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A Kihler structure on the punctured cotangent
bundle of complex and quaternion projective
spaces and its application to a geometric
quantization I

By

Kenro FURUTANI and Ryuichi TANAKA

1. Introduction

As was studied in the paper [So2], the punctured cotangent bundle 7¢*S™
of the sphere S” is identified with the phase space of the Kepler problem,
leading to the correspondence of the geodesic flow of the sphere to the solution
curves of the problem, and it was noticed that the phase space has a complex
structure. Also in the paper [Ral] this complex structure gives a positive
complex polarization, in other words, 7¢*S” has a Kéihler structure whose
Ké&hler from coincides with the symplectic form, and this structure was used
to quantize the geodesic flow of the sphere([Ra3], [MT1]).

It is well-known that the geodesic flow of the sphere is periodic. In
general, if we have a free U(1)-action generated by a positive homogeneous
Hamiltonian on the punctured cotangent bundle 7v*M of a compact manifold
M, like C;-manifold([Be]), then we have a C*-free action on 7¢*M and the
orbit space Oux becomes a compact symplectic manifold with the integral
symplectic form. And then, by the symplectic embedding theorem, there
exists an embedding O »—PYC(N>1) and T¢*M is identified with the pull-
back of the associated C*-principal bundle of the tautological line bundle on
PYC. Moreover both C*-actions coincide. In some cases, O x is seen to have
a complex structure, and expected to become a Hodge manifold. So T¢*M will
have a complex structure, and it will be interesting to study whether this
complex structure defines a positive complex polarization for the symplectic
manifold To*M. Compact symmetric spaces of rank 1 are such manifolds (of
course, the sphere is mentioned above), and in these cases O x is of the form
G/Z(T). Here, G denotes SO(n), SU(%), Sp(n), or Fi, and Z¢(T) is the
centralizer of a certain 1-dimensional toral subgroup 7 in G. The space
G/Zs(T) is isomorphic to the homogeneous space G°/P, where G€ is the
complexification of G and P is the parabolic subgroup correspoding to Z¢(T).
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This means O » becomes a complex, in fact, non-singular projective algebraic
manifold((BH]). So in this paper, for complex projective spaces P"C and
quaternion projective spaces P"H we will prove, by elementary methods, that
the punctured cotangent bundle of these spaces admits a K#hler structure
whose Kihler form coincides with the symplectic form, just like the case of
the sphere (Theorem 2.4 and Theorem 3.8). Our arguments are based on the
diagonalization of the geodesic flow (Proposition 2.5 and Proposition 3.9).

In §2 we will consider the case of the complex projective space. In §3 we
will consider the case of the quaternion projective space. In §4 we will remark
the relation between the case of P'H and that of S*. In §5 we will describe the
automorphisms of T¢*P"C(%=22) and To*P"H(#=3 and n=1).

As an application of the result in §2, an operator from a certain Hilbert
space of holomorphic functions on 7¢*P"C to L(P"C) is constructed in the
next paper [FY] by pairing two polarizations (real and positive complex).
This operator gives a quantization of the geodesic flow on P"C.

2. A Kihler structure on 7y*P"C

In this section we describe a Kdhler structure on the punctured cotangent
bundle 77*P"C whose Kihler form coincides with the symplectic form on
T*P"C.

First we note the lemma 2.1 below.

Let (M, g) be a compact Riemannian manifold. We identify the cotangent
bundle T*M with the tangent bundle TM by the following map :

’ ofM(X)(Y)=gx( Y, X), X, YeTM.
Then we have,

Lemma 2.1. Let (M, g) and (N, h) be two Riemannian manifolds, and
f : M—N be a smooth map. If

(2.2) f*h=cg (c is a positive constant)

holds, we have

(2.3) (LnodfeLu')* On=cOnu

where Ou(6x) denotes the canonical 1-form of M(N).

Let C" be the Hermitian inner product space with the inner product ( *,
*)c, and consider S?"*! to consist of points p&C"*' with (p, p)c=1. The
Fubini-Study metric g on P"C is defined in an obvious way through the
Hopf-fibering :
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SZn+l_)PnC,

@4 p —l[p],

where [p] denotes the line in C**! spanned by p. Let J6(n+1) denote the space
of (n+1) X (n+1)-Hermitian matrices with the Euclidean inner product (A, B)

=tr AB where A, BE¥(n+1). We note that |A|=(tr Az)%. There is a
well-known embedding P :

P PCoH(n+1),

(255) (6] —(ps), ps=0:P .

The matrix (Py) represents the projection onto the subspace [].
Now we have the following propositions.

Proposition 2.2,
(2.6) ld P(X)|2=tr(d P(X)*)=2g0(X, X), XE T(P"C).

Proposition 2.3. The image d P(ToP"C) is equal to the subset Xc of
H(n+1)XH(n+1) where

2.7 Xc={(P, Q)|P*=P, tr P=1, PQ+QP=Q, tr Q=0, Q+0}.

By the map (2.1), we identify 7¢*P*C with ToP*C, and hence with Xc
through the map d®. Hereafter we will regard Xc¢ as 7To*P"C by this
identification. Then, the canonical 1-form € pc for To* P"C is written on X¢ as
follows:

3 QudPr, P=(Py), Q=(Qu).

i,d=0

(2.8) Opc(P, Q)=

|

So it follows that the symplectic form wp-c is written as

(2.9) wm=% 2 dQu A dP;.

0

1

Let M(n, C) denotes the space of #X n—complex matrices, and let z¢:
X(n+1)XxH(n+1)—>M(n+1, C) be a map defined by

(2.10) ze(P, Q)=%{|IPQ||Q+J?T(QZ—ZIIPQIIZP)},

where | PQ||=(tr PQ(PQ)*)z.
Let X be a subspace of M(n+1, C) such that
(2.11) Xc={A€M(n+1, C)|A*=0, rank A=1}

Then X is non-singular, and we have

Theorem 2.4. The map tc defined above gives a diffeomorphism from Xc
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to Xc. Moreover
(2.12) 12(2/=130(tr AA*)D)=wpec.

Proof. Let X°={(p, 9)EC*"' XC"*'((p, p)c=1, (p, q)c=0, ¢#0} and n°:
XO—’XC be

(p, 9)=(P, Q),
(2.13) P=(Py), Py=0:D,

Q=(Qy), Qs=0:q;+a:D;,

then (X°, 7°, Xc) is a U(1)-principal bundle with the U(1)-action ¢**°+(p, ¢)
=(e™ 1%, ¢ T%). Also, let E°={(z, w)EC"'XC" (2, 2)c=(w, w)c*0,
Do zzw:=0} and @ : X°—E° be

O(p, 9)=(z, w),
z.~=%(||0||1>f+ Ve=vh)

wi=—x(~/=Tlal 5.+ 7)),

(2.14)

then we can easily see that @ is a diffeomorphism between X° and E°. Let 7z :
E’—> X be a map defined by

ne(z, w)=A=(ay),

(2.15) Qa5 =2:Wj,

then (E°, 7z, X¢) is a U(1)-principal bundle with the U(1)-action e '%-(z, w)

=(e' 1%, e " 1%w). Now we can see

(2.16) 1o O(p, @)=rtcon’(p, @)

by a simple calculation, and so we have the following commutative diagram
x 2 B

(2.17) l l -
Xc — Xc

c
This gives an isomorphism of U(1)-principal bundles.
Next we show (2.12). For this purpose we list some formulas between
(P, Q)€ X obtained from the properties in (2.7). For (P, Q)€ X¢, we have

(2.18) PQP=0,
(2.19) PQ*=@Q*P=7r*P,
(2.20) Q*=r*P+QPQ,
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(2.21) Q*=r%*Q,
where we put »=(tr PQ?*)2.
By using these formulas we have, for A=17c(P, Q)

(2.22) tr AA*=".
Put o= 3a(tr AA*)%, then
rta=d(ce(a(tr AAY)=d(Lrre(atr AAY))
= d(%r‘a ¢ (2 Eﬁdai,-».
We calculate & <E a ijddﬁ) by using (2.18)~(2.22) :
¢S audas)
=% 2{rQu—V—1((Q")5—27"Py)}- d{#Qu+V/—1(Q") 5 —27"Py)}
— 20Qud(rQu)+ = 17Qud (@)5)~2/=1rQud (r*Py)
— /= 1(Q"),:d(Q:) +(Q);d(Q") s — 2(Q*)5:d (#* Pys)
+2/=172P;:d(vQu) — 27" Pud (Q%) i+ 47 Piud (r* Py)}
—Herdr+2r°dr —2/=17 2 QuaPs
+drt—2r%dr?
+2/=17° 5 PudQu-+47°dr*~21%dr?)
=27%dr —2J=17*0 prc.
Here we denote the (7, /) component of @* by (Q?):;, and so on. Consequently,

ré‘a=d{%r‘3-(273dr —zJ_—1739P.C)}

= _Twpuc.
Finally we have

r&2/=130(tr AA*)E)=wpc.
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Let Xs={(p, 9)€C™'XC™'||pl=1, Re(p,q)c=0, ¢+0}, then X is
identified with 7,S?**!. We denote by &: (t€R) the geodesic flow on the
sphere S?"*!':

€: RxXXs—Xs

(2.23) sin ¢

(¢, p, @) —(cos Lo —|qllsin ¢-p+cos t-q).

Then € preserves X° and descents to the action on Xc¢=d P(T,P"C) through
the map #° and the resulting action e:(#<R) is the geodesic flow of P"C. It
reduces to a periodic and free action with the period .

Proposition 2.5. We have the following commultative diagram :

rc

Xe — Xc
(220 | [ e
X — Xe
-24-1¢

2/-1¢

where e denotes the scalar multiplication by e

When we regard TP"C as the holomorphic tangent bundle, then TP"C is
also a complex manifold. We denote it by J P*C.

Proposition 2.6. Let X be given the complex structurve by identifying Xc
with T oP"C, then the map tc is not holomorphic. The action of SU(n+1) on
Xc is holomorphic with respect to the both holomorphic structures.

Proof. The last assertion is clear. The first one will be also apparent,
however we see it here by representing the map z¢ in holomorphic coordinate
systems with respect to the complex structure in both senses. Let (21, ***, zx)
€C" be a holomorphic coordinate system of P"C given by the correspon-
dence :

1 z Z; Zn
<1
1 : i
(21, =, zn) ‘—’m;"'f 2 27 ER(P"C).
Zn

Then a system of holomorphic coordinates (z, w)EC"XC" of T P"C is given
by

(2, w)—(P, Q) E X,
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1 z, - Za

PPO-TIF| | 2

n
Q=Q(z, w)

/1 21 2n
__(z, wet(w, 2)c| 2
- 3 . —
(1+ 2Py \ P aZ
<n

1 wl ceo wn
4 1 w
JI+[2P\ ¢ Wi
Wn

where wi;;=z:w,+w:Z,. Here (2, w) represents a holomorphic tangent vector

2 wl'(aizi>”z). Let

Zo=1, u)o=0,
2i .
P S =0, -, n),
(2.25) = ")
Wi _ (w, 2)c (i=0, -, n)

i= 4
CTVIRTEF (et
then we have

te(P(2), Q(z, w))=A=(ay),

@2 = Yalpet e~ Tlal s+ 7).

So we have Proposition 2.6 from the expressions (2.25) and (2.26).

3. A Kihler structure on 77*P"H

In this section, we describe a K#hler structure on 7¢*P"H, and prove that
the Ki#hler form coincides with the symplectic form. Our arguments are
similar to that for 77*P"C.

We denote by H the quaternion field :

p=z+wj<H, z, weC,
(3.1) i’=-1, zj=jz,
P=zZ—wj.

In the following we regard H” as a right H-vector space with H-inner
product (p, ¢)u=23 P ..
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For p=(po, ***, pn-1)EH", we denote the norm of p by 2] ; l|pl=v2|p:*=
V2w, pi=zi+wij.

Let o: H>M(2, C) be the representation given by
(3.2) p(p)=p<z+wj>=(_zw ”i’),

then o is R-linear, o(pg)=p(p)o(q) and o(p)=p(p)*. We introduce the
Riemannian metric ga on the quaternion projective space P"H, by the same
way for P"C through the Hopf-fibration:

7 St pry
» —[p],

where p=(po, --*, pn)EH""!, ||p|=1, and [p] denotes the H-right subspace
spanned by p.
Let Pu: PP"H-M(2n+2, C) be an embedding defined by

Pu([p])=(P;)eM(©2n+2, C)

(33) Pij= p(piﬁj)’
then we have

Proposition 3.1. Pu(P"H)={P€M(2n+2, C)|P’=P, P*=P, tr P=2,
PJ=J*'P}, where

Hence we also have

Proposition 3.2. dPu(ToP"H)={(P, Q)€H(2n+2)XH#(2n+2)|P*=P,
tr P=2, PI=J'P, QP+ PQ=Q, tr Q=0, QJ=J'Q, Q+0}.

We denote P=(Py), Q=(Q:;) with Py and Q;EM(2, C).

Proposition 3.3
ldPu(X)P=2gu(X, X), XE TP"H.

Proposition 3.4. The canonical 1-form Opu of To*P"H is written as
follows on d Pu(ToP™H) :

eP”H(P: Q)Z%(df)u)* tl’(QdP)»
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where tr(QdP)= i‘. tr(Q:;dP;:). Hence the symplectic form wpw is written in

,7=0
the form :
wrn=5{(d Pu)* t(dQ A dP).
Put dPu(ToP"H)=Xu and also put X%={(p, ¢9)€H""'xXH""||p|=1,
(p, @)u=0, g=+0}, then we have a Sp(1)—principal bundle (X%, 7° Xu), where
7 X4— X,

(b, @) "’((Pii), (Qﬁ)),

Py=0(p:7 ),
Qu=0(p:q;+q:D,).

n+

2 1
Let B : C*"*2X C*"**>C( be the bilinear form B(z, w)= 2 z:w: and

=
Ea={(z, w)EC*"2XC*"*|zAw=+0, B(z, Jw)=0},

where Jw=(w\, —wo, ws, — wa, ***, Wans1, — Wan). Also, let Xu be
Xu={A€M(2n+2, C)|A’=0, rank A=2, AJ=J'A)},

and define a map 7u : Eu—Xu by
mu(z, w)=2QJw—w®Jz.

Here we identify M(2xn+2, C) and C*"**®C?"*? by the correspondence
2Quw—A=(a;)EM(2n+2, C),
Q= Z:W;.

Then we have

Proposition 3.5. (Eu, mu, Xun) is a holomorphic principal bundle with

B

the structure group SL(2, C). The action of g=<‘; 5

)ESL(Z, C) on Ex is
given by (z, w)-g=(az+yw, Bz+dw).

Proof. Let A: C¥**—>C?"*? be a linear map of rank two, then A is of the
form Ax=38(x, u)z+ B(x, v)w with 2zAw=0 and « A v=0. If this linear map
A satisfies the condition AJ =J'A, then Ax=3B(x, Jw)z— B(x, Jz)w, that is,
A=2QJw—w®Jz. Moreover A*=0 if and only if B(z, Jw)=0. Hence we
see that mu is surjective, and the SL(2, C)—invariance of mu can be easily
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seen.
Next we prove Xu is non-singular. Since (2, w) —zQJw—w®Jz is

2
alternative, we have a linear map S: AC*"*>—C*"*2QC?*"*? satisfying S(zA
2
w)=zQJw—w®Jz. Let T : C*"**QC?"**> AC***? be a linear map defined by

T(zQw)=—2AJw, then ToS=Id. Hence S is injective. Let G={X€E /2\
C"*2 | X AX=0, X#0}. Then G is the total space of the associated C*
—principal bundle of the Pliicker embedding of the Grassmann manifold
Gen+22(C)=UQ2n+2)/U(2)X U(2n), and X AX=0 if and only if X is of the
form X=zAw(z, weC***)([GH]). Since the bilinear form B(z, Jw) is SL(2,
C)—invariant and its holomorphic differential is always non-zero on Ex, if we

denote by B the linear form on /Z\CZ”+2 given by B(zAw)=B(z, Jw), then
Xu={X€G|B(X)=0} is non-singular. Hence S(Xu)=Xn is also non-
singular.

Let U y={X= E Xasea A esE G| X5+0}), then U %s=G and each U 5 is a

local coordinate ne1ghborhood of G. A local coordmate i U—C" ! s
glven by ¢U(X) (XzO Xiz', °tt Xz’j, H X12n+1, )(Jo, sty )(n, ot X;2n+1), where
we regard Xii=— X, and X. is omitted.

Let E={(z, w)ECZ”“XCz"”Iz/\ w=*0}, then (E, x, G) is a SL(2, C)
—principal bundle, where 7 : E-Gis given by 7(z, w)=zAw. Because we
have a local section s;; on % defined as follows :

si: Us—E,

SU(X)=(20, e, en+1, Wo, °°°, W2n+1),

Ra=— — Jjay
e
a X:J y
for a=0, -+, 2n+1. Hence (Ex, mu, Xu) is also a holomorphic principal

bundle with the structure group SL(2, C).

When we restrict the structure group of the principal bundle (Eu, 7u,
Xu) from SL(2, C) to SU(2), then the total space E% is:

={(2, w)E Eul |2l=|wl#0, (z, w)c=0}.
For (p, ¢)€ X%, we define
(Ho(pv q): Y Hn(pv Q)v Ko(p) q)y ) Kn(p, q))EM(zy C)X“'XM(Zy C)

2n+2

by
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Ho=Hi»p, q>:—j7{nqnp<pz—>+ J=To(g2)

K=K, q>=—}7{—~r——1||a||p<pi>*+p(m)*}.

Then we see by an easy calculation

Proposition 3.6. K,:J—_l(_ol (l))tHi<_()1 (1)>
Let amap @: X%—M(2xn+2, C) be
o(p, 9)=(Ay), As=H:K;EM(2, C),
then from the conditions for (¢, ¢)€ X% we have

Proposition 3.7. 0(p, ¢)€ Xu.

Now for (p, )€ X% put

T
and let @°: Xy—C?"*2X C***? be
0°(p, ¢)=(2, w),
2=,
wi=—+y—1t,,
then we have

(3.4) O =rye Q°.

Let tu: Xua—M(2n+2, C) be a map defined by
@) P, @—5{ o+ vmu@-1pore),

then
Theorem 3.8.
(3.6) tu(0(p:9,), 0(p:7;+q:0,))=mu° @b, q)
and we have the isomorphism of SU(2)-principal bundles :
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00
n — Eh

(3.7) j j
Xu — Xnu

H

Moreover

(3.8) 25 /=1r8(33(tr AA*)D)= wpm.

Hence, through the map ta, we have a Kihler structure on To*P"H whose
Kihler form coincides with the symplectic form.

Beforf: proving Theorem 3.8, we note some formulas among (P, Q)€ Xu
and A€ Xy, which are obtained from Proposition 3.2.

PQP=0,
PQ—Q*P=—|PQI’P,

B9 @=1yparr+ere,

@*=41PQlQ.

Put »=||PQ||, then »=(tr PQZ)%, and tr @*=27% tr @*=0, tr Q*=»*. For A
_1(r — 2_ 2
e tv=i@- P} (p, @ex),

_1 ,
(3.10) IIAII—ﬁr
and
1A+ A*
Q=2""F=,
(3.11) V1Al

AA*+A*A
P=""Tap — v~ quu

Also we have

(3.12)

tr(Pa’P) =3 tr(Pideji) =0,
tr(QdQ) =3 tr(Q:dQ;:)=2rdr,

where (P, Q)€ Xy and P=(Py), Q=(Q:;) with Py, Q,;EM(2, C). Similarly,

(3.13) {tr Q*dQ=tr QdQ*=0,

tr @*dQ*=2r%dr.

Proof of Theovem 3.8. The commutativity of the diagram (3.7) is proved
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by a direct calculation and we have the isomorphism of SU(2)-principal
bundles by (3.4) and the above calculations.
Now we have only to prove that the equality (3.8) holds. First we show

hotr(A*A)= ',/? 730 pru,

where A=(A;E Xy, ALEM(2,0C). Since d(tr A*A)=tr A*dA=3
tr((A*).'jdAji)=2 tr((Aji)*dAji), We have

h(dtr A*A)

=3 tr [ 5(Qu)* — V=@~ 7P}

-y T Qu V=T @)— r*P})
T 2@V I(@)u— 7 Pu)) Al Qut /=T @)u— 7 P)}]
B Qe () + 5Ly t(Qua( @)~ h tr(Qud (P

_g 2{717 tr((Q%)ud (7Qs1)) + V=1 tr((Q*) sd (Q)s:)
— /=1 tr((Q)ud (#2P;))}

+ L1 S t(Pud (@) + (=T tr(Pud (@) — VT tr(Pod(r*P,)

=7 r(QuQu)dr + 7 t(QudQu)) + 4L r 2 tr(Qud (@)

- ﬁ? r 227 tr(QuPy)dr + r’tr QudPi}

*/_ Sl tr(Q)ud @) +r(@)sQiddr) ++ 2 (@) o (@)

— 227 u(@)sP)dr + " tr(Q)udP)

‘/:/ S tr(PodQu) +tr( PuQu)dr) — 3 tr Pod (@

2
+YT {72 tr PydPii+ 27 tr(PyPi:)dr}
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=§7{27’2a’r+2r2dr}— '4J_ r® tr(Qa’P)+— 273dr

—%{27 r2dr+ 72 tr(Q*dP)} + ‘27 7} tr(PdQ)——— tr(Pa’QZ)

=773d7’ - é? 7 tr(QdP) +—d7’ ——a’r - tr (Q*dP+ PdQ?)

_ -1 3 .
=9 | PQIP tr(QdP) + 5 dr i 2vdr

J=1
242

r* tr(QdP)

- */J_; 7’3(% tr QdP)

2

7’3 01:*1{.
Hence,

r5(Fotr A*A)D)=drx (—i—(tr A* A)Hr(A*dA))

el )

4 2
_ (1.3 =V=1
1
=_J__1%Q)PH

Therefore,
325/ =1 30(tr AA*))=wpn.

For the geodesic flow €:(¢ER) of P"H, we have a similar representation
as for the case of P"C.

Proposition 3.9. The following diagram is commutative :
Xu — Xu
1)« [
.XH - XH

™H
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—-24-1¢ -2/-1¢

where e denotes the scalar multiplication by e

4. P'H and S$*

Let 4 be the diffeomorphism from P'H to S* defined by the stereographic
projection. 3 is realized as a map

& Pu(P'H)—S*

WD (py oz, 21, 78, 20, 2) RS

where, for P;EM(2, C) (i, =0, 1) written as

Pooz(g 2), P11=(g 2), A, LER,

po,z(_l’;l ;10 ) Puo=(Pn)*, o, iEC,

xs are given by ;

Zo=2 Re po
x1=2 Im po
x2=2 Re p:
x3=2 Im D1
Ta=p—A.

By identifying To*S* with ToS*={(x, y)€R*XR®||x|=1, (x, y)=0, y=+0},
the Kéhler structure on 7,*S* is given by a map s as follows:

~ 4
Ts ! ToS4—>Xs={z€C5|§) 2¢=0, z+0}
(x, ¥) —s(x, y)=2, ze=y|xe+ V= 1ya.

(4.2)

Then the symplectic form ws on T4*S* is written as
(4.3) ws=v—230d|2],
where [z]|=vX|z*.

Now, by a straight-forgvard;alculation, we have the representation of the
map Ph=ru°d S 'ers': Xs— Xu as follows:

T(2)=A,
124 0 21— 12 23— 12
(4.4) a-lz 0 iz atizz —(z+iz0)
Sﬂ —(21 + iZo) —ztiz — iz 0

— 23— 12 21— 12 0 — iz
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Note that, by our definition of the Riemannian metric on P'H, we have
=/ w1 e
(4.5) |A|=vtr AA 4/§||Z|| .

By the expression (4.4) we have

Proposition 4.1. % is not holomorphic, that, is, the differential d S of
the diffeomorphism of P'H onto S* defined by the stereographic projection is
not holomorphic. Of course it is symplectic :

(4.6) Tr(21/=13J[AN=v—230)z.

Moreover the conjugation by the map ¥, gives a two fold covering map of Sp(2,
C) to SOB, C) and this map is the extension of the covering map of Sp(2) to
SO(5) which is defined by the conjugation of the map J.

Remark 4.1. Of course a similar result to Proposition 4.1 holds for P'C
and S2

5. On automorphisms of 7¢*P"C and T¢*P"H

Let g€SU(n+1) (or Sp(n+1)), then the differential dg of the action g:
P"C—P"C (g: P"H—P"H) commutes with the adjoint action of ¢ on X¢
(Xu) through the map rc(7u):

Xe — X Xu — Xu
(5.1) dg l l Ad, dg l 1 Ad,
X T X X — Xu

So dg is symplectic and holomorphic.

Theorem 5.1. Let n=2, and g=SL(n+1, C), then Ady preserves the
symplectic form wpc if and only if g=SU(n+1).

Proof. Since (Ady)* 3d(tr AA*)i= §oAd (tr AA*)%, we have
dAdX(tr AA*)s—d(tr AA*)%

is equal to a holomorphic 1-form ¢. This ¢ satisfies 3gf=0, so ¢ must be exact
form. Hence we have a holomorphic function f on X¢ such that df=df =¢.

Since Ad¥(tr AA*)%—(tr AA*)% is real valued, we see
d(Adz(tr AA*) —(tr AA¥)D)=d(f+ F)

and hence
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Ady(tr AA¥)T—(tr AA¥)i=F+ F +co
with a constant co&R. By absorbing ¢ to f we have
(52)  Aditr AA*)i—(tr AA¥)i=£(A)+ F(A)

on Xc. Now we show f =0. Let t&C* then f(¢A) is a holomorphic function
on C* for each fixed A= Xc:

(53 ftA)=3_ faA)t"

where fx(A) is a holomorphic function on X¢ of degree m.
Let m<0, and take a suitable BEM(n+1, C) such that

tr AB=0 on Xc,

(54) tr AsB=0 with an A€ Xe.

Then, (tr AB) "fx(A) is holomorphic and of degree zero on X¢ and also
Xc/C* is a compact complex manifold, so that (tr AB)™fa(A) must be a
constant on X¢. By (5.4) this constant must be zero, which implies fn(A)=0
for m<0. So

(5.5) F(tA)= i: fu(A)t™ teC, A€ K.

Next, from the equality

(tr(gtAg™)*(gtAg™))s — (tr(tA)*(tA))s

=TT (tr(gAg™)*(gAg™"))T — (tr A*A)7)

we have fm(A)+ fn(A)=0 for any m=0. So we have
(5.6) Adi(tr A*A)=tr A*A on Xe.

Since A€ X is of the form

(5.7 A: C"'-C" Ax=(x, X)cY with (X, Y)c=0,
we have

tr(A*A) =X "I Y|
tr((9Ag™)*(gAg ) =l(g*) ' XIPlg Y|

By (5.6) and (5.8) we see that, for X(#0)EC"*!, there exists a constant cx
>0 such that cxg is isometric on the subspace orthogonal to X. If »=2, then
we can take YEC™**! for any two Xi, X2&€C"*! such that (X, Y)c=0, (Xz, Y)c
=0. So we have cx,=cx,, which implies that cg is unitary with a constant ¢

(5.8)
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>0. Consequently |det cg|=|c"*' det g|=c"*'=1, and we have g€ SU(n+1).

Theorem 5.2. Let n=3, then the adjoint action of g€ Sp(n+1, C) on Xu
preserves wpsu if and only if g=Sp(n+1).

Proof. If g=Sp(n+1, C) preserves the symplectic form wprn, then we
have

(5.9) AdX¥(tr A*A)=tr A*A on Xy

by the similar argument to the proof of Theorem 5.1 (from (5.2) to (5.6)).
Now A& Xy is of the following form (see the proof of Proposition 3.5)

AZ C2”+2""C2"+2
Ax=(z, JX) Y —(x, JY)cX with (X, JY)c=0.

(5.10)

So we have
(5.11) tr(A*A)=2I XIPI YI*—2|(X, Y)cl’,

and for g€Sp(n+1, C)

(5.12) tr((¢Ag™)*(9Ag ™)) =2lg X PlgY|*—2I(¢X, g¥)cl.

Let Xi, X;€C*"*% If n=3, then there exists a Y &€C?"*? satisfying

{(Xlr Y)C=01 (le J?)C:()y (gle gY)C=07

(5.13) (X Y)e=0, (Xa JT)e=0, (9Xs, g¥)e=0

So also by the similar arguments as in the last paragraph of the preceding
proof, we have g€ U(2n+2). Hence g=Sp(n+1, C)NU@2n+2)=Sp(n+1).

For n=1, we have

Theorem 5.3. For P'H the adjoint action of g=Sp(2, C) preserves the
symplectic form wpn if and only if gESp(2).

Proof. By Proposition 4.1 and Theorem in the appendix of [Rall], we
have g€ Sp(2, C) preserves wpiu if and only if @5'eAdye @ SO(5), that is, g
e5p(2).

DEPARTMENT OF MATHEMATICS,
FACULTY OF SCIENCE AND TECHNOLOGY,
SCIENCE UNIVERSITY OF TOKYO

References

[Be] A. L. Besse, Manifolds all of whose Geodesics are closed, Springer-Verlag, 1978.
[BH] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces I, Amer. J.



A Kiihler structure 737

Math., 80(1958), 458-538.

[BI] R. Blattner, The metalinear geometry of non real polarizations, Lect. Note in Math. vol. 570,
Springer-Verlag, 1977.

[Cz] J. Czyz, On the Geometric Quantization and its Connection with Maslov theory, Rep. Math.
Phys., 15(1979), 57-97.

[FY] K. Furutani and S. Yoshizawa, A Kihler structure on the punctured cotangent bundle of
complex and quaternion projective spaces and its application to a geometric quantization II,
to appear in Japanese J. of Mathematics.

[GH] Ph. Griffiths and J. Harris, Principles of algebraic geometry, John Wiley and Sons, New
York, 1978.

[li] K.Ii, On a Bargmann-type transform and a Hilbert space of holomorphic functions, T6hoku
Mathematical Journal, 38-1(1986), 57-69.

[Ko] B. Kostant, Quantization and Unitary Representations, Lect. Note in Math. vol. 170,
Springer-Verlag, 1970.

[MT1] L Mladenov and V. Tsanov, Geometric quantization of the muitidimensional Kepler
problem, J. Geom. Phys., 2-1(1985), 17-24.

[MT2] 1. Mladenov and V. Tsanov, Geometric quantization of the geodesic flow on S”,
Differential geometric methods in theoretical physics (Shumen, 1984), World Sci. Publishing,
Singapore, 1986.

[Ral] J. H. Rawnsley, Coherent States and K#hler manifold, Quart, J. Math. Oxford, (2) 28(1977),
403-415.

[Ra2] J. H. Rawnsley, On the pairing of Polarizations, Comm. Math. Phys., 58(1978), 1-8.

[Ra3] J. H. Rawnsley, A nonunitary pairing of Polarizations for the Kepler Problem, Trans.
Amer. Math. Soc., 250, (1979), 167-180.

[Sol] J. M. Souriau, Structure des systemes dynamiques, Dunod Paris, 1970.

[So2] J. M. Souriau, Sur la variété de Kepler, Symposia Mathematica XIX, Academic Press, 1974.

[Wo] N. M. J. Woodhouse, Geometric Quantization, Clarendon Press Oxford, 1992.



