A topological proof of Bott periodicity theorem and a characterization of BU

By

Akira KONO and Ken-ichi TOKUNAGA

1. Introduction

The purpose of this paper is to give a simple and topological proof of the Bott periodicity theorem $BU \simeq \Omega^2 BSU$ and a characterization of BU.

Let X be a finite type CW complex which is an H-space satisfying the following properties:

(1) as an algebra, $H^*(X; \mathbf{Z}) = \mathbf{Z}[c_1, c_2, \dots, c_n, \dots]$ where $|c_i| = 2i$;

(2) there exist two maps

 $j: \mathbf{CP}^{\infty} \rightarrow X$ and

 $\lambda: S^2 \wedge X \rightarrow X$

such that

 $(\lambda \circ (S^2 \wedge j))^*$: $H^*(X; \mathbb{Z}) \rightarrow H^*(S^2 \wedge \mathbb{CP}^{\infty}; \mathbb{Z})$ is epic and

 $Ad^2\lambda: X \rightarrow \Omega^2 X$

is an H-map.

Denote the homotopy fiber of $c_1: X \to \mathbb{C}\mathbb{P}^{\infty} = K(\mathbb{Z}, 2)$ by $X\langle 2 \rangle$. Then $Ad^2\lambda$ induces a map $Ad^2\lambda: X \to \mathcal{Q}^2(X\langle 2 \rangle)$ since $\mathcal{Q}^2(X\langle 2 \rangle)$ is the connected component of \mathcal{Q}^2X containing the constant loop and X is connected. The map $A\widetilde{d}^2$ λ is a homotopy equivalence (see Theorem 2.1).

Note that **BU** is an H-space and satisfies (1). Let λ be the classifying map of

 $\widetilde{K}(\cdot) \rightarrow \widetilde{K}(S^2 \wedge \cdot)$

defined by

 $x \mapsto (\eta - 1) \bigotimes x$

and *j* be the classifying map of $\eta_{\infty} - 1$ where η (resp. η_{∞}) is the cannonical line

Received May 6, 1994

bundle over $S^2 = \mathbb{CP}^1$ (resp. \mathbb{CP}^{∞}). In section 3 we show *j* and λ satisfy (2). Therefore Theorem 2.1 is a topological proof of the Bott periodicity thorem.

Now consider the Segal splitting

 $\epsilon_c: \mathbf{BU} \to Q(\mathbf{CP}^{\infty}),$

where $Q(\cdot) = \lim_{n \to \infty} \Omega^n \Sigma^n(\cdot)$. Since X is an infinite loop space by Theorem 2.1, there is an infinite loop map

$$\xi_X: Q(X) \rightarrow X.$$

In section 4 we show

$$\boldsymbol{\Phi} = \boldsymbol{\xi}_X \circ Q(j) \circ \boldsymbol{\epsilon}_c : \mathbf{BU} \to X$$

is a homotopy equivalence. Thus the conditions (1) and (2) are a characterization of **BU**.

2. A periodic H-space

In this section, we shall give the topological condition that an H-space have periodicity.

Theorem 2.1. Let X be a finite type CW-complex which is an H-space. Suppose

- (1) as an algebra, $H^*(X; Z) = Z[c_1, c_2, \dots, c_n, \dots]$ where $|c_i| = 2i$;
- (2) there exist two maps

$$j: CP^{\infty} \longrightarrow X$$
$$\lambda: S^{2} \land X \longrightarrow X$$

such that

(a) $(\lambda \circ (S^2 \wedge j))^*$: $H^*(X; \mathbb{Z}) \rightarrow H^*(S^2 \wedge \mathbb{CP}^{\infty}; \mathbb{Z})$ is an epimorphism;

(b) $Ad^2\lambda: X \longrightarrow \Omega^2 X$ is an H-map.

Then the map

 $A\tilde{d}^2\lambda : X \rightarrow \Omega^2(X\langle 2 \rangle)$

is a homotopy equivalence.

Before we prove this theorem, we will state some remarks. If X satisfies the condition of Theorem 2.1, X is simply connected. Given a simply connected topological space X, we shall denote $X\langle 2 \rangle$ to be the 2-connected fiber space of X, and Ad to be a natural equivalence

 $[\Sigma A, B] \xrightarrow{\sim} [A, \Omega B].$

Note that $\Omega^2(X\langle 2 \rangle)$ is a connected component of $\Omega^2 X$.

First we show an algebraic lemma. Let R be a PID with unit, and $A = \bigoplus A_n$, $B = \bigoplus B_n$ graded R-algebras.

Lemma 2.2. Let A_n and B_n be free R-modeles with finite rank and rank A_n =rank B_n for all n. If there exist a homomorphism of R-algebra $f: A \rightarrow B$ such that all generators of B is included in the image of f, then $f_n: A_n \rightarrow B_n$ is an isomorphism as R-modules for all n.

Proof. This follows immediately from the fact that f_n is an epimorphism for all n.

Proof of Theorem 2.1. First we write

$$k = \lambda \circ (S^2 \wedge j) : S^2 \wedge CP^{\infty} \rightarrow X,$$

$$k_1 = A d\lambda \circ (S^1 \wedge j) : S^1 \wedge CP^{\infty} \rightarrow \Omega X \text{ and}$$

$$k_2 = A d^2 \lambda \circ j : CP^{\infty} \rightarrow \Omega^2 X.$$

Note that $k_1 = Adk$, and $k_2 = Adk_1$. Let $\alpha_1 \in H^*(S^1; \mathbb{Z})$, $\alpha_2 \in H^*(S^2; \mathbb{Z})$ and $\beta \in H^*(\mathbb{CP}^{\infty}; \mathbb{Z})$ be generators as cohomology rings. Then we can write

 $H^{2i+1}(S^1 \wedge \boldsymbol{CP}^{\infty}; \boldsymbol{Z}) = \langle \alpha_1 \times \beta \rangle \hookrightarrow H^{2i+1}(S^1 \times \boldsymbol{CP}^{\infty}; \boldsymbol{Z})i = 0, 1, 2, \cdots$

 $H^{2i+2}(S^2 \wedge C\mathbf{P}^{\infty}; \mathbf{Z}) = \langle \alpha_2 \times \beta \rangle \hookrightarrow H^{2i+2}(S^2 \times C\mathbf{P}^{\infty}; \mathbf{Z})i = 1, 2, \cdots$

Let σ be the cohomology suspension map : $H^*(X; \mathbb{Z}) \rightarrow H^{*-1}(\Omega X; \mathbb{Z})$. Then

$$H^*(\Omega X; \mathbf{Z}) = \wedge (\sigma(c_1), \sigma(c_2), \cdots, \sigma(c_n), \cdots).$$

Since $k^*: H^*(X; \mathbb{Z}) \to H^*(S^2 \wedge X; \mathbb{Z})$ is an epimorphism, $k^*(c_i) = \pm a_2 \beta^{i-1}(i=1, 2, \cdots)$, where $a_2 \beta^{i-1}$ is $a_2 \times \beta^{i-1}$ precisely. From now on we shall often write in this way if there is no risk of misunderstanding. The adjoint map and the suspension map are commutative. Thus $k_1^*(\sigma(c_i)) = \pm a_1 \beta^{i-1}(i=2, 3, \cdots)$. It follows from this equation that the sequence

$$0 \rightarrow \ker(k_1^*) \rightarrow H^i(\Omega X ; \mathbf{Z}) \xrightarrow{k_1^*} H^i(S^1 \wedge C\mathbf{P}^{\infty} ; \mathbf{Z}) \rightarrow 0$$

is splitting exact for $i \ge 2$. Therefore its dual sequence

$$0 \rightarrow H_i(S^1 \wedge \boldsymbol{CP}^{\infty}; \boldsymbol{Z}) \xrightarrow{k_{1,\bullet}} H_i(\Omega X; \boldsymbol{Z}) \rightarrow \operatorname{Coker}(k_{1,\bullet}) \rightarrow 0$$

is also splitting exact for $i \ge 2$.

Recall that since ΩX is an H-space $H_*(\Omega X; \mathbb{Z})$ is a Hopf algebra over \mathbb{Z} . Then we can choose generators ξ_i which are primitive elements of degree 2i-1 such that

 $H_*(\Omega X; \mathbb{Z}) = \wedge (\xi_1, \xi_2, \cdots, \xi_n, \cdots).$

See [9]. $H_*(S^1 \wedge C\mathbf{P}^{\infty}; \mathbf{Z})$ is a coalgebra over \mathbf{Z} , and $\theta_i = [\alpha_1 \beta^i \mapsto 1] \in H_{2i+1}(S^1 \wedge C\mathbf{P}^{\infty}; \mathbf{Z})$ is a primitive element. Since k_{1*} is a coalgebra homomorphism and the above short exact sequence splits, $k_{1*}(\theta_i) = \pm \xi_{i+1}(i=1, 2, \cdots)$.

The map k_1 has a lift

$$\widetilde{k}_1: S^1 \wedge CP^{\infty} \rightarrow \mathcal{Q}(X \langle 2 \rangle)$$

and

$$\widetilde{k}_{1_*}(\theta_i) = \xi_{i+1} \in H_*(\Omega(X\langle 2 \rangle); \mathbf{Z}) = \wedge (\xi_2, \xi_3, \cdots).$$

Let

$$\widetilde{k}_{2} = A \widetilde{d}^{2} \lambda \circ j : \mathbf{CP}^{\infty} \to \Omega^{2}(X \langle 2 \rangle)$$

be a lift of k_2 . Note that \tilde{k}_2 is the adjoint map of \tilde{k}_1 . Let τ be the homology transgression map : $H_*(\Omega(X\langle 2\rangle); \mathbb{Z}) \rightarrow H_{*-1}(\Omega^2(X\langle 2\rangle); \mathbb{Z})$. Since the adjoint map and the transgression map are commutative, the image of the map

$$\widetilde{k}_{2*}: H_*(\mathbf{CP}^{\infty}; \mathbf{Z}) \rightarrow H_*(\mathcal{Q}^2(X\langle 2 \rangle); \mathbf{Z}) = \mathbf{Z}[\tau(\xi_2), \tau(\xi_3), \cdots, \tau(\xi_n), \cdots]$$

includes generators $\tau(\xi_n)$. So does the image of the map $A\tilde{d}^2\lambda_*$. By Lemma 2.2, $A\tilde{d}^2\lambda_*$ is an isomorphism at each degree. Since X and $\Omega^2(X\langle 2\rangle)$ are simply connected, $A\tilde{d}^2\lambda$ is a homotopy equivalence by J.H.C.Whitehead's theorem.

3. A new proof of Bott periodicity

Bott periodicity (the complex case) implys that **BU** is homotopy equivalent to Ω^2 **BSU**. Note that **BSU** \simeq **BU** $\langle 2 \rangle$. The aim of this section is to give a new proof of Bott periodicity of complex case. By Theorem 2.1, it will be sufficient to construct two maps $j: \mathbb{CP}^{\infty} \rightarrow \mathbb{BU}$ and $\lambda: S^2 \wedge \mathbb{BU} \rightarrow \mathbb{BU}$ which have the properties given in Theorem 2.1.

Since **BU** is a classifying space of *K*-thory, it has an *H*-space structure corresponding to Whitney sum. Let μ : **BU**×**BU**→**BU** be this structure. Denote an algebra generator of $H^*(S^2; \mathbb{Z})$ (resp. $H^*(\mathbb{CP}^{\infty}; \mathbb{Z})$) by α (resp. β). The Hopf line bundle over $S^2 = \mathbb{CP}^1$ is denoted by η whose first Chern class $c_1(\eta) = \alpha$, and the canonical line bundle over \mathbb{CP}^{∞} denotes η_{∞} whose first Chern class $c_1(\eta_{\infty}) = \beta$. Now we shall construct maps j and λ as elements of \widetilde{K} (\mathbb{CP}^{∞}) and \widetilde{K} ($S^2 \wedge \mathbb{BU}$) respectively. We define $j = \eta_{\infty} - 1$, where 1 is a trivial 1-dim vector bundle.

Define

$$\xi:=\lim(\xi_n-n),$$

876

where $\xi_n \to \mathbf{BU}_n$ is the universal vector bundle. Note that the restriction of $(\eta -1) \otimes \xi$ to $S^2 \vee \mathbf{BU}$ is trivial. This means that this element is in $\widetilde{K}(S^2 \wedge \mathbf{BU})$. Now we define $\lambda = (\eta - 1) \otimes \xi$.

Proposition 3.1. The map

$$((\lambda \circ (S^2 \wedge j))^* : H^*(\mathbf{BU}; \mathbf{Z}) \rightarrow H^*(S^2 \wedge \mathbf{CP}^{\infty}; \mathbf{Z})$$

is an epimorphism.

Proof. We will compute $((\lambda \circ (S^2 \wedge j))^*(c))$, where c is the total Chern class $c=1+c_1+c_2+\cdots \in H^*(\mathbf{BU}; \mathbf{Z})$. From now on, we simply write $S^2 \wedge j$ to be j. Then

 $j^* \circ \lambda^*(c) = c(j^*(\lambda)).$

The right side of the above equation is the total Chern class of the element $j^*(\lambda) \in \widetilde{K}(S^2 \wedge \mathbb{CP}^{\infty})$. Thus

$$c(j^{*}(\lambda)) = c((\eta - 1) \otimes (\xi_{1} - 1))$$

= $c(\eta \otimes \xi_{1}) c(\eta \otimes 1)^{-1} c(1 \oplus \xi_{1})^{-1}$
= $(1 + \alpha + \beta)(1 + \alpha)^{-1}(1 + \beta)^{-1}$
= $(1 + \alpha)^{-1}(1 + \alpha(1 + \beta)^{-1})$
= $(1 - \alpha)(1 + \alpha(\sum_{i=0}^{\infty} (-1)^{i}\beta^{i}))$
= $1 + \sum_{i=1}^{\infty} (-1)^{i} \alpha \beta^{i}$

since $\alpha^2 = 0$ and $j^*(\xi) = \xi_1 - 1$, $\xi_1 = \eta_{\infty}$. We obtain

 $(\lambda \circ j)^*(c_{i+1}) = (-1)^i \alpha \beta^i.$

Therefore it is an epimorphism.

Proposition 3.2. The map

 $Ad^2\lambda$: **BU** \rightarrow Ω^2 **BU**

is an H-map.

Proof. We must show that the following diagram

$$\begin{array}{cccc}
\mathbf{BU} \times \mathbf{BU} & \stackrel{\mu}{\longrightarrow} & \mathbf{BU} \\
Ad^{2}\lambda \times Ad^{2}\lambda & & & \\
\mathcal{Q}^{2}\mathbf{BU} \times \mathcal{Q}^{2}\mathbf{BU} & \stackrel{\mathcal{Q}^{2}\mu}{\longrightarrow} & \mathcal{Q}^{2}\mathbf{BU}
\end{array}$$

is homotopy commutative. Its adjoint diagram is the following :

Since these maps are classifying the same element

$$(\eta - 1) \widehat{\otimes} (\xi \times \xi) \in \widetilde{K}(S^2 \wedge (\mathbf{BU} \times \mathbf{BU})) = [S^2 \wedge (\mathbf{BU} \times \mathbf{BU}), \mathbf{BU}],$$

this diagram is obviously homotopy commutative. Then the first diagram is also homotopy commutative.

By above propositions and Theorem 2.1, we obtain Bott periodicity theorem.

Corollary 3.3 (Bott periodicity theorem).

 $BU \simeq \Omega^2 BSU.$

4. A topological characterization of BU

In fact, X is homotopy equivalent to **BU** if X equips the conditons of Theorem 2.1. We shall prove it in this section.

We define

Q(X): =lim $\Omega^n \Sigma^n X$.

Note that Q(X) is an infinite loop space. Furthermore, if $f: A \rightarrow B$ is a map,

$$Q(f) = \lim \Omega^n \Sigma^n f: \ Q(A) \to Q(B)$$

is an infinite loop map. If X is an infinite loop space, we define an infinite loop map

 $\xi_X = \lim \epsilon_n^{-1} \circ \Omega^n A d^{-n} \epsilon_n : Q(X) \to X,$

where $\epsilon_n : X \rightarrow \Omega^n B^n$ is a homotopy equivalence.

By Segal [8] and Becker [3], there exists the Segal map $\epsilon_c : \mathbf{BU} \to Q(\mathbf{CP}^{\infty})$ such that $\xi_{BU^{\circ}}Q(j) \circ \epsilon_c \simeq 1_{BU}$. The Segal map ϵ_c is a "section" of a principal fiber space. Thus we obtain $Q(\mathbf{CP}^{\infty}) \simeq \mathbf{BU} \times F$, where F is the homotopy fiber and the homotopy group of F, $\pi_i(F)$ is finite for all i. Thus its reduced homology group $\widetilde{H}_i(F; \mathbf{Z})$ is finite for all i.

We note that if X satisfies the conditions of Theorem 2.1, $j = \xi_X \circ Q(j) \circ i$ where *i* is the inclusion map $\mathbb{CP}^{\infty} \to Q(\mathbb{CP}^{\infty})$. Consider the following commutative diagram: Bott periodicity theorem

Since $H_*(X; \mathbb{Z})$ does not contain any torsion elements, there exists the algebra homomorphism φ such that the following diagram is commutative:

Then

Image $\varphi \supset$ Image j_* .

Therefore the image of φ includes all algebra generators of $H_*(X; \mathbb{Z})$. By Lemma 2.2, φ is an isomorphism at each degree. Finally we obtain the following theorem.

Theorem 4.1. If X satifies the conditions of Theorem 2.1, the map

 $\xi_X \circ Q(j) \circ \epsilon_c : \mathbf{BU} \to X$

is homotopy equivalent.

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY

References

- [1] M. F. Atiyah, K-Theory. Benjamin Press, New York, 1967.
- M. F. Atiyah and R. Bott, On the periodicity theorem for complex vector bundles, *Acta Math.*, 112(1964), 229-247.
- [3] J. C. Becker, Characteristic classes and K-thory. In Lecture Note in Math. 428, Springer-Verlag, 1974, 132-143.
- [4] R. Bott, The space of loops on Lie groups, Mich. Math. J., 5(1958), 35-61.
- [5] R. Bott, The stable homotopy of the classical groups, Ann. of Math., 70(1959), 313-337.
- [6] J. W. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math., 81(1965), 211-264.
- [7] Mamoru Mimura and Hiroshi Toda, Topology of Lie Groups I and II, Trans. of AMS, 1991.
- [8] G. B. Segal, The stable homotopy of complex projective space, Quart. J. Math., 2-24(1973), 1-5.

A. Kono and K. Tokunaga

[9] Hirosi Toda, A topological proof of theorems of Bott and Borel-Hirzebrurch for homotopy groups of unitary groups, *Memoirs of the College of Science, University of Kyoto, Series A*, Vol. XXXII, 1959.

880