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A Kdhler structure on the punctured cotangent
bundle of complex and quaternion projective

spaces and its application to  a geometric
quantization I

By

Kenro FURUTANI and Ryuichi TANAKA

1. Introduction

As was studied in the paper [So2], the punctured cotangent bundle To*Sn
of the sphere S n is identified with the phase space of the Kepler problem,
leading to the correspondence of the geodesic flow of the sphere to the solution
curves of the problem, and it was noticed that the phase space has a complex
structure. Also in the paper [Rai] this complex structure gives a positive
complex polarization, in other words, To*Sn has a Kahler structure whose
Kahler from coincides with the symplectic form, and this structure was used
to quantize the geodesic flow of the sphere([Ra3], [MT1]).

It is well-known that the geodesic flow of the sphere is periodic. In
general, if we have a free U(1)-action generated by a positive homogeneous
Hamiltonian on the punctured cotangent bundle To*M of a compact manifold
M , like C1-manifoldaBeD, then we have a C*-free action on To*M and the
orbit space O M  becomes a compact symplectic manifold with the integral
symplectic form . And then, by the symplectic embedding theorem, there
exists an embedding O m—>PN C(N>1) and To*M is identified with the pull-
back of the associated C*-principal bundle of the tautological line bundle on
PNC. Moreover both C*-actions coincide. In some cases, OM is seen to have
a complex structure, and expected to become a Hodge manifold. So To*M will
have a complex structure, and it will be interesting to study whether this
complex structure defines a positive complex polarization for the symplectic
manifold To*M. Compact symmetric spaces of rank 1 are such manifolds (of
course, the sphere is mentioned above), and in these cases M  is  of the form
G/Z G( T ). Here, G denotes S O (n), S U(n), S P(n), or F4, and Z (  T )  is  the
centralizer of a certain 1-dimensional toral subgroup T  in  G .  The space
G/ZG( T) is isomorphic to the homogeneous space GC / P ,  where GC is the
complexification of G and P is the parabolic subgroup correspoding to ZG( T).
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This means OM becomes a complex, in fact, non-singular projective algebraic
manifold([BH]). So in  this paper, for complex projective spaces PC  and
quaternion projective spaces PH  we will prove, by elementary methods, that
the punctured cotangent bundle of these spaces admits a  Kahler structure
whose Kahler form coincides with the symplectic form, just like the case of
the sphere (Theorem 2.4 and Theorem 3.8). Our arguments are based on the
diagonalization of the geodesic flow (Proposition 2.5 and Proposition 3.9).

In §2 we will consider the case of the complex projective space. In §3 we
will consider the case of the quaternion projective space. In §4 we will remark
the relation between the case of PH  and that of S 4 .  In §5 we will describe the
automorphisms of To*I3 nC (n. 2) and To*P"H(n 3 and n=1).

As an application of the result in §2, an operator from a certain Hilbert
space of holomorphic functions o n  To*PnC to L 2 (P C ) is constructed in the
next paper [FY] by pairing two polarizations (real and positive complex).
This operator gives a quantization of the geodesic flow on PnC.

2. A Kdhler structure on To*PiC

In this section we describe a Kahler structure on the punctured cotangent
bundle To*PiC whose Kahler form coincides with the symplectic form on
T*PnC.

First we note the lemma 2.1 below.
Let (M, g) be a compact Riemannian manifold. We identify the cotangent

bundle T *M  with the tangent bundle TM by the following map :

(2.1) t=tm : T M =>T * M
etm (X )(Y )=gx(Y  , X ), X , YE TA / .

Then we have,

Lemma 2.1. L et (M , g) and (N  h) be two Riemannian manifolds, and
f :  M—>N be a smooth m ap. If

(2.2) f * h = c g  ( c  is a positive constant)

holds, we have

(2.3) (o t N° df° ot TY1) *  ON=  cOm

where Om(ON) denotes the canonical 1-form of  M (N ).

Let Cn be the Hermitian inner product space with the inner product ( • ,
•  ) ,  and consider 5 2 n+1 to consist of points p cn -f- 1 with ( p ,  p ) c = 1 .  The

Fubini-Study metric go on P C  is defined in  a n  obvious way through the
Hopf-fibering :
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s 2 n + 1 _ ,p n c ,

(2 .4 )

where [p] denotes the line in Cn+' spanned by p. Let .7C(n + 1) denote the space
of (n+ 1)x (n + 1)-Hermitian matrices with the Euclidean inner product (A, B)
=tr A B  where A , B E .7e(n+1). We note that IIA11=(tr A 2 ) .  T h e re  is  a
well-known embedding P :

P : PC—+.76(n+1),
[Pi

The matrix (Po) represents the projection onto the subspace [P].
Now we have the following propositions.

Proposition 2.2.
(2.6) IldP(X)112=tr(dP(X)2)=2g0(X, X), XE T(P n C).

Proposition 2.3. The image dP(T oPnC) is equal to  the subset X c of
.76(n+1)x.76(n+1) where

(2.7) Xc={(P, tr P=1, PQ+ QP= Q, tr Q=0, Q*0}.

By the map (2.1), we identify To*PnC with ToPnC, and hence with Xc
through the map d P . Hereafter we will regard Xc a s  To*PnC by this
identification. Then, the canonical 1-form O p.c for To*PnC is written on Xc as
follows :

(2.8) Q)= QudPii, P=(13 0), Q=(Qu).

So it follows that the symplectic form copnc is written as

(2.9) 1 nE •• 13 ..ps dQc 2 0 2.1 A d  Jt •

Let M (n, C) denotes the space of nx n —complex matrices, and let rc :
.76(n+1)x .76(n+1)-01(n+1, C) be a map defined by

(2.10) Tc(P, (2)=4{11PQ11Q+ .-41 .(Q2 - 211PQ112 P)},

where IIPQII=(tr PQ(PQ) * )+.
Let gc be a subspace of M (n+1, C) such that

(2.11) jec={ A EM (n+1, 0 A 2 =0, rank A=1}

Then jec, is non-singular, and we have

Theorem 2.4. The map Tc defined above gives a diffeomorphism from X c

(2.5)
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to c . M oreov er

(2.12) (2,--1 1 a a(tr AA*)÷)=  (0 P T .

P ro o f  Let X ° ={ (p, q)ECn +1 x C n+1 1(P, 1, (p, q)c=0, q*0) and 7r°
X °—>Xc be

i r o(p ,  4 ,)__ Q),

(2.13) P = ( P ) ,  Pii =

Q = ( Q i i ) ,

then (X °, 7r°, X c) is a  U(1)-principal bundle with the U(1)-action e 8 •(p, q)
e'l °,q). Also, le t E ° ={ (z , w) Cn+1 x C n+1 1(z, z)c=(w, w) c *O,

rl=o ziwi=0} and 0 :  X °
—>E° be

0(p, q)=(z , w ),
_  1

(2.14)

then we can easily see that 0 is a diffeomorphism between X ° and E °.  Let 7rE :
E °-- X c be a map defined by

(2.15) 7rE(z , w )=A =(a u ),
au = ziw i ,

then (E °,7rE, gc) is a  U(1)-principal bundle with the U(1)-action eilLTe •(z , w)
e -  w ) .  Now we can see

(2.16) 7rE0 0(p, q )= re e (P, q )

by a simple calculation, and so we have the following commutative diagram

X° E°

(2.17) I z
'

Xc gc

This gives an isomorphism of U(1)-principal bundles.
Next we show (2.12). For this purpose we list some formulas between

(P, Q )E X c obtained from the properties in (2.7). For (P , O cX c , we have

(2.18) PQP=0,

(2.19) p Q 2_ Q 2 p _ r 2p ,

(2.20) Q 2_  r 2 p  ()pc),
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(2.21) Q3= r 2

where we put r=(tr PQ 2 )" 2 .

By using these formulas we have, for A = rc(P, Q)

(2.22) tr A A * = r 4 .

Put a= 8 a(tr A A *), then

11 a = d(z (a(tr A A **)=-- d(-41- r - 3 rC(8 tr A A *))

= d ( lr - 3 a(E  j u da u )).

We calculate z I (E  iiii da u )  by using (2.18)—(2.22):

(E dudau)

1 EfrQii — - - -f.(((" , ; -- 2 r 2 Pii )) • dIrQ u -  2  r 2 Pii )}

1 EfrQ iid(rQ u)+11 -- - T rQiid(Q 2 )u ) -2 ,F=IrQ iid (r 2 Pii)

-.1 7-j.(Q 2); id(rQu) + (Q 2 )31d( — 2( Q2 )1id ( r 2 P1j )

+2,/ r 2 P f id (rQ , j ) - 2 r 2 P i id (Q 2 ) 4 ; + 4 r 2 P f i d ( r 2 Pi,i )}

1= -
4

{2r 3 dr +2 7-3 clr E Qi idPu

dr 4 - 2 r 2 c1r2

+2,1-L T r 3 E Pf iclQu  + 4 r 2 dr2 - 2 r 2 dr 2 }

=21- 3 clr 0 p.c.

Here we denote the (i, j) component of Q2 by (Q 2 ) „  and so on. Consequently,

1a  a= d { -
4

r - 3  -(2ecir -./ 2-36+p•c)}

2  c" " c "

Finally we have

(2,/=f a a(tr AA.)+)=W P"C•
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L e t X s =  {(p, q )Ecn+i x cn+Il IIPII=1, Re(P, ci)c=0, q*0}, th e n  X s  is
identified with T0S2 1. W e denote  by -e'r (tE R ) the geodesic flow on the
sphere S2" ' :

RXXs—>Xs
(2.23)

(t, p , 4 ) 1—qcos t.
p +   s i n  t 

q, 0 •qllsm t • p+c0s t-q ).

Then i•-• preserves X
° and descents to the action on Xe= dP( ToPnC) through

the m ap 7r° , and the resulting action er(tER) is the geodesic flow of P C . I t
reduces to a periodic and free action with the period 7r.

Proposition 2.5. We have the following commutative diagram :

(2.24)

x,

x,

r e

rc

where e- 2 i t t  denotes the scalar multiplication by

When we regard TPnC as the holomorphic tangent bundle, then TPnC is
also a complex manifold. W e denote it by .7•PnC.

Proposition 2 .6 .  Let Xc be given the complex structure by identifying X c

with .7 oPnC, then the map Tc is not holomorphic. The action of SU(n+1) on
Xc is holomorPhic with respect to the both holomorphic structures.

Proo f . The last assertion is clear. The first one w ill be also apparent,
however we see it here by representing the map re in holomorphic coordinate
systems with respect to the complex structure in both senses. Let (zi, • ,  Zn)
E C ' b e  a  holomorphic coordinate system of P C  g iv e n  b y  the correspon-
dence:

fl \

P ( PnC).

Then a system of holomorphic coordinates (z, w)EC" x Cn of 7 PnC is given
by

(z, w)4— ( 13 , Q)EXe,



A Kithler structure 725

/1i -2-n\
1 z i

P =  P ( 4 =  1+112112z i . T 5
\zn

Q= Q(2, w)

W )c + ( W , Z )c 

( 1+112112)4 Zi

\zn
0 1 •••

W u

/ 1
1 w i+  

4+112112
\wn

where wk i =zirv i + Here (2, w) represents a holomorphic tangent vector

E  w  a 
) Let

O 'Z i  P (z ) .

20 =1, w0=0,
z i ••.

(2.25) P1— 4+11211 (1=0, ,

w i  (w, z )c  z .
q i =  4+11412 (1+112112)4

then we have

re(P(z ), Q(z , w ))=A =(a u ),
(2.26)

(1=0, •.•, n),

So we have Proposition 2.6 from the expressions (2.25) and (2.26).

3 .  A liKhler structure on To*PnH

In this section, we describe a Kahler structure on To*PnH, and prove that
the Kahler form coincides with the symplectic form. Our arguments are
similar to that for To*PnC.

We denote by H the quaternion field :

p=z+wjEH, z , wEC,
(3.1) j2-= —1, zj =j 2-,

wi.

In the following we regard Hn  a s  a  right H-vector space with H-inner
product (p, q)H—E
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For P=(Po, •••, Pn_i)Elln, we denote the norm of p by 11P11 ; =
P i= z i+ w i j .

Let p : H—./1/(2, C) be the representation given by

W(3.2) P ( P ) = P ( z + w i ) =

then p  is  R-linear, p(Pq)=p(P)p(q) and p (P)= p (P)* . We introduce the
Riemannian metric gli on the quaternion projective space PnH, by the same
way for P C  through the Hopf-fibration :

s 4n+3_,P ni i

P 1- 4A,

where P=(Po, •-•, Pn)Ell n + 1 , 11P11=1, and [P] denotes the H-right subspace
spanned by p.

Let :  /3 111—>M(2n+ 2, C) be an embedding defined by

PH([p])=(13u)EM(2n+ 2, C)
(3.3)

P ii= 4 0 (P iP i) ,

then we have

Proposition 3.1. PH(P1-1)={PEM(2n+2, 01.13 2 =P, P = P ,  tr P=2,
PJ = PP), where

o
oJ = — 1 0) .\ 0

Hence we also have

Proposition 3.2. d,Pa( T o P n 1 1 )= 1 (P , Q)E.7(2n +2) x .7(2 n + 2)1/3 2 =
tr P =2 , P J=P P , Q P +P Q =Q , tr Q=0, Q J = P Q ,  Q*0).

We denote P = (P i. ,) ,  Q — (Q , ; )  with Pi; and (),J EM(2, C).

Proposition 3.3
liciPH(X)112 =2gH(X, X ), X E  TPnH.

Proposition 3.4. T he canon ica l 1 -form  0 p.H o f  To*PnH is  w r itten  as
fo llow s on dPH(ToPnH) :

0 p.H(P, Q)=4(d.P11)* tr(QdP),
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where tr(QdP)= tr(Q u dPi i). Hence the symplectic form  cop.H is written in
,j =0

the form  :

1wp-H ---- -

2
(d PH)* tr(dQ A dP).

Put dPH (ToPrill)=X H  and also  put X 4= { (p , q)Eir ."><H"'l Ilp11=1,
(p, q)H =0, q *01, then we have a Sp(i)—principal bundle (n ,  7r° , XH), where

0: X1—)XH,

q )  ) ( ( P U ) ' ( Q

P ii  =  P(PiT

p (P i g iT

2n+1
Let 2 : C 2 2 xCn+ 2-- , C be the bilinear form .B(z, w)= E  z iw i andi=0

EH ={(z, w ) E c2n+2 c2n+21 z  A  w * o, 3 3 ( z ,  j w ) _ 0 19

where W O , W 3, —  W2, W2n+1, W 2 n ) •  Also, let feH be

fell ={AEM (2n+2, C)IA 2 = 0, rank A = 2 , A J = J 'A },

and define a map 7rH : EH—OZH by

7rH(z, w)=z0Jw— weVz.

Here we identify M (2n+2, C) and en+2
0 c 2 n + 2  b y  

the correspondence

zOw4--+A—(ai i )EM (2n+2, C),

au= ziw3.

Then we have

Proposition 3 .5 .  (EH, 7TH, 560 is a  holomorphic principal bundle with

the structure group SL(2, C ) .  The action of  g=
( a  8 )

S L (2. C) on EH is
Y  a

given by (z, w). g =(az+ yw, Rz+ 8w).

Proo f . Let A : C 2 2-0C2'  be a linear map of rank two, then A is of the
form Ax= 53(x, u)z+ 53(x, v)w with z A w =0 and u A v * O .  If this linear map
A satisfies the condition AJ =PA , then Ax=2(x,.1W)z—.53(x,J4w, that is,
A=z®Jw— w®Jz. Moreover A 2 = 0  if and only if 53(z, Jw)=0. Hence we
see that 71- H is surjective, and the SL(2, C)—invariance of 7r11 can be easily
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seen.
Next we prove .kH is non-singular. Since (z, w) 1—, z0Jw— w®Jz is

2
alternative, we have a linear map S: A  C 2

" 2 - 4 c 2 n + 2 0 c 2 n + 2  
satisfying S(zA

2
W)

=
Z O J W  W O J Z .  Let T :  C 2 n + 2 0 c 2 n + 2 — >  A  

C
2 n + 2  

be a linear map defined by
T(z0w)= —z A Jw, then T S= Id . Hence S is injective. Let = { x E
c2n+21)(Ax=0, X * 0 } .  Then G is the total space of the associated C*
—principal bundle of the Plucker embedding of the Grassmann manifold
G2n+2,2(C)=-  U(2n + 2)/ U(2) x U(2n), and X A  X = 0 if and only if X  is of the
form X=z A w(z, wEC 2" .2 )([GH1). Since the bilinear form 2 (z, Jw) is SL(2,
C)—invariant and its holomorphic differential is always non-zero on EH, if we

2
denote by 53 the linear form on AC 2 '  given by ,S7(z A w )= 2 (z , Jw), then
XH = {XE G i f f ( X ) = 0 }  is non-singular. H e n c e  S(XH )=gH  is also non-
singular.

Let 22 ={X= <fl A  epe 61x,J*0}, then U  2/4,= and each 2/ u is a
local coordinate neighborhood of 6 .  A local coordinate irC 4 n + 1  is

given by Ou(X)=(Xio,•••, gu, g u, •-•, Xani 1, Xj0, • • •, gjj, • • , X12n+1), where
we regard Xu= and L . is omitted.

Let El  ={(z, w)EC 2" 2 x C2n+2 1z A w *0} , then (E , r , 6 )  is  a  SL(2, C)
—principal bundle, where 7r : 6-  is given by 7r(z, w)= z A w. Because we
have a local section su on 2t u defined as follows :

t t i j— > k ,

S2j(X ) — ( Z O ,  •  • • ,  Z2n+1, WO, W2n+1),

Z a =  

W a =  X ia

for a= 0 , ••• , 2n + 1 . Hence (EH, 7rH, .kH) is also a  holomorphic principal
bundle with the structure group SL(2, C).

When we restrict the structure group of the principal bundle (EH, 7rH,
gH ) from SL(2, C) to SU(2), then the total space is :

E = { (z ,  w)EEHIllzi1=11w11*0, (z, w)c=0).

For (p, q)EX?i, we define

(Ho(p, q), Hn(p, q), Ko(p, q), Kn(P, q))EM(2,C)x.--xM(2, C)
2n+ 2

by
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Hi= q )= Iliql1p(pi)-F

K i= K i( p ,q ) -= * { — ,-,1 -111q11p(pi)*+ p(qi)*}.

Then we see by an easy calculation

P r o p o s i t i o n  3 . 6 .  K , = , , I .
( 0

1
 1 ) , H z ( 0 1

-  0 - 1  0

Let a map 0 : .X1—>M(2n+2, C) be

0(p, q)—(A u ), A u =H1KJ E M (2, C),

then from the conditions for (p, q)EX (11 we have

Proposition 3.7. o (p ,  q )E .g u .

Now for (p, q)EX71 put

Hi= i i i (p , q )= ( s2i 2i )

a n d  l e t  V :
 )0 1 1_,C 2n+2  C 2n+2

00 (p ,  (4„)_ ( z ,  w ) ,

z i= si,

then we have

(3.4) 0 = zno

Let nil : XH--q1/(2n+2, C) be a map defined by

(3.5) TH(p, n ) _ 1   /M 2P)},2{ ii4

then

Theorem 3.8.

(3.6) rH (p(P,P.,), p(P + (bp ,))= 7 4 ,0 0
°
(p , q )

and we have the isomorphism o f  S U (2 )-p r in c ip a l bundles :

S2i+1 t2i+1
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0°

XH

(3.7) I
XH g l l

Moreover

(3.8) 2,11—frll( a(tr A A *)+)=

Hence, through the m ap rH, w e hav e a K dhler structure on To*Pn1-1 whose
Kahler form coincides with the symplectic form.

Before proving Theorem 3.8, we note some formulas among (P, Q)EX H
and AEgH, which are obtained from Proposition 3.2.

PQP=0,
p Q 2_ Q 2—_r  12 11PQ02 P

(3.9)
(22=111PQ112P+QPQ,

(23 411PQ11 2 Q.

Put r =-11PQM, then r =(tr PQ 2)1 , and tr Q2 = 2 r 2 , tr Q' =0 , tr r4 . For A
1 

4
r  n + . [T—A :( Q 2 r 2p )} ((p , Q )E x H ) ,

2 

(3.10) 1,1 r2

and

(3.11)

{ I  A+ A* Q=2x VIIAII
AA* + A* A A* —A P=

II A P 4 1 1 A ll •

Also we have

{ tr(PdP)=E tr(P u dPii) =0,
(3.12) tr(QdQ)=E tr(Q u dQ i 1)=2 rd r,

where (P, Q)EXH and P-(Pii), Q-(Qii) with P, , Q u EM (2, C). Similarly,

{ tr Q2 dQ =tr QdQ2 =0,
(3.13) tr Q2 dQ2 =2 r 3 dr.

Proof  o f  Theorem 3.8. The commutativity of the diagram (3.7) is proved
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by a direct calculation and we have the isomorphism of SU(2)-principal
bundles by (3.4) and the above calculations.

Now we have only to prove that the equality (3.8) holds. First we show

rti a tr (A *A )=  7-2 0

where A= (A u )E f  A1EM(2, C). Since a(tr A*A)=tr A* dA = E
tr((A*) u dAj i) =E tr((Ai i)* & 1), We have

(a tr A* A)

= E  tr [-P * ( Q i i ) * —  ii .((“2 2).ii) * — r 2(Pii) * )}

• d÷{ ± -2 -Qg+ i,1.1.((Q 2 );1— 7-2  13 .01]

1=  E r2Pii))• r2 POI]4 4

1 r, , / 1---t =  E { —  tr(Q u d ( rQ i i))+ r tr(Q u d(Q 2 )g ) r tr(Q u d (r 2Pi i)))4 2 4 4
,1- - -- j 1

4 E {  4   tr(((22)ud(rQii))+, tr((Q 2) 45d(Q 2)i i)

tr((Q 2 ) u d(r 2 P ii)))

[-=7.r21  + E{ tr(P  d(rQ . ))+ tr(Pud(r2P11)))4 4

E{tr(QuQii)dr + r tr(Q ))+ r  Eu dQi i tr(Qiid(Q2)ii)8 41-2

r  E{2r tr(Q u Pi i)dr + r 2tr Qu dPi i}

1{r tr((Q 2)u dQi i) +tr((Q 2)u Qi i}d r1+ -
4

E tr(Q 2)u d(Q 2)i i

1- -
4

r tr(( Q2 ) ii P i i ) d r  + r 2 tr((Q 2 )44 P11)}

E { r  tr(Pu dQi i) +tr(P u Qi i)dr) r 2 E  tr P11d(Q 2 )114

2
4- 1 - t r  P u dPi i + 2 r tr(P11 l3 31)dr}4



732 K. Furutani and R. Tanaka

= 2 ---- {2r2dr +2r 2d r }-  tr(QdP)+18 -2r3dr

1 • rir- T {2r • r2dr + r 2 tr(Q
2

 dP» + 44  r
3 , ) 4 tr(PdQ 2 )

y 3f i i   r 3'•= 7 . - 2,/2
3 dr tr(Q dP)+ '

2  
d r  

2  
d r

 4
t r  (Q2 d P+Pd Q 2 )2 

2 4 IIPQ113 2tr(QdP)+ r 3  dr r2 .2rdr4

r
3
 t r ( Q d P )24

 1
4  

7 - 2 (

 2  
tr QdP)

1 r 3 Op .

Hence,

rti( a a(tr A* A)+) = dz 11(+(tr A* A) - ltr(A* dA))

4 4  --.1=1 = d ( j - . ( -r—) r3611-H)4 2 4

=d ( 1 .21. - V - 1 0p9i)4 4

/- 1

"  2 2 (D P""'

Therefore,

Tri(21 , 3a(tr AA * )+)=a)p.H.

For the geodesic flow e t ( t  R) of Pn1-1, we have a similar representation
as for the case of P C .

Proposition 3.9. The following diagram is commutative :

(3.14)

xH

xH

rH

rH
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where denotes the scalar multiplication by e.- 2 . 1 - t.

4. P i l l  and S4

Let .0 be the diffeomorphism from P 1H to S4 defined by the stereographic
projection. .s3 is realized as a map

(4.1) : PH(P 1 11) — >S4

(13 v )i— (xo, x i, x2, x3, x4)EIV

where, for P,J EM(2, C) (i, j=0 , 1) written as

Poo=(A  C I ), I i i= ( t i  C I
) ,  A, pER,0  A 0  p

D  (  PO p i Plo=(Poi)*, piEc,
— p i  po )'

xi's are given by ;

{

x0=2 Re Po
xi=2 1m Po
X2 2 Re p i

X 3= 2  1m p i

X 4  =  t i -  A.

By identifying To*S4 with T0S4 ={(x, y)ER 5 xR 5 111x11=1, (x, y)=O, y*01,
the Kahler structure on To*S 4 is given by a map Vs as follows :

(4.2)
rs : ToS4—>.,Z3={zEC5 1 z =0, z*0 }i=0

y )  1— , rs(x, Y)=z, zk=113/11xk- E Yk.

Then the symplectic form cos on To*S4 is written as

ws=i -L - 2- a AA,(4.3)

where 114=8/Elzir.
Now, by a straight-forward calculation, we have the representation of the

m a p  Wo=rH0d.0 - 1 0rs : H as follows:

(4.4) A _ IIzII 0
+ izo)

\ —23-  i22

Vo(z)=A,
0
iz4

— z3+ 1z2
Z1 - 1'20

— izo
z3+ iz2

z3— izz
— (zi + izo)

0
- Z:4 /



(5.1)

rc

- - >

XH
dg

XH
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Note that, by our definition of the Riemannian metric on P'11, we have

(4.5) 11A11=-Itr A A * = 1  11 2112

By the expression (4.4) we have

Proposition 4.1. TO is not holomorphic, that, is, the differential d.  o f
the diffeomorphism o f  13 1 11 onto S4 def ined by  the stereographic projection is
not holomorphic. Of course it is symplectic :

(4.6) yig*(211 . a a VIIAID= a allzII.
Moreover the conjugation by the map TO gives a two fold covering map of  SP(2,
C) to SO(5, C) and this m ap is the extension of the covering map of Sp(2) to
SO(5) which is defined by the conjugation of  the m ap .s3.

Remark 4.1. Of course a similar result to Proposition 4.1 holds for /3 1 C
and S 2 .

5. On automorphisms o f To*PnC and To* PnH

Let gE SU (n+1 ) (or SP(n+1)), then the differential dg of the action g :
P C - P C  (g : P H  P 11H) commutes with the adjoint action of g  on gc
0 -60 through the map re(rii) :

rc
So dg is symplectic and holomorphic.

Theorem 5.1. L et Ti 2, and  gESL(n+1, C ), then Adg  preserves the
symplectic form  Wp^c if  and only  if  gESU(n+1).

P ro o f  Since (Ad g )* a a(tr AA*)1= a aAd'Atr A A ** w e have

3.44(tr  A A * ) _  A A * ) 1

is equal to a holomorphic 1-form 0 . This 0 satisfies ao = o , so 0 must be exact
form. Hence we have a holomorphic function f  on gc such that df=af=0.
Since Ad'Atr AA*) 1 -(tr  AA*) 1  is real valued, we see

d (A d :(tr  AA*) ,+--(tr AA*) ,+ )= d(f + f )

and hence
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Ad:(tr AA*)1---(tr f  +7+  co

with a constant coG R . By absorbing co to f  we have

(5.2) Ad:(tr AA*)+1--(tr A A * )1 = f (A )+  f (A)

on g c .  Now we show f O. L e t tEC* then f ( tA )  is a holomorphic function
on C* for each fixed A E .g-c :

(5.3) f (tA )= MAW'
m=— co

where fm (A ) is a holomorphic function on g c  of degree m.
Let m< 0, and take a suitable BEM(n+1, C) such that

tr ABMO on g c ,
tr A0./3=0 with an A0Egc.

Then, (tr A B ) - mfm(A) is holomorphic and of degree zero on fcc and also
Xc/C *  is  a compact complex manifold, so that (tr A B ) - nifm(A) must be a
constant on X- c . By (5.4) this constant must be zero, which implies fm(A)=---0
for m< O. So

(5.5) f ( t A )=  cÊ' MAW, tEC, A E gc.
mao

Next, from the equality

(tr(gtAg - 1 )*(gtAg - 1 ))+—(tr(tA)*(tA))÷
= t I ((tr(gAg - 1 )*(gAg - 1 )) 1 — (tr A* A)1)
= E  fm(A)tm+E [m(A) Tm

we have fm(A)-1- fm (A )0  for any m M . So we have

(5.6) Ad:(tr A* A)=tr A* A on gc.

Since AEgc is of the form

(5.7) A: C '— C 1 , A x= (x , X )cY  with (X, Y )= 0 ,

we have

(5.8) tr(A*A)= 112,
tr((gAg - 1 ) * (gAg - 1 ))=11(.9* )- 1 X112119112.

By (5.6) and (5.8) we see that, for X (*0 )E C " 1, there exists a constant cx
>0 such that cxg is isometric on the subspace orthogonal to X. If n 2, then
we can take YE C '  for any two Xi, X2EC 1 such that (X1, Y)=0, (X2, Y)
= 0 . So we have cx1=cx2, which implies that cg is unitary with a constant c

( 5.4)
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>0 . Consequently Idet c g l=lc " 1 d e t g =  c '= 1 , and we have gE S U (n+1).

Theorem 5 .2 .  Let n 3,  then the adjoint action of gE  S P(n+1, C) on
preserves cup.H if and only  if gESp(n+1).

P ro o f  If gE SP (n+1, C) preserves the symplectic form wp”ll, then we
have

(5.9) A d:(tr A*A)=tr A *A  on

by the similar argument to the proof of Theorem 5.1 (from (5.2) to (5.6)).
Now A E .k i i  is  of the following form (see the proof of Proposition 3.5)

A : en+ 2 —>en+2

(5.10) A x =(x , JX )cV  — (x , JY )cX  with (X, J ) = 0 .

So we have

(5.11) tr(A*A)=211X1121117112-21(X, 11c1 2 ,

and for gESP(n+1, C)

(5.12) tr((gAg-1)*(gAg-i))=211gX112119112-21(.9X, 911c1 2 .

Let Xi, X2EC 2 7 2 .  If n3, then there exists a  YEC 2 '  satisfying

( 13) { Y)c=0, (X1, JY)c=0, (gXi, gY)c=0,5. (X2, Y)c=0, (X2, JY)c=0, (gX2, gY)c=0

So also by the similar arguments as in the last paragraph of the preceding
proof, we have gE  U (2n +2). Hence g E Sp(n +1, c)n U(2n+2)= S p(n+ 1).

For n=1, we have

Theorem 5 .3 .  For P 1 H  the adjoint action of gE sp(2, c) preserves the
symplectic form  cuptH if and only i f  gESp(2).

P ro o f  By Proposition 4.1 and Theorem in the appendix of [Rai], we
have gE Sp(2, C) preserves copiii if and only if OcTi oA d g . 00ES 0(5), that is, g
E SP(2).

DEPARTMENT OF MATHEMATICS,
FACULTY OF SCIENCE AND TECHNOLOGY,
SCIENCE UNIVERSITY OF TOKYO

References
[Be] A. L. Besse, Manifolds all of whose Geodesics are closed, Springer-Verlag, 1978.
[B H ] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces I, Amer. J.



A  K dhler structure 737

Math., 80(1958), 458-538.
[B 1 ] R. Blattner, The metalinear geometry of non real polarizations, Lect. Note in Math. vol. 570,

Springer-Verlag, 1977.
[C z ] J. Czyz, On the Geometric Quantization and its Connection with Maslov theory, Rep. Math.

Phys., 15(1979), 57-97.
[F Y ] K. Furutani and S. Yoshizawa, A Kahler structure on the punctured cotangent bundle of

complex and quaternion projective spaces and its application to a geometric quantization II,
to appear in Japanese J. of Mathematics.

[Gil] P h . Griffiths and J . Harris, Principles of algebraic geometry, John Wiley and Sons, New
York, 1978.

[E ]  K. Ii, On a Bargmann-type transform and a Hilbert space of holomorphic functions, Tôhoku
Mathematical Journal, 38-1(1986), 57-69.

[K o ] B . Kostant, Quantization and Unitary Representations, L ect. Note in Math. vol. 170,
Springer-Verlag, 1970.

[MT1] I. Mladenov and V. Tsanov, Geometric quantization of the multidimensional Kepler
problem, J. Geom. Phys., 2-1(1985), 17-24.

[MT2] I . Mladenov and  V . Tsanov, Geometric quantization o f the geodesic flow on S",
Differential geometric methods in theoretical physics (Shumen, 1984), World Sci. Publishing,
Singapore, 1986.

[R ai] J. H . Rawnsley, Coherent States and Kahler manifold, Quart, J. Math. Oxford, (2) 28(1977),
403-415.

[Ra2] J. H. Rawnsley, On the pairing of Polarizations, Comm. Math. Phys., 58(1978), 1-8.
[Ra3] J. H . Rawnsley, A  nonunitary pairing of Polarizations for the Kepler Problem, Trans.

Amer. Math. Soc., 250, (1979), 167-180.
[S o l]  J . M. Souriau, Structure des systemes dynamiques, Dunod Paris, 1970.
[S o 2 ] J. M. Souriau, Sur la variété de Kepler, Symposia Mathematica XIX, Academic Press, 1974.
[W o ]  N. M. J. Woodhouse, Geometric Quantization, Clarendon Press Oxford, 1992.


