on B (B%) as the image measure of m}
by a map pk : (xy, ***, xn) € K*—{xy, =+, x4} EBE.

Put Pxm=-exp(—m (K)) 250 m;',,' where mg, is a probability measure on the

one point set Bk. It is easy to see that Pk, is a probability measure on

B (Bk) and the following formula holds for any non negative integers ny, ***, n,
and for any disjoint Borel sets By, ***, B; in K (under an agreement that 0°=

1),

m (By) "exp (—m (B;))
nil

1) Pen (N 7N B =n}) =T,

Especially, |rﬂB,~| (1=1,-++,1) are independent random variables whose laws
are 1-dimensional Poisson measures with mean m (B;). Further it is a direct
consequence of the above formula that Pk is consistent. That is, Tk,xPkim
= Pgnm for all n<I. Since Bk, (n=1, 2,+:+,) are Polish spaces, so by the
well-known theorem (for example, see [4]) there corresponds uniquely a
probability measure P, on the projective limit space (I'x, €) such that mx,Pn
=Pkum for all n, where mx, is a map : yY€EI'x——7NK,E Bk,

The measure Py is called the Poisson measure. The following is also a direct
consequence of (1). For any non negative integers #ny, **, #; and for any dis-
joint Borel sets By, ***, B; in X we have

m (B;) exp (=m (B;))
nil

(2) Pm(n£=l{TllTﬂBx|:"z}) =Hl‘=1

Remark 2. Let g, be a probability measure on B (Bg,) defined by

w Ci . .
Uk = ,,=07L',£ mg,n Where ¢;, are non negative constants. If it happens that

UK (li 1, 2,---,) is consistent by the map mx,k, choosing suitable constants
c1m, then a probability measure y arises on (I'x, €) such that mgu= k. In
[3], Obata considered a characterization of such ¢ and obtained a result that
in case m (X) = oo, u is a superposition of Poisson measures P, (c=0) .

More exactly, ¢ can be represented as ,u=j; PemA (dc) with a suitable Borel

measure A on [0, ©©).
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2. Poisson measure

2.1. Basic formulas. Let X be a topological space with properties
(B.1) and (B.2), {K,)be a basic sequence, and m be a non atomic Borel mea-
sure on X such that m (K,) <o for all x.

Lemma 2.1. Let o (x) be a non negative measurable function on X such
that o (x) =1 on K% and j; o (x) m(dx) <o for some n. Then a function

| - (x) defined on I'x is measurable and for any non negative integers ny, **
n; and for any disjoint Borel sets By, ***, B; we have,

) s Tleer 0@ P (d7) =exp o’ () —m (K:)) -

P (Ndylly N Byl =n3}), where m” is a Borel measure on X defined by m’ (B) =
_/; o (@)m(dx).

Proof. Without loss of generality we may assume that B;C Ky (i=1,
-+« 1) for some N(2#n). Let us approximate p (xr) with step functions o, (x)
(h=1, 2,:++) which is increasing with respect to h : o, (x) = Zf<1caxar (@) +
xx$ (x), where {4,, -, A} is a Borel partition of Ky and x4 is the indicator
function of a set A. It may be assumed that {4,, -*, As} is a subdivision of

{By, =+, B, KN (B U=+ UB)Y, so we have By = U{LA;, B, =
Uftg+1 Ai, oo, BiI= Uil 141 A; for suitable numbers 155, < - <s,s.

Since Ize,01 (x) = [Ti=1c* on Ni=i{7lly NA:|=F:}, it is a measurable function
of 7 for each h and so is [ze,0 (x).
Next as we have,

fn‘-l(rlTnBJ:H{) HIETph (x) Pm (d 7’)

=2 fnf.l(rlrnmI:k,) [Tioici*Pr (dT),

where 22’ is a sum for ky, **+, ks such that b1+ - +kg=ny, =+, bsyr1+ = +
ks,=mn; and k;=0, 1, -+, (s,+1<5<s),

=SS, O ‘m (A;) e:,.l[) (=m(A;))
=exp (—m (KN\ UlaBi)) exp (j;(N\UL.B,ph (r)m (dx) ) .

<~/:9.»ph (x)m(d.r))niexp(—m(Bi))

n,-!

I,
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So (3) follows by letting h —— 0. Notice that m’ (Ky) —m (Ky) =m’ (K») —
m (Kn) . (Q.E.D))

The following result is derived by the same reasoning, so we omit its
proof.

Lemma 2.2, Let o (x) be a non negative integrable function defined on
Kn and put m' (B) =pr (x)m (dx) for all Borel sets B in Kn.

Then we have

@ Pruw (B) =exp(—m’ (K) +m () [ Tacro @) Prum @)
for all EERB(Bx,).

2.2. Mutual equivalence.

Let m and m’ be non atomic Borel measures on X such that m (K), m’ (K»)
<o for all .

Theorem 2.1. If Pw is absolutely continuous with respect to Py (Pm=
P), then m=m'.

Proof. Let m (B) =0. Then m (BNKy,) =0 for all n and Pn (7/ly N BN K,|
=1)=0. From the assumption, it follows that Pm (7|lyNBNK,/=1) =0 and
therefore m" (BN K,) =0 for all n. Hence we have m' (B) =0. (Q.E.D.)

The first part of the following theorem is already stated in[5]. However
we prove it in a different even simpler manner from the original one.

Theorem 2.2.  Assume that m=m’, and put ((iim () =p (). Then in

m
order that Pm= Pu, it is necessary and sufficient that LL/p(x) —1%m (dx) <oo.
Further if L |Vo(x) —1|2m (dx) =0, then Pm and Pw', arve singular.

dPKn m’
dPKn,m (r)

Proof. As is easily seen from (4), we have Pgum <Pgnm and
=exp (_m, (Kn) +m (Kn)>nzerp (.I‘) for all n.
Hence in order that Pmw <P, it is necessary and sufficient that

{ ——"’—‘21;'; - (TﬂKn)] forms a Cauchy sequence in L}, (I'x) which is assured by
nm

the well-known theorem. (See, [7]). So we shall calculate the values

_ APy _ \/dPK[m' 2
o= [, |\ Lo k) — 2B (1) [

for 1 >n, noticing that Ize;nx,0 () and Ilreyn k)40 (x) are independent ran-
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dom variables with respect to Px,,,. Now applying (4)to /E instead of p we
have,

Gni=2(1—exp{1,/2 (m (Kx) —m" (K») +m (K;) —m’ (K)))}

S, Meernrs 0 @) Wecrn /0 @) Prma7))
=2(1—exp(1,/2 (—m () +m (K2) +m (K) —m’ ()}
exp( [ /0@ m ) —m (KK )|
:Z{I—exp<—l/2fKI\K~(m— 1)%m (dx))}.

Thus ¢n; —0 (n, | —0) is equivalent to j;|¢p(x) —1)Pm (dx) <o

If L|./p(x) —1/%m (dx) = o0, then it follows from the above calculation,

(5) lim lim APgpm dPgim ; _
Nn—0 l—oo ['X dPKn,m ( nKn) dPKl,m (TnKI)Pm (dr) O

PKnm'

By the way, d (y N'K,) converges to a function fw (7) for P,,—a.e.7 as
dPKn,m

n —— oo by the martingale convergence theorem, and f. (y) is the density
function of the absolutely continuous part of P,  with respect to P,. Ap-

plying Lebesgue-Fatou's lemma twice to (5), we get frfw (7) Pn d7) =0
X
which shows P, and P, are singular. (Q.E.D.)
Corollary. The Hellinger distance between P,, and P, is given by

4P ()

(6) P, Pn(dy)
22[1—exp 1/2f —1)%m ( )]

2.3. Ergodicity. Let G be a group of bimeasurable maps ¢ : X —
X such that m=~¢ m (image measure of m by the map ¢) and

2
dgm (x) —1|m (dx) <o°. Note that ¢m (K,) <oo for all n, because
xIV dm
1/2
Jom(E) = [ 2m ym )| ([

1
e L]/ ) —afm @)} 4 )

<o, Hence Pyp is well defined and Py, = Pm. Next we put ¢ (7) =1{¢ (x1),
, @ (xn), o} for all y={xy, =+, 2y, =*} ETx. It must be noticed that ¢ (7)
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does not necessarily belong to I'y. Nevertheless, [¢ (7) NK,|=|yN ¢ (K,)|
<o for P,—a.e.7, because ¢m (K,) <. So amap Ty: yETx—¢ (1) €
Iy is defined almost everywhere with respect to Py,.

Definition 1. P, is said to be G-ergodic, if P, (A) =1 or O provided
that P (A©T;1(A4)) =0 for all ¢ EQG.

If m (X) <o, then P, is not ergodic, because Bt = {y €EIxlly|=n} is a
(X)

G-invariant set but P,, (B}) = exp(—m (X)) #1, O for each n. Gener-

ally speaking, the ergodicity of Pm has no relation with that of m. Now we
shall state sufficient conditions for the ergodicity as the following two
theorems.

Theorem 2.3. If for any €>0 and for any n there exists ¢ EG such that

2
¢ (Kn) NKy=0¢ and j;‘ /%‘fnﬁ (x) —1' m (dx) <e, then Py is G-ergodic.

Proof. First of all we shall claim that

(7) P (T Y (E)) £Pp(E) +Ay for all ¢ EG and for all EEE,

“m (dx))

where A¢=2ﬁ {1

In fact we have

(154 0) = [ 2Pon ), (a7) <P (E) + [ |200m (1) -1

—Bom [P ap )
=Pn(E) +2ﬁ{1—exp(—l/2ﬁ(( /%‘mm(x) —1>2m (dr))]l/z,

where the last inequality is derived from (6).

Now let A be a measurable set such that P, (A©Tz' (4)) =0 for all ¢ EG.
We take B, € B (Bx,) such that P, (A©mk, (B,)) <e for a given €>0. Then
we have Pn (ASTy 'k} (B.)) <e+ Ay by virtue of taking E as A©mx,! (B,) in
(7). By the assumption there exists a map ¢ € G such that ¢ (K,) N K,= ¢

and Ay <e. It follows from the regionally independence of Poisson measure
that

P,(d7)

ng(E)+2{fX1

(Pm(A) —2¢) (Pm(A) —€) <Pu(T3'mk, (Bx)) Pm (i, (B)) =

Pm (T¢ T[K (Bn) n 7[K1 (sz)) SPm (Td' 77-'K (Bn) eA) +Pm (7T (Bc) @A )
<e+Ast+e<3e.

Letting e ——0, we have P, (4) P, (4°) =0. (Q.E.D.)
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Definition 2. Let Gx,= {¢ €EG|¢p=identity on K5} and let f be a sym-
metric measurable function defined on K} (I=1, 2, --+).
We say that m is Gks-ergodic, if f is constant modulo null sets provided that

for all 9 E€EGk,, flxr, =+, x1) =f(P(x1), -, ¢(x1)) for mk,—a.e.x= (x1, ",
xz).

Theoren 2.4. If for any n, m is Gky-ergodic for some N=n and for all |,
then P, is G-ergodic provided that m (X) =

Proof. 1f necessary taking a subsequence of the basic sequence, we may
assume that m is Gk,-ergodic for all » and I . Let P}, P2 be image measures of
P, by the maps 7k, 7xs Txg(7) =7 N K4, respectively. Then P, is regarded
as the product measure of Py and P5. Now assume that a measurable set A
satisfies P (AST3'(A4)) =0 for all ¢EG. For each n we put

faln) =) . xa(nUr) Pildr2)  for 1€ Bx,.
Then for all ¢E Gk, we have,

0=, U () (9 () IPh(a) =

Vo explomla) [ (o)) = (9 ) o @)D bk, ).
Thus the symmetric function : (xy, =+, x1)——fn» ({1, ==+, x1}) satisfies the

assumption of Gk,-ergodicity, so it follows that f, ({x, -**, x;}) =const (Zc,,)

for mk,-a.e.x. Define a new measure v by v (E) =P, (A NE) for all EE®.
Then for any BE® (Bk,) we have,

T[Kn fﬂf Tl Pn (drl Z oexp (_l”'l" (Kn) ) Cols mK”,l (B nB}(”) )

Therefore there exists some measure A on [0, ©)such that

= fchml(dc) in virtue of Remark2. As v <P, and llm[b
ZN lyn (K1+1\K1)| _

B oA ¢ for Py —a.e. v by the law of large numbers, so we

have A ({1}¢) =0 and therefore v =4 ({1}) P». This shows Pn (4°) =0 if
A({1}) >0 and P, (A4) =0 if 1 ({1}) =0. (Q.E.D)

The next theorem is already stated in [6] but we shall list and prove it
as an application of Theorem 2.4.

Theorem 2.5. Pwm is G-ergodic under the following situation.
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(a) X is a connected para-compact but not compact C*-manifold,

(b) a basic sequence (K.} is a sequence of conmected open sets with compact clo-
sure,

(c) m is a locally Euclidean infinite measure whose local densities (with respect to
the Lebesgue measure) on each coovdinate neighbourhood are all C*-functions,

(d) G is composed of all C*-diffeomorphisms ¢ with compact supports.

That is, theve exists some compact set K depending on ¢ such that ¢ is identity on
K°.  We shall denote this group by Diff X.

Proof. Fix n and put K,=K, m|K =mk. Then for the proof it is suffi-
cient to show that mk (4) mk (4¢) =0 holds for a measurable set ACK' (=1,
2,++*) which satisfies mk (A©T;' (4)) =0 for all ¢ € Diff K, where Ty : x=
(@1, x) EK'— (¢ (x1), . ¢ (x))) € K' and Diff K= {¢ € Diff X|¢p=
identity on K}. Suppose that mk (4) >0 and put ¢ (B) =mkg (BN A) for all
Borel sets B in K'. By the assumption g is Diff K-quasi-invariant and Diff K
acts transitively on K'. Thus we have g (Uy X -+ X U;) >0 for all disjoint
open subset U;CK (i=1,:+,1). Take an arbitrary point (xy, ***, x;) € K"
and take disjoint neighbourhood U; of x; (=1, -+, 1) which are diffeomor-
phic to disks D; CRI™® under maps ¢, and put ¢ (m|U;) =i A1 X = X A,
is equivalent to the Lebesque measure A on Dy X --- XDy Further we put ¢
= ((/)1, HAN ¢1)Z U X = XU ——DX - XD;and A =(,[)(A NU X - XU).
Now consider a group Diff (Dy X - X Dy) of all diffeomorphisms ¢ on Dy X -+ X D,

such that @ (¢, =+, t) = (@1 (t1), ==+, @i (t,)) for all (¢, -+, t;) EDy X ==+ X Dy,
where ¢; is a diffeomorphism on D; with compact support (i=1, -+, 1). It is

not difficult to show that A|Dy X -=- X Dy is Diff (Dy X -+ X D;) -ergodic. (It is
Py T
even Diff (D, X ++* X D;, 1) -ergodic in case dim (X) >1, where Diff (D, X --- X D,
T
) ={pEDiff (D X -+ X D;) |pA=2}.) Since ¢ '¢¢ is regarded naturally as an
element of Diff K, it follows that (A ;X *X1;) (A©¢(4))=mk(ANU, X+
X Uy) O¢~'¢¢ an UpX-+ X U)) =m§(((A9TaA‘ (4)) NU;x -+ x U;) =0, and

therefore (A ©¢(4)) =0. Hence we have A(A) =0 or 2 (AN D, X+ XD,)
=0. However A (A) >0 which follows from g (U; X =+ X U;) >0. It follows

that mk (ASN U, X ==+ X U;) = (A X -+ X A)) (A\anl X+ X D;) =0.
By the second countable axiom we have mk(A°) =0. (Q.E.D.)

Remark 3. In a similar but rather complicated way we can show that
Pn is Diff (X, m) -ergodic under the same situation with dim (X) > 1, where
Diff (X, m) is the set of all ¢ EDiff X which preserve m.

3. Elementary representations of Diff X generated by Poisson mea-
sures

3.1. Elementary representations. From now on we shall assume
that
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(a) X is a connected para-compact but not compact C”-manifold,

(b) the basic sequence {Xn}is a sequence of connected open sets with compact clo-
sure,

(c) m is a locally Euclidean infinite measure with smooth local densities,

(d) G=Diff X.

In [6], Vershik-Gel'fand-Graev defined elementary representations and
discussed their several properties. Here we pick up a problem of their
mutual equivalence and extend their results.

Now consider the following canonical representation of Diff X in L3, (I'x)

®  Unl@): s G @) s ().

Un is an irreducible unitary representation of Diff X (See, [6]). Moreover
let us consider the following representation V” of another type. For this let
n=1 be an integer and py : )?n—*Bf’y be a map such that (xy, =+, x,)—{x},
=, xa}. Then a function ¢ on Diff X X B% with values in the symmetric
group , &, is defined by the formula, s, (¢ (7)) = ¢ (5. (7)) 6 (¢, 7), where

~

(x1, . x2) 0= (Xow), ***, Toon) and s, : By— X, is a measurable cross sec-
tion of p.. Now we associate with each pair (#, p), where p is a unitary rep-
resentation of &, in a Hilbert space W, a unitary representation V* of Diff X

in L%, (B% W) such that

©) Vo (@) £ () — [ M0 (1) 5 (6 (g, 7)) (97 (1),

dm,

where m, is the image measure of the direct product of n copies of m by the
map p, and ¢m, is the image measure of m, by a map : YEBy——¢ (y) EB%.
If p is irreducible, then so is V*, and two representations V' and V*, where
o1 and p, are irreducible representations of &, and &,, respectively, are
equivalent, if and only if n; =#n, and ) and p; are equivalent (See, [6]) .
Vershik-Gel'fand-Graev called a representation of Diff X of the form

(10) U =Un@V*
elementary representation associated with the Poisson measure and obtained
the following results
(a) % is trreducible if p is so, and
(b) Ulim is equivalent to U2, where ¢ and c; are positive constants, if and only
if c1=cz and 0, and P; are equivalent.

In this section we shall consider the equivalence of Uy, varying m among
all locally Eucidean infinite measures with smooth local densities. To see
this, it is convenient to deform the representation U% to another form. Put
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N*={a= (i, =+ , in) |i; EN such that i,#i, (p#q)}, Z(N", W) ={d|¢ is a W-
valued function defined on N” such that ||¢|[2= Z,,eﬁ~||¢(a) |3 < oo} and H* =
{p€2(N, W)|¢ Goay, *** , tom) =071(0) ¢ (i1, =+, ia) for all GES,}, where p is
a unitary representation of &, in a Hilbert space W. Further let & be the
set of all permutations on N and put oa= (¢(iy), >+, 6(iy)) for cES™ and for
aE€N" As before we define a function ¢ on Diff X X I'xy with values in &> by

the formula, s (¢7* (7)) = ¢ (s (7)) 0 (¢, 7)., where s is a measurable
(admissible) cross section of the map p: X3 (xy, x3, ***)——{xy, 23, -} ETx
with the following property : If we have [y N X =k [0 (X2 N\X1) | =k, 7N
(X,,\Xn_l)|=kn, +«+ . then the first k; element of s (7’) are in YN X, the next k,
element of s (7) are in 7N (X;\X;) and so on. It will be useful to notice that
if [yNX,|=r and ¢ €Diff X, = {¢ € Diff X|¢ identity on X5}, then we have
a(¢g, 7) €G,.

Now let U% be a unitary representation of Diff X in the space L3, (I'x) X H® de-
fined by :

an @) Faa— /2 () P (). 00 )

In [6] it was shown that this U5, is equivalent to that U4 defined in (10). So
we shall work on (U, L}, (I'x) QH").

Theorem 3.1. (Whether 0 and 0’ are irreducible or not)
If there exists a bounded operator T: L3, (I'x) ®H——L},. (I'x) ®H* such that
(@) TUS(p) =Ub (P) T for all € Diff X,
(b) 3 PEH® such that T(1Q¢) #0,
then Py, and P, are equivalent.

Proof. We shall divide the proof into four steps.
(I) Without loss of generality we may assume that ||@||=1 and T is a con-
traction. First of all we take X; (connected open set with compact closure)
and fix it for a little while. So we put X;,=Y.
Further we put P, =g, Pnr = and put g, ¢ equal to the image measure of ¢
by the map : y——=7NY=11, y——7rN Y°=r1,, respectively. Now we consid-

er a bounded operator L2, (I'y) @H—— L%, (I'y) ®H*" defined by
(12) TyF(r.a") =fr cTF(TI. 72, ) 2 (d72) .
Y

Here we identify an element f € L2, (I'y) with F € L2 (I'y) through (=
f(yNY). So L% (I'y) is regarded as a closed subspace of L5 ().

It is easily checked that TyF is really a function of (71, a’) and that
TyF (1, as) =0’ (6) 'TyF (7, a’) for all 6€ &,, where ac= (icw), *** , iow») for
an element a’= (i1, *** , in) EN". Moreover,
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Vyvese S ITeF ()l @) <
f f Z 5l TF (12 ) firpts (@) gz (d o) = TFI <P
I'yd I''yckd?

Thus Ty is also a contraction. Now observe that for ¢ € Diff Y, o(¢, 7) is
independent of 72. So we have,

(13) TyUL () =Us () Ty  for YEDiff Y.

Because

(TyUs(P)F) (7, a") =j;yc (U (P)TF) (11, 120 ) 2 (d2) =

S Eot ) TR @7 G0 06 )0 il

= (U (@) TyF) (1, a").

(I) Let us consider a unitary representation @ (¢) of & in the space H°,

Q(0): ¢la)—¢(07%a). According to section 3 in [6] We split H® into the
direct sum of subspaces that are primary with respect to the symmetric group
©,C &, This decomposition can be presented in the following way, H* =

>® WiQCi, where Wi are the spaces in which the irreducible and pairwise
inequivalent representations p! of &, act. C! is the space on which &, acts
trivially. More exactly we have Q (o) ¢=2;{p}(0) Qid} ¢, with the decom-
position ¢ = 2@, ¢, € WiQCL Further using a natural decomposition,
L2, (I'y) =28 L2 (By) (Note that I'vy= U, B : disjoint union), we have an
orthogonal decomposition L2, (I'y) ®H?=3,2¢, (r, i), where ¢, (v, i) =L2, (B})

Q@ WiQC: is an invariant subspace of the representation U% (¢)), ¢ € Diff Y
whose form on ¢, (, i) are as follows.

(14) Uy (¢) FOw;cy) (7, a)

=/ P (7 (1) (0 (0(. 1) Bid) WiBeh) (a).
Now let us put for ¢ EDiff Y
15) Ur@) (F®uf) (1) =/ L (P (67 (1) 0 o (g 7))

for FELZ, (BY) and for wi€ Wi,
Then we have

(16) U () =UL (¢) Qid on ¢, (7, i).
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U are irreducible unitary representations of Diff Y in the space L2, (B}) &

i and UZ" and UL are inequivalent unless 1=14" and r=7". (See[6].) So it
follows from (13) that there exists a unique integer J; such Ty¢, (r, i) S
@ (r, Ji) unless Ty@, (r, i) =0, and the representations o} and p;are equiva-
lent. Hence we have J;#Ji for i#k Let w,;: Wi—— WY be an intertwining
unitary operator of the representations o, and %, and Jy : L% (By)——

L2, (B%) be a unitary operator defined by JyF (71) = /%ﬁ% (1) F (1),
1

Then it is easy to see that a unitary operator T,, =]y @ w,, : L% (B}) &
Wi— L%, (BY) QW' satisfies

(17) U () Tyi=T, Uy (@) for all ¢ EDiff Y.

() Here we list up the following fact in the representation theory. The
proof will be done at the end of this section.

Fact : Let E;, H;, (i=1, 2) be Hilbert spaces, U; and U, be two equivalent
irreducible unitary representations of a group G in the spaces H; and H,, and
T: H—H: be an intertwining unitary operator of the representations U, and
Us. Suppose that_a bounded operator A: Hy & Er—— H, & E, satisfies
(Uz(9) Qidg,) A=A (U, (9) Qidg,) for all gEG. Then there exists a bounded
operator A: E;——E; such that A =TQ®A.

Applying this fact to the operator Ty|@, (r, i), it follows from (13) (16)

and (17) that there exists a bounded operator U,; : C:—— C'J such that
Tylg, (r, i) =T,:QU,; for all (r,4) unless Ty, (r, i) ={0}. As is easily seen,
U, is a contraction. Consequently for ¢=22;¢,:. ¢,. € W, &QC,.; we have

(18) TY(1®¢) (T, a’) ZZ;,iTr,i®Ur.i (XB,y®¢r.i) (T. a)=
/%ﬁ—}(ro S, (1) (@0®Us) ($r) (@),

where X2’ is a sum for (7, 1) such that Ty¢, (7, i) #0.
Let us evaluate the norm of the right hand side of (18).

“Z;,ixﬂ,y (7’1) (0,,iQUy.1) (¢r.i) (@) “2 ’
=21, (W ZH(0,.QU,) (4.,) @)
= Zr}(B,y (r) ”Z: (0, QU,.1) (¢r.i) ”2
ZZrXB,Y(Tl) il (@, ®U,:) (¢r0) ]2
= ZrXB,y(TI) Zillgrill?=1

(IV) Therefore if it would hold that P» and P are mutually singular, then

the right hand of (18) tends to O for Pw -ae.y as Y=X, 1 X (&= k—— ),
On the other hand the left hand of (18) converges to T (1 ®¢) (7, a’) for

2
W
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Pw-a.e. 71 as k—— by the martingale convergence theorem. Thus we have
T(1®¢) =0 which contradicts to the assumption.

Corollary. (Whether p and 0’ are irreducible or not)

If Uy and U are equivalent as unitary vepresentation, then P, and P, are
equivalent as measure.

By the above Collorary and theorem 4 of section 4 in [6] we have,

Theorem 3.2. If 0 and 0" are irreducible unitary representations of &,
and S, and dim (X) > 1, then the unitary vepresentations U% and U are
equivalent if and only if the measure Py and P, arve equivalent, n=n" and p and
0’ are equivalent.

3.2. Proof of the fact. We shall start from the following theorem
which is well-known.

Theorem 3.3. Let H, E be complex Hilbert spaces and U be an irreducible
unitary representation of a group G in the space H. And suppose that a bounded
operator A on HQE satisfies A (U (9) Qidg) = (U (g) @ide) A for all g € G.
Then there exists a bounded operator A on E such that A =id g&@A.

Theorem 3.4. Let H, E;(i=1, 2) be complex Hilbert spaces, U be an irre-
ducible unitary representation of a group G in the space H and put U; (9) =
U (9) Qidg, (i =1, 2) . _ Suppose that a bounded operator A: HOE——HQE;,
satisfies Up(9) A=A U,(9) for all gEG. Then there exists a bounded operator
A: E;x—FE; such that A =idyQA.

Proof. Case 1. First we shall assume that A s unitary. Without loss
of generality we may assume that dim (E;) £dim (E;). We consider A7}, if the
reverse inequality holds. Take an isometric operator V: E;——FE;._Then we
have U,(9) (idy®V) = (idg®V) U, (g) for all g €G, so (idg®V) A is an in-
tertwining operator of the representation (Ui, H® E;) . It follows from
Theorem 3.3 that there exists a bounded operator B on E; such that (idg®V) A
=idy®B. Hence A =idy@V*B.

General case. Consider an orthogonal decomposition : H®E1=kerg@
(kerA )*. Since (kerA)" is an invariant subspace of the representation
(Uy, HRE,), so there exists a closed subspace F; of E; such that (kerA )=
HQF,. Similarly a closed subspace F, (S E,) arises such that A (HQE,) =

H®F,. Put Al(kerA)*=T and U,(9)|H®F,=W,(g). _Then T: HOF—
HQ®F, is one-to-one and has a dense range, and W,(@) T =T W, (g) for all g

€ G. It follows from Theorem 3.3 that T* 7—:~= idg @ T for some
positive-definite bounded operator T on F,. Hence T is decomposed as T =
V(idy@ﬁ) with an isometric operator V:Im (dg®JT)—Im (T) =HRF,.
Since ﬁ is one-to-one, so V is unitary from HQF, to HQF,.
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Moreover it is easily checked that VT/z (9) V= ;Wl (9) for all g EG.
By virtue of case 1, we have V =idg®V for some bounded operator V: F;—

Fs. Thus, A = (idg®i) T (idg®Pr,) =idu®iV./T Pr, where i is the natural
injection from F; to E; and Pg, is a projection. (Q.E.D)

Proof of the fact © Put B = A (T®idg,) ! =~1;1v (T7'®idg,) . Then the
bounded operator B : HQE,——H,QE, satisfies B (U, (9) Qidg,) = (U2 (9) ®
idg,) B for all gE€G. It follows from Theorem 3.4 that there exists a bounded
operator A: Er——E; such that B =idy,@A, and therefore A =TQ®A.

: (Q.E.D.)
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